[go: up one dir, main page]

JP2004093269A - Neutron multiplier for fusion reactors with excellent high temperature properties and ductility - Google Patents

Neutron multiplier for fusion reactors with excellent high temperature properties and ductility Download PDF

Info

Publication number
JP2004093269A
JP2004093269A JP2002253284A JP2002253284A JP2004093269A JP 2004093269 A JP2004093269 A JP 2004093269A JP 2002253284 A JP2002253284 A JP 2002253284A JP 2002253284 A JP2002253284 A JP 2002253284A JP 2004093269 A JP2004093269 A JP 2004093269A
Authority
JP
Japan
Prior art keywords
neutron
ductility
beryllium
neutron multiplier
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002253284A
Other languages
Japanese (ja)
Other versions
JP3882114B2 (en
Inventor
Hiroshi Kawamura
河村  弘
Munenori Uchida
内田 宗範
Minoru Uda
宇田  実
Yoshio Ito
伊藤 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Japan Atomic Energy Agency
Original Assignee
NGK Insulators Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Japan Atomic Energy Research Institute filed Critical NGK Insulators Ltd
Priority to JP2002253284A priority Critical patent/JP3882114B2/en
Priority to PCT/JP2003/004462 priority patent/WO2003085678A1/en
Priority to EP03745972.4A priority patent/EP1494244B1/en
Publication of JP2004093269A publication Critical patent/JP2004093269A/en
Priority to US10/954,958 priority patent/US7560069B2/en
Application granted granted Critical
Publication of JP3882114B2 publication Critical patent/JP3882114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】高温での特性に優れるのは言うまでもなく、高い延性をそなえ、その加工や取り扱いが極めて容易な、高温特性に優れた核融合炉用中性子増倍材を提供する。
【解決手段】化学式:Be−xat%M
但し、Mは、Ti,V,Mo,W,Zr,NbおよびTaのうちから選んだいずれか一種
7.7<x<10.5(at%)
で表わされる、Be12MまたはBe13MとBe17とのベリリウム金属間化合物の複合相を形成する。
【選択図】    なし
It is an object of the present invention to provide a neutron multiplier for a nuclear fusion reactor, which has excellent ductility, high ductility, and is extremely easy to process and handle.
Chemical formula: Be-xat% M
However, M is one kind selected from Ti, V, Mo, W, Zr, Nb and Ta 7.7 <x <10.5 (at%)
And a composite phase of a beryllium intermetallic compound of Be 12 M or Be 13 M and Be 17 M 2 is formed.
[Selection figure] None

Description

【0001】
【発明の属する技術分野】本発明は、高温特性および延性に優れた核融合炉用中性子増倍材に関するものである。
【0002】
【従来の技術】従来、核融合炉用中性子増倍材としては、金属ベリリウム微小球が標準材料とされてきた。というのは、この金属ベリリウム微小球は、中性子反応断面積が大きく、中性子の数を増やす中性子増倍効果に優れることから、効果的に中性子を増やすことができ、その結果増倍した中性子により燃料であるトリチウムを増殖させることができるため、核融合燃料サイクルの有利な向上が望めるからである。
【0003】ところが、近年、核融合炉の発電効率を高め、寿命を延長するために、中性子増倍材をより高温( 600〜900 ℃)、かつより高い中性子照射環境下(〜20000 appmHe)で使用する計画が進められている。
しかしながら、上記した金属ベリリウムは、従来の使用環境下では問題はないものの、より高温での使用に際しては種々の問題が取り沙汰されている。
【0004】すなわち、金属ベリリウムは、従来考えられていた 400℃程度までの使用温度、3000 appmHe 程度までの中性子照射環境では、核融合炉用中性子増倍材として問題はないけれども、使用温度が 600℃以上になると冷却管破断等の事故発生時に高温水蒸気により酸化されて水素を生成して、水素爆発等の危険性が高まり、またスエリングが大きくなって、容器の破損等を生じるおそれがあり、かような高温発電ブランケットの中性子増倍材としては使用できない可能性がある。
【0005】従って、現在、高温で使用できる中性子増倍材の開発が進められている。
このような高温で使用できる中性子増倍材としては、ベリリウム金属間化合物が注目を浴びている。
例えば、ベリリウム金属間化合物の一つであるBe12Tiは、600 ℃の蒸気と接しても酸化せず、またブランケット構造材であるSUS316LNとの両立性試験においても 600℃ではほとんど反応せず、さらに 800℃における反応層厚さは金属ベリリウムの約1/10であり、化学的に極めて安定であることが判明している。また、中性子照射試験でのスエリング特性についての調査結果からも、Be12Tiは金属ベリリウムに比べてスエリング量が格段に小さいことが解明されている。
このように、ベリリウム金属間化合物は、高温での中性子増倍材として優れた特性を有することが明らかになってきている。
【0006】しかしながら、ベリリウム金属間化合物は、室温において脆いため、その加工や取り扱いが極めて難しいところに問題を残していた。
すなわち、機械加工中に欠け等の欠陥が発生し易いことから、歩留りや生産性の低下を余儀なくされ、また微小球とした後も割れが発生しないように、その取り扱いに細心の注意が必要なことから、その実使用が危ぶまれていた。
【0007】ところで、発明者らは先に、上記の問題を解決するものとして、少なくとも一種のベリリウム金属間化合物相と金属相との複合相からなる核融合炉用中性子増倍材を開発し、特願2002−105742号明細書において開示した。
上記の技術によれば、金属相がベリリウム金属間化合物相間にバインダーとして介在するため、ベリリウム金属間化合物相同士の固着強度が増大し、その結果、中性子増倍材全体の延性が向上して、加工性や取り扱い性の有利な改善を図ることができる。
【0008】
【発明が解決しようとする課題】しかしながら、上記の技術では、金属相を介在させたことに起因する特性劣化が免れ得ない。すなわち、僅かとはいえ金属相を介在させると、その分、中性子増倍効果が低下するだけでなく、スエリング特性、構造材との反応性、蒸気との反応性およびトリチウムインベントリ等の金属間化合物の特性劣化が生じる。
また、金属相として、金属ベリリウムを用いたとしても、αBe相に起因して、上記したところと同様な金属間化合物の特性劣化が生じる。
本発明は、上記の問題を有利に解決するもので、バインダーとしての金属相の必要なしに、ベリリウム金属間化合物相のみで延性を有利に改善した、高温特性および延性に優れた核融合炉用中性子増倍材を提案することを目的とする。
【0009】
【課題を解決するための手段】さて、発明者らは、上記の問題を解決すべく鋭意研究を重ねた結果、単味のベリリウム金属間化合物を使用した場合に比べて、特定組成比のベリリウム金属間化合物同士を組み合わせた場合に、延性が有利に改善されることの知見を得た。
本発明は、上記の知見に由来するものである。
【0010】すなわち、本発明は、
化学式:Be−xat%M
但し、Mは、Ti,V,Mo,W,Zr,NbおよびTaのうちから選んだいずれか一種
7.7<x<10.5(at%)
で表わされる、Be12MまたはBe13MとBe17とのベリリウム金属間化合物の複合相からなることを特徴とする高温特性および延性に優れた核融合炉用中性子増倍材である。
【0011】
本発明において、中性子増倍材の組織は、鋳造組織で、かつ結晶粒径が50μm 以下であることが有利に適合する。
【0012】
【発明の実施の形態】以下、本発明の解明経緯について説明する。
前述したとおり、バインダーとして金属相を用いた場合には、中性子増倍効果の低下など金属間化合物の特性劣化が生じる。
そこで、発明者らは、金属相に代わるバインダーとして種々の材料の組合せ実験を行っていたところ、かようなバインダーとして別種の材料を用いなくても、特定組成のベリリウム金属間化合物同士を組み合わせることによって、延性の改善に関し、望外の成果を得ることができた。
すなわち、Be12TiとBe17Tiとが混在する比率でベリリウムとチタンを混合し、これを鋳造してその延性を調べたところ、Be12TiやBe17Ti単味の場合に比べて、延性が格段に向上することが究明されたのである。
【0013】ここに、上記したBe12TiとBe17Tiの配合比率については特に制限されず、一方が僅かでも混在していると、その分、延性が向上することが判明したが、特に好ましくはBe12TiとBe17Tiの比が1:0.5〜2.0の場合、Be−xat%Tiで示すとxが8.8〜9.9at%の場合にとりわけ良好な結果が得られることが判明した。
【0014】次に、発明者らは、Ti以外の成分についても、同様な効果が得られるのではないかと考え、種々の成分についても検討した結果、V,Mo,W,Zr,NbおよびTaが、Tiと同様な効果があることが判明した。
そして、これらの元素を用いる場合も、Tiの場合と同様、Be12MおよびBe17(但し、MはV,Mo,W, NbおよびTaのうちから選んだいずれか一種)で示されるベリリウム金属間化合物(特にMがZrの場合は、Be13ZrとBe17Zrで示されるベリリウム金属間化合物)が混在する比率とすれば良いことが究明された。
【0015】さらに、かようなベリリウム金属間化合物の複合相の組織については、鋳造組織で、しかもその結晶粒径を50μm 以下とくに好ましくは20μm 以下とすることが、強度をはじめとして、延性の面で一層有利であることが判明した。
【0016】なお、本発明に従う中性子増倍材微小球の大きさは、平均粒径で0.1〜3.0 mm程度とすることが望ましい。またその真球度は、粒径×0.5 mm以下とすることが好ましい。
さらに、中性子増倍材中のFe濃度は0.4mass%以下程度、また酸化物の混入量は5.0 mass%以下程度とすることが有利である。
【0017】次に、本発明に従う中性子増倍材の製造方法について説明する。本発明では、中性子増倍材の製造方法を特に限定することはないが、従来から公知の回転電極法や粉末冶金法が特に有利に適合する。
・回転電極法
回転電極法によって本発明の中性子増倍材微小球を製造するには、まず消耗電極を作製する必要がある。この消耗電極を作製するには、所望の金属間化合物の組成比率となるようにベリリウムと各種金属とを混ぜ、これらを溶解し、鋳造したのち、所定の電極形状に機械加工する。
ついで、得られた消耗電極を用い、回転電極法によって、中性子増倍材微小球を製造する。
なお、この際の製造条件は特に限定されることはないが、好適条件について述べると次のとおりである。
・雰囲気ガス圧:500〜12000 Torr
・アーク電流:100〜1000A
・消耗電極の回転速度:4〜1000 m/s
【0018】・粉末冶金法
この方法によって中性子増倍材微小球を製造するには、所望の金属間化合物の組成比率となるようにベリリウムと各種金属とを混ぜ、これらを溶解し、鋳造したのち、粉砕し、得られた粉末を球形の金型等に装填し、冷間プレス等で球形に圧粉成形したのち、真空雰囲気中で焼結して微小球とする。
【0019】
【実施例】表1に示す組成になるベリリウム金属間化合物の複合相からなる中性子増倍材を、回転電極法または粉末冶金法によって製造した。なお、得られた中性子増倍材の粒径は0.7〜1.3 mmである。
かくして得られた各中性子増倍材の中性子増倍効果、耐スエリング性、延性、構造材との反応性、蒸気との反応性、トリチウムインベントリおよび熱伝導率について調べた結果を、表2に示す。
【0020】なお、各特性は次のようにして評価した。
・中性子増倍効果
中性子増倍効果は、構成元素の持つ中性子反応断面積、中性子吸収断面積および中性子捕獲断面積の値を考慮して、従来の金属ベリリウム微小球を用いた場合の中性子増倍効果を 1.0とし、それとの相対比で評価した。
・耐スエリング性
700℃で、材料中に生成するHe量が4000ppmとなる中性子照射条件において、スエリング量を判断するものとし、スエリングの程度に応じ、小(スエリング量:0.5 vol%以下)、中(スエリング量:0.5 vol%超、3.0 vol%以下)、大(スエリング量:3.0 vol%超)で評価した。なお、スエリング量は体積変化率(ΔV/V×100(%))で求めた。
・延性
室温において、直径が約1mmφの微小球に対し、圧縮速度:0.2 mm/minの条件で圧縮試験を行い、かかる圧縮試験後の形態によって評価した。
【0021】・構造材との反応性
6NのHe雰囲気中にて、ステンレス鋼を、800〜1000hの反応性試験に供し、その際の構造材との反応の程度に応じ、小(反応層:50μm 以下)、中(反応層:50μm 超、200μm 以下)、大(反応層:200μm 超)で評価した。
・蒸気との反応性
800℃において、水蒸気との反応試験を行い、その際の水蒸気との反応の程度に応じ、小(ほとんど酸化しない)、中(酸化する)、大(酸化により破壊する)で評価した。
・トリチウムインベントリ
スエリングの実験を行った試料について、昇温脱離法により測定したトリチウム量でトリチウムインベントリを評価した。すなわち、トリチウムインベントリの程度に応じ、小(極めて少ない)、中(幾分生じる)、大(かなり生じる)で評価した。
【0022】
【表1】

Figure 2004093269
【0023】
【表2】
Figure 2004093269
【0024】表2に示したとおり、発明例はいずれも、延性および耐スエリング性に優れ、また高い中性子増倍効果を有し、さらにトリチウムインベントリが小さく、構造材との反応性および蒸気との反応性も低い。
これに対し、No.31の比較例は、Be12Ti単味であるため、延性に乏しい。
また、No.32の比較例は、ベリリウム金属間化合物相間にバインダーとして金属相が介在しているため、延性や耐スエリング性に優れ、またトリチウムインベントリが小さく、構造材との反応性および蒸気との反応性も低いけれども、中性子増倍効果に劣っている。
さらに、No.33の従来例は、金属ベリリウムが100%であるため、中性子増倍効果や延性には優れるものの、スエリングやトリチウムインベントリが大きく、また構造材との反応性および蒸気との反応性も大きい。
【0025】
【発明の効果】かくして、本発明によれば、高温での特性に優れるのは言うまでもなく、加工性が良好で歩留りや生産性に優れ、さらには取り扱いも極めて容易な、核融合炉用中性子増倍材を安定して得ることができる。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a neutron multiplier for a fusion reactor having excellent high temperature characteristics and ductility.
[0002]
Conventionally, beryllium microspheres have been the standard material for neutron multipliers for fusion reactors. This is because the metal beryllium microspheres have a large neutron reaction cross section and are excellent in neutron multiplication effects that increase the number of neutrons. This is because it is possible to grow tritium, which is an advantage, and an advantageous improvement of the fusion fuel cycle can be expected.
However, in recent years, in order to increase the power generation efficiency of the nuclear fusion reactor and extend the lifetime, the neutron multiplier is used at a higher temperature (600 to 900 ° C.) and in a higher neutron irradiation environment (up to 20000 appmHe). Plans to use are in progress.
However, although the above-mentioned metal beryllium has no problem under the conventional use environment, various problems have been addressed when used at higher temperatures.
That is, metal beryllium has no problem as a neutron multiplier for a fusion reactor in a conventionally considered use temperature up to about 400 ° C., and neutron irradiation environment up to about 3000 appmHe. If it exceeds ℃, it will be oxidized by high-temperature steam at the time of an accident such as breakage of the cooling pipe to generate hydrogen, increasing the danger of hydrogen explosion, etc., and swelling may occur, causing damage to the container, It may not be used as a neutron multiplier for such high temperature power generation blankets.
Therefore, development of neutron multipliers that can be used at high temperatures is currently underway.
As a neutron multiplier that can be used at such a high temperature, beryllium intermetallic compounds are attracting attention.
For example, Be 12 Ti, which is one of beryllium intermetallic compounds, does not oxidize even when in contact with steam at 600 ° C., and hardly reacts at 600 ° C. in a compatibility test with SUS316LN, which is a blanket structure material. Furthermore, the reaction layer thickness at 800 ° C. is about 1/10 of that of metal beryllium, which has been found to be extremely chemically stable. In addition, it has been elucidated that the amount of swelling of Be 12 Ti is much smaller than that of metal beryllium from the results of investigation on swelling characteristics in the neutron irradiation test.
Thus, it has become clear that beryllium intermetallic compounds have excellent properties as neutron multipliers at high temperatures.
However, since beryllium intermetallic compounds are brittle at room temperature, they still have problems where their processing and handling are extremely difficult.
In other words, defects such as chips are likely to occur during machining, and yield and productivity must be reduced, and handling with great care is necessary so that cracks do not occur even after microspheres are formed. Therefore, its actual use was in danger.
By the way, the inventors previously developed a neutron multiplier for a fusion reactor comprising a composite phase of at least one beryllium intermetallic compound phase and a metal phase, as a solution to the above problem. This is disclosed in Japanese Patent Application No. 2002-105742.
According to the above technology, since the metal phase intervenes as a binder between the beryllium intermetallic compound phase, the adhesion strength between the beryllium intermetallic compound phases increases, as a result, the ductility of the entire neutron multiplier is improved, An advantageous improvement in workability and handling can be achieved.
[0008]
However, in the above technique, characteristic deterioration due to the interposition of the metal phase cannot be avoided. In other words, if a metal phase is interposed, the neutron multiplication effect is reduced by that amount, as well as swelling properties, reactivity with structural materials, reactivity with steam, and intermetallic compounds such as tritium inventory. The characteristic deterioration occurs.
Even if metal beryllium is used as the metal phase, the characteristic deterioration of the intermetallic compound similar to that described above occurs due to the αBe phase.
The present invention advantageously solves the above-mentioned problems, and for a fusion reactor excellent in high temperature characteristics and ductility, in which ductility is advantageously improved only by a beryllium intermetallic compound phase without the need for a metal phase as a binder. The purpose is to propose a neutron multiplier.
[0009]
Means for Solving the Problems Now, the inventors have conducted extensive research to solve the above problems, and as a result, compared to the case where a simple beryllium intermetallic compound is used, beryllium having a specific composition ratio is obtained. The knowledge that ductility is advantageously improved when intermetallic compounds are combined was obtained.
The present invention is derived from the above findings.
That is, the present invention
Chemical formula: Be-xat% M
However, M is one kind selected from Ti, V, Mo, W, Zr, Nb and Ta 7.7 <x <10.5 (at%)
A neutron multiplier for a nuclear fusion reactor excellent in high temperature characteristics and ductility, characterized by comprising a composite phase of Be 12 M or a beryllium intermetallic compound of Be 13 M and Be 17 M 2 represented by:
[0011]
In the present invention, the structure of the neutron multiplier is advantageously adapted to be a cast structure and a crystal grain size of 50 μm or less.
[0012]
DESCRIPTION OF THE PREFERRED EMBODIMENTS The elucidation process of the present invention will be described below.
As described above, when a metal phase is used as the binder, characteristic deterioration of the intermetallic compound such as a decrease in the neutron multiplication effect occurs.
Therefore, the inventors have conducted a combination experiment of various materials as a binder in place of the metal phase, and it is possible to combine beryllium intermetallic compounds having a specific composition without using another kind of material as such a binder. As a result, it was possible to obtain an unexpected result regarding the improvement of ductility.
That is, when beryllium and titanium were mixed at a ratio in which Be 12 Ti and Be 17 Ti 2 were mixed, and this was cast and its ductility was examined, it was compared with the case of Be 12 Ti or Be 17 Ti 2 plain. It has been determined that the ductility is remarkably improved.
Here, the blending ratio of the above Be 12 Ti and Be 17 Ti 2 is not particularly limited, and it has been found that if only one of them is mixed, the ductility is improved accordingly. Preferably, when the ratio of Be 12 Ti to Be 17 Ti 2 is 1: 0.5 to 2.0, particularly good results when x is 8.8 to 9.9 at% as represented by Be-xat% Ti Was found to be obtained.
Next, the inventors thought that the same effect could be obtained with components other than Ti, and as a result of examining various components, V, Mo, W, Zr, Nb, and Ta. However, it turned out that there exists an effect similar to Ti.
When these elements are used, they are represented by Be 12 M and Be 17 M 2 (where M is any one selected from V, Mo, W, Nb and Ta), as in the case of Ti. It has been determined that the ratio of beryllium intermetallic compounds (especially beryllium intermetallic compounds represented by Be 13 Zr and Be 17 Zr 2 when M is Zr) may be used.
Furthermore, the structure of the composite phase of such beryllium intermetallic compound is a cast structure, and its crystal grain size is preferably 50 μm or less, particularly preferably 20 μm or less, in terms of strength and ductility. Was found to be more advantageous.
The size of the neutron multiplier microspheres according to the present invention is preferably about 0.1 to 3.0 mm in average particle size. Moreover, it is preferable that the sphericity is a particle size x 0.5 mm or less.
Further, it is advantageous that the Fe concentration in the neutron multiplier is about 0.4 mass% or less, and the amount of oxide mixed is about 5.0 mass% or less.
Next, a method for producing a neutron multiplier according to the present invention will be described. In the present invention, the production method of the neutron multiplier is not particularly limited, but the conventionally known rotating electrode method and powder metallurgy method are particularly advantageously adapted.
-Rotating electrode method In order to produce the neutron multiplier microsphere of the present invention by the rotating electrode method, it is necessary to first produce a consumable electrode. In order to produce this consumable electrode, beryllium and various metals are mixed so that the composition ratio of a desired intermetallic compound is obtained, these are dissolved, cast, and then machined into a predetermined electrode shape.
Next, neutron multiplier microspheres are produced by the rotating electrode method using the obtained consumable electrode.
In addition, although the manufacturing conditions in this case are not specifically limited, It is as follows when a suitable condition is described.
-Atmospheric gas pressure: 500-12000 Torr
・ Arc current: 100-1000A
・ Rotating speed of consumable electrode: 4 to 1000 m / s
Powder metallurgy method In order to produce neutron multiplier microspheres by this method, beryllium and various metals are mixed so that the composition ratio of the desired intermetallic compound is obtained, and these are melted and cast. The powder obtained is pulverized, loaded into a spherical mold or the like, compacted into a spherical shape by a cold press or the like, and then sintered in a vacuum atmosphere to form microspheres.
[0019]
EXAMPLE A neutron multiplier comprising a composite phase of beryllium intermetallic compounds having the composition shown in Table 1 was produced by the rotating electrode method or the powder metallurgy method. The particle size of the obtained neutron multiplier is 0.7 to 1.3 mm.
Table 2 shows the neutron multiplication effect, swelling resistance, ductility, reactivity with structural materials, reactivity with steam, tritium inventory and thermal conductivity of each neutron multiplier thus obtained. .
Each characteristic was evaluated as follows.
Neutron multiplication effect The neutron multiplication effect takes into account the values of the neutron reaction cross section, neutron absorption cross section and neutron capture cross section of the constituent elements, and neutron multiplication using conventional metal beryllium microspheres. The effect was set to 1.0, and the evaluation was made based on the relative ratio.
・ Swelling resistance Under the neutron irradiation condition where the amount of He produced in the material is 4000 ppm at a temperature of 700 ° C., the amount of swelling is judged, and depending on the degree of swelling, the amount is small (swelling amount: 0.5 vol% or less) , Medium (swelling amount: more than 0.5 vol%, 3.0 vol% or less) and large (swelling amount: more than 3.0 vol%). In addition, the amount of swelling was calculated | required by the volume change rate ((DELTA) V / V * 100 (%)).
A compression test was performed on a microsphere having a diameter of about 1 mmφ at a ductile room temperature under the condition of a compression speed of 0.2 mm / min, and the evaluation was performed according to the form after the compression test.
Reactivity with structural material In a 6N He atmosphere, stainless steel is subjected to a reactivity test of 800 to 1000 h, and depending on the degree of reaction with the structural material at that time (reaction layer: 50 μm or less), middle (reaction layer: more than 50 μm, 200 μm or less), and large (reaction layer: more than 200 μm).
・ Reactivity with steam At 800 ° C, a reaction test with water vapor was conducted, and depending on the degree of reaction with water vapor at that time, small (nearly oxidized), medium (oxidized), large (destructed by oxidation) It was evaluated with.
-The tritium inventory was evaluated by the tritium amount measured by the temperature programmed desorption method for the samples on which the tritium inventory swelling experiment was conducted. That is, depending on the degree of tritium inventory, the evaluation was small (very little), medium (somewhat occurs), and large (very much).
[0022]
[Table 1]
Figure 2004093269
[0023]
[Table 2]
Figure 2004093269
As shown in Table 2, all of the inventive examples are excellent in ductility and swelling resistance, have a high neutron multiplication effect, have a small tritium inventory, and react with structural materials and steam. Low reactivity.
In contrast, no. Since the comparative example of 31 is Be 12 Ti simple, it has poor ductility.
No. In Comparative Example 32, a metal phase is interposed as a binder between the beryllium intermetallic compound phases, so that the ductility and swelling resistance are excellent, the tritium inventory is small, the reactivity with the structural material and the reactivity with the vapor are also achieved. Although it is low, it is inferior to the neutron multiplication effect.
Furthermore, no. In the conventional example of 33, metal beryllium is 100%, so that the neutron multiplication effect and ductility are excellent, but swelling and tritium inventory are large, and the reactivity with the structural material and the reactivity with the vapor are also large.
[0025]
Thus, according to the present invention, it is needless to say that the characteristics at high temperature are excellent, and the neutron gain for a fusion reactor is excellent, which is excellent in workability, excellent in yield and productivity, and extremely easy to handle. A double material can be obtained stably.

Claims (2)

化学式:Be−xat%M
但し、Mは、Ti,V,Mo,W,Zr,NbおよびTaのうちから選んだいずれか一種
7.7<x<10.5(at%)
で表わされる、Be12MまたはBe13MとBe17とのベリリウム金属間化合物の複合相からなることを特徴とする高温特性および延性に優れた核融合炉用中性子増倍材。
Chemical formula: Be-xat% M
However, M is one kind selected from Ti, V, Mo, W, Zr, Nb and Ta 7.7 <x <10.5 (at%)
A neutron multiplier for fusion reactors having excellent high-temperature characteristics and ductility, characterized by comprising a composite phase of Be 12 M or a beryllium intermetallic compound of Be 13 M and Be 17 M 2 represented by:
組織が鋳造組織で、かつ結晶粒径が50μm 以下であることを特徴とする請求項1記載の高温特性および延性に優れた核融合炉用中性子増倍材。The neutron multiplier for a nuclear fusion reactor having excellent high temperature characteristics and ductility according to claim 1, wherein the structure is a cast structure and the crystal grain size is 50 µm or less.
JP2002253284A 2002-04-08 2002-08-30 Neutron multiplier for fusion reactor Expired - Lifetime JP3882114B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002253284A JP3882114B2 (en) 2002-08-30 2002-08-30 Neutron multiplier for fusion reactor
PCT/JP2003/004462 WO2003085678A1 (en) 2002-04-08 2003-04-08 Material for nuclear fusion furnace excellent in high temperature characteristics comprising beryllium intermetallic compound
EP03745972.4A EP1494244B1 (en) 2002-04-08 2003-04-08 Material for nuclear fusion reactor excellent in high temperature characteristics comprising beryllium intermetallic compound
US10/954,958 US7560069B2 (en) 2002-04-08 2004-09-30 Material including beryllium intermetallic compound and having excellent high-temperature property applied to nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253284A JP3882114B2 (en) 2002-08-30 2002-08-30 Neutron multiplier for fusion reactor

Publications (2)

Publication Number Publication Date
JP2004093269A true JP2004093269A (en) 2004-03-25
JP3882114B2 JP3882114B2 (en) 2007-02-14

Family

ID=32059326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253284A Expired - Lifetime JP3882114B2 (en) 2002-04-08 2002-08-30 Neutron multiplier for fusion reactor

Country Status (1)

Country Link
JP (1) JP3882114B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019608A (en) * 2008-07-08 2010-01-28 Japan Atomic Energy Agency Beryllium material filling body, and molding method of beryllium material filling body
JP2013209694A (en) * 2012-03-30 2013-10-10 Japan Atomic Energy Agency Apparatus for producing beryllide pebble
CN116121613A (en) * 2022-12-21 2023-05-16 北京科技大学 Beryllium-zirconium alloy and application thereof in nuclear fusion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019608A (en) * 2008-07-08 2010-01-28 Japan Atomic Energy Agency Beryllium material filling body, and molding method of beryllium material filling body
JP2013209694A (en) * 2012-03-30 2013-10-10 Japan Atomic Energy Agency Apparatus for producing beryllide pebble
CN116121613A (en) * 2022-12-21 2023-05-16 北京科技大学 Beryllium-zirconium alloy and application thereof in nuclear fusion

Also Published As

Publication number Publication date
JP3882114B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
CN112725679B (en) Light high-entropy alloy material with high specific strength and preparation method thereof
CN112981210A (en) Nuclear medium-entropy alloy system and preparation method and application thereof
WO2006057020A1 (en) Non-evaporable getter alloys for hydrogen sorption
EP0101498B1 (en) Oxygen-free dispersion-strengthened copper and process for making same
CN115502399B (en) Titanium-based composite material prepared by low-temperature hot isostatic pressing and method thereof
JPH101731A (en) Hydrogen storage alloy and its production
JP4982654B2 (en) Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance
JP3882114B2 (en) Neutron multiplier for fusion reactor
CN109609791A (en) A kind of composite hydrogen storage alloy for static hydrogen compression and its preparation method and application
JP3882110B2 (en) Neutron multiplier for fusion reactor
CN101967660B (en) Co-electric deoxidation method for preparing Nb3Method for producing Al superconducting material
CN105861897A (en) Method for designing long-service-life Nd-Mg-Ni hydrogen storage alloy through phase diagram
WO2015020007A1 (en) Ni-group superalloy strengthened by oxide-particle dispersion
Ray The lanthanons as nuclear control materials
CN116053491A (en) High-capacity easy-activation RE-Ti-Fe-Mn-based hydrogen storage alloy for fuel cell and preparation method thereof
JP4189447B2 (en) Mg-Ti hydrogen storage alloy and method for producing the same
WO2003085678A1 (en) Material for nuclear fusion furnace excellent in high temperature characteristics comprising beryllium intermetallic compound
CN115744815B (en) Composite hydrogen storage material with impurity gas poisoning resistance and preparation method thereof
CN1271734C (en) Metal negative electrode material for nickel-hydrogen battery and preparing process
JPH09184040A (en) Yttrium-magnesium hydrogen storage alloy
JPH10298681A (en) Hydrogen storage alloy
CN118437924A (en) A bimetallic material resistant to molten salt corrosion and its preparation and application
Liu et al. The Development of UMo/Al Dispersion Fuel
Sandhage Mechanically-, Thermally, and Chemically-Robust High-Temperature Ceramic Composites
CN116516229A (en) An understoichiometric magnesium-containing C15 structure Laves phase room temperature reversible hydrogen storage high-entropy alloy and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3882114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term