[go: up one dir, main page]

JP2004090021A - Hardenable flux - Google Patents

Hardenable flux Download PDF

Info

Publication number
JP2004090021A
JP2004090021A JP2002253364A JP2002253364A JP2004090021A JP 2004090021 A JP2004090021 A JP 2004090021A JP 2002253364 A JP2002253364 A JP 2002253364A JP 2002253364 A JP2002253364 A JP 2002253364A JP 2004090021 A JP2004090021 A JP 2004090021A
Authority
JP
Japan
Prior art keywords
solder
flux
curable flux
per molecule
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002253364A
Other languages
Japanese (ja)
Other versions
JP4211328B2 (en
Inventor
Kazuya Nagatomi
永富 和哉
Satoru Katsurayama
桂山 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002253364A priority Critical patent/JP4211328B2/en
Publication of JP2004090021A publication Critical patent/JP2004090021A/en
Application granted granted Critical
Publication of JP4211328B2 publication Critical patent/JP4211328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain high soldering reliability in a process for mounting a solder ball, semiconductor chips, a semiconductor package and the like by reflow soldering using a hardenable flux. <P>SOLUTION: The hardenable flux used in soldering and in reinforcing a solder joint has a viscosity not below 1.0×10<SP>-2</SP>Pa s and not above 5.0×10<SP>-2</SP>Pa s in the temperature range from 30°C to solder melting point. In addition, it is desirable that the hardenable flux contains epoxy resin having two or more epoxy radicals, and a hardener having at least two or more phenolic hydroxyl groups per molecule and at least one or more carboxyl groups per molecule. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップ・半導体パッケージに半田ボールを半田接合により実装する際、さらには、半導体搭載用基板に半導体チップ・半導体パッケージを半田接合により実装する際の硬化性フラックスに関するものである。
【0002】
【従来の技術】
近年、電子部品の高密度集積化の進行に伴い、半導体パッケージの小型化かつ多ピン化が必要不可欠となっている。この半導体パッケージの小型化かつ多ピン化に対して、BGA(Ball Grid Array)やCSP(Chip Scale Package)といった表面実装用エリアアレイ型のパッケージが開発されている。BGAやCSPの回路基板への実装には、半田ボールで形成されたバンプによる、半田接合が採用されている。
【0003】
一般に、半田接合のためには、半田表面と対する電極の酸化膜を除去する必要があり、半田付け用フラックスが使用される。この半田付け用フラックスには、熱可塑性フラックスと酸化膜を除去するための活性剤が含まれている。
【0004】
しかし、半田接合後にこのフラックスが残存していると、高温、多湿時に熱可塑性樹脂の溶融、活性剤中の活性イオンの遊離が起こり、電気絶縁性の低下などの問題が発生する。そのため現在では、半田接合後、残存フラックスの洗浄除去を行う必要がある。
【0005】
近年の半導体パッケージの小型化かつ多ピン化は、バンプの微細化を促している。そのため、残存フラックスを完全に洗浄除去することは、非常に困難な作業である。さらには、バンプ接続部分の信頼性が低下する可能性がある。
【0006】
上記問題点を解決するために、半田接合の際、フラックスとして作用し、半田接合後、さらに加熱をすることで熱硬化して、半田接合部の補強材となる硬化性フラックスが検討されている(特願2000−19346号)。しかし、この硬化性フラックスによるリフロー半田接合において、半田接合の信頼性にばらつきが生じる問題があった。
【0007】
【発明が解決しようとする課題】
本発明の課題は、硬化性フラックスによるリフロー半田接合において、半田接合の高信頼性を与える硬化性フラックスを提供することにある。
【0008】
【課題を解決するための手段】
本発明は、
(1)半田接合及び半田接合部の補強の際に使用する硬化性フラックスにおいて、30℃から半田融点までの温度範囲内で、該硬化性フラックスの粘度が1.0×10−2Pa・s以上で5.0×10Pa・s以下である硬化性フラックス、
(2)該硬化性フラックスが、2個以上のエポキシ基を有するエポキシ樹脂、及び硬化剤を含む第(1)項記載の硬化性フラックス、
(3)該硬化性フラックスが、1分子あたり少なくとも2個以上のフェノール性水酸基及び1分子あたり少なくとも1個以上のカルボキシル基を有する硬化剤を含む第(1)又は(2)項記載の硬化性フラックス、
である。
【0009】
【発明の実施の形態】
本発明について詳細に説明する。
本発明で記載した樹脂粘度は、レオメトリー分析装置(例えばRheometric Scientific,Inc. Model:Ares−2KSTD−FCO−STD)を用いて、測定を行う。測定条件は、プレートとカップを用いて、サンプル量0.1〜0.5ml、ギャップ0.3〜0.7mm、歪み1〜60%、振動数1〜100rad/sec、昇温速度1〜100℃/minであり、30℃から250℃付近まで測定を行う。
【0010】
サンプル量が0.1ml未満、またはギャップが0.7mmを超えると、サンプルがプレート全面に拡がらず、正確な粘度挙動が測定できない恐れがあり好ましくない。また、サンプル量が0.5mlを超える場合、またはギャップが0.3mm未満であると、サンプルがプレート側面に溢れ出て、正確な粘度挙動が測定できない恐れがあり好ましくない。
歪みが1%未満、または振動数が1rad/sec未満であると、被測定物に伝わる力を感知できない恐れがあり好ましくない。また、歪みが60%を超える場合、または振動数が100rad/secを超えると、必要以上に外力が加わり、正確な粘度挙動が測定できない恐れがあり好ましくない。
昇温速度について、100℃/minを超えて昇温すると被測定物が急激に加熱され、被測定物の温度に対する応答性が悪くなり、正確な粘度挙動が測定できない恐れがあり好ましくない。
【0011】
本発明は、半田接合時、半田接合のフラックスとして作用し、同時に半田接合部周辺にフィレットを形成して、該半田接合部に補強材として機能する硬化性フラックスにおいて、30℃から半田融点までの温度範囲内で、樹脂粘度が1.0×10−2Pa・s以上5.0×10Pa・s以下であることが必要である。より好ましくは、1.0×10−2Pa・s以上2.5×10Pa・s以下である。
【0012】
これは、半田接合の際、硬化性フラックスが加熱され、樹脂粘度が1.0×10−2Pa・s未満になると、硬化性フラックスが半田接合部から濡れ拡がり、半田接合部には半田接合に必要な硬化性フラックスの量が不足して、半田接合が困難となるためである。また、5.0×10Pa・sを超えると、半田表面と対する金属が接触できなくなり、半田接続が困難となるためである。
【0013】
本発明において、硬化性フラックスのより好ましい形態は、2個以上のエポキシ基を有するエポキシ樹脂と硬化剤を含むことである。
【0014】
本発明で用いられるエポキシ樹脂は、2個以上のエポキシ基を有するエポキシ樹脂であれば特に限定しないが、既存のビスフェノール系ジグリシジルエーテル類、また、それらの水素添加反応により芳香環を飽和炭化水素化したもの、フェノールノボラックとエピクロールヒドリンとの反応で得られるグリシジルエーテルで、常温で液状のもの等、または、それらを混合したものが挙げられる。また、これらの液状樹脂にジヒドロキシナフタレンのジグリシジルエーテル、テトラメチルビフェノールのジグリシジルエーテル等、結晶性のエポキシ樹脂を混合し、液状にしたものを使用することもできる。また、用途によっては、高信頼性付与の為、絶縁フィラーを添加する場合もある。
【0015】
次に、本発明で用いる硬化剤は、1分子あたり少なくとも2個以上のフェノール性水酸基と1分子あたり少なくとも1個以上のカルボキシル基を有する化合物が好ましい。例として、2,3−ジヒドロキシ安息香酸、2,4−ジヒドロキシ安息香酸、2,5−ジヒドロキシ安息香酸、2,6−ジヒドロキシ安息香酸、3,4−ジヒドロキシ安息香酸、没食子酸、1,4−ジヒドロキシ−2−ナフトエ酸、3,5−ジヒドロキシ−2−ナフトエ酸、フェノールフタリン、ジフェノール酸等が挙げられる。この硬化剤としての1分子あたり少なくとも2個以上のフェノール性水酸基と1分子あたり少なくとも1個以上のカルボキシル基を有する化合物は、フラックス作用を示す。これらの化合物は、単独または複数添加して用いることができる。
【0016】
ここで、フラックス作用とは、通常用いられているような半田付け用フラックスと同様、金属酸化膜を還元し、その酸化膜を除去しうる性質を示す。
【0017】
硬化剤の配合量は、エポキシ樹脂に対して20重量%以上80重量%以下が好ましい。20重量%未満であると、半田および金属表面の酸化物を除去する能力が低下し、半田接合が困難となり好ましくない。また、80重量%を超えると、良好な硬化物が得られず、接合接合部の補強効果と信頼性が低下する可能性があり好ましくない。
【0018】
上記、エポキシ樹脂と硬化剤に硬化促進剤を加えてもよい。一般的にエポキシ樹脂の硬化促進剤として、用いられるものであり、例えば、イミダゾール化合物、リン化合物、ジアザ化合物、第三級アミン等を挙げることができる。
【0019】
【実施例】
<実施例1−5、比較例1−4>
表1の処方に従って秤量し、ミキサーにて混練し、真空脱泡機、液状樹脂組成物を作製した。次に特性を把握するために以下の代用特性を評価した。
【0020】
(1)動的粘度:レオメトリー分析装置(Rheometric Scientific,Inc. Model:Ares−2KSTD−FCO−STD)を用いて、測定を行った。測定条件は、プレートとカップを用いて、サンプル量0.3ml、ギャップ0.5mm、歪み30%、振動数50rad/sec、昇温速度60℃/minであり、30℃から250℃付近まで測定を行った。
(2)半田接合試験:厚さ0.25mmのベア銅フレームに作製した硬化性フラックスを滴下し、その上に直径0.50mmのSn−3.5Ag−0.75Cu半田ボール(半田融点:217〜219℃)を静置した。それを、ピーク温度240℃のリフロー炉に導入し、半田ボールの接合性を、テスターを用いた導通評価により確認し、全試験数中、導通の見られないものを不良としてカウントした。
【0021】
上記の測定結果を表1に示す。
実施例に用いた原材料の内容は下記の通りである。
・ビスF型エポキシ樹脂:粘度2000mPa・s(25℃)。
・ジアリルビスA型エポキシ樹脂:粘度3400mPa・s(25℃)。
・多官能エポキシ樹脂:主成分2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−(2,3−エポキシプロポキシ)フェニル]エチル]プロパンの3官能エポキシ樹脂を用いた(日本化薬社製NC−6000)。
・フェノール系硬化剤:2,5−ジヒドロキシ安息香酸、又はフェノールフタリンを用いた。
・硬化促進剤:イミダゾール化合物を2種類(硬化促進剤Aと硬化促進剤B)用いた。
【0022】
【表1】

Figure 2004090021
【0023】
表1に示したように、実施例1−5では、半田接合性に関して良好な結果を示している。これは、半田接合温度までの動的粘度が1.0×10−2Pa・s以上であり、半田接合部からの硬化性フラックスの濡れ拡がりによる、硬化性フラックスの供給量不足が抑制できるためであると推測される。また、半田接合温度までの動的粘度が5.0×10Pa・s以下であり、半田表面と対する金属の接触が良好に起こるためであると推測される。
一方、比較例1−4では、半田接合温度までの動的粘度が1.0×10−2Pa・s未満であるためか、半田接合性に関して不良が発生する結果が得られている。これは、硬化性フラックスの粘度が1.0×10−2Pa・s未満になることで、硬化性フラックスは半田接合部に留まることができなくなり、流れ出してしまうため、酸化膜の除去に必要なフラックスの量を半田接合部に供給できなくなり、半田接合に不利な状態になったためであると推測される。
【0024】
【発明の効果】
本発明の硬化性フラックスを用いることにより、リフロー半田接合において、半田接合の信頼性が高く、また、実装プロセスの短縮化を達成することができ、その工業的メリットは大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a curable flux when a solder ball is mounted on a semiconductor chip / semiconductor package by solder bonding, and further when a semiconductor chip / semiconductor package is mounted on a semiconductor mounting substrate by solder bonding.
[0002]
[Prior art]
In recent years, with the progress of high-density integration of electronic components, miniaturization of semiconductor packages and increase in the number of pins have become indispensable. In order to reduce the size and increase the number of pins of the semiconductor package, surface mount area array type packages such as BGA (Ball Grid Array) and CSP (Chip Scale Package) have been developed. For mounting a BGA or CSP on a circuit board, solder bonding using bumps formed of solder balls is employed.
[0003]
Generally, for solder bonding, it is necessary to remove the oxide film of the electrode from the surface of the solder, and a soldering flux is used. This soldering flux contains a thermoplastic flux and an activator for removing an oxide film.
[0004]
However, if this flux remains after soldering, melting of the thermoplastic resin and liberation of active ions in the activator occur at high temperature and high humidity, causing problems such as a decrease in electrical insulation. For this reason, at present, it is necessary to wash and remove the residual flux after soldering.
[0005]
2. Description of the Related Art In recent years, miniaturization and increase in the number of pins of semiconductor packages have promoted miniaturization of bumps. Therefore, it is very difficult to completely remove and remove the residual flux. Further, the reliability of the bump connection portion may be reduced.
[0006]
In order to solve the above problems, a curable flux that acts as a flux at the time of solder bonding, and is thermally cured by further heating after solder bonding, and serves as a reinforcing material for the solder joint has been studied. (Japanese Patent Application No. 2000-19346). However, in the reflow soldering using the curable flux, there has been a problem that the reliability of the solder bonding varies.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a curable flux that provides high reliability of solder bonding in reflow soldering using a curable flux.
[0008]
[Means for Solving the Problems]
The present invention
(1) In the curable flux used for solder joining and reinforcement of the solder joint, the viscosity of the curable flux is 1.0 × 10 −2 Pa · s within a temperature range from 30 ° C. to the solder melting point. A curable flux of not more than 5.0 × 10 2 Pa · s,
(2) The curable flux according to (1), wherein the curable flux contains an epoxy resin having two or more epoxy groups, and a curing agent.
(3) The curability according to (1) or (2), wherein the curable flux contains a curing agent having at least two or more phenolic hydroxyl groups per molecule and at least one or more carboxyl group per molecule. flux,
It is.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in detail.
The resin viscosity described in the present invention is measured using a rheometric analyzer (for example, Rheometric Scientific, Inc. Model: Ares-2KSTD-FCO-STD). The measurement conditions were as follows: using a plate and a cup, the sample amount was 0.1 to 0.5 ml, the gap was 0.3 to 0.7 mm, the strain was 1 to 60%, the frequency was 1 to 100 rad / sec, and the heating rate was 1 to 100. ° C / min, and measures from 30 ° C to around 250 ° C.
[0010]
If the sample volume is less than 0.1 ml or the gap exceeds 0.7 mm, the sample does not spread over the entire surface of the plate, and it is not preferable because accurate viscosity behavior may not be measured. On the other hand, if the sample volume exceeds 0.5 ml or if the gap is smaller than 0.3 mm, the sample overflows to the side surface of the plate, so that accurate viscosity behavior may not be measured.
If the distortion is less than 1% or the frequency is less than 1 rad / sec, the force transmitted to the object to be measured may not be detected, which is not preferable. If the strain exceeds 60%, or if the frequency exceeds 100 rad / sec, external force is applied more than necessary, and accurate viscosity behavior may not be measured, which is not preferable.
With respect to the rate of temperature rise, if the temperature is raised at more than 100 ° C./min, the object to be measured is rapidly heated, the response to the temperature of the object to be deteriorated, and accurate viscosity behavior may not be measured.
[0011]
The present invention provides a curable flux that acts as a solder joint flux at the time of solder joining and simultaneously forms a fillet around the solder joint and functions as a reinforcing material at the solder joint. Within the temperature range, the resin viscosity needs to be 1.0 × 10 −2 Pa · s or more and 5.0 × 10 2 Pa · s or less. More preferably, it is 1.0 × 10 −2 Pa · s or more and 2.5 × 10 2 Pa · s or less.
[0012]
This is because the curable flux is heated at the time of solder joining, and when the resin viscosity becomes less than 1.0 × 10 −2 Pa · s, the curable flux spreads from the solder joint and spreads to the solder joint. This is because the amount of the curable flux necessary for the soldering is insufficient, so that the solder joining becomes difficult. On the other hand, if it exceeds 5.0 × 10 2 Pa · s, the metal on the solder surface cannot be brought into contact with the solder surface, and it becomes difficult to perform solder connection.
[0013]
In the present invention, a more preferable form of the curable flux includes an epoxy resin having two or more epoxy groups and a curing agent.
[0014]
The epoxy resin used in the present invention is not particularly limited as long as it is an epoxy resin having two or more epoxy groups. However, existing bisphenol-based diglycidyl ethers, or a saturated hydrocarbon having an aromatic ring formed by a hydrogenation reaction thereof can be used. Glycidyl ether obtained by the reaction of phenol novolak with epichlorhydrin, which is liquid at normal temperature, or a mixture thereof. Further, a liquid epoxy resin such as a diglycidyl ether of dihydroxynaphthalene and a diglycidyl ether of tetramethylbiphenol may be mixed with these liquid resins to make them liquid. In addition, depending on the application, an insulating filler may be added to impart high reliability.
[0015]
Next, the curing agent used in the present invention is preferably a compound having at least two or more phenolic hydroxyl groups per molecule and at least one or more carboxyl groups per molecule. Examples are 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid, 1,4- Examples thereof include dihydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid, phenolphthalein, and diphenolic acid. The compound having at least two or more phenolic hydroxyl groups per molecule and at least one or more carboxyl group per molecule as the curing agent exhibits a flux action. These compounds can be used alone or in combination.
[0016]
Here, the flux action refers to a property capable of reducing a metal oxide film and removing the oxide film as in the case of a generally used flux for soldering.
[0017]
The compounding amount of the curing agent is preferably 20% by weight or more and 80% by weight or less based on the epoxy resin. If the amount is less than 20% by weight, the ability to remove solder and oxides on the metal surface is reduced, and solder joining becomes difficult, which is not preferable. On the other hand, if the content exceeds 80% by weight, a favorable cured product cannot be obtained, and the reinforcing effect and reliability of the joint may deteriorate, which is not preferable.
[0018]
A curing accelerator may be added to the epoxy resin and the curing agent. It is generally used as a curing accelerator for an epoxy resin, and examples thereof include an imidazole compound, a phosphorus compound, a diaza compound, and a tertiary amine.
[0019]
【Example】
<Example 1-5, Comparative Example 1-4>
It was weighed according to the prescription in Table 1, and kneaded with a mixer to produce a vacuum defoamer and a liquid resin composition. Next, the following substitute characteristics were evaluated in order to grasp the characteristics.
[0020]
(1) Dynamic viscosity: Measurement was performed using a rheometric analyzer (Rheometric Scientific, Inc. Model: Ares-2KSTD-FCO-STD). The measurement conditions were as follows: using a plate and a cup, the sample amount was 0.3 ml, the gap was 0.5 mm, the strain was 30%, the frequency was 50 rad / sec, and the heating rate was 60 ° C./min. Was done.
(2) Solder bonding test: The curable flux prepared above was dropped on a bare copper frame having a thickness of 0.25 mm, and Sn-3.5Ag-0.75Cu solder balls having a diameter of 0.50 mm were placed thereon (solder melting point: 217). 219 ° C). It was introduced into a reflow furnace having a peak temperature of 240 ° C., and the bondability of the solder balls was confirmed by conduction evaluation using a tester.
[0021]
Table 1 shows the above measurement results.
The contents of the raw materials used in the examples are as follows.
-Bis F type epoxy resin: viscosity 2000 mPa-s (25 degreeC).
Diallyl bis A type epoxy resin: viscosity 3400 mPa · s (25 ° C.)
Polyfunctional epoxy resin: main component 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3-epoxypropoxy) phenyl] ethyl] A propane trifunctional epoxy resin was used (NC-6000 manufactured by Nippon Kayaku Co., Ltd.).
Phenolic curing agent: 2,5-dihydroxybenzoic acid or phenolphthaline was used.
Curing accelerator: Two types of imidazole compounds (curing accelerator A and curing accelerator B) were used.
[0022]
[Table 1]
Figure 2004090021
[0023]
As shown in Table 1, in Examples 1-5, favorable results were shown with respect to the solder jointability. This is because the dynamic viscosity up to the solder joining temperature is 1.0 × 10 −2 Pa · s or more, and the shortage of the supply of the curable flux due to the spread of the curable flux from the solder joint can be suppressed. Is assumed. Further, the dynamic viscosity up to the solder joining temperature is 5.0 × 10 2 Pa · s or less, which is presumed to be due to good contact of the metal with the solder surface.
On the other hand, in Comparative Example 1-4, a result was obtained that a failure occurred in solder jointability probably because the dynamic viscosity up to the solder joint temperature was less than 1.0 × 10 −2 Pa · s. This is because when the viscosity of the curable flux is less than 1.0 × 10 −2 Pa · s, the curable flux cannot stay at the solder joints and flows out, so it is necessary to remove the oxide film. It is presumed that a large amount of flux could not be supplied to the solder joints, which was disadvantageous for solder joints.
[0024]
【The invention's effect】
By using the curable flux of the present invention, in the reflow soldering, the reliability of the soldering is high, and the shortening of the mounting process can be achieved.

Claims (3)

半田接合及び半田接合部の補強の際に使用する硬化性フラックスにおいて、30℃から半田融点までの温度範囲内で、該硬化性フラックスの粘度が1.0×10−2Pa・s以上で5.0×10Pa・s以下であることを特徴とする硬化性フラックス。In the curable flux used for solder joining and reinforcement of the solder joint, the viscosity of the curable flux is not less than 1.0 × 10 −2 Pa · s and not more than 5 within a temperature range from 30 ° C. to the melting point of solder. Curable flux, which is not more than 0.010 2 Pa · s. 該硬化性フラックスが、2個以上のエポキシ基を有するエポキシ樹脂、及び硬化剤を含む請求項1記載の硬化性フラックス。The curable flux according to claim 1, wherein the curable flux includes an epoxy resin having two or more epoxy groups, and a curing agent. 該硬化性フラックスが、1分子あたり少なくとも2個以上のフェノール性水酸基及び1分子あたり少なくとも1個以上のカルボキシル基を有する硬化剤を含む請求項1又は2記載の硬化性フラックス。The curable flux according to claim 1 or 2, wherein the curable flux contains a curing agent having at least two or more phenolic hydroxyl groups per molecule and at least one or more carboxyl group per molecule.
JP2002253364A 2002-08-30 2002-08-30 Curable flux Expired - Fee Related JP4211328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253364A JP4211328B2 (en) 2002-08-30 2002-08-30 Curable flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253364A JP4211328B2 (en) 2002-08-30 2002-08-30 Curable flux

Publications (2)

Publication Number Publication Date
JP2004090021A true JP2004090021A (en) 2004-03-25
JP4211328B2 JP4211328B2 (en) 2009-01-21

Family

ID=32059388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253364A Expired - Fee Related JP4211328B2 (en) 2002-08-30 2002-08-30 Curable flux

Country Status (1)

Country Link
JP (1) JP4211328B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213474A (en) * 2004-02-02 2005-08-11 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and manufacturing method of semiconductor device using the same
JP2005213475A (en) * 2004-02-02 2005-08-11 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and manufacturing method of semiconductor device using the same
JP2008300443A (en) * 2007-05-29 2008-12-11 Sumitomo Bakelite Co Ltd Bonding method for semiconductor wafer, and manufacturing method for semiconductor device
JP2010031275A (en) * 2008-07-25 2010-02-12 Sumitomo Bakelite Co Ltd Liquid resin composition, semiconductor element with adhesive layer, method of producing the same and semiconductor device
WO2021106588A1 (en) * 2019-11-27 2021-06-03 Dic株式会社 Resin composition for prepreg, prepreg and molded article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213474A (en) * 2004-02-02 2005-08-11 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and manufacturing method of semiconductor device using the same
JP2005213475A (en) * 2004-02-02 2005-08-11 Sumitomo Bakelite Co Ltd Liquid sealing resin composition and manufacturing method of semiconductor device using the same
JP4569116B2 (en) * 2004-02-02 2010-10-27 住友ベークライト株式会社 Liquid encapsulating resin composition and method for manufacturing semiconductor device using the same
JP4569117B2 (en) * 2004-02-02 2010-10-27 住友ベークライト株式会社 Liquid encapsulating resin composition and method for manufacturing semiconductor device using the same
JP2008300443A (en) * 2007-05-29 2008-12-11 Sumitomo Bakelite Co Ltd Bonding method for semiconductor wafer, and manufacturing method for semiconductor device
JP2010031275A (en) * 2008-07-25 2010-02-12 Sumitomo Bakelite Co Ltd Liquid resin composition, semiconductor element with adhesive layer, method of producing the same and semiconductor device
WO2021106588A1 (en) * 2019-11-27 2021-06-03 Dic株式会社 Resin composition for prepreg, prepreg and molded article

Also Published As

Publication number Publication date
JP4211328B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4299140B2 (en) Double cure B-stageable underfill for wafer level
JP4887850B2 (en) Liquid resin composition for underfill, semiconductor device manufacturing method using the same, and semiconductor device
WO2016148121A1 (en) Method for manufacturing flip chip package, flip chip package, and resin composition for pre-application type underfills
JP2023029875A (en) Resin composition for reinforcement and electronic component device
KR20130089187A (en) Liquid epoxy resin composition and semiconductor device
JP6115929B2 (en) Epoxy resin composition
JP2007162001A (en) Liquid epoxy resin composition
JP5070789B2 (en) Liquid resin composition for underfill and semiconductor device
WO2014041709A1 (en) Circuit device manufacturing method, semiconductor component mounting structure, and circuit device
JP5862176B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, and manufacturing method of electronic component device
JP4211328B2 (en) Curable flux
JP2003128874A (en) Liquid resin composition, manufacturing method of semiconductor device and semiconductor device
JP2008085264A (en) Semiconductor device
JP4556631B2 (en) Liquid resin composition, method of manufacturing semiconductor device using the same, and semiconductor device
JP4940768B2 (en) Liquid resin composition and method for manufacturing semiconductor device
JP2006188573A (en) Liquid epoxy resin composition, electronic component device using the composition and method for producing the same
JP6189148B2 (en) Epoxy resin composition and semiconductor device
JP4119319B2 (en) Curable flux
JP6472837B2 (en) Epoxy resin composition and semiconductor device
JP6332488B2 (en) Selection method and manufacturing method of liquid epoxy resin composition, electronic component device and manufacturing method thereof
JP6013406B2 (en) Adhesive composition and method for joining electronic parts
JP2013107993A (en) Liquid resin composition for semiconductor sealing and semiconductor device using the same
JP4569117B2 (en) Liquid encapsulating resin composition and method for manufacturing semiconductor device using the same
JP4569116B2 (en) Liquid encapsulating resin composition and method for manufacturing semiconductor device using the same
JP2004067930A (en) Liquid encapsulation resin composition, semiconductor device using same and manufacturing process of the semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees