[go: up one dir, main page]

JP2004088954A - Three-phase magnetic generator - Google Patents

Three-phase magnetic generator Download PDF

Info

Publication number
JP2004088954A
JP2004088954A JP2002249064A JP2002249064A JP2004088954A JP 2004088954 A JP2004088954 A JP 2004088954A JP 2002249064 A JP2002249064 A JP 2002249064A JP 2002249064 A JP2002249064 A JP 2002249064A JP 2004088954 A JP2004088954 A JP 2004088954A
Authority
JP
Japan
Prior art keywords
poles
rotor
stator
coil
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249064A
Other languages
Japanese (ja)
Inventor
Kentaro Kanemitsu
金光 憲太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DensoTrim Corp
Original Assignee
DensoTrim Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DensoTrim Corp filed Critical DensoTrim Corp
Priority to JP2002249064A priority Critical patent/JP2004088954A/en
Publication of JP2004088954A publication Critical patent/JP2004088954A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the drop of output, the demagnetization of a magnet, and the shortening of the life of a coil caused by temperature rise by suppressing the temperature rise caused by an eddy current accompanying the increase of the number of poles of a rotor. <P>SOLUTION: A three-phase magnetic generator has a stator 200 of 3n(n:an optional natural number) in the number of poles where a coil 23 is wound, and a rotor 100 of 4n in the number of poles where a permanent magnet 13 is fixed. Here the flange 24a of a magnetic substance sheet member 24 where the coil 23 is wound in condition that the stack 21 of the stator 200 is caught is constituted to have a difference in level inward from the periphery 21b of the stacked core 21. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、オートバイ(自動二輪車)などに搭載され、バッテリを充電するとともに前照灯など電気負荷に電力を供給する三相磁石式発電機に関する。
【0002】
【従来ないし前提技術】
近年、オートバイ用の三相磁石式発電機には、小型化が要求されると同時に、電気負荷の増加に伴う低回転側での出力電流の増大が要求されている。
【0003】
しかし、コイルの巻線スペースの縮小化に伴い大径のコイルを用いることができず、また、低回転側での出力電流の増大に伴い高回転側での出力電流も増大することになり、このため、従来の三相磁石式発電機つまり回転子の極数2n、固定子の極数3n(n:任意の自然数)の三相磁石式発電機では、高回転側の出力電流を抑えることができず、コイル温度が高くなるという問題があった。
【0004】
そこで、特開2001−112226には、回転子の極数を16極、固定子の極数を18極とした三相磁石式発電機が開示されている。この三相磁石式発電機によると、回転子の極数が従来の12極から16極に増えたことにより周波数が高くなって電圧が高くなり、低回転側の出力電流が増大するとともに、1極当たりの磁石が小さくなって高回転側の出力電流が減少するため、コイル温度を低下させることができるという効果を奏する。また、特願2002−156919には、固定子の極数を3n(n:任意の自然数)、回転子の極数を4nにしたことを特徴とする三相磁石式発電機が記載されている。この三相磁石式発電機によると、安価で、しかも、低回転側の出力電流の増大により充電性能を向上させるとともに高回転側の出力電流の減少によりコイル温度を低下させることができるという効果を奏する。
【0005】
【発明が解決しようとする課題】
しかしながら、特願2002−156919においては、図11に示すように、固定子200の積層コア21を挟んだ状態でコイル23が巻き付けられる磁性体シート部材24の鍔部24aが漏れ磁束ループAを形成し、回転子100の極数の増加に伴う渦電流による温度上昇を招き、この温度上昇により、出力の低下、最悪の場合磁石13の減磁を招き、さらに、コイル23の銅線寿命を短縮させるおそれがあることが判明した。
【0006】
本発明は、上記のような前提技術の問題点を解決し、回転子の極数を増加させたことに伴う温度上昇を抑制し、出力の向上、コイルの長寿命化などを図ることができる三相磁石式発電機を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る三相磁石式発電機は、コイルが巻かれた極数3n(n:任意の自然数)の固定子と、永久磁石が固定された極数2n+m(m:任意の自然数)の回転子とを有し、かつ、前記固定子の積層コアを挟んだ状態で前記コイルが巻き付けられる磁性体シート部材の鍔部を、前記積層コアの外周面に対し、内方へ段差をもつよう構成したことを特徴とする。
【0008】
請求項1に係る三相磁石式発電機によると、磁性体シート部材の鍔部を積層コアの外周面に対し内方へ段差をもつよう構成したため、永久磁石と鍔部とのエアギャップが長くなり、このため、漏れ磁束ループの最大磁束密度が減少し、渦電流による温度上昇を抑制することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0010】
図1は、一実施形態に係る三相磁石式発電機の断面図、図2は、図1図示II−II線による断面図、図3は、固定子のコイル結線図、図4は、出力電圧のベクトル図、図5は、外部特性グラフ、図6は、出力電流グラフ、図7は、本実施形態の比較例としての従来一般的な三相磁石式発電機の断面図、図8は、同比較例の固定子のコイル結線図、図9は、同比較例の出力電圧のベクトル図、図10は、実験結果のグラフをそれぞれ示す。
【0011】
図1及び図2において、本実施形態に係る三相磁石式発電機は、回転子100と固定子200とにより構成される。
【0012】
回転子100は、磁性体からなるロータ11を備える。ロータ11は、熱間鍛造後切削により仕上げ加工されてなる。ロータ11の中央のボス部11aの内側には、図示しないエンジンのクランクシャフトに嵌合されるテーパ部11bが形成されている。その他、ボス部11aには、図示しないナット等を用いてロータ11をクランクシャフトに締め付け固定させたときの締め付け座面となる端面11c、及び、ロータ11をクランクシャフトから外す際に利用される抜きねじ部11dが形成されている。ロータ11の端面部11eには、冷却用の窓穴11fが複数個設けられている。ロータ11の円筒状の外周部11gはヨークを構成している。ロータ外周部11gの内側に、非磁性体からなるリング状のスペーサ12、円周方向に等間隔に配置された複数個の永久磁石13、及び、ロータ外周部11gに圧入された非磁性体からなるリング状の位置決めケース14が、クランクシャフトの軸方向に沿って順に配設されている。複数個の永久磁石13は、位置決めケース14に形成された凸部14aによって円周方向に等間隔となるよう位置決めされるとともに、永久磁石13の内側に磁石保護リング15を圧入しロータ外周部11gの先端11hを巻きかしめすることによってロータ11に固定されている。なお、磁石保護リング15は、ステンレス板をプレス加工して形成されている。
【0013】
固定子200は回転子100の内側に配設されている。固定子200は積層コア21を備える。積層コア21は、鉄板をプレス加工したものを複数枚積層して構成される。積層コア21は、磁性体シート部材24で挟まれ、リベット22をかしめることによって一体化されている。積層コア21の表面はエポキシ樹脂等で絶縁されている。磁性体シート部材24には巻線用銅線が巻き付けられ、発電コイル23が形成されている。固定子200は、積層コア21及び磁性体シート部材24に形成されたねじ締め穴21aに図示しない取付ボルトをねじ込むことによって図示しないエンジンケースに固定される。
【0014】
本実施形態に係る磁性体シート部材24の鍔部24aは、その外周面24bが、積層コア21の外周面21bに対し、内方へ段差Xをもつよう構成されている。これに対し、図11に示した磁性体シート部材24の鍔部24aは、その外周面24bが積層コア21の外周面21bと略面一になっている。このため、図11図示の三相磁石式発電機では、鍔部24aと永久磁石13とのエアギャップが小さいため鍔部24aを通る漏れ磁束ループAの最大磁束密度が大きくなり渦電流による温度上昇が大きくなるのに対し、本実施形態では、鍔部24aと永久磁石13とのエアギャップが大きいため鍔部24aを通る漏れ磁束ループAの最大磁束密度が小さくなり渦電流による温度上昇が抑制される。
【0015】
次に、図2〜図4に基づき、本実施形態に係る三相磁石式発電機の固定子200の極数、コイル結線方法及び回転子100の極数並びに固定子200の出力電圧について、従来一般的な三相磁石式発電機(図7〜図9)と比較しながら説明する。
【0016】
本実施形態における固定子200の極数は、3n(n:任意の自然数)である。これに対し、従来一般的な三相磁石式発電機の固定子200の極数も3nである。したがって、n=4の場合、図2及び図7を参照すれば明らかなように、本実施形態の固定子200の極数は、従来の固定子200の極数と同じ12となる。
【0017】
また、本実施形態における固定子200のコイル23の結線方法は、図3に示す通りであり、図8に示した従来の固定子200のコイル23の結線方法と同じであり、すべての極において巻線方向は同一であり、また、2極飛びで渡り線が配線される。したがって、渡り線は2極分の長さで済むため、従来技術(特開2001−112226)と比べ長い渡り線を必要としなくなり、また、従来技術(特開2001−112226)と比べコイルの引き出し整形が容易になる。
【0018】
一方、本実施形態における回転子100の極数は、4n(n:任意の自然数)である。これに対し、従来一般的な三相磁石式発電機の回転子100の極数は2nである。したがって、n=4の場合、図2及び図7を参照すれば明らかなように、従来の回転子100の極数は8であるのに対し、本実施形態における回転子100の極数は16となる。
【0019】
したがって、n=4の場合、図2及び図7に示すように、従来の固定子200の機械角は30°、電気角は120°であるのに対し、本実施形態における固定子200の機械角は30°、電気角は240°となり、また、従来の回転子100の機械角は45°、電気角は180°であるのに対し、本実施形態における回転子100の機械角は22.5°、電気角は180°となる。このため、図4及び図9を参照すれば明らかなように、本実施形態における固定子200の出力電圧は、従来の固定子200の出力電圧に対し、相の順序は逆になるものの相間位相差は120°となり同一相内での位相差は発生しない。したがって、位相差に起因する出力電圧の損失は発生せず、従来技術(特開2001−112226)のように損失を補うために永久磁石を大型化する必要が無くなる。
【0020】
次に、本実施形態による三相磁石式発電機(図1〜図4)の外部特性と従来一般的な三相磁石式発電機(図7〜図9)の外部特性とを比較すると、図5に実験結果として示すように、本実施形態による三相磁石式発電機の場合、従来一般的な三相磁石式発電機と比べ、低回転(1000rpm)から高回転(5000rpm)にわたり電流が減少するとともに電圧が増大する。このような実験結果は、電流については、1極当たりの永久磁石13を小さくしたことから電流は減少し、また、電圧については、永久磁石13の小型化により電圧は減少するが、回転子100の極数を2倍にしたことから周波数が2倍となり、その結果電圧は増大したと考察される。
【0021】
また、電圧Vを一定として出力電流を測定すると、図6に示すように、低回転(1000rpm)では、本実施形態による出力電流が従来技術による出力電流よりも大きくなり、その結果バッテリへの充電電流が増大する。一方、高回転(5000rpm)では、本実施形態による出力電流が従来技術による出力電流よりも小さくなり、その結果コイル温度は大幅に低下する。
【0022】
図10は、段差Xの大きさと鍔部24aの温度との関係を調べるための実験の結果を表したグラスを示す。この実験は、鍔部24aの外周面24bに熱電対を貼り、6000rpm一定で5分間運転した後に温度を測定するようにして行なった。その結果、段差Xが0mmの前提発電機では、鍔部24aの外周面24bの温度が196℃(実験途中で減磁が発生したため推定値である。)と高温であったのに対し、段差Xを設けた発明発電機では、鍔部24aの外周面24bの温度は、段差Xが0.4mmのときに144℃、段差Xが0.9mmのときに128℃と測定され、温度上昇抑制効果が証明された。
【0023】
以上説明したように、本実施形態に係る三相磁石式発電機は、コイル23が巻かれた極数3n(n:任意の自然数)の固定子200と、永久磁石13が固定された極数4nの回転子100とを有し、かつ、固定子200の積層コア21を挟んだ状態でコイル23が巻き付けられる磁性体シート部材24の鍔部24aを、積層コア21の外周面21bに対し、内方へ段差Xをもつよう構成した。このため、永久磁石13と鍔部24aとのエアギャップが長くなり、このため、漏れ磁束ループAの最大磁束密度が減少し、渦電流による温度上昇を抑制することができ、温度上昇による出力の低下、磁石13の減磁、コイル23の寿命短縮を防止することができる。なお、本実施形態は、極数4nの回転子100に限定されるものではなく、従来の極数2nよりも多い2n+m(m:任意の自然数)の回転子100を有する三相磁石式発電機に広く適用可能である。
【0024】
【発明の効果】
本発明の三相磁石式発電機によると、漏れ磁束ループの最大磁束密度の減少により、回転子の極数の増加に伴う渦電流による温度上昇を抑制でき、温度上昇による出力の低下、磁石の減磁、コイルの寿命短縮を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る三相磁石式発電機の断面図である。
【図2】図1図示II−II線による断面図である。
【図3】固定子のコイル結線図である。
【図4】出力電圧のベクトル図である。
【図5】外部特性グラフである。
【図6】出力電流グラフである。
【図7】本実施形態の比較例としての従来一般的な三相磁石式発電機の断面図である。
【図8】同比較例の固定子のコイル結線図である。
【図9】同比較例の出力電圧のベクトル図である。
【図10】段差Xと温度との関係を表した実験結果のグラフである。
【図11】本発明の前提となる特願2002−156919記載の三相磁石式発電機の断面図である。
【符号の説明】
100  回転子
11  ロータ
13  永久磁石
200  固定子
21  積層コア
21b  外周面
23  発電コイル
24  磁性体シート部材
24a  鍔部
24b  外周面
X  段差
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-phase magnet type generator mounted on a motorcycle (motorcycle) or the like and charging a battery and supplying power to an electric load such as a headlight.
[0002]
[Conventional or prerequisite technology]
In recent years, three-phase magnet type generators for motorcycles have been required to be reduced in size and, at the same time, to increase the output current on the low rotation speed side due to the increase in electric load.
[0003]
However, a coil having a large diameter cannot be used with a reduction in the coil winding space, and an output current on a high rotation side also increases with an increase in an output current on a low rotation side. For this reason, in the conventional three-phase magnet type generator, that is, the three-phase magnet type generator having 2n poles of the rotor and 3n poles of the stator (n: any natural number), the output current on the high rotation side is suppressed. However, there was a problem that the coil temperature became high.
[0004]
Therefore, Japanese Patent Application Laid-Open No. 2001-112226 discloses a three-phase magnet generator in which the rotor has 16 poles and the stator has 18 poles. According to this three-phase magnet generator, the frequency is increased and the voltage is increased by increasing the number of poles of the rotor from the conventional 12 to 16 poles, and the output current on the low rotation side is increased. Since the magnet per pole is reduced and the output current on the high rotation side is reduced, there is an effect that the coil temperature can be reduced. Further, Japanese Patent Application No. 2002-156919 describes a three-phase magnet generator in which the number of poles of the stator is 3n (n: any natural number) and the number of poles of the rotor is 4n. . According to this three-phase magnet type generator, the effect of being inexpensive and improving the charging performance by increasing the output current on the low rotation side and lowering the coil temperature by reducing the output current on the high rotation side can be obtained. Play.
[0005]
[Problems to be solved by the invention]
However, in Japanese Patent Application No. 2002-156919, as shown in FIG. 11, the flange portion 24a of the magnetic sheet member 24 around which the coil 23 is wound with the laminated core 21 of the stator 200 interposed therebetween forms a leakage flux loop A. However, an increase in the number of poles of the rotor 100 causes an increase in temperature due to an eddy current, and this increase in temperature causes a decrease in output, in the worst case, a demagnetization of the magnet 13, and further shortens the life of the copper wire of the coil 23. It has been found that there is a possibility that it may cause.
[0006]
The present invention solves the above-described problems of the prerequisite technology, suppresses a temperature rise due to an increase in the number of poles of the rotor, and can improve output, extend the life of a coil, and the like. It is an object to provide a three-phase magnet generator.
[0007]
[Means for Solving the Problems]
The three-phase magnet generator according to claim 1 has a stator with 3n poles (n: an arbitrary natural number) wound with a coil and a stator with 2n + m (m: an arbitrary natural number) on which a permanent magnet is fixed. A rotor, and the flange of the magnetic sheet member around which the coil is wound with the laminated core of the stator interposed therebetween, so that the flange has an inward step with respect to the outer peripheral surface of the laminated core. It is characterized by comprising.
[0008]
According to the three-phase magnet generator according to the first aspect, since the flange of the magnetic sheet member has a step inward with respect to the outer peripheral surface of the laminated core, the air gap between the permanent magnet and the flange is long. Therefore, the maximum magnetic flux density of the leakage magnetic flux loop decreases, and the temperature rise due to the eddy current can be suppressed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
1 is a cross-sectional view of a three-phase magnet type generator according to one embodiment, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, FIG. 3 is a coil connection diagram of a stator, and FIG. FIG. 5 is an external characteristic graph, FIG. 6 is an output current graph, FIG. 7 is a cross-sectional view of a conventional general three-phase magnet type generator as a comparative example of the present embodiment, and FIG. , A coil connection diagram of the stator of the comparative example, FIG. 9 is a vector diagram of an output voltage of the comparative example, and FIG. 10 is a graph of an experimental result.
[0011]
1 and 2, the three-phase magnet type generator according to the present embodiment includes a rotor 100 and a stator 200.
[0012]
The rotor 100 includes a rotor 11 made of a magnetic material. The rotor 11 is finished by cutting after hot forging. Inside the boss 11a at the center of the rotor 11, a tapered portion 11b fitted to a crankshaft of an engine (not shown) is formed. In addition, the boss portion 11a has an end surface 11c serving as a fastening seat surface when the rotor 11 is fastened and fixed to the crankshaft using a nut (not shown) or the like, and a punch used when the rotor 11 is removed from the crankshaft. A screw portion 11d is formed. The end face 11e of the rotor 11 is provided with a plurality of cooling window holes 11f. The cylindrical outer peripheral portion 11g of the rotor 11 constitutes a yoke. A ring-shaped spacer 12 made of a nonmagnetic material, a plurality of permanent magnets 13 arranged at equal intervals in the circumferential direction, and a nonmagnetic material pressed into the rotor outer peripheral portion 11g are provided inside the rotor outer peripheral portion 11g. The ring-shaped positioning cases 14 are sequentially arranged along the axial direction of the crankshaft. The plurality of permanent magnets 13 are positioned at equal intervals in the circumferential direction by convex portions 14a formed on the positioning case 14, and a magnet protection ring 15 is pressed into the inside of the permanent magnets 13 so that a rotor outer peripheral portion 11g is formed. Is fixed to the rotor 11 by crimping the tip 11h of the rotor. The magnet protection ring 15 is formed by pressing a stainless steel plate.
[0013]
The stator 200 is provided inside the rotor 100. The stator 200 includes the laminated core 21. The laminated core 21 is formed by laminating a plurality of pressed iron plates. The laminated core 21 is sandwiched between the magnetic sheet members 24 and integrated by caulking the rivets 22. The surface of the laminated core 21 is insulated with an epoxy resin or the like. A copper wire for winding is wound around the magnetic sheet member 24 to form a power generation coil 23. The stator 200 is fixed to an engine case (not shown) by screwing a mounting bolt (not shown) into a screw hole 21 a formed in the laminated core 21 and the magnetic sheet member 24.
[0014]
The flange portion 24a of the magnetic sheet member 24 according to the present embodiment is configured such that the outer peripheral surface 24b has a step X inward with respect to the outer peripheral surface 21b of the laminated core 21. On the other hand, the outer peripheral surface 24b of the flange 24a of the magnetic sheet member 24 shown in FIG. 11 is substantially flush with the outer peripheral surface 21b of the laminated core 21. For this reason, in the three-phase magnet type generator shown in FIG. 11, since the air gap between the flange 24a and the permanent magnet 13 is small, the maximum magnetic flux density of the leakage magnetic flux loop A passing through the flange 24a increases, and the temperature rise due to eddy current On the other hand, in the present embodiment, since the air gap between the flange 24a and the permanent magnet 13 is large, the maximum magnetic flux density of the leakage flux loop A passing through the flange 24a is reduced, and the temperature rise due to eddy current is suppressed. You.
[0015]
Next, based on FIG. 2 to FIG. 4, regarding the number of poles of the stator 200, the coil connection method, the number of poles of the rotor 100, and the output voltage of the stator 200 of the three-phase magnet type generator according to the present embodiment, The description will be made in comparison with a general three-phase magnet type generator (FIGS. 7 to 9).
[0016]
The number of poles of the stator 200 in this embodiment is 3n (n: any natural number). On the other hand, the number of poles of the stator 200 of the conventional general three-phase magnet generator is also 3n. Therefore, when n = 4, the number of poles of the stator 200 of the present embodiment is 12, which is the same as the number of poles of the conventional stator 200, as is apparent with reference to FIGS.
[0017]
The method of connecting the coils 23 of the stator 200 in the present embodiment is as shown in FIG. 3 and is the same as the method of connecting the coils 23 of the conventional stator 200 shown in FIG. The winding direction is the same, and the jumper is wired with two poles. Therefore, since the length of the crossover wire is only two poles, a longer crossover wire is not required as compared with the related art (Japanese Patent Application Laid-Open No. 2001-112226), and the coil is not drawn out as compared with the conventional technology (Japanese Patent Application Laid-Open No. 2001-112226). Shaping becomes easy.
[0018]
On the other hand, the number of poles of the rotor 100 in the present embodiment is 4n (n: any natural number). On the other hand, the number of poles of the rotor 100 of the conventional general three-phase magnet type generator is 2n. Therefore, when n = 4, the number of poles of the conventional rotor 100 is eight, whereas the number of poles of the rotor 100 in the present embodiment is sixteen, as is apparent from FIGS. It becomes.
[0019]
Therefore, when n = 4, as shown in FIGS. 2 and 7, the mechanical angle of the conventional stator 200 is 30 ° and the electrical angle is 120 °, whereas the mechanical angle of the stator 200 in this embodiment is 30 °. The angle is 30 °, the electrical angle is 240 °, and the mechanical angle of the conventional rotor 100 is 45 ° and the electrical angle is 180 °, whereas the mechanical angle of the rotor 100 in the present embodiment is 22. 5 °, and the electrical angle is 180 °. Therefore, as apparent from FIGS. 4 and 9, the output voltage of the stator 200 in the present embodiment is different from the output voltage of the conventional stator 200 in the order of the phase, although the order of the phases is reversed. The phase difference is 120 °, and no phase difference occurs in the same phase. Therefore, no loss in output voltage due to the phase difference occurs, and it is not necessary to increase the size of the permanent magnet to compensate for the loss as in the related art (Japanese Patent Application Laid-Open No. 2001-112226).
[0020]
Next, comparing the external characteristics of the three-phase magnet generator (FIGS. 1 to 4) according to the present embodiment with the external characteristics of the conventional general three-phase magnet generator (FIGS. 7 to 9), FIG. As shown in the experimental results in FIG. 5, in the case of the three-phase magnet type generator according to the present embodiment, the current decreases from low rotation (1000 rpm) to high rotation (5000 rpm) as compared with the conventional general three-phase magnet type generator. And the voltage increases. Such experimental results show that the current decreases because the size of the permanent magnet 13 per pole is reduced, and the voltage decreases as the size of the permanent magnet 13 decreases. It is considered that the frequency is doubled because the number of poles is doubled, and as a result, the voltage is increased.
[0021]
Further, when the output current is measured with the voltage V kept constant, as shown in FIG. 6, at low rotation speed (1000 rpm), the output current according to the present embodiment becomes larger than the output current according to the related art, and as a result, the battery is charged. The current increases. On the other hand, at a high rotation speed (5000 rpm), the output current according to the present embodiment is smaller than the output current according to the related art, and as a result, the coil temperature is significantly reduced.
[0022]
FIG. 10 shows a glass representing the result of an experiment for examining the relationship between the size of the step X and the temperature of the flange 24a. In this experiment, a thermocouple was attached to the outer peripheral surface 24b of the flange portion 24a, and the temperature was measured after operating at 6000 rpm for 5 minutes. As a result, in the premise generator having the step X of 0 mm, the temperature of the outer peripheral surface 24b of the flange portion 24a was as high as 196 ° C. (this is an estimated value because demagnetization occurred during the experiment). In the invention generator provided with X, the temperature of the outer peripheral surface 24b of the flange portion 24a is measured as 144 ° C. when the step X is 0.4 mm and 128 ° C. when the step X is 0.9 mm, and the temperature rise is suppressed. The effect proved.
[0023]
As described above, the three-phase magnet type generator according to the present embodiment has the stator 200 with the number of poles 3n (n: any natural number) wound with the coil 23 and the number of poles with the permanent magnet 13 fixed. 4n of the rotor 100, and the flange 24 a of the magnetic sheet member 24 around which the coil 23 is wound with the laminated core 21 of the stator 200 sandwiched therebetween, with respect to the outer peripheral surface 21 b of the laminated core 21. It was configured to have a step X inward. For this reason, the air gap between the permanent magnet 13 and the flange portion 24a becomes longer, so that the maximum magnetic flux density of the leakage magnetic flux loop A decreases, temperature rise due to eddy current can be suppressed, and output due to temperature rise can be reduced. It is possible to prevent the reduction, the demagnetization of the magnet 13, and the shortening of the life of the coil 23. Note that the present embodiment is not limited to the rotor 100 having 4n poles, but a three-phase magnet generator having the rotor 100 having 2n + m (m: any natural number) larger than the conventional pole 2n. Is widely applicable.
[0024]
【The invention's effect】
According to the three-phase magnet generator of the present invention, a decrease in the maximum magnetic flux density of the leakage magnetic flux loop can suppress an increase in temperature due to an eddy current due to an increase in the number of poles of the rotor. Demagnetization and shortening of the life of the coil can be prevented.
[Brief description of the drawings]
FIG. 1 is a sectional view of a three-phase magnet type generator according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along the line II-II shown in FIG.
FIG. 3 is a coil connection diagram of a stator.
FIG. 4 is a vector diagram of an output voltage.
FIG. 5 is an external characteristic graph.
FIG. 6 is an output current graph.
FIG. 7 is a cross-sectional view of a conventional general three-phase magnet generator as a comparative example of the present embodiment.
FIG. 8 is a coil connection diagram of the stator of the comparative example.
FIG. 9 is a vector diagram of an output voltage of the comparative example.
FIG. 10 is a graph of an experimental result showing a relationship between a step X and a temperature.
FIG. 11 is a cross-sectional view of a three-phase magnet generator described in Japanese Patent Application No. 2002-156919, which is a premise of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 100 Rotor 11 Rotor 13 Permanent magnet 200 Stator 21 Laminated core 21b Outer surface 23 Power generation coil 24 Magnetic sheet member 24a Flange portion 24b Outer surface X step

Claims (1)

コイルが巻かれた極数3n(n:任意の自然数)の固定子と、永久磁石が固定された極数2n+m(m:任意の自然数)の回転子とを有し、かつ、前記固定子の積層コアを挟んだ状態で前記コイルが巻き付けられる磁性体シート部材の鍔部を、前記積層コアの外周面に対し、内方へ段差をもつよう構成したことを特徴とする三相磁石式発電機。It has a stator with a number of poles of 3n (n: an arbitrary natural number) around which a coil is wound, and a rotor with a number of poles of 2n + m (m: an arbitrary natural number) to which a permanent magnet is fixed. A three-phase magnet generator, wherein a flange of a magnetic sheet member around which the coil is wound with the laminated core interposed therebetween has a step inward with respect to an outer peripheral surface of the laminated core. .
JP2002249064A 2002-08-28 2002-08-28 Three-phase magnetic generator Pending JP2004088954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249064A JP2004088954A (en) 2002-08-28 2002-08-28 Three-phase magnetic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249064A JP2004088954A (en) 2002-08-28 2002-08-28 Three-phase magnetic generator

Publications (1)

Publication Number Publication Date
JP2004088954A true JP2004088954A (en) 2004-03-18

Family

ID=32056279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249064A Pending JP2004088954A (en) 2002-08-28 2002-08-28 Three-phase magnetic generator

Country Status (1)

Country Link
JP (1) JP2004088954A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129688A (en) * 2004-09-29 2006-05-18 Denso Corp Magnet generator
US7271517B2 (en) 2002-11-12 2007-09-18 Mitsubishi Denki Kabushika Kaisha Three-phase alternating current generator
US7791241B2 (en) 2002-05-30 2010-09-07 Denso Corporation Permanent magnet type three-phase AC generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791241B2 (en) 2002-05-30 2010-09-07 Denso Corporation Permanent magnet type three-phase AC generator
US7271517B2 (en) 2002-11-12 2007-09-18 Mitsubishi Denki Kabushika Kaisha Three-phase alternating current generator
JP2006129688A (en) * 2004-09-29 2006-05-18 Denso Corp Magnet generator
USRE43055E1 (en) 2004-09-29 2012-01-03 Denso Corporation Permanent magnet type generator

Similar Documents

Publication Publication Date Title
JP3680213B2 (en) Three-phase magnet generator
US8987967B2 (en) Claw-pole motor with permanent magnet and electrically exciting parts
US9935513B2 (en) Rotating electrical machine
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
US8937417B2 (en) Rotating electric machine and wind power generation system
CN107276356A (en) A kind of axial magnetic flux brushless hybrid excitation motor
US20090009012A1 (en) Assembly and method for magnetization of permanent magnet rotors in electrical machines
JP2007259541A (en) Permanent magnet type motor
JP2007295768A (en) Outer rotor type magnet generator
JP2006518180A (en) Expansion core for motor / generator
JP5381139B2 (en) Electric motor
JP2005198395A (en) Magnet generator
JP2004088955A (en) Three-phase magnetic generator
US11632004B2 (en) Electric motor with stator
JP2002238194A (en) Structure of rotor of permanent-magnet motor
JP2004088954A (en) Three-phase magnetic generator
JP6169496B2 (en) Permanent magnet rotating electric machine
CN111342572A (en) Stator core
CN109639035A (en) Motor and the double-deck accumulated energy flywheel based on two-level rotor structure
JP2003164087A (en) Stator of permanent magnet generator
KR101240591B1 (en) An armature coil unit and manufaturing method and afpm generator having it
JP2010068605A (en) Permanent magnet rotary electric machine
CN112186922B (en) External Transformation Surface Magnet Rotary Motor
CN110601478A (en) Double-stator motor
JP2005261046A (en) Rotor for magnetic generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016