[go: up one dir, main page]

JP2004083949A - Simultaneous thin film deposition system - Google Patents

Simultaneous thin film deposition system Download PDF

Info

Publication number
JP2004083949A
JP2004083949A JP2002243322A JP2002243322A JP2004083949A JP 2004083949 A JP2004083949 A JP 2004083949A JP 2002243322 A JP2002243322 A JP 2002243322A JP 2002243322 A JP2002243322 A JP 2002243322A JP 2004083949 A JP2004083949 A JP 2004083949A
Authority
JP
Japan
Prior art keywords
deposition
film forming
vacuum chamber
thin film
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243322A
Other languages
Japanese (ja)
Inventor
Harumasa Machida
町田 晴政
Naoya Kitajima
北島 直哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2002243322A priority Critical patent/JP2004083949A/en
Publication of JP2004083949A publication Critical patent/JP2004083949A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for simultaneous deposition of thin films on tow or more sides, which apparatus can subject a plurality of deposition surfaces varying in deposition components to simultaneous deposition of different specifications and can improve deposition efficiency by preventing the deformation of a substrate to be induced when only the one side of the substrate is subjected to the deposition. <P>SOLUTION: The apparatus is provided with partitions 13 of the number corresponding to the number of the deposition surfaces to be deposited with thin films of deposition components 7 within a vacuum chamber 10 to compartmentalize the vacuum chamber 10 to a plurality of deposition cells c<SB>1</SB>to c<SB>6</SB>corresponding to the partitions 13 and deposition particle generators are included in the respective deposition cells c<SB>1</SB>to c<SB>6</SB>, thereby simultaneously depositing the films on a plurality of the surfaces. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、複数面同時薄膜成膜装置に関し、特に、真空チャンバーを複数の成膜セルに区画し、各成膜セルのそれぞれに成膜粒子発生装置を具備せしめて複数面に同時に成膜する複数面同時薄膜成膜装置に関する。
【0002】
【従来の技術】
イオンビームスパッタリング装置の如き薄膜成膜装置の従来例を図3を参照して説明する。
真空チャンバー10には、その側壁にイオン源1が取り付け収容され、ターゲット2が底壁に取り付け収容されている。ガス導入管9は側壁にこれを貫通して導入固定されている。真空チャンバー10には、更に、図示されない真空ポンプも取り付けられている。イオン源1は真空チャンバー10の側壁内面に取り付け固定されており、そのイオン放射端部に高電圧が印加されるイオン引き出しグリッドが設置されている。ターゲット2は図示されないターゲットホルダを介して真空チャンバー10の底壁に固定されている。成膜部品ホルダ8は真空チャンバー10の上壁に気密に貫通挿入される回転駆動軸81により回転支持されている。この成膜部品ホルダ8は回転駆動軸81を介して外部から回転駆動される。そして、成膜部品ホルダ8の下面には薄膜が成膜されるべき成膜部品7が取り付けられる。
【0003】
真空チャンバー10を図示されない真空ポンプにより排気し、次いで、ガス導入管9を介して真空チャンバー10内に不活性ガスを導入する。ここで、イオン源1からイオンビーム3を発生させる。
イオン源1から発生せしめられたイオンビーム3は、高電圧を印加されたイオン引き出しグリッドにより高速に加速されてイオンビームとして引き出し放射される。このビームはターゲット2に衝突し、ターゲット2を構成する物質をスパッタリングする。ターゲット2の材料として、金属材料、絶縁材料その他多種多様な種類の材料を使用することができる。ターゲット2からスパッタリングされたターゲット構成物質のスパッタ粒子4は成膜部品ホルダ8に保持される基板より成る成膜部品7の表面に付着し、ここにターゲット構成物質の薄膜が成膜されることになる。薄膜を形成している時、成膜部品ホルダ8は回転軸81により回転されており、これにより形成される薄膜の膜厚を均一にすることができる。
【0004】
【発明が解決しようとする課題】
以上の薄膜成膜装置において、成膜部品7の成膜面は当然にスパッタ粒子4の飛散方向aに向けておく必要がある。そして、成膜部品7が基板であるものとすると、この表裏両面に成膜を行う場合、薄膜成膜のなされるべき両面を反転させて面毎に成膜粒子の飛散方向に対向せしめる位置変更を行う必要がある。
以上の成膜面の反転切り替えは、薄膜成膜装置の動作を停止し、成膜部品回転ホルダ8から成膜部品7を取り外して成膜面を反転して取り付け直す。そして、再度、薄膜成膜装置を動作状態に復帰させる。これには手間暇を必要とし、位置ずれにより成膜部品7の両面に同様な薄膜成膜を実施することができない精度誤差も発生する。また、成膜部品7が基板である場合、薄膜が片面のみに成膜されると、基板に依っては、薄膜の膜応力により基板が変形することがある。成膜部品基板7の両面に同様な薄膜を同時に成膜することによりこの変形を防止することができるが、従来の薄膜成膜装置によってはこれに対応することができない。この発明は、真空チャンバーの内部に成膜部品の薄膜を成膜すべき成膜面の数に対応する数の隔壁を設けて、真空チャンバーを各隔壁に対応する複数の成膜セルに区画し、各成膜セルのそれぞれに成膜粒子発生装置を具備せしめることにより、上述の問題を解消した複数面同時薄膜成膜装置を提供するものである。
【0005】
【課題を解決するための手段】
真空チャンバー10の内部に成膜部品7の薄膜を成膜すべき成膜面の数に対応する数の隔壁13を設けて、真空チャンバー10を各隔壁13に対応する複数の成膜セルcないしcに区画し、各成膜セルcないしcのそれぞれに成膜粒子発生装置を具備せしめて複数面に同時に成膜する複数面同時薄膜成膜装置を構成した。
そして、先の複数面同時薄膜成膜装置において、真空チャンバー10の内部に薄膜を成膜すべき成膜面の数に対応する隔壁13を設け、これら隔壁13により真空チャンバー10の内部に成膜部品7を収容取り付ける成膜部品収容セル14を構成すると共に成膜部品収容セル14を中間に介在させた状態で真空チャンバー10を各隔壁13に対応する複数成膜セルcないしcに区画した複数面同時薄膜成膜装置を構成した。
【0006】
【発明の実施の形態】
この発明の実施の形態を図1の実施例を参照して説明する。図1は成膜面が対向する2面である基板を成膜部品7とする実施例を説明する概念的な図である。真空チャンバー10の内部に2面の成膜面のそれぞれに対応する隔壁13を設け、これら隔壁13により真空チャンバー10の内部に成膜部品7を収容取り付ける成膜部品収容セル14を構成すると共に、成膜部品収容セル14を中間に介在させた状態で真空チャンバー10を各隔壁13に対応する第1の成膜セルcと第2の成膜セルcに区画する。隔壁13には中央部に開口131が形成されている。第1の成膜セルcと第2の成膜セルcのそれぞれに、イオン源1、ターゲット2、真空ポンプ6、ガス導入管9が具備せしめられる。3はイオン源1から発生せしめられたイオンビーム、4はターゲット2からスパッタリングされたターゲット構成物質のスパッタ粒子である。成膜部品7は、成膜部品収容セル14内に、図示されない適宜の成膜部品ホルダを介して、隔壁13に形成される開口131に対応して収容取り付けられている。
【0007】
ここで、先ず、真空ポンプ6を動作させて真空チャンバー10の第1の成膜セルcおよび第2の成膜セルcを排気し、次いで、ガス導入管9を介して第1の成膜セルcおよび第2の成膜セルc内に不活性ガスを導入する。この状態でイオン源1を動作させ、イオンビーム3を発生させる。
イオン源1から発生せしめられたイオンビーム3は、イオン源1の内部において高電圧を印加されたイオン引き出しグリッドにより高速に加速されている。このイオンビーム3はターゲット2に衝突し、ターゲット2を構成する物質をスパッタリングする。ターゲット2の材料として、金属材料、絶縁材料その他多種多様な種類の材料を使用することができる。ターゲット2からスパッタリングされたスパッタ粒子4は、第1の成膜セルcにおいては飛散方向aに放射され、第2の成膜セルcにおいては飛散方向aとは逆向きの飛散方向bに放射される。スパッタ粒子4は、進行して隔壁13に形成される開口131を通過し、開口131に対応して取り付け保持される成膜部品7の表面に付着し、ここにターゲット構成物質の薄膜が成膜される。
【0008】
図2は他の実施例を説明する図である。図2においては、対向する2面が2組ある直方体を成膜部品7としている。
この実施例も、先の実施例と同様に、真空チャンバー10の内部に6面の成膜面のそれぞれに対応する隔壁13を設け、これら隔壁13により真空チャンバー10の内部に成膜部品7を収容取り付ける成膜部品収容セル14を構成すると共に、成膜部品収容セル14を中間に介在させた状態で真空チャンバー10を各隔壁13に対応する第1の成膜セルcないし第6の成膜セルcに区画する。この実施例においては、真空チャンバー10は、結局、第1の成膜セルcないし第6の成膜セルcと成膜部品収容セル14の合計7セルより成る。隔壁13の中央部には同様に開口が形成されている。第1の成膜セルcないし第6の成膜セルcのそれぞれに、イオン源1、ターゲット2、真空ポンプ6、ガス導入管9が具備せしめられる。3はイオン源1から発生せしめられたイオンビーム、4はターゲット2からスパッタリングされたターゲット構成物質のスパッタ粒子である。成膜部品7は、成膜部品収容セル14内に、図示されない適宜の成膜部品ホルダを介して、成膜面を隔壁13に形成される開口131に対応して収容取り付けられる。
【0009】
【発明の効果】
以上の通りであって、この発明によれば、真空チャンバーの内部に成膜部品の薄膜を成膜すべき成膜面の数に対応する数の隔壁を設けて、真空チャンバーを各隔壁に対応する複数の成膜セルに区画し、各成膜セルのそれぞれに成膜粒子発生装置を具備せしめることにより、成膜部品の複数面に同時に成膜することができる。これにより、成膜部品の相異なる複数の成膜面に対して相異なる仕様の成膜を同時に実施することができ、成膜効率を向上することができる。
従来例は、成膜部品の複数面に薄膜を成膜しようとする場合、成膜面の反転切り替えは、薄膜成膜装置の動作を停止し、成膜部品ホルダから成膜部品を取り外して成膜面を反転して取り付け直し、再度、薄膜成膜装置を動作状態に復帰させるという手間暇のかかる操作が必要であったが、この発明はこれらの操作は不要であり、薄膜成膜に要する時間を大きく短縮することができる。
成膜部品が基板である場合、その両面に同時に薄膜を成膜することにより、基板の両面に加わる膜応力が相殺されて、片面のみに成膜を形成した場合に生起する基板の変形を防止することができる。
【図面の簡単な説明】
【図1】実施例を説明する図。
【図2】他の実施例を説明する図。
【図3】従来例を説明する図。
【符号の説明】
1 イオン源        2 ターゲット
4 スパッタ粒子      7 成膜部品
8 成膜部品ホルダ     9 ガス導入管
10 真空チャンバー    13 隔壁
14 成膜部品収容セル   81 回転駆動軸
131 開口
〜c 成膜セル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multiple-surface simultaneous thin film deposition apparatus, and in particular, divides a vacuum chamber into a plurality of deposition cells, equip each of the deposition cells with a deposition particle generator, and perform deposition simultaneously on a plurality of surfaces. The present invention relates to an apparatus for simultaneously forming a plurality of thin films.
[0002]
[Prior art]
A conventional example of a thin film forming apparatus such as an ion beam sputtering apparatus will be described with reference to FIG.
In the vacuum chamber 10, the ion source 1 is attached and accommodated on a side wall thereof, and the target 2 is attached and accommodated on a bottom wall. The gas introduction pipe 9 is introduced and fixed to the side wall through the gas introduction pipe 9. The vacuum chamber 10 is further provided with a vacuum pump (not shown). The ion source 1 is attached and fixed to the inner surface of the side wall of the vacuum chamber 10, and an ion extraction grid to which a high voltage is applied is installed at the ion radiation end. The target 2 is fixed to a bottom wall of the vacuum chamber 10 via a target holder (not shown). The film forming component holder 8 is rotatably supported by a rotary drive shaft 81 which is inserted through the upper wall of the vacuum chamber 10 in an airtight manner. The film forming component holder 8 is rotationally driven from the outside via a rotary drive shaft 81. Then, a film forming component 7 on which a thin film is to be formed is attached to the lower surface of the film forming component holder 8.
[0003]
The vacuum chamber 10 is evacuated by a vacuum pump (not shown), and then an inert gas is introduced into the vacuum chamber 10 through the gas introduction pipe 9. Here, an ion beam 3 is generated from the ion source 1.
The ion beam 3 generated from the ion source 1 is accelerated at high speed by an ion extraction grid to which a high voltage is applied, and is extracted and emitted as an ion beam. This beam collides with the target 2 and sputters the material constituting the target 2. As the material of the target 2, various kinds of materials such as a metal material, an insulating material, and the like can be used. The sputtered particles 4 of the target constituent material sputtered from the target 2 adhere to the surface of the film forming part 7 composed of the substrate held by the film forming part holder 8, and a thin film of the target constituent material is formed thereon. Become. When a thin film is being formed, the film forming component holder 8 is rotated by the rotation shaft 81, whereby the thickness of the thin film formed can be made uniform.
[0004]
[Problems to be solved by the invention]
In the thin film forming apparatus described above, the film forming surface of the film forming component 7 must naturally be directed in the scattering direction a of the sputtered particles 4. Assuming that the film forming component 7 is a substrate, when film formation is performed on both front and back surfaces, a position change is performed in which both surfaces on which a thin film is to be formed are reversed to face each other in the scattering direction of the film forming particles for each surface. Need to do.
In the above-described reverse switching of the film forming surface, the operation of the thin film forming apparatus is stopped, the film forming component 7 is removed from the film forming component rotating holder 8, and the film forming surface is reversed and mounted again. Then, the thin film forming apparatus is returned to the operating state again. This requires time and labor, and there is also an accuracy error in which similar thin film formation cannot be performed on both surfaces of the film forming component 7 due to positional displacement. When the film forming component 7 is a substrate, if the thin film is formed on only one side, the substrate may be deformed due to the film stress of the thin film depending on the substrate. This deformation can be prevented by simultaneously forming similar thin films on both surfaces of the film forming component substrate 7, but this cannot be handled by a conventional thin film forming apparatus. The present invention provides a number of partitions corresponding to the number of deposition surfaces on which a thin film of a deposition component is to be deposited inside a vacuum chamber, and partitions the vacuum chamber into a plurality of deposition cells corresponding to each partition. By providing a film forming particle generator in each of the film forming cells, it is possible to provide a multi-surface simultaneous thin film forming apparatus which solves the above-mentioned problem.
[0005]
[Means for Solving the Problems]
The number of partitions 13 corresponding to the number of deposition surfaces on which the thin film of the deposition component 7 is to be deposited is provided inside the vacuum chamber 10, and the vacuum chamber 10 is provided with a plurality of deposition cells c 1 corresponding to the respective partitions 13. to partitioned into c 6, to constitute a multi-surface simultaneous thin film forming apparatus for forming simultaneously on a plurality of surfaces and allowed to include a deposition particle generating apparatus in each of from KakuNarumaku cell c 1 c 6.
Then, in the above-described apparatus for simultaneous thin film deposition on a plurality of surfaces, partitions 13 corresponding to the number of deposition surfaces on which a thin film is to be deposited are provided inside the vacuum chamber 10, and these partitions 13 are used to form a film inside the vacuum chamber 10. The vacuum chamber 10 is divided into a plurality of film forming cells c 1 to c 6 corresponding to the partition walls 13 with the film forming part accommodating cell 14 for accommodating and mounting the part 7 and with the film forming part accommodating cell 14 interposed therebetween. A multi-surface simultaneous thin film deposition apparatus was constructed.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the embodiment of FIG. FIG. 1 is a conceptual diagram illustrating an embodiment in which a substrate having two film forming surfaces facing each other is used as a film forming component 7. A partition 13 corresponding to each of the two deposition surfaces is provided inside the vacuum chamber 10, and the partition 13 constitutes a deposition component accommodating cell 14 for accommodating the deposition component 7 inside the vacuum chamber 10. partitioning the deposition component containing cell 14 to vacuum chamber 10 while interposing the intermediate to the first film forming cells c 1 and second film forming cells c 2 corresponding to the respective partition walls 13. An opening 131 is formed in the center of the partition 13. Each first deposition cell c 1 and the second film forming cells c 2, the ion source 1, the target 2, the vacuum pump 6, the gas introduction pipe 9 is made to comprise. Reference numeral 3 denotes an ion beam generated from the ion source 1 and reference numeral 4 denotes sputtered particles of a target constituent material sputtered from the target 2. The film forming component 7 is accommodated and mounted in the film forming component housing cell 14 via an appropriate film forming component holder (not shown) corresponding to the opening 131 formed in the partition wall 13.
[0007]
Here, first, the vacuum pump 6 is operated to evacuate the first film forming cell c 1 and the second film forming cell c 2 of the vacuum chamber 10, and then the first film forming cell c 1 is exhausted through the gas introduction pipe 9. introducing an inert gas into the membrane cells c 1 and second film forming in the cell c 2. In this state, the ion source 1 is operated to generate the ion beam 3.
The ion beam 3 generated from the ion source 1 is accelerated at high speed by an ion extraction grid to which a high voltage is applied inside the ion source 1. The ion beam 3 collides with the target 2 and sputters a substance constituting the target 2. As the material of the target 2, various kinds of materials such as a metal material, an insulating material, and the like can be used. Sputter particles sputtered from the target 2 4, in the first film-forming cells c 1 is radiated in the scattering direction a, the scattering direction b opposite to the scattering direction a in the second deposition cell c 2 Radiated. The sputtered particles 4 travel and pass through the openings 131 formed in the partition walls 13 and adhere to the surface of the film-forming component 7 attached and held in correspondence with the openings 131, where a thin film of the target constituent material is formed. Is done.
[0008]
FIG. 2 is a diagram for explaining another embodiment. In FIG. 2, a rectangular parallelepiped having two sets of two opposing surfaces is defined as a film forming component 7.
In this embodiment, similarly to the previous embodiment, partitions 13 corresponding to each of the six deposition surfaces are provided inside the vacuum chamber 10, and the deposition components 7 are placed inside the vacuum chamber 10 by the partitions 13. The film forming component accommodating cell 14 for accommodating and attaching is formed, and the vacuum chamber 10 is connected to the first film forming cells c 1 to c 6 corresponding to each partition 13 with the film forming component accommodating cell 14 interposed therebetween. partitioning the membrane cell c 6. In this embodiment, the vacuum chamber 10 is composed of the first to sixth film forming cells c 1 to c 6 and the film forming part accommodating cell 14 in total. An opening is similarly formed in the center of the partition 13. Each of the first deposition cell c 1 to sixth deposition cell c 6, an ion source 1, the target 2, the vacuum pump 6, the gas introduction pipe 9 is made to comprise. Reference numeral 3 denotes an ion beam generated from the ion source 1 and reference numeral 4 denotes sputtered particles of a target constituent material sputtered from the target 2. The film forming part 7 is housed and mounted in the film forming part accommodating cell 14 via an appropriate film forming part holder (not shown) so that the film forming surface corresponds to the opening 131 formed in the partition wall 13.
[0009]
【The invention's effect】
As described above, according to the present invention, the number of partitions corresponding to the number of deposition surfaces on which the thin film of the deposition component is to be formed is provided inside the vacuum chamber, and the vacuum chamber corresponds to each partition. A plurality of film forming cells are formed, and a film forming particle generator is provided in each of the film forming cells, whereby films can be simultaneously formed on a plurality of surfaces of a film forming component. Thereby, film formation with different specifications can be simultaneously performed on a plurality of different film formation surfaces of the film formation component, and film formation efficiency can be improved.
In the conventional example, when a thin film is to be formed on a plurality of surfaces of a film forming component, the reverse of the film forming surface is switched by stopping the operation of the thin film forming apparatus and removing the film forming component from the film forming component holder. A time-consuming operation such as reversing the film surface and reattaching the film, and returning the thin film forming apparatus to an operating state again was required. However, the present invention does not require these operations and is required for thin film deposition. The time can be greatly reduced.
When a film-forming component is a substrate, thin films are simultaneously formed on both sides of the substrate, thereby canceling the film stress applied to both sides of the substrate and preventing the deformation of the substrate that occurs when the film is formed on only one side. can do.
[Brief description of the drawings]
FIG. 1 illustrates an embodiment.
FIG. 2 is a diagram illustrating another embodiment.
FIG. 3 illustrates a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ion source 2 Target 4 Sputtered particle 7 Deposition component 8 Deposition component holder 9 Gas introduction pipe 10 Vacuum chamber 13 Partition wall 14 Deposition component storage cell 81 Rotation drive shaft 131 Openings c 1 to c 6 Deposition cell

Claims (2)

真空チャンバーの内部に成膜部品の薄膜を成膜すべき成膜面の数に対応する数の隔壁を設けて、真空チャンバーを各隔壁に対応する複数の成膜セルに区画し、
各成膜セルのそれぞれに成膜粒子発生装置を具備せしめて複数面に同時に成膜することを特徴とする複数面同時薄膜成膜装置。
By providing a number of partitions corresponding to the number of deposition surfaces on which a thin film of a deposition component is to be deposited inside the vacuum chamber, dividing the vacuum chamber into a plurality of deposition cells corresponding to each partition,
A multi-surface simultaneous thin film forming apparatus, wherein each of the film forming cells is provided with a film forming particle generator and simultaneously forms films on a plurality of surfaces.
請求項1に記載される複数面同時薄膜成膜装置において、
真空チャンバーの内部に薄膜を成膜すべき成膜面の数に対応する隔壁を設け、これら隔壁により真空チャンバーの内部に成膜部品を収容取り付ける成膜部品収容セルを構成すると共に成膜部品収容セルを中間に介在させた状態で真空チャンバーを各隔壁に対応する複数成膜セルに区画したことを特徴とする複数面同時薄膜成膜装置。
The multiple-surface simultaneous thin film deposition apparatus according to claim 1,
Partition walls are provided in the vacuum chamber corresponding to the number of deposition surfaces on which thin films are to be formed, and these partition walls constitute a deposition component storage cell for accommodating the deposition components in the vacuum chamber. A multi-surface simultaneous thin film forming apparatus, wherein a vacuum chamber is divided into a plurality of film forming cells corresponding to respective partition walls with a cell interposed therebetween.
JP2002243322A 2002-08-23 2002-08-23 Simultaneous thin film deposition system Pending JP2004083949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243322A JP2004083949A (en) 2002-08-23 2002-08-23 Simultaneous thin film deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243322A JP2004083949A (en) 2002-08-23 2002-08-23 Simultaneous thin film deposition system

Publications (1)

Publication Number Publication Date
JP2004083949A true JP2004083949A (en) 2004-03-18

Family

ID=32052109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243322A Pending JP2004083949A (en) 2002-08-23 2002-08-23 Simultaneous thin film deposition system

Country Status (1)

Country Link
JP (1) JP2004083949A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144345A (en) * 1975-05-27 1976-12-11 United Technologies Corp Process for depositing aluminum compound coating on nickel basee cobalt basee or iron base alloys
JPH04128370A (en) * 1990-09-19 1992-04-28 Japan Steel Works Ltd:The Method of film formation by sputtering using multi ion beam
JPH0670234U (en) * 1993-02-27 1994-09-30 太陽誘電株式会社 Thin film forming equipment
JPH0748669A (en) * 1993-06-03 1995-02-21 Hitachi Ltd Film forming equipment
JPH0813143A (en) * 1994-06-24 1996-01-16 Hitachi Ltd Plasma treatment and treating device
JPH10330936A (en) * 1997-06-02 1998-12-15 Sadao Kadokura Opposite target type sputtering device
JP2002212724A (en) * 2001-01-19 2002-07-31 Hitachi Ltd Ion beam sputtering equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144345A (en) * 1975-05-27 1976-12-11 United Technologies Corp Process for depositing aluminum compound coating on nickel basee cobalt basee or iron base alloys
JPH04128370A (en) * 1990-09-19 1992-04-28 Japan Steel Works Ltd:The Method of film formation by sputtering using multi ion beam
JPH0670234U (en) * 1993-02-27 1994-09-30 太陽誘電株式会社 Thin film forming equipment
JPH0748669A (en) * 1993-06-03 1995-02-21 Hitachi Ltd Film forming equipment
JPH0813143A (en) * 1994-06-24 1996-01-16 Hitachi Ltd Plasma treatment and treating device
JPH10330936A (en) * 1997-06-02 1998-12-15 Sadao Kadokura Opposite target type sputtering device
JP2002212724A (en) * 2001-01-19 2002-07-31 Hitachi Ltd Ion beam sputtering equipment

Similar Documents

Publication Publication Date Title
KR101182072B1 (en) Apparatus for low temperature semiconductor fabrication
EP1184483B1 (en) Thin-film formation system and thin-film formation process
US6090247A (en) Apparatus for coating substrates
CN103502504A (en) Film-forming apparatus
US6962648B2 (en) Back-biased face target sputtering
JP2009167528A (en) Sputter coating equipment
JP2004083949A (en) Simultaneous thin film deposition system
US5178738A (en) Ion-beam sputtering apparatus and method for operating the same
JP5002532B2 (en) Sputtering method and sputtering apparatus
JPH11302841A (en) Sputtering system
CN114214596B (en) Magnetron sputtering coating chamber, coating machine and coating method
US20060081466A1 (en) High uniformity 1-D multiple magnet magnetron source
JP2000273631A (en) Sputtering device
JPS6086272A (en) sputtering device
JPH024966A (en) Sputtering device
KR101421642B1 (en) Apparatus for processing substrate
JP2526182B2 (en) Method and apparatus for forming compound thin film
CN218146926U (en) Continuous coating assembly and magnetron sputtering device
US20060081467A1 (en) Systems and methods for magnetron deposition
JPS61210190A (en) Thin film forming device
JPH04173971A (en) Magnetron type sputtering device
US20060231384A1 (en) Back-biased face target sputtering
JP2002020866A (en) Sputtering system
KR20250112970A (en) Film forming device for three-dimensional objects
JP4393856B2 (en) Deposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016