[go: up one dir, main page]

JP2004082300A - Dressing method of grinding wheel in centerless grinder and dressing device - Google Patents

Dressing method of grinding wheel in centerless grinder and dressing device Download PDF

Info

Publication number
JP2004082300A
JP2004082300A JP2002248694A JP2002248694A JP2004082300A JP 2004082300 A JP2004082300 A JP 2004082300A JP 2002248694 A JP2002248694 A JP 2002248694A JP 2002248694 A JP2002248694 A JP 2002248694A JP 2004082300 A JP2004082300 A JP 2004082300A
Authority
JP
Japan
Prior art keywords
grinding wheel
dressing
dresser
drive motor
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002248694A
Other languages
Japanese (ja)
Other versions
JP4098035B2 (en
Inventor
Keigo Tanaka
田中 圭吾
Yukito Kubo
久保 幸人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Machine Systems Corp
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP2002248694A priority Critical patent/JP4098035B2/en
Publication of JP2004082300A publication Critical patent/JP2004082300A/en
Application granted granted Critical
Publication of JP4098035B2 publication Critical patent/JP4098035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dressing method in a centerless grinder which enables reduction of dressing time and stabilization of grinding accuracy after dressing and accurate determination of whether a dressing state is good or not. <P>SOLUTION: This dressing method includes a process S2 of rotating a grinding wheel at almost the same speed as that in grinding, a dressing process S4 of rotating a rotary dresser at almost the same peripheral speed as that of the grinding wheel or a slightly faster or slower peripheral speed than it and enabling the rotary dresser to feed the grinding wheel by a specified amount each time when it traverses a whole width of the grinding wheel with the predetermined number of times, and a determination process S6 of determining the dressing state of the grinding wheel by variation of current values and power values of a driving motor of the rotary dresser in the dressing process S4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、センタレス研削盤における研削砥石車、調整砥石車等の砥石車をドレスするセンタレス研削盤における砥石車のドレス方法及びドレス装置に関するものである。
【0002】
【従来の技術】
従来からセンタレス研削盤において、CBN砥石車に代表される高硬度の研削砥石車(ダイヤモンド砥石を含む超砥粒砥石全般)をドレス(整形及び目立て)する際には、ロータリドレッサとして主にロータリダイヤを使用し、研削砥石車に対してロータリードレッサをダウンカット方向又はアップカット方向に回転させながら、研削砥石車の全幅を1回トラバースする毎にロータリードレッサを砥石車に所定量ずつ切り込んで行く方法を採っている。
【0003】
この場合には、研削砥石車の直径に対してロータリードレッサの直径が小さいため、ロータリドレッサのダイヤモンド砥粒の摩耗を防止する必要から、研削砥石車の回転速度を研削時よりも遅くする減速制御を行い、その回転速度をロータリドレッサの周速に合わせている。
【0004】
また研削砥石車のドレス状態の良否を判定する方法としては、従来、▲1▼ドレス後の研削砥石車の形状を直接測定する方法、▲2▼特許第3165488号公報に記載されるように、AEセンサにより研削砥石車とロータリードレッサとの接触による振動を検出し、そのデータの解析によりインプロセスにて判定する方法、▲3▼超音波によりポストプロセスにて研削砥石車の形状を測定して判定する方法等がある。
【0005】
【発明が解決しようとする課題】
超砥粒砥石を使用した研削砥石車をロータリダイヤ等のロータリドレッサでドレスする場合、従来は非常に長いドレス時間を要する欠点がある。何故なら、研削時の回転速度のままで研削砥石車のドレスを行うと、研削砥石車の直径に対してロータリードレッサの直径が小さいため、ロータリドレッサの周速が遅くなってダイヤモンド砥粒の摩耗が激しく、トラバース中にダイヤモンド砥粒が摩耗して研削砥石車の真直度が悪くなる等、高精度にドレスできない。このため従来は研削砥石車の周速をロータリドレッサの周速に合わせる減速制御を行い、その状態で研削砥石車をドレスしている。従って、ドレスリード(研削砥石車の1回転当たりにロータリドレッサがトラバースする量)を固定とした場合には、ロータリドレッサのトラバース速度を落とす必要があり、ドレスに長い時間を要する。
【0006】
しかも、従来のドレス方法では、研削時とドレス時とで研削砥石車の回転速度が大きく変わるため、研削砥石車がドレス後に研削回転数に戻ったときにアンバランスの位相やその量が変化し、動的な振れが増大する。特にCBN砥石車の場合には、使用回転数が比較的高いので、その差が大きくなる。
【0007】
また従来のドレス状態の判定方法では、次のような問題がある。即ち、上記▲1▼の方法では、ドレス状態の判定に特別な装置を必要としないものの、判定に際して研削砥石車を停止して例えば砥石カバーを開けてから測定する必要があり、また測定の結果が悪ければ、砥石カバーを閉じて研削砥石車を回転させ再度ドレスを行うことになるため、ドレス、測定を繰り返さなければならず、非常な手間と時間を要し、しかも研削砥石車の任意の或る線上でしか判断できない。
【0008】
上記▲2▼の方法は、インプロセスにて自動的な判定が可能であるため、その判定に要する手間及び時間を削減できるが、別装置が必要である上に、ドレスと関係のない振動、騒音も拾ってしまうため、周辺に他の機械が稼働している場合には信頼度が低下する。上記▲3▼の方法は、研削砥石車が回転した状態でも測定が可能であるが、ドレスサイクルに測定サイクルを組み込む必要があって時間がかかり、また超音波装置等の別装置も必要となる。
【0009】
本発明は、かかる従来の問題点に鑑み、ドレス時間を短縮できると共に、ドレス後の研削精度が安定し、しかもドレス状態の良否を正確に判定できるセンタレス研削盤におけるドレス方法及びドレス装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のドレス方法は、砥石車を研削時と略同等な速度で回転させる工程と、ロータリドレッサを前記砥石車と略同等な周速、若干速い周速又は若干遅い周速で回転させて、前記砥石車の全幅を所定回数トラバースする毎に該ロータリドレッサを前記砥石車に所定量ずつ切り込むドレス工程と、該ドレス工程における前記ロータリドレッサの駆動モータの電流値又は電力値の変化により前記砥石車のドレス状態を判定する判定工程とを含むものである。
【0011】
本発明のドレス方法は、ドレス抵抗による前記ロータリドレッサの回転速度の変化を検出し、前記ロータリドレッサの回転速度の遅れ又は進みに対して、それを修正するように前記駆動モータの電流を制御する工程を含むことが望ましい。また本発明のドレス方法は、前記駆動モータの電流値又は電力値が略一定のときにドレス状態を良好と判定する前記判定工程を含むことが望ましい。
【0012】
更に本発明のドレス方法は、前記ロータリドレッサが前記砥石車の略全表面に接触するときの前記駆動モータの電流値又は電力値を基準とする閾値と、前記ドレス工程における前記駆動モータの電流値又は電力値とを比較して、前記ドレス工程における前記駆動モータの電流値又は電力値が閾値以上のときにドレス状態を良好と判定する前記判定工程を含み、該判定工程で良好と判定したときに前記ドレス工程を終了することが望ましい。
【0013】
本発明のドレス装置は、砥石車を研削時と略同等な速度で回転させる砥石車駆動モータと、ロータリドレッサを前記砥石車と略同等な周速、若干速い周速又は若干遅い周速で回転させるドレッサ駆動モータと、前記砥石車の全幅を所定回数トラバースする毎に該ロータリドレッサを前記砥石車に所定量ずつ切り込むように制御するドレス制御手段と、ドレス時における前記ドレッサ駆動モータの電流値又は電力値を、前記ロータリドレッサが前記砥石車の略全表面に接触するときの前記ドレッサ駆動モータの電流値又は電力値を基準とする前記閾値と比較して、ドレス時における前記ドレッサ駆動モータの電流値又は電力値が閾値以上のときにドレスを終了させるための判定手段とを備えたものである。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳述する。図1は本発明に係るセンタレス研削盤のドレス装置を例示するブロック図である。
【0015】
このドレス装置は、図1に示すように研削砥石車1をドレスするためのロータリドレッサ2と、研削砥石車1をスピンドル3廻りに回転駆動する砥石車駆動モータ4と、この砥石車駆動モータ4の回転速度を検出するパルスエンコーダ5と、砥石車駆動モータ4の回転速度を制御する砥石車回転制御手段6と、ロータリドレッサ2をドレスヘッド7上のドレッサ軸8廻りに回転駆動するドレッサ駆動モータ9と、ドレッサ駆動モータ9の回転速度を検出するパルスエンコーダ10と、ドレッサ駆動モータ9の回転速度を制御するドレッサ回転制御手段11と、ロータリドレッサ2を研削砥石車1側へと切り込み駆動する切り込み手段12と、ロータリドレッサ2を研削砥石車1の幅方向にトラバース駆動するトラバース手段13と、切り込み手段12及びトラバース手段13を制御してロータリドレッサ2による研削砥石車1のドレスを制御するドレス制御手段14と、研削砥石車1のドレス状態の良否を判定する判定手段15とを備えている。
【0016】
研削砥石車1は、砥粒を結合剤により固結して外形を略円柱形状に成形したもので、例えばCBN砥石車等の高硬度砥石車、その他の超砥粒砥石車が使用されている。砥石車駆動モータ4はパルスエンコーダ5付きのACサーボモータにより構成され、加工物の研削時とドレス時とで研削砥石車1を略同等な回転速度で駆動する。従って、ドレス時の研削砥石車1の回転速度は研削時の回転速度と略同等である。因みに、研削砥石車1がCBN研削砥石車の場合には、その使用最高周速は3600m/min.が一般的である。
【0017】
パルスエンコーダ5は研削砥石車1の回転速度を検出する速度検出手段を構成し、砥石車駆動モータ4の回転速度が変化したときにそれに応じた速度信号を出力する。砥石車回転制御手段6は研削時の研削抵抗の変化、ドレス時のドレス抵抗の変化等により研削砥石車1の回転速度が変化(遅れ又は進み)した場合に、パルスエンコーダ5からの速度信号に基づいて、砥石車駆動モータ4に対しその遅れ又は進みを修正する方向に制御電流を付加して、研削砥石車1が略一定速度で回転するようにフィードバック制御する。なお、砥石車回転制御手段6はドレス時にも研削砥石車1が研削時と略同等な速度で回転するように砥石車駆動モータ4の回転速度を制御する。
【0018】
ロータリドレッサ2は研削砥石車1の外周面をドレスするためのもので、研削砥石車1に対して切り込み方向及びトラバース方向に移動自在なドレスヘッド7上に、研削砥石車1のスピンドル3と略平行なドレッサ軸8を介して装着され、ドレッサ駆動モータ9の回転駆動により所定方向(ダウンカット方向又はアップカット方向)に回転しながら、研削砥石車1の外周面の全幅を所定回数(例えば1回)トラバースする毎に、研削砥石車1に対して所定量ずつ切り込むドレス動作を繰り返してその外周面をドレスする。
【0019】
なお、ロータリドレッサ2には、例えば外周にダイヤモンド砥粒を固定したロータリダイヤが使用されているが、ロータリダイヤ以外のものを使用しても良い。またロータリドレッサ2のドレッサ軸8は、必ずしもスピンドル3と平行でなくても良い。ドレスヘッド7は切り込み手段12の駆動により切り込み方向に、トラバース手段13の駆動によりトラバース方向に夫々移動自在である。
【0020】
ドレッサ駆動モータ9は、例えばパルスエンコーダ10付きのACサーボモータにより構成され、ロータリドレッサ2を研削砥石車1と略同等な周速、若干速い周速又は若干遅い周速でダウンカット方向又はアップカット方向に回転駆動する。なお、ドレッサ駆動モータ9はロータリドレッサ2と共にドレスヘッド7上に設けられている。パルスエンコーダ10はロータリドレッサ2の回転速度を検出する速度検出手段を構成し、ドレッサ駆動モータ9の回転速度が変化したときにそれに応じた速度信号を出力する。
【0021】
ドレッサ回転制御手段11は、ロータリドレッサ2を研削砥石車1と略同等な周速、若干速い周速又は若干遅い周速で回転させるようにドレッサ駆動モータ9を制御するためのもので、ドレス制御手段14から回転指令があった場合に、ロータリドレッサ2が所定速度で回転するようにドレッサ駆動モータ9を制御すると共に、ドレス時のドレス抵抗の変化によりロータリドレッサ2の回転速度が変化(遅れ又は進み)した場合に、パルスエンコーダ10からの速度信号に基づいて、ドレッサ駆動モータ9に対しその遅れ又は進みを修正する方向に制御電流Iを付加して、ロータリドレッサ2が略一定速度で回転するようにフィードバック制御する。
【0022】
なお、研削砥石車1のドレス方法には、図3のa矢示方向に回転する研削砥石車1に対してロータリドレッサ2を順方向(b矢示方向)に回転させるダウンカット法と、ロータリドレッサ2を逆方向(c矢示方向)に回転させるアップカット法とがあり、ダウンカット法でのドレス時に研削砥石車1と略同等な周速又はそれよりも若干遅い周速で、またアップカット法でのドレス時に研削砥石車1と略同等な周速又はそれよりも速い周速で夫々ロータリドレッサ2を回転させることがある。このような場合には、ドレッサ回転制御手段11は、ロータリドレッサ2がその速度で回転するようにドレッサ駆動モータ9を制御する。
【0023】
ドレス制御手段14は、研削砥石車1のドレスに際してドレッサ回転制御手段11に回転指令を出すと共に、ロータリドレッサ2が所定の回転速度になった場合に所定の制御プログラム等に基づいてドレス指令を出して、ロータリドレッサ2が研削砥石車1の全幅を所定回数、例えば1回トラバースする毎に研削砥石車1に所定量ずつ切り込むように切り込み手段12及びトラバース手段13を制御して、ロータリドレッサ2による研削砥石車1のドレス動作を制御する。またドレス制御手段14はドレス開始後、判定手段15が研削砥石車1のドレス状態を不良と判定する間はドレスを継続させ、判定手段15が研削砥石車1のドレス状態を良好と判定した場合に、そのトラバースの終了後にドレスを終了させる。
【0024】
判定手段15は、ロータリドレッサ2が研削砥石車1の全幅をトラバースする実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iの電流値の変化を検出して、その変化によりドレス状態の良否を判定するためのもので、閾値THを基準として、ドレス時である実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iの電流値が閾値TH以上で略一定のときにドレス状態を良好と判定する。
【0025】
即ち、この判定手段15は、図4(A)及び(B)に示すようにロータリドレッサ2が研削砥石車1を幅方向にトラバースするときに、ロータリドレッサ2の研削砥石車1に対する接触開始時点T1から接触終了時点T2までの実ドレス時間T中に、ドレッサ駆動モータ9の制御電流Iの電流値を閾値THとリアルタイムで比較して、実ドレス時間T中の制御電流Iの電流値が常に閾値TH以上で略一定のときにドレス状態を良好と判定し、実ドレス時間T中の制御電流Iの電流値が一時的にでも閾値TH未満となればドレス不良と判定する。
【0026】
接触開始時点T1はドレッサ駆動モータ9の制御電流Iの立ち上がり、接触終了時点T2は制御電流Iの立ち下がり等で検出でき、その立ち上がりから立ち下がりまでが実ドレス時間Tとなる。なお、接触開始時点T1、接触終了時点T2はロータリドレッサ2のトラバース方向の位置で検出する等、他の方法で検出することも可能である。
【0027】
閾値THはロータリドレッサ2が研削砥石車1の略全表面に接触する場合のドレッサ駆動モータ9の制御電流Iの電流値を基準にして、これに所定の変動幅を考慮して設定する。なお、閾値THは制御電流Iの変動幅の下限値で設定しても良いし、上限値と下限値との両方で設定し、制御電流Iの電流値が上限値と下限値との間にある場合にドレス状態を良好と判定しても良い。ドレッサ駆動モータ9の制御電流Iは、ドレッサ駆動モータ9に実際に流れる電流を検出しても良いし、ドレッサ回転制御手段11からドレッサ駆動モータ9に付加される電流を検出しても良い。
【0028】
次に上記構成のドレス装置を使用したドレス方法について説明する。例えば前の研削工程S1の終了から次の研削工程S7の開始までの間に、ダウンカット方向に回転するロータリドレッサ2により研削砥石車1のドレスを行う場合には、図2に示すように砥石車回転制御工程S2、ドレッサ回転工程S3、ドレス工程S4、ドレッサ回転制御工程S5、判定工程S6等の各工程S2〜S6を経て行う。
【0029】
即ち、前の研削工程S1が終了すると、研削砥石車1を研削時と略同等な回転速度で回転させる砥石車回転制御工程S2を実行する。この砥石車回転制御工程S2では、砥石車回転制御手段6が砥石車駆動モータ4を制御して、研削終了後の研削砥石車1を研削時と略同等な速度で図3のa矢示方向へと回転させる。
【0030】
なお、研削時とは異なり加工物による研削負荷がないので、研削砥石車1の回転速度が上がればパルスエンコーダ4がその変化を検出し、砥石車回転制御手段6が砥石車駆動モータ4の制御電流を減らして、研削砥石車1の回転速度を研削時と略同等の一定速度に制御する。
【0031】
砥石車回転制御工程S2はドレス工程S4の終了まで継続し、ドレス中にドレス抵抗の変化により研削砥石車1の回転速度が変化すれば、パルスエンコーダ5がその回転速度の変化を検出し、砥石車回転制御手段6が砥石車駆動モータ4に回転速度の遅れ又は進みを修正する方向に制御電流を付加するフィードバック制御を行う。従って、研削砥石車1はドレス工程S4の終了まで略一定の速度で回転する。
【0032】
なお、停止中の研削砥石車1を回転させてドレスを行う場合には、図1に二点鎖線で示すように、ドレス制御手段14から砥石車回転制御手段6に回転指令等を出して、研削砥石車1を研削時と略同等な周速で回転させれば良い。
【0033】
このように研削砥石車1を研削時の回転速度と略同等な速度で回転させながらドレスを行うことにより、ドレス時間を短縮できる。即ち、研削砥石車1のドレスに際してロータリドレッサ2のドレスリードを一定とした場合、研削砥石車1の回転速度が速ければ速い程、ロータリドレッサ2のトラバース速度を上げることができるので、研削砥石車1を研削時と略同等の速度で回転させておき、その状態でロータリドレッサ2によって研削砥石車1をドレスすることにより、研削砥石車1が超砥粒砥石であるにも拘わらずドレス時間を短縮できる。
【0034】
またドレス時と研削時との回転速度が略同等であるため、ドレス完了後に次の研削工程S7を実行可能であり、その場合にも研削時にアンバランスの位相等が変化することはなく、加工物を高精度に研削できる。しかもドレス時と研削時との回転速度が略同等であるため、研削砥石車1のスピンドル3を回転自在に支持するスピンドル軸受けからの発熱量に変動がなく熱的にも安定する。
【0035】
このように研削砥石車1の回転速度を研削時と略同等に保つ一方、所定時点でドレス制御手段14から回転指令を出し、ロータリドレッサ2を研削砥石車1と略同等な周速又は若干遅い周速でダウンカット方向(図3のb矢示方向)に回転させるドレッサ回転工程S3を実行する。このドレッサ回転工程S3では、ドレス制御手段14からの回転指令によりドレッサ回転制御手段11がドレッサ駆動モータ9を制御して、このドレッサ駆動モータ9の駆動により、ロータリドレッサ2を研削砥石車1と略同等な周速又は若干遅い周速でダウンカット方向に回転させる。因みに、ロータリドレッサ2と研削砥石車1との周速比は0.85〜1程度の範囲が適当であり、その速度は研削砥石車1、ロータリドレッサ2の径、材質等に応じて適宜設定する。
【0036】
研削砥石車1が研削時と略同等な回転速度で回転し、ロータリドレッサ2が研削砥石車1と略同等な周速又は若干遅い周速で回転すると、ドレス制御手段14が所定のプログラムに基づいてドレス指令を出し、切り込み手段12、トラバース手段13を作動させて、図6に示すようにロータリドレッサ2が研削砥石車1の全幅を1回トラバースする毎に、ロータリドレッサ2を研削砥石車1に所定量ずつ切り込むドレス工程S4を実行し、ロータリドレッサ2のクラッシング作用によりドレス抵抗が略均一になるまで研削砥石車1の形状(振れ、真円度、真直度)を修正する。
【0037】
ロータリドレッサ2を所定の切り込み量で研削砥石車1の全幅をトラバースさせる際に、研削砥石車1の真直度、真円度が悪ければ研削砥石車1のロータリドレッサ2に対するドレス抵抗が変化する。例えば図4(A)に示すように研削砥石車1の真直度が悪い場合には、その直径の大小によって研削砥石車1の1回転当たりに対するロータリドレッサ2の接触率が異なり、直径の大きい部分ではドレス抵抗が大きくなり、小さい部分では小さくなる。これは図5に示すように外周面に凹部1aがある等によって研削砥石車1に真円度が悪い場合にも同様であり、真円度の良い部分と悪い部分とでそのドレス抵抗が大きく変化する。
【0038】
そして、ドレス工程S4中にドレス抵抗が変化すれば、ロータリドレッサ2の回転速度が変化(遅れ又は進み)するので、パルスエンコーダ10がその速度変化を検出し、ドレッサ回転制御手段11がロータリドレッサ2の回転速度の遅れ又は進みを修正するように、ドレッサ駆動モータ9の制御電流Iを制御するドレッサ回転制御工程S5を実行する。従って、ロータリドレッサ2はドレス工程S4の終了まで略一定速度で回転する。
【0039】
ロータリドレッサ2が研削砥石車1のドレスを開始すると、判定手段15が実ドレス時間T中におけるドレッサ駆動モータ9の制御電流Iの電流値の変化により研削砥石車1のドレス状態の良否を判定する判定工程S6を実行する。即ち、ロータリドレッサ2のドレス抵抗とドレッサ駆動モータ9の制御電流Iとの間に相関関係があり、ドレス抵抗の変化に伴ってドレッサ駆動モータ9の制御電流Iが変化するため、判定手段15で実ドレス時間T中におけるドレッサ駆動モータ9の制御電流Iを閾値THとリアルタイムで比較することにより、研削砥石車1のドレス状態の良否を正確且つ迅速に判定できる。
【0040】
そして、判定手段15がドレス状態を良好と判定すれば、その判定結果に基づいてドレス制御手段14がドレス終了の指令を出し、切り込み手段12、トラバース手段13を介してロータリドレッサ2を待機位置等に戻すと共に、ドレッサ回転制御手段11を介してロータリドレッサ2の回転を停止させて、そのトラバースの終了を以てドレス工程S4を終了する。また判定手段15がドレス不良と判定すれば、ロータリドレッサ2が研削砥石車1の全幅を1回トラバースする毎に、ロータリドレッサ2を研削砥石車1に所定量ずつ切り込むドレス工程S4を継続し、研削砥石車1の外周面を順次ドレスする。
【0041】
なお、判定手段15は実ドレス時間T中のドレッサ駆動モータ9の制御電流Iの電流値の変化を記憶手段に記憶しておき、ロータリドレッサ2の研削砥石車1に対する接触終了後にその記憶データを閾値と比較してドレス状態の良否を判定するようにしても良い。この場合には、各トラバース毎にドレス状況の良否を判定することになる。
【0042】
研削砥石車1の真直度が悪い場合には、図4(A)に示すように、直径の大きい部分ではロータリドレッサ2の研削砥石車1に対する接触率が高くドレス抵抗が大きいため、実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iは無負荷時に比較して非常に大きくなり、また直径の小さい部分では逆に小さくなる。
【0043】
しかし、ドレスの結果、図4(B)に示すように、研削砥石車1の真直度が良くなれば、研削砥石車1の全幅においてロータリドレッサ2に対して略均一にドレス抵抗がかかるため、実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iの電流値は、閾値TH以上の少ない変動幅で変化することになる。
【0044】
従って、閾値THを基準にして、実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iの電流値が閾値TH以上であるか否かを判定手段15で判定することにより、研削砥石車1のドレス状態、例えば真円度や振れや真直度をインプロセスにて自動的に把握することができる。
【0045】
このように研削時の回転速度と略同等な速度で回転する研削砥石車1を、その周速と略同等な周速又は若干遅い周速でダウンカット方向に回転するロータリドレッサ2でドレスすることにより、研削砥石車1の砥粒に対するロータリドレッサ2のクラッシング作用によって、研削砥石車1の形状(振れ、真円度、真直度)を短時間で修正できる。またロータリドレッサ2は研削時と略同等な速度で回転する研削砥石車1の周速と略同等な周速又は若干遅い周速で回転するため、滑りによるロータリドレッサ2のダイヤモンド砥粒等の摩耗も少なく、研削砥石車1を高精度にドレスできる。
【0046】
実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iの電流値の変化を捉えることによって、研削砥石車1によるドレス抵抗をインプロセスで把握でき、この制御電流Iの電流値の変化を判定手段15で閾値THとリアルタイムで比較してドレス状態を判定することにより、ドレスの完了時をインプロセスにて自動的に容易且つ確実に判断できる。
【0047】
しかも実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iの電流値の変化によりドレス状態の良否を判定するため、他の機器類が不要であると共に、直接的な判定であって判定精度が高く、ドレス制御の自動化も容易に促進できる。またドレス抵抗が均一であれば、ロータリドレッサ2の軌跡に対して研削砥石車1の全表面が接触していることになるため、研削砥石車1の真直度を判断できる。また研削砥石車1が研削時と略同等な速度で回転するのに対して、ロータリドレッサ2がその研削砥石車1と略同等な周速又は若干遅い周速で回転するため、ドレスリードがロータリドレッサ2のドレッサ幅に対して十分小さくなり、研削砥石車1の振れ、真円度も判断できる。
【0048】
更に実ドレス時間Tにおけるドレッサ駆動モータ9の制御電流Iの電流値の変化を捉えることにより、研削砥石車1に対するロータリドレッサ2の接触を検知することも可能であり、またロータリドレッサ2の軸受け側の異常診断等も可能である。
【0049】
以上、本発明の実施形態について詳述したが、本発明は実施形態に限られるものではなく、趣旨を逸脱しない範囲で種々の変更が可能である。例えば、実施形態では、ダウンカット法でのドレスについて詳述しているが、アップカット法で研削砥石車1をドレスする場合にも同様に実施可能である。なお、ダウンカット法の場合には、ダイヤモンド砥粒の摩耗を少なくするうえで、ロータリドレッサ2は研削砥石車1の回転速度と同等の周速又はそれよりも若干速い周速で回転させることが望ましい。
【0050】
また実施形態では、研削砥石車1のドレス状態の良否を判定手段15により自動的に判定するようにしているが、実ドレス時間T中のドレッサ駆動モータ9の制御電流Iの電流波形をリアルタイムで表示するモニタを操作パネル等の所定箇所に設け、このモニタに表示された制御電流Iの電流波形を作業者が見て、その電流波形が研削砥石車1の全幅で略一定となればドレス状態を良好と判断し、手動にてドレス工程を終了させるようにしても良い。この場合にも、閾値TH等の基準をモニタ上に表示しておけば、熟練を必要とせず容易にドレス状態の良否を判定することができる。
【0051】
更に実施形態ではドレッサ駆動モータ9にACサーボモータを使用しているが、制御電流Iにより回転速度を制御可能であれば、他の駆動モータを使用しても良い。ロータリドレッサ2の駆動方法は、ベルト駆動、高周波スピンドル駆動でも良いし、他のカップリング駆動でも良い。
【0052】
駆動モータ4,9にACサーボモータを使用する場合に、パルスエンコーダ5,10はACサーボモータ自体に設けても良いし、外部に設けても良い。またACサーボモータをフィードバック制御する回転制御手段6,11は、ACサーボモータ自体の制御基板に設けても良い。
【0053】
更に実施形態ではCBN砥石に代表される超砥粒砥石を用いた研削砥石車1をドレス対象にする場合を例示しているが、研削砥石車1は超砥粒砥石以外のものでも良いし、調整砥石車をドレス対象にする場合にも同様に実施できる。従って、センタレス研削盤の砥石車であれば、研削砥石車1及び/又は調整砥石車をドレス対象にできる。
【0054】
調整砥石車のドレス時には、例えばその外周に両端、中央等の幅方向の複数箇所にマジックインキ、その他のマーカーで予め印を付け、これが全域で消えれば全表面に接触したものと判断してドレス完了としているが、この場合にもドレス抵抗をトルクとしてインプロセスにて捉えることにより、ドレスの完了時点を判定でき、その自動化も容易に可能である。
【0055】
ドレッサ駆動モータ9の制御電流Iの電流値の変化によるドレス状態の判定の他、ドレッサ駆動モータ9の制御電力の変化、ドレッサ駆動モータ9の負荷電流の電流値の変化、ドレッサ駆動モータ9の負荷電力の電力値の変化を捉えてドレス状態を判定するようにしても良い。
【0056】
実施形態では切り込み手段12及びトラバース手段13によりロータリドレッサ2を移動させるようになっているが、研削砥石車1及び/又はロータリドレッサ2を切り込み方向及びトラバース方向に相対的に移動させるようにしても良い。
【0057】
また実施形態では砥石車駆動モータ4にACサーボモータを使用しているが、他のモータを使用することも可能である。その場合、研削砥石車1の回転速度がドレス抵抗によって若干変化することもあるが、問題はない。他のモータを使用した場合には、砥石車回転制御手段6を省略することも可能である。
【0058】
ロータリドレッサ2の回転速度は、その回転方向がダウンカット方向、アップカット方向の何れの場合にも、砥石車の回転速度と略同等な周速、若干速い周速又は若干遅い周速にすれば良く、ロータリドレッサ2の回転速度を速くすることにより、ダイヤモンド砥粒等の摩耗を少なくできる。
【0059】
【発明の効果】
本発明のドレス方法は、砥石車を研削時と略同等な速度で回転させる工程と、ロータリドレッサを砥石車と略同等な周速、若干速い周速又は若干遅い周速で回転させて、砥石車の全幅を所定回数トラバースする毎に該ロータリドレッサを砥石車に所定量ずつ切り込むドレス工程と、該ドレス工程におけるロータリドレッサの駆動モータの電流値又は電力値の変化により砥石車のドレス状態を判定する判定工程とを含んでいるので、ドレス時間を短縮できると共に、ドレス後の研削時の研削砥石車の安定性を良くでき、しかもドレス状態の良否を正確に判定にできる。
【0060】
またドレス抵抗によるロータリドレッサの回転速度の変化を検出し、ロータリドレッサの回転速度の遅れ又は進みに対して、それを修正するように駆動モータの電流を制御する工程を含んでいるので、ロータリドレッサの回転速度を安定させることができる。
【0061】
更に駆動モータの電流値又は電力値が略一定のときにドレス状態を良好と判定する判定工程を含んでいるので、ドレス状態を正確に判定できる。
【0062】
またロータリドレッサが砥石車の略全表面に接触するときの駆動モータの電流値又は電力値を基準とする閾値と、ドレス工程における駆動モータの電流値又は電力値とを比較して、ドレス工程における駆動モータの電流値又は電力値が閾値以上のときにドレス状態を良好と判定する判定工程を含み、該判定工程で良好と判定したときにドレス工程を終了するので、ドレス状態の良否の判定が確実であり、過不足のないドレスが可能であると共に、ドレスの自動制御も容易に行なうことができる。
【0063】
本発明のドレス装置は、砥石車を研削時と略同等な速度で回転させる砥石車駆動モータと、ロータリドレッサを砥石車と略同等な周速、若干速い周速又は若干遅い周速で回転させるドレッサ駆動モータと、砥石車の全幅を所定回数トラバースする毎に該ロータリドレッサを砥石車に所定量ずつ切り込むように制御するドレス制御手段と、ドレス時におけるドレッサ駆動モータの電流値又は電力値を、ロータリドレッサが砥石車の略全表面に接触するときのドレッサ駆動モータの電流値又は電力値を基準とする閾値と比較して、ドレス時におけるドレッサ駆動モータの電流値又は電力値が閾値以上のときにドレスを終了させるための判定手段とを備えているので、ドレス時間を短縮できると共に、ドレス後の研削時の研削精度が安定し、しかもドレス状態の良否を正確に判定でき、従って無駄なドレッシングがなくなり、砥石車の寿命も延びる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す制御系のブロック図である。
【図2】本発明の一実施形態を示す工程図である。
【図3】本発明の一実施形態を示す研削砥石車及びロータリドレッサの回転方向の説明図である。
【図4】本発明の一実施形態を示すドレス工程、判定工程の説明図である。
【図5】本発明の一実施形態を示す研削砥石車の真円度の説明図である。
【図6】本発明の一実施形態を示すトラバース、切り込みの説明図である。
【符号の説明】
1 研削砥石車
2 ロータリドレッサ
4 砥石車駆動モータ
6 砥石車回転制御手段
9 ドレッサ駆動モータ
11 ドレッサ回転制御手段
14 ドレス制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dressing method and a dressing device for a grinding wheel in a centerless grinding machine for dressing a grinding wheel such as a grinding wheel and an adjusting grinding wheel in a centerless grinding machine.
[0002]
[Prior art]
Conventionally, when dressing (shaping and sharpening) a high-hardness grinding wheel (generally a super-abrasive wheel including a diamond wheel) represented by a CBN wheel in a centerless grinder, a rotary diamond is mainly used as a rotary dresser. A method in which the rotary dresser is cut into the grinding wheel by a predetermined amount each time the entire width of the grinding wheel is traversed once while rotating the rotary dresser in the down-cut direction or the up-cut direction with respect to the grinding wheel. Has been adopted.
[0003]
In this case, since the diameter of the rotary dresser is smaller than the diameter of the grinding wheel, it is necessary to prevent the wear of the diamond abrasive grains of the rotary dresser. And the rotation speed is adjusted to the peripheral speed of the rotary dresser.
[0004]
Also, as a method for determining the quality of a dressing state of a grinding wheel, conventionally, (1) a method of directly measuring a shape of a grinding wheel after dressing, and (2) a method described in Japanese Patent No. 3165488, AE sensor detects vibrations caused by contact between the grinding wheel and the rotary dresser, and determines the in-process by analyzing the data. (3) Measures the shape of the grinding wheel by post-process using ultrasonic waves. There is a determination method and the like.
[0005]
[Problems to be solved by the invention]
When dressing a grinding wheel using a superabrasive grindstone with a rotary dresser such as a rotary diamond, there is a drawback that conventionally a very long dressing time is required. If the dressing of the grinding wheel is performed with the rotation speed during grinding, the diameter of the rotary dresser is smaller than the diameter of the grinding wheel. It is not possible to dress with high precision, for example, the diamond abrasive grains wear during traverse and the straightness of the grinding wheel deteriorates. For this reason, conventionally, deceleration control for adjusting the peripheral speed of the grinding wheel to the peripheral speed of the rotary dresser is performed, and the grinding wheel is dressed in this state. Therefore, when the dress lead (the amount by which the rotary dresser traverses per revolution of the grinding wheel) is fixed, it is necessary to reduce the traverse speed of the rotary dresser, and it takes a long time to dress.
[0006]
In addition, in the conventional dressing method, since the rotation speed of the grinding wheel changes greatly between grinding and dressing, when the grinding wheel returns to the grinding rotation speed after dressing, the phase and amount of imbalance change. , The dynamic runout increases. In particular, in the case of a CBN grinding wheel, the difference is large because the number of rotations used is relatively high.
[0007]
Further, the conventional dress state determination method has the following problem. That is, in the above method (1), although a special device is not required for the determination of the dressing state, it is necessary to stop the grinding wheel and, for example, open the grinding wheel cover for the determination, and then to perform the measurement. If it is not good, the grinding wheel cover will be closed and the grinding wheel will be rotated and dressing will be performed again.Therefore, dressing and measurement must be repeated. You can only judge on a certain line.
[0008]
The above method (2) can reduce the labor and time required for the determination because the automatic determination can be performed in-process, but it requires a separate device, and also has a vibration and Since noise is also picked up, the reliability decreases when other machines are operating in the vicinity. The above method (3) can measure even when the grinding wheel is rotating, but it requires time to incorporate the measurement cycle into the dress cycle, and requires another device such as an ultrasonic device. .
[0009]
The present invention has been made in view of the conventional problems, and provides a dressing method and a dressing apparatus for a centerless grinding machine capable of shortening a dressing time, stabilizing grinding accuracy after dressing, and accurately determining whether a dress state is good. The purpose is to:
[0010]
[Means for Solving the Problems]
The dressing method of the present invention is a step of rotating the grinding wheel at substantially the same speed as during grinding, and rotating the rotary dresser at a peripheral speed substantially equal to the grinding wheel, a slightly faster peripheral speed or a slightly slower peripheral speed, A dressing step of cutting the rotary dresser into the grinding wheel by a predetermined amount each time the entire width of the grinding wheel is traversed a predetermined number of times; and a change in a current value or a power value of a drive motor of the rotary dresser in the dressing step. And a determination step of determining the dress state of
[0011]
The dressing method of the present invention detects a change in the rotation speed of the rotary dresser due to a dress resistance, and controls the current of the drive motor so as to correct the delay or advance of the rotation speed of the rotary dresser. It is desirable to include a step. The dressing method of the present invention preferably includes the determination step of determining that the dress state is good when the current value or the power value of the drive motor is substantially constant.
[0012]
The dressing method of the present invention further includes a threshold based on a current value or a power value of the drive motor when the rotary dresser contacts substantially the entire surface of the grinding wheel, and a current value of the drive motor in the dressing process. Or comparing the power value with the power value, including the determination step of determining the dress state is good when the current value or the power value of the drive motor in the dressing step is equal to or more than a threshold value, when it is determined that the dressing state is good It is desirable to end the dressing step.
[0013]
The dressing device of the present invention is a grinding wheel drive motor that rotates a grinding wheel at a speed substantially equal to that at the time of grinding, and a rotary dresser that rotates at a peripheral speed substantially equal to the grinding wheel, a slightly faster peripheral speed or a slightly slower peripheral speed. A dresser driving motor, dress control means for controlling the rotary dresser to cut into the grinding wheel by a predetermined amount each time the entire width of the grinding wheel is traversed a predetermined number of times, and a current value of the dresser driving motor during dressing or The power value is compared with the current value of the dresser drive motor when the rotary dresser contacts substantially the entire surface of the grinding wheel or the threshold value based on the power value, and the current of the dresser drive motor at the time of dressing is compared. Determining means for ending the dressing when the value or the power value is equal to or more than the threshold value.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram illustrating a dressing apparatus for a centerless grinding machine according to the present invention.
[0015]
As shown in FIG. 1, the dressing apparatus includes a rotary dresser 2 for dressing a grinding wheel 1, a grinding wheel drive motor 4 for driving the grinding wheel 1 to rotate around a spindle 3, and a grinding wheel drive motor 4. A pulse encoder 5 for detecting the rotation speed of the grinding wheel, a grinding wheel rotation control means 6 for controlling the rotation speed of the grinding wheel drive motor 4, and a dresser drive motor for rotating the rotary dresser 2 around a dresser shaft 8 on the dress head 7. 9, a pulse encoder 10 for detecting the rotation speed of the dresser drive motor 9, a dresser rotation control means 11 for controlling the rotation speed of the dresser drive motor 9, and a notch for cutting and driving the rotary dresser 2 toward the grinding wheel 1. Traverse means 13 for traversing the rotary dresser 2 in the width direction of the grinding wheel 1; A dress control unit 14 for controlling the stage 12 and the traverse unit 13 controls the grinding wheel 1 by the rotary dresser 2 dresses, and a judging means 15 judges the quality of dress condition of the grinding wheel 1.
[0016]
The grinding wheel 1 is formed by consolidating abrasive grains with a binder and forming the outer shape into a substantially cylindrical shape. For example, a high-hardness grinding wheel such as a CBN grinding wheel and other super-abrasive grinding wheels are used. . The grinding wheel drive motor 4 is constituted by an AC servomotor with a pulse encoder 5, and drives the grinding wheel 1 at substantially the same rotation speed when grinding and dressing a workpiece. Therefore, the rotation speed of the grinding wheel 1 during dressing is substantially equal to the rotation speed during grinding. Incidentally, when the grinding wheel 1 is a CBN grinding wheel, the maximum peripheral speed used is 3600 m / min. Is common.
[0017]
The pulse encoder 5 constitutes a speed detecting means for detecting a rotation speed of the grinding wheel 1, and outputs a speed signal corresponding to a change in the rotation speed of the grinding wheel drive motor 4 when the rotation speed of the grinding wheel drive motor 4 changes. When the rotation speed of the grinding wheel 1 changes (lags or advances) due to a change in grinding resistance during grinding, a change in dress resistance during dressing, or the like, the grinding wheel rotation control means 6 outputs a speed signal from the pulse encoder 5. Based on this, a control current is added to the grinding wheel drive motor 4 in a direction to correct the delay or advance, and feedback control is performed so that the grinding wheel 1 rotates at a substantially constant speed. The grinding wheel rotation control means 6 controls the rotation speed of the grinding wheel drive motor 4 so that the grinding wheel 1 rotates at substantially the same speed as during grinding even during dressing.
[0018]
The rotary dresser 2 is for dressing the outer peripheral surface of the grinding wheel 1. The dresser 7 is movable on the grinding wheel 1 in the cutting direction and the traverse direction, and is substantially the same as the spindle 3 of the grinding wheel 1. It is mounted via a parallel dresser shaft 8 and rotates the dresser drive motor 9 in a predetermined direction (downcut direction or upcut direction) while rotating the entire width of the outer peripheral surface of the grinding wheel 1 a predetermined number of times (for example, 1). Each time the traverse is performed, the dressing operation of cutting the grinding wheel 1 by a predetermined amount is repeated to dress the outer peripheral surface.
[0019]
In addition, as the rotary dresser 2, for example, a rotary diamond having diamond abrasive grains fixed on the outer periphery is used, but a rotary diamond other than the rotary diamond may be used. The dresser shaft 8 of the rotary dresser 2 does not necessarily have to be parallel to the spindle 3. The dress head 7 is movable in the cutting direction by driving the cutting means 12 and in the traverse direction by driving the traverse means 13.
[0020]
The dresser drive motor 9 is constituted by, for example, an AC servomotor with a pulse encoder 10, and rotates the rotary dresser 2 at a peripheral speed substantially equal to the grinding wheel 1, a slightly faster peripheral speed or a slightly slower peripheral speed, in a downcut direction or an upcut. It is driven to rotate in the direction. The dresser driving motor 9 is provided on the dress head 7 together with the rotary dresser 2. The pulse encoder 10 constitutes a speed detecting means for detecting the rotation speed of the rotary dresser 2, and outputs a speed signal corresponding to the change of the rotation speed of the dresser drive motor 9 when the rotation speed changes.
[0021]
The dresser rotation control means 11 is for controlling the dresser drive motor 9 so as to rotate the rotary dresser 2 at a peripheral speed substantially equal to the grinding wheel 1, at a slightly higher peripheral speed, or at a slightly lower peripheral speed. When there is a rotation command from the means 14, the dresser drive motor 9 is controlled so that the rotary dresser 2 rotates at a predetermined speed, and the rotation speed of the rotary dresser 2 changes (delay or delay) due to a change in dress resistance during dressing. In this case, the control signal I is added to the dresser drive motor 9 in a direction to correct the delay or the advance, based on the speed signal from the pulse encoder 10, and the rotary dresser 2 rotates at a substantially constant speed. Feedback control.
[0022]
The dressing method of the grinding wheel 1 includes a down-cut method of rotating the rotary dresser 2 in the forward direction (the direction of the arrow b) with respect to the grinding wheel 1 rotating in the direction of the arrow a in FIG. There is an up-cut method in which the dresser 2 is rotated in the opposite direction (the direction indicated by the arrow c). At the time of dressing by the down-cut method, the peripheral speed is substantially equal to or slightly lower than that of the grinding wheel 1, and is increased. During dressing by the cutting method, the rotary dresser 2 may be rotated at a peripheral speed substantially equal to or higher than that of the grinding wheel 1. In such a case, the dresser rotation control means 11 controls the dresser drive motor 9 so that the rotary dresser 2 rotates at that speed.
[0023]
The dress control means 14 issues a rotation command to the dresser rotation control means 11 when dressing the grinding wheel 1, and issues a dress command based on a predetermined control program or the like when the rotary dresser 2 reaches a predetermined rotation speed. Then, the cutting means 12 and the traverse means 13 are controlled so that the rotary dresser 2 cuts the grinding wheel 1 by a predetermined amount every time the rotary dresser 2 traverses the entire width of the grinding wheel 1 a predetermined number of times, for example, once. The dressing operation of the grinding wheel 1 is controlled. Further, the dress control means 14 continues the dressing after the start of the dressing while the judging means 15 judges that the dress state of the grinding wheel 1 is defective, and the dressing means 15 judges that the dress state of the grinding wheel 1 is good. Then, the dress is ended after the end of the traverse.
[0024]
The judging means 15 detects a change in the current value of the control current I of the dresser drive motor 9 during the actual dressing time T when the rotary dresser 2 traverses the entire width of the grinding wheel 1, and judges the quality of the dress state based on the change. The dress state is determined to be good when the current value of the control current I of the dresser drive motor 9 during the actual dressing time T during dressing is substantially equal to or greater than the threshold value TH with reference to the threshold value TH.
[0025]
That is, when the rotary dresser 2 traverses the grinding wheel 1 in the width direction as shown in FIGS. 4 (A) and 4 (B), the determination means 15 determines when the contact of the rotary dresser 2 with the grinding wheel 1 starts. During the actual dressing time T from T1 to the contact end time T2, the current value of the control current I of the dresser driving motor 9 is compared with the threshold value TH in real time, and the current value of the control current I during the actual dressing time T is always The dress state is determined to be good when it is substantially constant at or above the threshold value TH, and if the current value of the control current I during the actual dressing time T is temporarily less than the threshold value TH, it is determined that the dress is defective.
[0026]
The contact start time T1 can be detected by the rise of the control current I of the dresser drive motor 9, and the contact end time T2 can be detected by the fall of the control current I. The actual dress time T is from the rise to the fall. The contact start time T1 and the contact end time T2 can be detected by other methods, such as by detecting the position of the rotary dresser 2 in the traverse direction.
[0027]
The threshold value TH is set based on the current value of the control current I of the dresser drive motor 9 when the rotary dresser 2 comes into contact with substantially the entire surface of the grinding wheel 1, taking a predetermined fluctuation range into consideration. Note that the threshold value TH may be set at the lower limit value of the fluctuation range of the control current I, or may be set at both the upper limit value and the lower limit value so that the current value of the control current I is between the upper limit value and the lower limit value. In some cases, the dress state may be determined to be good. The control current I of the dresser drive motor 9 may detect the current actually flowing through the dresser drive motor 9 or may detect the current added to the dresser drive motor 9 from the dresser rotation control means 11.
[0028]
Next, a dressing method using the dressing device having the above configuration will be described. For example, when dressing the grinding wheel 1 with the rotary dresser 2 rotating in the down-cut direction between the end of the previous grinding step S1 and the start of the next grinding step S7, as shown in FIG. The process is performed through steps S2 to S6 such as a vehicle rotation control step S2, a dresser rotation step S3, a dressing step S4, a dresser rotation control step S5, and a determination step S6.
[0029]
That is, when the previous grinding step S1 is completed, a grinding wheel rotation control step S2 for rotating the grinding wheel 1 at a rotational speed substantially equal to that at the time of grinding is executed. In the grinding wheel rotation control step S2, the grinding wheel rotation control means 6 controls the grinding wheel drive motor 4 to rotate the grinding wheel 1 after the grinding at a speed substantially equal to that in the grinding direction in the direction indicated by the arrow a in FIG. Rotate to.
[0030]
Since there is no grinding load due to the workpiece unlike during grinding, if the rotation speed of the grinding wheel 1 increases, the pulse encoder 4 detects the change, and the grinding wheel rotation control means 6 controls the grinding wheel drive motor 4. By reducing the current, the rotation speed of the grinding wheel 1 is controlled to a constant speed substantially equal to that during grinding.
[0031]
The grinding wheel rotation control step S2 continues until the end of the dressing step S4. If the rotation speed of the grinding wheel 1 changes due to a change in dress resistance during the dressing, the pulse encoder 5 detects the change in the rotation speed and the grinding wheel. The wheel rotation control means 6 performs feedback control for adding a control current to the grinding wheel drive motor 4 in a direction to correct the delay or advance of the rotation speed. Therefore, the grinding wheel 1 rotates at a substantially constant speed until the end of the dressing step S4.
[0032]
When the dressing is performed by rotating the stopped grinding wheel 1, as shown by a two-dot chain line in FIG. 1, a rotation command or the like is issued from the dress control unit 14 to the grinding wheel rotation control unit 6. What is necessary is just to rotate the grinding wheel 1 at a peripheral speed substantially equal to that at the time of grinding.
[0033]
Thus, the dressing time can be reduced by performing dressing while rotating the grinding wheel 1 at a speed substantially equal to the rotation speed at the time of grinding. That is, if the dressing of the rotary dresser 2 is made constant when dressing the grinding wheel 1, the traverse speed of the rotary dresser 2 can be increased as the rotation speed of the grinding wheel 1 increases, so that the grinding wheel 1 is rotated at substantially the same speed as during grinding, and dressing the grinding wheel 1 with the rotary dresser 2 in that state allows the dressing time to be reduced despite the fact that the grinding wheel 1 is a super-abrasive wheel. Can be shortened.
[0034]
In addition, since the rotational speeds of the dressing and the grinding are substantially the same, the next grinding step S7 can be executed after the dressing is completed, and in this case, the unbalance phase and the like do not change during the grinding. The object can be ground with high precision. In addition, since the rotational speeds during dressing and during grinding are substantially equal, the amount of heat generated from the spindle bearing that rotatably supports the spindle 3 of the grinding wheel 1 does not fluctuate and is thermally stable.
[0035]
As described above, while the rotation speed of the grinding wheel 1 is kept substantially equal to that at the time of grinding, a rotation command is issued from the dress control means 14 at a predetermined time, and the rotary dresser 2 is rotated at a peripheral speed substantially equal to or slightly lower than that of the grinding wheel 1. A dresser rotation step S3 for rotating the peripheral gear in the downcut direction (the direction indicated by the arrow b in FIG. 3) at the peripheral speed is executed. In the dresser rotation step S3, the dresser rotation control means 11 controls the dresser drive motor 9 in response to a rotation command from the dress control means 14, and the drive of the dresser drive motor 9 causes the rotary dresser 2 to be substantially the same as the grinding wheel 1. Rotate in the downcut direction at the same peripheral speed or slightly lower peripheral speed. Incidentally, the peripheral speed ratio between the rotary dresser 2 and the grinding wheel 1 is suitably in the range of about 0.85 to 1, and the speed is appropriately set according to the diameter, material, etc. of the grinding wheel 1 and the rotary dresser 2. I do.
[0036]
When the grinding wheel 1 rotates at a rotational speed substantially equal to that at the time of grinding, and the rotary dresser 2 rotates at a peripheral speed substantially equal to or slightly lower than that of the grinding wheel 1, the dress control means 14 operates based on a predetermined program. A cutting command is issued and the cutting means 12 and the traversing means 13 are operated, so that the rotary dresser 2 traverses the entire width of the grinding wheel 1 once as shown in FIG. The dressing step S4 is performed to cut the grinding wheel 1 by a predetermined amount, and the shape (runout, roundness, straightness) of the grinding wheel 1 is corrected until the dressing resistance of the rotary dresser 2 becomes substantially uniform.
[0037]
When the rotary dresser 2 traverses the entire width of the grinding wheel 1 with a predetermined cutting amount, if the straightness and roundness of the grinding wheel 1 are poor, the dress resistance of the grinding wheel 1 to the rotary dresser 2 changes. For example, as shown in FIG. 4 (A), when the straightness of the grinding wheel 1 is poor, the contact ratio of the rotary dresser 2 per rotation of the grinding wheel 1 varies depending on the size of the diameter, and a portion having a large diameter. In this case, the dress resistance increases, and in small portions, the resistance decreases. This is the same when the roundness of the grinding wheel 1 is poor due to the presence of the concave portion 1a on the outer peripheral surface as shown in FIG. 5, and the dress resistance is large between the good roundness portion and the bad roundness portion. Change.
[0038]
If the dress resistance changes during the dressing step S4, the rotational speed of the rotary dresser 2 changes (lags or advances), so that the pulse encoder 10 detects the change in speed and the dresser rotation control means 11 causes the rotary dresser 2 to rotate. A dresser rotation control step S5 for controlling the control current I of the dresser drive motor 9 is performed so as to correct the delay or advance of the rotation speed. Therefore, the rotary dresser 2 rotates at a substantially constant speed until the end of the dressing step S4.
[0039]
When the rotary dresser 2 starts dressing the grinding wheel 1, the determination means 15 determines the dress state of the grinding wheel 1 based on a change in the control current I of the dresser drive motor 9 during the actual dressing time T. The determination step S6 is performed. That is, there is a correlation between the dress resistance of the rotary dresser 2 and the control current I of the dresser drive motor 9, and the control current I of the dresser drive motor 9 changes with the change of the dress resistance. By comparing the control current I of the dresser drive motor 9 during the actual dressing time T with the threshold value TH in real time, the quality of the dressing state of the grinding wheel 1 can be accurately and quickly determined.
[0040]
If the determination means 15 determines that the dress state is good, the dress control means 14 issues a dress end command based on the determination result, and moves the rotary dresser 2 through the cutting means 12 and the traverse means 13 to a standby position or the like. At the same time, the rotation of the rotary dresser 2 is stopped via the dresser rotation control means 11, and the dressing step S4 is completed with the end of the traverse. If the determining means 15 determines that the dressing is defective, the dressing step S4 of cutting the rotary dresser 2 into the grinding wheel 1 by a predetermined amount each time the rotary dresser 2 traverses the entire width of the grinding wheel 1 once is continued, The outer peripheral surface of the grinding wheel 1 is sequentially dressed.
[0041]
The determination means 15 stores the change in the current value of the control current I of the dresser drive motor 9 during the actual dressing time T in the storage means, and stores the stored data after the contact of the rotary dresser 2 with the grinding wheel 1 is completed. The quality of the dress state may be determined by comparing with a threshold value. In this case, the quality of the dress situation is determined for each traverse.
[0042]
When the straightness of the grinding wheel 1 is poor, as shown in FIG. 4 (A), the contact ratio of the rotary dresser 2 to the grinding wheel 1 is high and the dress resistance is large in the portion having a large diameter. The control current I of the dresser drive motor 9 at T becomes very large as compared with the case of no load, and becomes small in a portion having a small diameter.
[0043]
However, as a result of the dressing, as shown in FIG. 4B, if the straightness of the grinding wheel 1 is improved, dress resistance is applied to the rotary dresser 2 almost uniformly over the entire width of the grinding wheel 1. The current value of the control current I of the dresser drive motor 9 during the actual dressing time T changes with a small fluctuation width equal to or larger than the threshold value TH.
[0044]
Accordingly, the determination means 15 determines whether or not the current value of the control current I of the dresser drive motor 9 at the actual dressing time T is equal to or greater than the threshold value TH based on the threshold value TH. The state, for example, roundness, runout, and straightness can be automatically grasped in process.
[0045]
Dressing the grinding wheel 1 rotating at a speed substantially equal to the rotation speed at the time of grinding with the rotary dresser 2 rotating in the downcut direction at a peripheral speed substantially equal to or slightly lower than the peripheral speed thereof. Accordingly, the shape (run-out, roundness, straightness) of the grinding wheel 1 can be corrected in a short time by the crushing action of the rotary dresser 2 on the abrasive grains of the grinding wheel 1. In addition, since the rotary dresser 2 rotates at a peripheral speed substantially equal to or slightly lower than the peripheral speed of the grinding wheel 1 rotating at a speed substantially equal to that during grinding, wear of the diamond abrasive grains of the rotary dresser 2 due to slippage. And the grinding wheel 1 can be dressed with high precision.
[0046]
By grasping the change in the current value of the control current I of the dresser drive motor 9 during the actual dressing time T, the dress resistance by the grinding wheel 1 can be grasped in process, and the change in the current value of the control current I is determined by the determination means 15. By determining the dress state by comparing with the threshold value TH in real time, the completion of the dress can be automatically and easily and reliably determined in-process.
[0047]
Moreover, since the quality of the dressing state is determined based on the change in the current value of the control current I of the dresser drive motor 9 during the actual dressing time T, other equipment is not required and the determination is direct and the determination accuracy is high. Also, automation of dress control can be easily promoted. Further, if the dress resistance is uniform, it means that the entire surface of the grinding wheel 1 is in contact with the trajectory of the rotary dresser 2, so that the straightness of the grinding wheel 1 can be determined. Also, while the grinding wheel 1 rotates at a speed substantially equal to that at the time of grinding, the rotary dresser 2 rotates at a circumferential speed substantially equal to or slightly lower than that of the grinding wheel 1, so that the dress lead is rotated. It becomes sufficiently smaller than the dresser width of the dresser 2, and the runout and roundness of the grinding wheel 1 can also be determined.
[0048]
Further, by detecting a change in the control current I of the dresser drive motor 9 during the actual dressing time T, the contact of the rotary dresser 2 with the grinding wheel 1 can be detected, and the bearing side of the rotary dresser 2 can be detected. It is also possible to diagnose abnormalities.
[0049]
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the embodiments, and various changes can be made without departing from the gist. For example, in the embodiment, the dressing by the down-cut method is described in detail. However, the present invention can be similarly performed when the grinding wheel 1 is dressed by the up-cut method. In the case of the down-cut method, in order to reduce the wear of the diamond abrasive grains, the rotary dresser 2 may be rotated at a peripheral speed equal to or slightly higher than the rotational speed of the grinding wheel 1. desirable.
[0050]
Further, in the embodiment, the quality of the dressing state of the grinding wheel 1 is automatically determined by the determination means 15, but the current waveform of the control current I of the dresser drive motor 9 during the actual dressing time T is determined in real time. A monitor to be displayed is provided at a predetermined position on the operation panel or the like. An operator looks at the current waveform of the control current I displayed on the monitor, and if the current waveform becomes substantially constant over the entire width of the grinding wheel 1, the dressing state is established. May be determined to be good, and the dressing process may be manually terminated. Also in this case, if the reference such as the threshold value TH is displayed on the monitor, it is possible to easily determine the quality of the dress state without requiring skill.
[0051]
Further, in the embodiment, an AC servomotor is used as the dresser drive motor 9, but another drive motor may be used as long as the rotation speed can be controlled by the control current I. The driving method of the rotary dresser 2 may be belt driving, high frequency spindle driving, or other coupling driving.
[0052]
When an AC servomotor is used for the drive motors 4, 9, the pulse encoders 5, 10 may be provided in the AC servomotor itself or may be provided outside. Further, the rotation control means 6, 11 for feedback controlling the AC servomotor may be provided on a control board of the AC servomotor itself.
[0053]
Further, the embodiment exemplifies a case in which the grinding wheel 1 using a super-abrasive grindstone typified by a CBN grindstone is to be dressed, but the grinding wheel 1 may be something other than a super-abrasive grindstone, The same applies to the case where the adjustment grinding wheel is to be dressed. Therefore, if the grinding wheel is a centerless grinding machine, the grinding wheel 1 and / or the adjusting grinding wheel can be dressed.
[0054]
At the time of dressing of the adjusting wheel, for example, mark the outer circumference at two or more places in the width direction such as both ends and the center with magic ink or other markers in advance, and if this disappears in the entire area, judge that it has touched the entire surface In this case as well, in this case, the dressing completion point can be determined by using the dress resistance as torque in the in-process, and the automation can be easily performed.
[0055]
In addition to the determination of the dress state based on the change in the current value of the control current I of the dresser drive motor 9, the change in the control power of the dresser drive motor 9, the change in the load current of the dresser drive motor 9, the load of the dresser drive motor 9 The dress state may be determined based on a change in the power value of the power.
[0056]
In the embodiment, the rotary dresser 2 is moved by the cutting means 12 and the traverse means 13, but the grinding wheel 1 and / or the rotary dresser 2 may be relatively moved in the cutting direction and the traverse direction. good.
[0057]
In the embodiment, the AC servo motor is used as the grinding wheel drive motor 4, but another motor can be used. In this case, the rotation speed of the grinding wheel 1 may slightly change due to the dress resistance, but there is no problem. When another motor is used, the grinding wheel rotation control means 6 can be omitted.
[0058]
The rotational speed of the rotary dresser 2 is set to a peripheral speed substantially equal to the rotational speed of the grinding wheel, a slightly higher peripheral speed, or a slightly lower peripheral speed, regardless of whether the rotational direction is the down-cut direction or the up-cut direction. By increasing the rotation speed of the rotary dresser 2, it is possible to reduce wear of diamond abrasive grains and the like.
[0059]
【The invention's effect】
The dressing method of the present invention includes a step of rotating the grinding wheel at a speed substantially equal to that at the time of grinding, and a method of rotating the rotary dresser at a peripheral speed substantially equal to that of the grinding wheel, a slightly faster peripheral speed or a slightly slower peripheral speed. A dressing step of cutting the rotary dresser into the grinding wheel by a predetermined amount each time the entire width of the car is traversed a predetermined number of times; and determining a dressing state of the grinding wheel based on a change in a current value or an electric power value of a drive motor of the rotary dresser in the dressing step. Since the determination step is performed, the dressing time can be reduced, the stability of the grinding wheel at the time of grinding after dressing can be improved, and the quality of the dressing state can be accurately determined.
[0060]
Further, the method includes a step of detecting a change in the rotation speed of the rotary dresser due to the dress resistance and controlling the current of the drive motor so as to correct the delay or advance of the rotation speed of the rotary dresser. Can stabilize the rotation speed.
[0061]
Further, since the method includes a determination step of determining that the dress state is good when the current value or the power value of the drive motor is substantially constant, the dress state can be accurately determined.
[0062]
Further, a threshold value based on the current value or power value of the drive motor when the rotary dresser contacts substantially the entire surface of the grinding wheel is compared with the current value or power value of the drive motor in the dressing process. The method includes a determination step of determining that the dress state is good when the current value or the power value of the drive motor is equal to or more than a threshold value, and terminates the dress step when it is determined that the dress state is good. The dress can be surely formed without any excess or shortage, and the dress can be automatically controlled easily.
[0063]
The dressing device of the present invention is a grinding wheel drive motor for rotating the grinding wheel at a speed substantially equal to that at the time of grinding, and a rotary dresser is rotated at a circumferential speed substantially equal to the grinding wheel, a slightly faster circumferential speed or a slightly slower circumferential speed. Dresser drive motor, dress control means for controlling the rotary dresser to cut into the grinding wheel by a predetermined amount each time the entire width of the grinding wheel is traversed a predetermined number of times, the current value or power value of the dresser drive motor at the time of dressing, When the current value or the power value of the dresser drive motor at the time of dressing is greater than or equal to the threshold value when compared with the threshold value based on the current value or the power value of the dresser drive motor when the rotary dresser contacts substantially the entire surface of the grinding wheel. Since it is provided with a determination means for ending the dressing, the dressing time can be reduced, and the grinding accuracy at the time of grinding after dressing is stable, and Can determine the quality of less state accurately, thus eliminating the useless dressing, also extend grinding wheel life.
[Brief description of the drawings]
FIG. 1 is a block diagram of a control system showing an embodiment of the present invention.
FIG. 2 is a process chart showing one embodiment of the present invention.
FIG. 3 is an explanatory view of a grinding wheel and a rotation direction of a rotary dresser according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of a dressing process and a determination process according to the embodiment of the present invention.
FIG. 5 is an explanatory diagram of the roundness of a grinding wheel showing one embodiment of the present invention.
FIG. 6 is an explanatory diagram of a traverse and a cut showing one embodiment of the present invention.
[Explanation of symbols]
1 grinding wheel
2 Rotary dresser
4 Wheel drive motor
6 Wheel wheel rotation control means
9 Dresser drive motor
11 Dresser rotation control means
14 Dress control means

Claims (5)

砥石車を研削時と略同等な速度で回転させる工程と、ロータリドレッサを前記砥石車と略同等な周速、若干速い周速又は若干遅い周速で回転させて、前記砥石車の全幅を所定回数トラバースする毎に該ロータリドレッサを前記砥石車に所定量ずつ切り込むドレス工程と、該ドレス工程における前記ロータリドレッサの駆動モータの電流値又は電力値の変化により前記砥石車のドレス状態を判定する判定工程とを含むことを特徴とするセンタレス研削盤における砥石車のドレス方法。Rotating the grinding wheel at a speed substantially equal to that at the time of grinding; rotating the rotary dresser at a peripheral speed substantially equal to the grinding wheel, at a slightly higher peripheral speed or at a slightly lower peripheral speed to set the entire width of the grinding wheel to a predetermined value. A dressing step of cutting the rotary dresser into the grinding wheel by a predetermined amount each time the traverse is performed, and a determination of determining a dressing state of the grinding wheel based on a change in a current value or a power value of a drive motor of the rotary dresser in the dressing step. And a dressing method for a grinding wheel in a centerless grinding machine. ドレス抵抗による前記ロータリドレッサの回転速度の変化を検出し、前記ロータリドレッサの回転速度の遅れ又は進みに対して、それを修正するように前記駆動モータの電流を制御する工程を含むことを特徴とする請求項1に記載のセンタレス研削盤における砥石車のドレス方法。Detecting a change in the rotational speed of the rotary dresser due to a dress resistance, and controlling a current of the drive motor so as to correct the delay or advance of the rotational speed of the rotary dresser. The method for dressing a grinding wheel in a centerless grinding machine according to claim 1. 前記駆動モータの電流値又は電力値が略一定のときにドレス状態を良好と判定する前記判定工程を含むことを特徴とする請求項1又は2に記載のセンタレス研削盤における砥石車のドレス方法。The dressing method for a grinding wheel in a centerless grinding machine according to claim 1 or 2, further comprising the determining step of determining that the dress state is good when the current value or the power value of the drive motor is substantially constant. 前記ロータリドレッサが前記砥石車の略全表面に接触するときの前記駆動モータの電流値又は電力値を基準とする閾値と、前記ドレス工程における前記駆動モータの電流値又は電力値とを比較して、前記ドレス工程における前記駆動モータの電流値又は電力値が閾値以上のときにドレス状態を良好と判定する前記判定工程を含み、該判定工程で良好と判定したときに前記ドレス工程を終了することを特徴とする請求項1〜3の何れかに記載のセンタレス研削盤における砥石車のドレス方法。A threshold based on the current value or power value of the drive motor when the rotary dresser contacts substantially the entire surface of the grinding wheel, and comparing the current value or power value of the drive motor in the dressing process. And determining the dressing state is good when the current value or the power value of the drive motor in the dressing step is equal to or more than a threshold value, and terminating the dressing step when it is determined that the dressing state is good. A dressing method for a grinding wheel in a centerless grinding machine according to any one of claims 1 to 3, wherein 砥石車を研削時と略同等な速度で回転させる砥石車駆動モータと、ロータリドレッサを前記砥石車と略同等な周速、若干速い周速又は若干遅い周速で回転させるドレッサ駆動モータと、前記砥石車の全幅を所定回数トラバースする毎に該ロータリドレッサを前記砥石車に所定量ずつ切り込むように制御するドレス制御手段と、ドレス時における前記ドレッサ駆動モータの電流値又は電力値を、前記ロータリドレッサが前記砥石車の略全表面に接触するときの前記ドレッサ駆動モータの電流値又は電力値を基準とする前記閾値と比較して、ドレス時における前記ドレッサ駆動モータの電流値又は電力値が閾値以上のときにドレスを終了させるための判定手段とを備えたことを特徴とするセンタレス研削盤における砥石車のドレス装置。A grinding wheel drive motor for rotating the grinding wheel at substantially the same speed as when grinding, a dresser drive motor for rotating the rotary dresser at a peripheral speed substantially equivalent to the grinding wheel, a slightly faster peripheral speed or a slightly slower peripheral speed, Dress control means for controlling the rotary dresser to cut into the grinding wheel by a predetermined amount each time the entire width of the grinding wheel is traversed a predetermined number of times; and a current value or power value of the dresser drive motor during dressing, the rotary dresser Compared with the threshold value based on the current value or power value of the dresser drive motor when contacting substantially the entire surface of the grinding wheel, the current value or power value of the dresser drive motor during dressing is greater than or equal to the threshold value A dressing device for a grinding wheel in a centerless grinding machine, comprising: a determination means for ending the dressing at the time of (1).
JP2002248694A 2002-08-28 2002-08-28 Dressing method and dressing device for grinding wheel in centerless grinding machine Expired - Fee Related JP4098035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248694A JP4098035B2 (en) 2002-08-28 2002-08-28 Dressing method and dressing device for grinding wheel in centerless grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248694A JP4098035B2 (en) 2002-08-28 2002-08-28 Dressing method and dressing device for grinding wheel in centerless grinding machine

Publications (2)

Publication Number Publication Date
JP2004082300A true JP2004082300A (en) 2004-03-18
JP4098035B2 JP4098035B2 (en) 2008-06-11

Family

ID=32056010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248694A Expired - Fee Related JP4098035B2 (en) 2002-08-28 2002-08-28 Dressing method and dressing device for grinding wheel in centerless grinding machine

Country Status (1)

Country Link
JP (1) JP4098035B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255504A (en) * 2003-02-25 2004-09-16 Koyo Seiko Co Ltd Grinder and its control method
JP2007237379A (en) * 2006-03-13 2007-09-20 Seiko Epson Corp Truing grindstone, truing apparatus and truing method provided with the same, and groove processing apparatus
JP2008062366A (en) * 2006-09-11 2008-03-21 Koyo Mach Ind Co Ltd Dressing method of superabrasive wheel in centerless grinding machine
JP2011177850A (en) * 2010-03-03 2011-09-15 Mitsubishi Heavy Ind Ltd Truing method for grind stone for grinding gear and gear grinding machine
KR101304268B1 (en) * 2004-10-29 2013-09-05 고요 기카이 고교 가부시키가이샤 Centerless grinding machine
US20210069861A1 (en) * 2019-09-09 2021-03-11 Kioxia Corporation Grinding apparatus and grinding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255504A (en) * 2003-02-25 2004-09-16 Koyo Seiko Co Ltd Grinder and its control method
KR101304268B1 (en) * 2004-10-29 2013-09-05 고요 기카이 고교 가부시키가이샤 Centerless grinding machine
JP2007237379A (en) * 2006-03-13 2007-09-20 Seiko Epson Corp Truing grindstone, truing apparatus and truing method provided with the same, and groove processing apparatus
JP2008062366A (en) * 2006-09-11 2008-03-21 Koyo Mach Ind Co Ltd Dressing method of superabrasive wheel in centerless grinding machine
JP2011177850A (en) * 2010-03-03 2011-09-15 Mitsubishi Heavy Ind Ltd Truing method for grind stone for grinding gear and gear grinding machine
US20210069861A1 (en) * 2019-09-09 2021-03-11 Kioxia Corporation Grinding apparatus and grinding method
TWI729712B (en) * 2019-09-09 2021-06-01 日商鎧俠股份有限公司 Grinding device and grinding method

Also Published As

Publication number Publication date
JP4098035B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP2750499B2 (en) Method for confirming dressing of superabrasive grindstone in NC grinder
US4053289A (en) Grinding method and apparatus with metal removal rate control
JPS62173170A (en) Grinding wheel trueing device
JP4098035B2 (en) Dressing method and dressing device for grinding wheel in centerless grinding machine
JP2008093788A (en) Grinder
JP4148166B2 (en) Contact detection device
JP3305732B2 (en) Control method of surface grinder
JP2003291064A (en) Grinding method and process
JP4345322B2 (en) Grinding apparatus and control method thereof
JP3783998B2 (en) Radius measurement type sizing control method and radius measurement type sizing device
JP2786842B2 (en) Whetstone repair time determination method and device, whetstone repair result determination method and device, whetstone automatic repair device
JP2005059141A (en) Grinding method and controller of grinder
JP4715363B2 (en) Processed part abnormality determination method and apparatus for workpiece
JP3781415B2 (en) Grinding equipment
JP2001277082A (en) Centerless grinding method and grinding device
JP3812869B2 (en) Cylindrical grinding method and apparatus
JPH07214466A (en) Grinding device
JP2010274406A (en) Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine
JP2792401B2 (en) Control device for multi-axis grinding machine
JP4313904B2 (en) Dressing method
JPH04125565U (en) truing equipment
JP3169228B2 (en) Dressing method
JP2000094322A (en) Precision grinding machine and grinding wheel radius measuring method
JPS62107966A (en) Grinding device
JPS6227948B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Ref document number: 4098035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees