[go: up one dir, main page]

JP2004079277A - Electric connector - Google Patents

Electric connector Download PDF

Info

Publication number
JP2004079277A
JP2004079277A JP2002235794A JP2002235794A JP2004079277A JP 2004079277 A JP2004079277 A JP 2004079277A JP 2002235794 A JP2002235794 A JP 2002235794A JP 2002235794 A JP2002235794 A JP 2002235794A JP 2004079277 A JP2004079277 A JP 2004079277A
Authority
JP
Japan
Prior art keywords
conductive contact
contact element
insulating substrate
conductive
semiconductor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002235794A
Other languages
Japanese (ja)
Inventor
Takeshi Imai
今井 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2002235794A priority Critical patent/JP2004079277A/en
Publication of JP2004079277A publication Critical patent/JP2004079277A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric connector capable of stabilizing the initial connection by enlarging a contact area between an electric jointing substance and a conductive contact element and suppressing a resistance value, further, capable of stabilizing the load required at the time of connection. <P>SOLUTION: The connector comprises an insulating substrate 20 interposed between a circuit board 1 and a semiconductor package 10, and a plurality of conductive contact elements 22 penetrated and supported by being arranged in a row in the XY direction of the insulating substrate 20, conduction capably and elastically contacting with the circuit board 1, and the electrodes 2, 11 of the semiconductor package 10. Then, each conductive contact element 22 is formed so as to have an octagonal cross section by using an elastic conductive elastomer 30, and the end part periphery 23 at the top and bottom of each conductive contact element 22 is made angular and sharp-edged respectively. Since the end part periphery 23 of the conductive contact element 22 is made angular, the electrode contacting section is enlarged, thereby, the contact area between the semiconductor package 10 and the conductive contact element 22 does not become small. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板や半導体パッケージ等からなる各種の電気電子部品を電気的に接続する電気コネクタに関するものである。
【0002】
【従来の技術】
従来の電気コネクタは、例えばUS6,348,659B1に開示されているように、回路基板と半導体パッケージとの間に介在する絶縁基板20と、この絶縁基板20に並べて貫通支持され、回路基板と半導体パッケージの電極に接触する複数の導電接点素子22とから構成されている。各導電接点素子22は、上記公報や図15に示すように、導電ゴムを用いて円錐台形、樽形、円柱形、断面略八角形等に成形され、上端部の周縁や上下両端部の周縁が削がれて面取りされている。
【0003】
【発明が解決しようとする課題】
従来の電気コネクタは、以上のように構成され、導電接点素子22の上端部周縁や上下両端部の周縁が丸く面取りされているので、半導体パッケージと導電接点素子22の接触面積が小さくなる。この結果、初期接続の不安定化を招いたり、抵抗値が高くなるという問題を生じる。このような問題を解消するには、導電接点素子22を圧縮して接触面積を拡大すれば良いが、そうすると、接続時に大きな荷重が必要になるという問題が新たに発生することとなる。
【0004】
本発明は、上記に鑑みなされたもので、電気接合物と導電接点素子との接触面積を拡大して初期接続を安定させたり、抵抗値を抑制することができ、しかも、接続時に必要な荷重を抑制することのできる電気コネクタを提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明においては、上記課題を達成するため、複数の電気接合物間を電気的に接続するものであって、
電気接合物の電極に接触する導電接点素子を備え、この導電接点素子を導電性エラストマーを用いて形成するとともに、導電接点素子の端部周縁を略角張らせてシャープエッジとしたことを特徴としている。
【0006】
なお、複数の電気接合物間に、導電接点素子を貫通支持する絶縁基板を介在し、導電接点素子を、絶縁基板からそれぞれ露出する一対の錐台と、この一対の錐台間を接続して絶縁基板を貫通する貫通接続部とから一体形成し、一対の錐台間の長さを0.5〜2.2mmとし、各錐台の拡幅部の幅を0.3〜0.8mmとするとともに、各錐台の縮幅部の幅を0.2〜0.6mmとし、貫通接続部の幅を0.2〜0.6mmとすることができる。
【0007】
ここで特許請求の範囲における電気接合物には、少なくとも各種の回路基板(例えば、プリント配線板、フレキシブル基板、検査基板等)、半導体パッケージ(例えば、BGAやLGA等)、電気音響部品、電子部品等が含まれる。導電接点素子は、電気接合物の数に応じて単数複数いずれでも良い。この導電接点素子は、円錐台形、角錐台形、多角形の錐台形、樽形、円柱形、断面略六角形、断面略八角形、断面略小判形等に適宜形成される。導電接点素子の端部周縁は、一端部の周縁でも良いし、両端部の周縁でも良い。また、シャープエッジとは、電気接合物の電極に接触する導電接点素子の端部周縁が角張ること、あるいは導電接点素子の端部周縁における角のRが0.05mm以下であることをいう。絶縁基板は、可撓性の有無を特に問うものではない。
【0008】
本発明によれば、複数の電気接合物の間に電気コネクタを介在してその導電接点素子を電気接合物の電極に導通(電流を導き通す)可能に接触させ、導電接点素子を圧縮させれば、複数の電気接合物を電気コネクタを介して電気的に接続することができる。導電接点素子の端部の周縁が削がれず、おおよそ角張っているといえるので、電極接触部分が拡大する。
【0009】
また、本発明によれば、絶縁基板に単数複数の導電接点素子を支持させるので、導電接点素子の姿勢の安定や位置決めの容易化等を図ることができる。また、導電接点素子を構成する一対の錐台間の長さが0.5〜2.2mmの範囲なので、少なくとも低抵抗を得ることができる。また、錐台の拡幅部の幅が0.3〜0.8mmの範囲なので、少なくとも狭ピッチを得ることができる。さらに、縮幅部の幅が0.2〜0.6mmの範囲であるから、最低限抵抗を低く安定させることが可能になる。さらにまた、貫通接続部25の幅が0.2〜0.6mmの範囲であるから、低抵抗化が期待できる。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明すると、本実施形態における電気コネクタは、図1や図2に示すように、回路基板1と半導体パッケージ10との間に介在する絶縁基板20と、この絶縁基板20に並べて貫通支持され、回路基板1と半導体パッケージ10の電極2・11に導通可能に弾接する複数の導電接点素子22とを備え、各導電接点素子22を導電性エラストマー30製とするとともに、各導電接点素子22の上下の端部周縁23をそれぞれ角張らせて丸みを有しないシャープエッジとするようにしている。
【0011】
回路基板1は、例えば積層板からなる絶縁基板を備え、この絶縁基板の内外に、導電性を有する複数の配線パターンや電極2が適宜形成される。また、半導体パッケージ10は、図1に示すように、例えば下面に複数の電極11が格子形に配列された表面実装用エリアアレイ型のLGAが使用される。
【0012】
絶縁基板20は、所定の材料を使用して可撓性の平面矩形に形成され、XYの厚さ方向に複数の貫通孔21が所定の間隔で規則的に配列穿孔される。この絶縁基板20の材料としては、ポリイミド、ガラスエポキシ、PET、PEN、PEI、PPS、PEEK、液晶ポリマー等があげられる。これらの中でも、熱膨張係数が小さく、耐熱性に優れるポリイミドが最適である。
【0013】
各導電接点素子22は、図2に示すように、導電性エラストマー30を使用して断面略八角形の縦長に形成され、上下の端部周縁23の丸みが除去されており、絶縁基板20の貫通孔21に一体的に設けられる。導電性エラストマー30は、所定の絶縁性エラストマーに導電粒子が配合された導電性組成物からなる。絶縁性エラストマーとしては、硬化前に流動性を有し、硬化により架橋構造を有する各種のエラストマー(常温付近でゴム状弾性を有するものの総称)が使用される。
【0014】
具体的には、シリコーンゴム、フッ素ゴム、ポリウレタンゴム、ポリブタジエンゴム、ポリイソプロピレンゴム、クロロプレンゴム、ポリエステル系ゴム、スチレン・ブタジエン共重合体ゴム、天然ゴム等があげられる。また、これらの独立・連泡の発泡体等も該当する。これらの中でも、電気絶縁性、耐熱性、圧縮永久歪み、加工性等に優れるシリコーンゴムが最適である。
【0015】
導電粒子としては、粒状あるいはフレーク状のタイプがあげられる。具体的には、金、銀、銅、プラチナ、パラジウム、ニッケル、アルミニウム等の金属単体、あるいはこれらの合金からなる粒子の他、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂等の熱可塑性樹脂や熱硬化性樹脂、これらの焼成品、カーボン、セラミックス、シリカ等の無機材料を核として表面が上記金属によりメッキ、蒸着、スパッタ等の方法で被覆された粒子があげられる。特に、抵抗やコストの観点から、粒状の銀粒子を、絶縁性エラストマー材料100質量部に対して400〜600質量部の範囲で配合するのが好ましい。
【0016】
各導電接点素子22は、絶縁基板20の表裏両面からそれぞれ突出する一対の円錐台24と、この一対の円錐台24間を接続して絶縁基板20の貫通孔21を貫通する円柱形の貫通接続部25とから一体形成される。上下一対の円錐台24間の長さである高さ24Hは、0.5〜2.2mmの範囲、より好ましくは0.8〜1.2mmの範囲が良い。これは、かかる範囲から逸脱すると、低抵抗を得ることができなくなるおそれがあり、又圧縮許容範囲を考慮したものである。
【0017】
各円錐台24は、その拡径部の径24A(幅)が0.3〜0.8mmの範囲、より好ましくは0.7mmが最適であり、平坦な縮径部の径24M(幅)が0.2〜0.6mmの範囲、好ましくは0.5mmが良い。拡径部の径24Aが0.3〜0.8mmの範囲なのは、この範囲から外れると、狭ピッチを得られなくなるからであり、又絶縁基板20や導電接点素子22の接合強度を考慮したものである。また、縮径部の径24Mが0.2〜0.6mmの範囲なのは、この範囲ならば、抵抗を低く安定させ、狭ピッチを確保することができるという理由に基づく。さらに、貫通孔21の径、換言すれば、貫通接続部25の径(幅)は、0.2〜0.6mm、より好ましくは0.5mmが良い。これは、低抵抗化や絶縁基板20と導電接点素子22の接合強度を考慮したものである。
【0018】
このような電気コネクタを製造する場合には、先ず、絶縁基板20に複数の貫通孔21を穿孔し、この絶縁基板20上に導電性シリコーンゴムからなる導電エラストマー30を重ねて金型40にセットする(図3参照)。こうして準備が完了したら、金型40を型締めして加圧加熱成形(図4参照)し、絶縁基板20と導電接点素子22とが一体化した電気コネクタを製造し、その後、金型40を型開きすれば、電気コネクタを取り出して使用することができる(図5参照)。
【0019】
上記構成において、回路基板1と半導体パッケージ10との間に電気コネクタを介在してその複数の導電接点素子22における上下両端部を回路基板1と半導体パッケージ10の電極2・11にそれぞれ導通可能に弾接し、半導体パッケージ10を圧下押圧して複数の導電接点素子22を圧縮させれば、回路基板1と半導体パッケージ10とを電気コネクタを介して電気的に導通接続することができる(図1参照)。
【0020】
上記構成によれば、導電接点素子22の上下両端部の周縁が図2のように角張っているので、導電接点素子22の端面面積の拡大に伴い電極接触部分が拡大し、半導体パッケージ10と導電接点素子22の接触面積が小さくなることがない。したがって、初期接続を安定させ、抵抗値の上昇を抑制することができる。また、導電接点素子22を圧縮して接触面積を拡大する必要がないから、接続時に大きな荷重が必要になることがない。
【0021】
次に、図6は本発明の第2の実施形態を示すもので、この場合には、各導電接点素子22の上下両端部に、円柱形のストレート部26をそれぞれ一体成形するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、拡大した電極接触部分を維持しつつ導電接点素子22を高くすることができるのは明らかである。
【0022】
次に、図7は本発明の第3の実施形態を示すもので、この場合には、各導電接点素子22をストレートで拡径の円柱形に成形するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の多様化を図ることができるのは明らかである。
【0023】
次に、図8は本発明の第4の実施形態を示すもので、この場合には、各導電接点素子22をストレートで縮径の円柱形に成形するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の多様化を図ることができるのは明白である。
【0024】
次に、図9は本発明の第5の実施形態を示すもので、この場合には、各導電接点素子22を、絶縁基板20の表裏両面からそれぞれ突出する一対の短い円錐台24と、この一対の円錐台24間を接続して絶縁基板20の貫通孔21を貫通する円柱形の太く長い貫通接続部25とから一体形成し、各円錐台24の拡径部と露出した貫通接続部25とを同径にするようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の複雑化を図ることができるのは明白である。
【0025】
次に、図10は本発明の第6の実施形態を示すもので、この場合には、円錐台24の周面を一部凹ませて湾曲させるようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の複雑化を図ることができる。
【0026】
【実施例】
導電接点素子の上下の端部周縁をそれぞれ角張らせてシャープエッジにした実施例の電気コネクタ、導電接点素子の上下の端部周縁をそれぞれ丸めた比較例1、2の電気コネクタを用意し、これらを用いて回路基板と半導体パッケージとを電気的に導通接続してその荷重と抵抗について検討した。
【0027】
実施例
電気コネクタを図11に示すように、厚さ0.1mmのポリイミドからなる絶縁基板と、この絶縁基板に並べて貫通支持される複数の導電接点素子とから構成し、各導電接点素子の導電性エラストマーをシリコーンゴムに粒状の銀粒子を配合することにより形成し、各導電接点素子の上下の端部周縁における角のRを0.01mmにしてシャープエッジとした(図11、図14ではシャープエッジ品という)。各導電接点素子を形成する一対の円錐台間の高さは1.0mmとした。また、各円錐台の拡径部の径を0.7mmとし、縮径部の径を0.5mmとした。さらに、貫通孔の径は0.5mmとした。
【0028】
比較例1
電気コネクタを図12に示すように、基本的には実施例と同様に構成し、各導電接点素子の上下の端部周縁における角のRを0.12mmにして丸みを形成した(図12、図14ではR0.12品という)。
比較例2
電気コネクタを図13に示すように、基本的には実施例と同様に構成し、各導電接点素子の上下両端部のRを0.35mmにして丸みを形成した(図13、図14ではR0.35品という)。
【0029】
実施例、比較例1、2の電気コネクタを用いて回路基板と半導体パッケージとを電気的に導通接続し、荷重と抵抗について測定したところ、図14に示す結果を得た。この結果から、実施例の電気コネクタは、比較例1、2の電気コネクタに比べ、小さい荷重で抵抗が安定するのを確認することができた。
【0030】
【発明の効果】
以上のように本発明によれば、電気接合物と導電接点素子との接触面積を拡大して初期接続を安定させたり、抵抗値を抑制することができるという効果がある。また、接続時に必要な荷重を抑制することができる。
【図面の簡単な説明】
【図1】本発明に係る電気コネクタの実施形態を示す全体説明図である。
【図2】本発明に係る電気コネクタの実施形態における導電接点素子を示す模式説明図である。
【図3】本発明に係る電気コネクタの実施形態における絶縁基板に導電性シリコーンゴムを重ねて金型にセットした状態を示す模式説明図である。
【図4】図3の金型を型締めして加圧加熱成形した状態を示す模式説明図である。
【図5】絶縁基板と導電接点素子とが一体化した電気コネクタを金型から取り出す状態を示す模式説明図である。
【図6】本発明に係る電気コネクタの第2の実施形態における導電接点素子を示す模式説明図である。
【図7】本発明に係る電気コネクタの第3の実施形態における導電接点素子を示す模式説明図である。
【図8】本発明に係る電気コネクタの第4の実施形態における導電接点素子を示す模式説明図である。
【図9】本発明に係る電気コネクタの第5の実施形態における導電接点素子を示す模式説明図である。
【図10】本発明に係る電気コネクタの第6の実施形態における導電接点素子を示す模式説明図である。
【図11】本発明に係る電気コネクタの実施例を示す模式説明図である。
【図12】本発明に係る電気コネクタの比較例1を示す模式説明図である。
【図13】本発明に係る電気コネクタの比較例2を示す模式説明図である。
【図14】実施例、比較例1、2の電気コネクタを用いて荷重と抵抗について測定した結果を示すグラフである。
【図15】従来における電気コネクタの導電接点素子を示す説明図である。
【符号の説明】
1     回路基板(電気接合物)
2     電極
10    半導体パッケージ(電気接合物)
11    電極
20    絶縁基板
22    導電接点素子
23    端部周縁
24    円錐台(錐台)
24A   円錐台の拡径部の径(錐台の拡幅部の幅)
24H   一対の円錐台間の高さ(一対の錐台間の長さ)
24M   円錐台の縮径部の径(錐台の縮幅部の幅)
25    貫通接続部
30    導電性エラストマー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrical connector for electrically connecting various electrical and electronic components such as a circuit board and a semiconductor package.
[0002]
[Prior art]
As disclosed in, for example, US Pat. No. 6,348,659B1, a conventional electrical connector includes an insulating substrate 20 interposed between a circuit board and a semiconductor package, and a penetratingly supported side by side with the insulating substrate 20, and a circuit board and a semiconductor. And a plurality of conductive contact elements 22 that contact the electrodes of the package. As shown in the above-mentioned publication and FIG. 15, each conductive contact element 22 is formed into a truncated conical shape, barrel shape, cylindrical shape, substantially octagonal cross section, or the like using conductive rubber, and has a peripheral edge at an upper end portion and a peripheral edge at both upper and lower ends. Is chamfered.
[0003]
[Problems to be solved by the invention]
The conventional electrical connector is configured as described above, and since the upper edge and the upper and lower edges of the conductive contact element 22 are rounded and chamfered, the contact area between the semiconductor package and the conductive contact element 22 is reduced. As a result, there arises a problem that the initial connection becomes unstable and the resistance value becomes high. In order to solve such a problem, it is sufficient to compress the conductive contact element 22 to increase the contact area. However, this causes a new problem that a large load is required at the time of connection.
[0004]
The present invention has been made in view of the above, and can increase the contact area between an electric joint and a conductive contact element to stabilize an initial connection or suppress a resistance value. It is an object of the present invention to provide an electrical connector capable of suppressing the occurrence of an electric signal.
[0005]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, electrically connecting a plurality of electrical joints,
It has a conductive contact element that contacts the electrode of the electrical joint, and this conductive contact element is formed using a conductive elastomer, and the peripheral edge of the conductive contact element is substantially squared to have a sharp edge. I have.
[0006]
Note that, between the plurality of electrical joints, an insulating substrate that penetrates and supports the conductive contact element is interposed, and the conductive contact element is connected between the pair of frustums respectively exposed from the insulating substrate and the pair of frustums. Integrally formed with a through connection portion penetrating the insulating substrate, the length between the pair of frustums is 0.5 to 2.2 mm, and the width of the widened portion of each frustum is 0.3 to 0.8 mm. At the same time, the width of the reduced width portion of each frustum can be set to 0.2 to 0.6 mm, and the width of the through connection portion can be set to 0.2 to 0.6 mm.
[0007]
Here, the electrical joint in the claims includes at least various types of circuit boards (eg, printed wiring boards, flexible boards, inspection boards, etc.), semiconductor packages (eg, BGA, LGA, etc.), electroacoustic components, and electronic components. Etc. are included. One or more conductive contact elements may be used depending on the number of electrical joints. The conductive contact element is appropriately formed into a truncated cone, a truncated pyramid, a polygonal truncated cone, a barrel, a cylinder, a substantially hexagonal cross section, a substantially octagonal cross section, a substantially oval cross section, or the like. The periphery of the end of the conductive contact element may be the periphery of one end or the periphery of both ends. In addition, the sharp edge means that the peripheral edge of the conductive contact element in contact with the electrode of the electrical joint is angular or that the corner R at the peripheral edge of the conductive contact element is 0.05 mm or less. It does not matter whether the insulating substrate is flexible.
[0008]
ADVANTAGE OF THE INVENTION According to this invention, an electric connector is interposed between several electrical joints, and the conductive contact element is made to be able to conduct (electrically conduct current) to the electrode of the electrical joint so that the conductive contact element can be compressed. If so, a plurality of electrical joints can be electrically connected via an electrical connector. Since it can be said that the peripheral edge of the end portion of the conductive contact element is not cut off and is approximately square, the electrode contact portion is enlarged.
[0009]
Further, according to the present invention, since one or more conductive contact elements are supported on the insulating substrate, it is possible to stabilize the posture of the conductive contact elements, facilitate positioning, and the like. Further, since the length between the pair of frustums constituting the conductive contact element is in the range of 0.5 to 2.2 mm, at least low resistance can be obtained. Further, since the width of the widened portion of the frustum is in the range of 0.3 to 0.8 mm, at least a narrow pitch can be obtained. Further, since the width of the reduced width portion is in the range of 0.2 to 0.6 mm, it is possible to stabilize the resistance at a minimum. Furthermore, since the width of the through connection portion 25 is in the range of 0.2 to 0.6 mm, a reduction in resistance can be expected.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, an electric connector according to the present embodiment includes an insulating substrate interposed between a circuit board 1 and a semiconductor package 10. 20 and a plurality of conductive contact elements 22 which are arranged and penetrated side by side on the insulating substrate 20 and which resiliently and elastically contact the circuit board 1 and the electrodes 2 and 11 of the semiconductor package 10. Each conductive contact element 22 is formed of a conductive elastomer. 30 and the upper and lower end peripheral edges 23 of each conductive contact element 22 are sharpened so as to have a sharp edge having no roundness.
[0011]
The circuit board 1 includes an insulating substrate made of, for example, a laminated plate, and a plurality of conductive wiring patterns and electrodes 2 are appropriately formed inside and outside the insulating substrate. As the semiconductor package 10, as shown in FIG. 1, for example, a surface mounting area array type LGA in which a plurality of electrodes 11 are arranged in a lattice on the lower surface is used.
[0012]
The insulating substrate 20 is formed in a flexible flat rectangular shape using a predetermined material, and a plurality of through-holes 21 are regularly drilled at predetermined intervals in the XY thickness direction. Examples of the material of the insulating substrate 20 include polyimide, glass epoxy, PET, PEN, PEI, PPS, PEEK, and liquid crystal polymer. Among them, polyimide having a small coefficient of thermal expansion and excellent heat resistance is most suitable.
[0013]
As shown in FIG. 2, each conductive contact element 22 is formed in a vertically long shape with a substantially octagonal cross section by using a conductive elastomer 30, and the upper and lower end peripheral edges 23 are rounded off. It is provided integrally with the through hole 21. The conductive elastomer 30 is made of a conductive composition in which conductive particles are mixed with a predetermined insulating elastomer. As the insulating elastomer, various elastomers having fluidity before curing and having a cross-linked structure by curing (general name of those having rubber-like elasticity at around normal temperature) are used.
[0014]
Specific examples include silicone rubber, fluorine rubber, polyurethane rubber, polybutadiene rubber, polyisopropylene rubber, chloroprene rubber, polyester rubber, styrene / butadiene copolymer rubber, and natural rubber. In addition, these closed-cell foams and the like also correspond. Among these, silicone rubber, which is excellent in electrical insulation, heat resistance, compression set, workability and the like, is most suitable.
[0015]
Examples of the conductive particles include a granular or flake type. Specifically, gold, silver, copper, platinum, palladium, nickel, aluminum and other simple metals or particles of these alloys, as well as phenolic resins, epoxy resins, silicone resins, thermoplastic resins such as urethane resins and Examples thereof include particles of a thermosetting resin, a baked product thereof, or an inorganic material such as carbon, ceramics, or silica as a nucleus and the surface of which is coated with the above metal by plating, vapor deposition, sputtering, or the like. In particular, from the viewpoint of resistance and cost, it is preferable to mix the granular silver particles in the range of 400 to 600 parts by mass with respect to 100 parts by mass of the insulating elastomer material.
[0016]
Each conductive contact element 22 has a pair of truncated cones 24 protruding from the front and back surfaces of the insulating substrate 20, respectively, and a cylindrical through connection that connects the pair of truncated cones 24 and penetrates the through hole 21 of the insulating substrate 20. It is formed integrally with the part 25. The height 24H between the pair of upper and lower truncated cones 24 is preferably in the range of 0.5 to 2.2 mm, more preferably 0.8 to 1.2 mm. This is because, if it deviates from such a range, a low resistance may not be obtained, and the allowable compression range is taken into consideration.
[0017]
Each of the truncated cones 24 has a diameter 24A (width) of the enlarged diameter portion in the range of 0.3 to 0.8 mm, more preferably 0.7 mm, and a diameter 24M (width) of the flat reduced diameter portion. The range is 0.2 to 0.6 mm, preferably 0.5 mm. The reason why the diameter 24A of the enlarged diameter portion is in the range of 0.3 to 0.8 mm is that if it is out of this range, a narrow pitch cannot be obtained, and the bonding strength of the insulating substrate 20 and the conductive contact element 22 is taken into consideration. It is. The reason why the diameter 24M of the reduced diameter portion is in the range of 0.2 to 0.6 mm is based on the reason that if the diameter is within this range, the resistance can be reduced and stabilized, and a narrow pitch can be secured. Further, the diameter of the through hole 21, in other words, the diameter (width) of the through connection portion 25 is preferably 0.2 to 0.6 mm, more preferably 0.5 mm. This takes into account the reduction in resistance and the bonding strength between the insulating substrate 20 and the conductive contact element 22.
[0018]
When manufacturing such an electrical connector, first, a plurality of through holes 21 are formed in the insulating substrate 20, and a conductive elastomer 30 made of conductive silicone rubber is superimposed on the insulating substrate 20 and set in the mold 40. (See FIG. 3). When the preparation is completed in this way, the mold 40 is clamped and pressurized and heated (see FIG. 4) to manufacture an electrical connector in which the insulating substrate 20 and the conductive contact element 22 are integrated. When the mold is opened, the electrical connector can be taken out and used (see FIG. 5).
[0019]
In the above-described configuration, the upper and lower ends of the plurality of conductive contact elements 22 are electrically connected to the circuit board 1 and the electrodes 2 and 11 of the semiconductor package 10 by interposing an electrical connector between the circuit board 1 and the semiconductor package 10. When the plurality of conductive contact elements 22 are compressed by pressing the semiconductor package 10 downwardly by elastic contact, the circuit board 1 and the semiconductor package 10 can be electrically conductively connected via an electrical connector (see FIG. 1). ).
[0020]
According to the above configuration, since the peripheral edges of the upper and lower ends of the conductive contact element 22 are angular as shown in FIG. 2, the electrode contact portion expands as the end face area of the conductive contact element 22 increases, and the conductive contact between the semiconductor package 10 and the semiconductor package 10 increases. The contact area of the contact element 22 does not decrease. Therefore, it is possible to stabilize the initial connection and suppress an increase in the resistance value. Further, since it is not necessary to expand the contact area by compressing the conductive contact element 22, a large load is not required at the time of connection.
[0021]
Next, FIG. 6 shows a second embodiment of the present invention. In this case, columnar straight portions 26 are integrally formed on both upper and lower ends of each conductive contact element 22, respectively. . The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those of the above embodiment can be expected, and it is clear that the height of the conductive contact element 22 can be increased while maintaining the enlarged electrode contact portion.
[0022]
Next, FIG. 7 shows a third embodiment of the present invention. In this case, each of the conductive contact elements 22 is formed into a straight, large-diameter cylindrical shape. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those of the above embodiment can be expected, and that the shape of the conductive contact element 22 can be diversified.
[0023]
Next, FIG. 8 shows a fourth embodiment of the present invention. In this case, each conductive contact element 22 is formed into a straight, reduced-diameter cylindrical shape. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those in the above embodiment can be expected, and that the shape of the conductive contact element 22 can be diversified.
[0024]
Next, FIG. 9 shows a fifth embodiment of the present invention. In this case, each conductive contact element 22 is formed by a pair of short truncated cones 24 protruding from the front and back surfaces of the insulating substrate 20, respectively. The pair of truncated cones 24 are connected to each other, and are integrally formed from a cylindrical long and long penetrating connection part 25 penetrating the through hole 21 of the insulating substrate 20. And have the same diameter. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those of the above embodiment can be expected, and that the shape of the conductive contact element 22 can be complicated.
[0025]
Next, FIG. 10 shows a sixth embodiment of the present invention. In this case, the peripheral surface of the truncated cone 24 is partially depressed and curved. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, the same operation and effect as those in the above embodiment can be expected, and the shape of the conductive contact element 22 can be complicated.
[0026]
【Example】
The electrical connector of the embodiment in which the upper and lower end edges of the conductive contact element are each sharpened by making them angular, and the electrical connectors of Comparative Examples 1 and 2 in which the upper and lower end edges of the conductive contact element are respectively rounded, are prepared. Using these, the circuit board and the semiconductor package were electrically conductively connected, and the load and resistance thereof were examined.
[0027]
As shown in FIG. 11, an electrical connector comprises an insulating substrate made of polyimide having a thickness of 0.1 mm, and a plurality of conductive contact elements arranged and supported through the insulating substrate. The conductive elastomer is formed by blending granular silver particles with silicone rubber, and the corner R at the upper and lower edges of each conductive contact element is set to 0.01 mm to form a sharp edge (in FIGS. 11 and 14, sharp edges are formed). Edge product). The height between a pair of truncated cones forming each conductive contact element was 1.0 mm. Further, the diameter of the enlarged diameter portion of each truncated cone was set to 0.7 mm, and the diameter of the reduced diameter portion was set to 0.5 mm. Further, the diameter of the through hole was 0.5 mm.
[0028]
Comparative Example 1
As shown in FIG. 12, the electrical connector was basically configured in the same manner as in the embodiment, and the roundness was formed by setting the R of the corners at the upper and lower end edges of each conductive contact element to 0.12 mm (FIG. 12, In FIG. 14, it is called R0.12 product).
Comparative Example 2
As shown in FIG. 13, the electrical connector was basically constructed in the same manner as in the embodiment, and the roundness was formed by setting R at both upper and lower ends of each conductive contact element to 0.35 mm (R0 in FIGS. 13 and 14). .35 products).
[0029]
The circuit board and the semiconductor package were electrically connected to each other using the electrical connectors of Examples and Comparative Examples 1 and 2, and the load and resistance were measured. The results shown in FIG. 14 were obtained. From these results, it was confirmed that the electrical connector of the example had a stable resistance with a small load compared to the electrical connectors of Comparative Examples 1 and 2.
[0030]
【The invention's effect】
As described above, according to the present invention, there is an effect that the contact area between the electric joint and the conductive contact element can be enlarged to stabilize the initial connection and to suppress the resistance value. Further, the load required for connection can be suppressed.
[Brief description of the drawings]
FIG. 1 is an overall explanatory view showing an embodiment of an electric connector according to the present invention.
FIG. 2 is a schematic explanatory view showing a conductive contact element in an embodiment of the electric connector according to the present invention.
FIG. 3 is a schematic explanatory view showing a state in which conductive silicone rubber is overlaid on an insulating substrate and set in a mold in the embodiment of the electrical connector according to the present invention.
FIG. 4 is a schematic explanatory view showing a state in which the mold of FIG.
FIG. 5 is a schematic explanatory view showing a state in which an electric connector in which an insulating substrate and a conductive contact element are integrated is taken out of a mold.
FIG. 6 is a schematic explanatory view showing a conductive contact element in a second embodiment of the electrical connector according to the present invention.
FIG. 7 is a schematic explanatory view showing a conductive contact element in a third embodiment of the electrical connector according to the present invention.
FIG. 8 is a schematic explanatory view showing a conductive contact element in a fourth embodiment of the electrical connector according to the present invention.
FIG. 9 is a schematic explanatory view showing a conductive contact element in a fifth embodiment of the electrical connector according to the present invention.
FIG. 10 is a schematic explanatory view showing a conductive contact element in a sixth embodiment of the electrical connector according to the present invention.
FIG. 11 is a schematic explanatory view showing an embodiment of the electric connector according to the present invention.
FIG. 12 is a schematic explanatory view showing Comparative Example 1 of the electrical connector according to the present invention.
FIG. 13 is a schematic explanatory view showing Comparative Example 2 of the electrical connector according to the present invention.
FIG. 14 is a graph showing the results of measuring the load and resistance using the electrical connectors of the example and comparative examples 1 and 2.
FIG. 15 is an explanatory diagram showing a conductive contact element of a conventional electrical connector.
[Explanation of symbols]
1 circuit board (electrical joint)
2 electrode 10 Semiconductor package (electrical joint)
DESCRIPTION OF SYMBOLS 11 Electrode 20 Insulating substrate 22 Conductive contact element 23 Edge periphery 24 Truncated cone
24A Diameter of the widened part of the truncated cone (width of the widened part of the frustum)
24H Height between a pair of frustums (length between a pair of frustums)
24M Diameter of reduced diameter part of truncated cone (width of reduced diameter part of frustum)
25 feed-through connector 30 conductive elastomer

Claims (2)

複数の電気接合物間を電気的に接続する電気コネクタであって、
電気接合物の電極に接触する導電接点素子を備え、この導電接点素子を導電性エラストマーを用いて形成するとともに、導電接点素子の端部周縁を略角張らせてシャープエッジとしたことを特徴とする電気コネクタ。
An electrical connector for electrically connecting a plurality of electrical joints,
It has a conductive contact element that contacts the electrode of the electrical joint, and this conductive contact element is formed using a conductive elastomer, and the peripheral edge of the conductive contact element is substantially squared to have a sharp edge. Electrical connector.
複数の電気接合物間に、導電接点素子を貫通支持する絶縁基板を介在し、
導電接点素子を、絶縁基板からそれぞれ露出する一対の錐台と、この一対の錐台間を接続して絶縁基板を貫通する貫通接続部とから一体形成し、一対の錐台間の長さを0.5〜2.2mmとし、各錐台の拡幅部の幅を0.3〜0.8mmとするとともに、各錐台の縮幅部の幅を0.2〜0.6mmとし、貫通接続部の幅を0.2〜0.6mmとした請求項1記載の電気コネクタ。
An insulating substrate that penetrates and supports the conductive contact element is interposed between the plurality of electrical joints,
The conductive contact element is integrally formed from a pair of frustums exposed from the insulating substrate and a through connection portion that connects the pair of frustums and penetrates the insulating substrate, and reduces the length between the pair of frustums. 0.5 to 2.2 mm, the width of the widened portion of each frustum is 0.3 to 0.8 mm, and the width of the narrowed portion of each frustum is 0.2 to 0.6 mm. The electrical connector according to claim 1, wherein the width of the portion is 0.2 to 0.6 mm.
JP2002235794A 2002-08-13 2002-08-13 Electric connector Pending JP2004079277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235794A JP2004079277A (en) 2002-08-13 2002-08-13 Electric connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235794A JP2004079277A (en) 2002-08-13 2002-08-13 Electric connector

Publications (1)

Publication Number Publication Date
JP2004079277A true JP2004079277A (en) 2004-03-11

Family

ID=32020181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235794A Pending JP2004079277A (en) 2002-08-13 2002-08-13 Electric connector

Country Status (1)

Country Link
JP (1) JP2004079277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135544A (en) * 2006-11-28 2008-06-12 Nippon Avionics Co Ltd Metal surface bondability / connectivity evaluation method and evaluation apparatus
WO2009082461A3 (en) * 2007-12-18 2009-08-20 R & D Circuits Inc Separable electrical connectors using isotropic conductive elastomer interconnect medium
US11191170B2 (en) * 2019-07-23 2021-11-30 Michael Casey Silicone contact element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135544A (en) * 2006-11-28 2008-06-12 Nippon Avionics Co Ltd Metal surface bondability / connectivity evaluation method and evaluation apparatus
WO2009082461A3 (en) * 2007-12-18 2009-08-20 R & D Circuits Inc Separable electrical connectors using isotropic conductive elastomer interconnect medium
US11191170B2 (en) * 2019-07-23 2021-11-30 Michael Casey Silicone contact element

Similar Documents

Publication Publication Date Title
JP3038859B2 (en) Anisotropic conductive sheet
US4778950A (en) Anisotropic elastomeric interconnecting system
US4754546A (en) Electrical connector for surface mounting and method of making thereof
US4729166A (en) Method of fabricating electrical connector for surface mounting
US5977489A (en) Conductive elastomer for grafting to a metal substrate
JP2000200636A (en) Conductive elastomer mutual connector
TWI285009B (en) Conductive elastomeric contact system with anti-overstress columns
WO2000013190A8 (en) Conductive paste, conductive structure using the same, electronic part, module, circuit board, method for electrical connection, method for manufacturing circuit board, and method for manufacturing ceramic electronic part
JPS6032285B2 (en) Method for manufacturing pressurized conductive elastomer
JPH0275178A (en) Cathode edge connector for solderless surface mounting
US4954873A (en) Electrical connector for surface mounting
JP4236367B2 (en) Semiconductor socket and manufacturing method thereof
EP0909118B1 (en) Conductive elastomer for grafting to an elastic substrate
JP2004079277A (en) Electric connector
US20050233620A1 (en) Anisotropic conductive sheet and its manufacturing method
JP4215468B2 (en) Electrical connector
JP2000021470A (en) Conductive member and low compression/low resistance connector using the same
JP2002075567A (en) Electric connector and its manufacturing method
JP2004214014A (en) Electric connector
JP2002008810A (en) Electrical connector
JP2004047268A (en) Insulation displacement connector
KR100495130B1 (en) Method of manufacturing surface mountable electrical device for printed circuit board using heat welding and surface mountable electrical device made by the method
JP5750101B2 (en) connector
JP2004014454A (en) Electrical connector
JP2004128156A (en) Electric connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509