[go: up one dir, main page]

JP2004077169A - Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus - Google Patents

Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus Download PDF

Info

Publication number
JP2004077169A
JP2004077169A JP2002234428A JP2002234428A JP2004077169A JP 2004077169 A JP2004077169 A JP 2004077169A JP 2002234428 A JP2002234428 A JP 2002234428A JP 2002234428 A JP2002234428 A JP 2002234428A JP 2004077169 A JP2004077169 A JP 2004077169A
Authority
JP
Japan
Prior art keywords
residual
electrode
oxidizing agent
water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234428A
Other languages
Japanese (ja)
Inventor
Norihiro Yaide
矢出 乃大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002234428A priority Critical patent/JP2004077169A/en
Publication of JP2004077169A publication Critical patent/JP2004077169A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for safe, reliable treatment by accurately calculating residual halogen in liquid, oxidizer, and the concentration of reducer, and by appropriately setting the amount of medicine to be added into the liquid. <P>SOLUTION: The method for calculating the residual substance in liquid measures potential in the liquid by an electrode made of a comparison electrode, an electrode using metal other than platinum, a slightly soluble metal compound, or an ion electrode, and calculates the concentration of residual halogen contained in the liquid, residual oxidizer, or the concentration of residual reducer. The amount of medicine added into a treatment liquid is subjected to injection control in a deodorization method for circulating and washing the bad odor constituent of a bad smell gas by a liquid medicine containing the oxidizer for oxidizing, decomposing, and removing, a treatment method of drainage by oxidization treatment using the oxidizer or by reduction treatment using the reducer, a slime prevention method of an open system cooling water for adding a slime prevention agent in an oxidizer system, or a disinfecting method of waste water for adding an oxidizer system disinfectant or its treated water. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発朋は、薬剤を用いる液体の処理に係り、特に、使用した薬剤の残留濃度の測定方法、及び、汚水、下水、し尿、浄化槽汚泥などや生ごみ等の有機性廃棄物から発生する悪臭ガスの脱臭方法、及び、酸化剤による酸化処理や還元剤による還元処理による汚水、下水、し尿などの排水処理方法と消毒方法、及び、冷却塔、冷却設備、処理水を再利用する中水道などや製造設備の工程水のスライム防止方法、及び、薬剤注入制御装置に関するものである。
【0002】
【従来の技術】
下水、し尿、産業排水等の排水処理時や、排水処理に伴って発生する有機性汚泥や生ごみ等の有機性廃棄物の処理処分時に悪臭ガスが発生し、このために、作業環境の改善、周辺住民への環境対策及び設備機器への腐食防止対策が、非常に重要である。
脱臭方法としては、酸やアルカリを用いる薬液洗浄法や活性炭吸着法や生物脱臭法が実用化されているが、特に薬液洗浄法は汎用性の高い脱臭方法である。
薬液洗浄法は、酸やアルカリを含む洗浄液と悪臭ガスを充填材を介して接触させて、悪臭ガス中の臭気成分を洗浄液に吸収又は洗浄液の薬剤で酸化分解させて、脱臭するものであり、薬剤濃度の注入制御ができ、十分な薬剤が供給できれば、悪臭ガスの臭気成分の幅広い濃度に対応でき、汎用性の高い脱臭方法である。臭気成分のうちアンモニアやトリメチルアミンは、硫酸を含む洗浄液で悪臭ガスから除去できる。硫化水素などの硫黄系臭気は、苛性ソーダと次亜塩素酸ソーダの混合薬剤により酸化分解されて、悪臭ガスから除去される。
【0003】
活性炭吸着法は、多数の細孔を有する活性炭に臭気成分を吸着させて、脱臭するものである。活性炭には、酸やアルカリ、又は酸化剤を添着させた添着活性炭も広く使用される。
この方法は、活性炭層に悪臭ガスを通すだけで脱臭ができ、操作性はよいが、低濃度臭気成分にしか適用できない。
生物脱臭法は、微生物を付着させた充填材と悪臭ガスを接触させて脱臭する充填塔式脱臭法が広く普及している。脱臭コストは安価であるが、充填材と悪臭ガスとの接触時間を長くすることで脱臭性能が向上するが、装置が過大になりやすい。
【0004】
また、排水のCOD除去方法は、運転コストの安い生物処理や凝集沈殿処理を行い、それら処理水に残留するCODを、活性炭吸着法や化学酸化法で処理されている。
従来の化学酸化処理に使用する酸化剤には、次亜塩素酸ソーダ、塩素などの塩素系消毒剤や過酸化水素などである。それら酸化剤単独でも使用されるが、過酸化水素は、第1鉄塩と併用した化学酸化処理、フェントン処理が実用化されている。
酸化剤は、被処理水に添加しても、すべて反応して消滅するのではなく、処理水に残留するために、残留酸化剤を除去する後処理が必要である。残留酸化剤を除去するには、還元剤を添加して残留する酸化剤を還元除去する操作が必要である。
また、排水の酸化処理として、上記のCOD酸化処理以外に、排煙脱硫排水に含まれる還元剤である亜硫酸イオンや、ボイラ排水中のヒドラジンを除去するために、塩素系酸化剤や過酸化水素が使用される。
また、還元処理としては、染色排水やめっき排水中の酸化力の強い6価クロムイオンの還元処理には、第1鉄塩や亜硫酸ソーダが、半導体製造排水に含まれる過酸化水素の還元処理には、亜硫酸ソーダが使用される。
【0005】
次に、冷却塔により冷却された冷却水は、製造工程で冷却に使用される。製造工程や熱交換器からの戻り水は、再度、冷却塔により冷却されて冷却水になる。冷却塔から放散される水分補給のために補給水が補給され、また消耗したスライム防止剤が冷却塔に添加される。
食品工場や製紙工場などの製造工場や廃棄物処理施設などの冷却水系では、細菌、糸状菌、藻類などから構成される粘性を有するバイオフィルム、スライムが生成し、配管の閉塞、熱交換機の効率低下、機器設備の腐食などのスライム障害の他に、剥離スライムが製品に混入することによる品質の低下により、生産性に重要な問題が起こる。
また、排水処理で得られる処理水を洗浄水や冷却水などに再利用する過程で、微生物の繁殖によるスライム障害が発生する。スライム障害に起因する臭気問題が発生する。
【0006】
従来、このような細菌、糸状菌、藻類などから構成されるスライムに対する薬剤による防止方法としては、発生したスライムを構成する細菌などを死滅させる殺菌系のスライム防止剤の他に、スライムを構成する細菌などの発生を抑制する抗菌剤の添加がある。抗菌剤は、一般に殺菌力が弱く即効性に劣るが、細菌の発生を抑制することができる。
従来のスライム防止剤には、次亜塩素酸ソーダ、塩素、サラシ粉、二酸化塩素などの塩素系スライム防止剤や次亜臭素酸ソーダ、過酸化水素、シアヌル酸などの有機塩素化合物、第4級アンモニウム塩などが使用されてきた。抗菌剤は、銀やグルタルアルデヒド、イソチアネート系やハロシアノアセトアミド系化合物が一般的である。
【0007】
さらに、集中豪雨などで、下水処理能力を超える大量の雨天時下水が、下水処理場流入下水として下水処理場に流入すると、下水処理能力以上の汚水は、沈砂処理などの簡易処理された後に、公共水域に放流される。雨天時下水に対するSSやBOD除去設備は、莫大な投資が必要であり、早急な対策は困難である。一方、大腸菌群に対しては、設備投資が少なく、消毒剤の添加により解決ができ、実用化が進んでいる。
汚濁物質を含む汚水の処理においては、凝集沈殿処理や生物処理などによって、汚水中の汚濁物質が除去される過程で大腸菌群も同時に除去される。生物処理では、大部分の大腸菌群は除去されるが、安全性を考慮して、その処理水に消毒剤が添加されて、公共水域に放流される。
雨天時下水や排水などの汚水の消毒剤には、酸化力を有する酸化剤系消毒剤である次亜塩素酸ソーダ、塩素、サラシ粉、二酸化塩素などの塩素系消毒剤や次亜臭素酸ソーダなどが使用されてきた。
【0008】
これらの処理方法には、次のような問題があった。
(1)高濃度の酸化剤や還元剤が含まれる場合には、従来の白金電極による酸化還元電位であるORPで薬剤の注入制御が可能であるが、10mg/l以下の低濃度の酸化剤や還元剤は、従来のORPによる検出や注入制御は困難である。
(2)補給水が脱臭装置に入ると、その分循環液の一部が系外にブロー水として排出される。ブロー水には未反応の薬剤が含まれており、薬剤の無駄である。循環液中の薬剤濃度を最小限にする必要がある。
(3)悪臭ガスの臭気成分濃度が高まると、一時的に薬剤不足になり、脱臭効果の維持することが困難である。
【0009】
(4)被処理水のCODや還元剤を酸化剤で酸化処理する場合には、CODに対して過剰の酸化剤が必要で、結果的に処理水に酸化剤が多く残留し、放流先の環境に影響を与える。また、還元処理するための還元剤使用量が増加する。酸化剤や還元剤の注入制御する簡便で実用的な方法はない。
(5)冷却塔など冷却設備からのブロー水で消費される薬剤量が多く、冷却水の薬剤の適正濃度が常時、把握できる方法がない。
(6)放流水に消毒剤が多く残留すると、放流先の環境に悪影響を与えるので、適正な消毒剤の注入制御が必要である。大腸菌群数を測定し、消毒剤を注入する方法では、消毒剤添加率の決定までに時間がかかる。消毒剤添加後の残留消毒剤濃度を測定し、消毒剤濃度が0.1mg/l以下になるように消毒剤を添加する方法は実用的であるが、設備費が高価で、維持管理が難しい。
【0010】
【発明が解決しようとする課題】
本発明は、上記従来技術に鑑み、悪臭ガスの脱臭を安定かつ確実に行い、汚水のCOD除去や酸化処理や還元処理などの廃液処理を安定かつ確実に行い、また、スライムを安定かつ確実に防止し、さらに、消毒を安定かつ確実に行うことができる方法とそのための薬剤の残留物質測定方法と薬剤注入制御装置を提供することを課題とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明では、液体中の電位を、比較電極と白金以外の金属又は難溶性金属化合物を用いた電極又はイオン電極とで構成された電極により測定し、該液体中に含まれる残留ハロゲン又は残留酸化剤又は残留還元剤の濃度を算出することを特徴とする液体中の残留物質算出方法としたものである。
また、本発明では、悪臭ガスの臭気成分を、酸化剤を含む薬液により循環洗浄して酸化分解除去する脱臭方法において、該循環液中の残留酸化剤濃度を前記の残留物質算出方法により算出し、該算出値に基づいて、循環液への酸化剤添加量を注入制御する脱臭方法、又は、酸化剤による酸化処理又は還元剤による還元処理による排水の処理方法において、被処理水中の残留酸化剤濃度又は還元剤濃度を前記の残留物質算出方法により算出し、該算出値に基づいて、被処理水への酸化剤又は還元剤添加量を注入制御する排水処理方法、又は、酸化剤系のスライム防止剤を添加する開放系冷却水のスライム防止方法において、冷却水中の残留酸化剤濃度を前記の残留物質算出方法により算出し、該算出値に基づいて、冷却水へのスライム防止剤添加量を注入制御するスライム防止方法、又は、酸化剤系消毒剤を添加する汚水又はその処理水の消毒方法において、汚水又はその処理水中の残留酸化剤濃度を前記の残留物質算出方法により算出し、該算出値に基づいて、汚水又はその処理水への消毒剤添加量を注入制御する消毒方法としたものである。
【0012】
さらに、本発明では、液体中の電位を測定する比較電極と白金以外の金属又は難溶性金属化合物を用いた電極又はイオン電極とで構成された電極よりなる電位測定装置と、該測定値に基づいて該液体中に含まれる残留ハロゲン又は残留酸化剤又は残留還元剤の濃度を算出する算出装置と、該算出した濃度に基づいて前記液体中に注入する薬剤の注入量を制御する制御手段とを有することを特徴とする薬剤注入制御装置としたものである。
【0013】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明は、比較電極と白金以外の金属又は難溶性金属化合物で構成された電極の電位により水中の残留ハロゲン又は残留酸化剤濃度を測定する方法である。
高濃度の酸化剤が被処理水に含まれる場合には、従来の白金電極による酸化還元電位であるORPで酸化剤の注入制御が可能であるが、10mg/l以下の低濃度の酸化剤に対しては、従来のORPでは電位の変化が小さくて、酸化剤の検出や被処理水に添加される酸化剤のORPによる注入制御が困難である。
本発明の比較電極と白金以外の金属又は難溶性金属化合物で構成された電極で得られる電位では、10mg/l以下の低濃度の酸化剤に対しても電位の変化が大きく、被処理水に残留する酸化剤の検出や被処理水に添加される薬剤還元剤の注入制御が可能である。
比較電極(参照電極とも呼ばれる)は、市販のpH計やORP計に使われている塩化銀電極や甘こう電極である。
【0014】
比較電極と白金以外の金属を電導性を有する金属線、例えば、銅線に取り付け、それぞれの端を電位計又は電圧計、市販の記録計、pH計などの端子に接続することにより、本発明の検出部が完成する。この検出部の電圧値を本発明における電位とする。
白金以外の金属とは、カーボン、黒鉛や、銅やニッケルなどの遷移金属や、遷移金属とアルカリ土金属などとの合金である。
難溶性金属化合物とは、アルカリ金属とアルカリ土金属、遷移金属の酸化物、硫化物、塩化物などのハロゲン化合物、リン酸化合物、硫酸塩など弱酸性水溶液や弱アルカリ水溶液に不溶解性の化合物であり、また、数種類の化合物を混合成形することにより、本発明の電極にすることができる。
【0015】
残留ハロゲンは、水溶液中でオルトートリジン法又はDPD法で残留ハロゲンが検出できるハロゲン化合物で、次亜塩素酸、次亜塩素酸イオン、次亜塩素酸塩次亜ヨウ素酸塩、次亜ヨウ素酸、次亜ヨウ素酸イオン、次亜臭素酸塩、次亜臭素酸、次亜臭素酸イオンである。
残留酸化剤は、JIS−K0102に記載のヨウ素滴定法で検出される化合物である。具体的には、上記ハロゲン化合物の他に過酸化水素、塩素酸塩、臭素酸塩、ヨウ素酸塩、過塩素酸塩、過硫酸塩、亜硝酸塩などある。
被処理物に薬剤を添加し、測定された電位の変化を基に、電位の変化量がある最小の設定値幅になったら被処理物への薬剤の添加を停止する。
ある設定電位なるまで薬剤を添加してもよいし、ある設定電位になったら薬剤の添加を開始し、次の設定電位になったら薬剤の添加を停止してもよい。
もちろん、測定された電位を電流値に変換した電流値や、測定された電位をそのまま、又は増幅させた電圧値を基に、薬剤の注入を制御してもよい。
【0016】
被処理物が還元性である場合には、薬剤は酸化剤系である。被処理物の還元性を薬剤の酸化力により中和するために、薬剤が被処理物に添加される。酸化還元反応後の被処理物に残留する酸化剤濃度を、電位により測定する。
一方、被処理物が酸化性である場合には、薬剤は還元剤系である。被処理物に還元剤が添加され、酸化還元反応後に被処理物に過剰の還元剤が残留するが、還元剤が残留する前の被処理物に、酸化剤が残留する範囲での還元剤の注入制御ができる。
本発明における電位は、白金以外の電極の種類によって、その電位は異なるが、金属硫化物を白金電極の代わりに用いると、その電位は、−500から+500mVである。
白金電極を用いるORPに比べて、残留酸化剤濃度に対する電位の応答が良好であり、低濃度の酸化剤濃度を検出することができる。
酸化剤の種類により、使用する電極が選択できて、残留酸化剤濃度に対する電位の応答を改善できる。使用する電極は、概ねハロゲン化合物に対しては、金属酸化物が、ハロゲン以外の酸化物には、金属硫化物がよい。
【0017】
また、本発明は、比較電極とイオン電極で構成された電極の電位により、水中の残留ハロゲン又は残留酸化剤濃度を測定する方法である。
本発明のイオン電極は、難溶性塩膜形であり、ニッケル、チタン、クロム、金、銀、鉛等などの遷移金属又はランタン、カルシウムなどのアルカリ土類金属化合物の少なくとも1種類で構成され、水溶液中の陽イオン又は陰イオンを検出する作用を有する物質で形成され、排水などに含まれる陽イオン又は陰イオンを検出するために使用される。
陽イオン又は陰イオンに感応する電極の物質は、硫化銀や硫化銀と塩化銀の混合物、硫化銀などの硫化物と金属酸化物である酸化鉛などとの混合物あるいはフッ化ランタンなどのハロゲン化物の結晶である。これら粉末状の金属化合物を、任意の圧力で加圧成形したものや、2種類以上の金属化合物を粉末状で混合後に加圧成形したものや、2種類以上の粉末状の金属化合物を加圧成形したものを重ね合せたものが使用できる。
【0018】
市販のイオン電極には、感応部材質や形状により、カドミウムイオン、銅イオン、フッ素イオンなどハロゲンイオン、硫化物イオン、シアンイオンなどの難溶性塩膜形や硝酸イオンや塩素イオンなどのイオン交換膜形やアンモニア、亜硝酸などのガス透過膜形やナトリウムイオン電極などのガラス膜形があり、いずれも本発明に使用できる。メンテナンスなどを考慮すると、上記の難溶性塩膜形イオン電極が望ましい。
本発明に使用できるように、製作してもよいし、市販のイオン電極を本発明に転用してもよい。
また、市販のイオン電極計(イオン濃度計)は、比較電極とイオン電極で構成され、その両電極間で得られる電位を目的イオン濃度に演算して表示するものである。本発明では、市販のイオン電極計を電位モードで使用し、得られた電位から被処理物の負荷量が制御できる。
比較電極とイオン電極を電導性を有する金属線、例えば、銅線に取り付け、それぞれの端を電位計又は電圧計、市販の記録計、pH計などの端子に接続することにより、本発明の検出部が完成する。この検出部の電圧値を、本発明における電位とする。
【0019】
また、本発明は、前記した電極の電位により水中の残留還元剤濃度を測定する方法である。
被処理物が還元性である場合には、添加される薬剤は酸化剤系である。被処理物の還元性を、薬剤の酸化力により中和するために、薬剤が被処理物に添加される。
酸化還元反応後の被処理物に残留する酸化剤濃度を、電位により測定する。
高濃度の還元剤が被処理物に含まれる場合には、従来の白金電極による酸化還元電位であるORPで酸化剤の注入制御が可能であるが、10mg/l以下の低濃度の還元剤に対しては、従来のORPでは電位の変化が小さくて、還元剤の検出や被処理水に添加される薬剤酸化剤のORPによる注入制御が困難である。
本発明の比較電極と白金以外の金属又は難溶性金属化合物で構成された電極で得られる電位では、10mg/l以下の低濃度の還元剤に対しても電位の変化が大きく、被処理水に残留する還元剤の検出や被処理水に添加される薬剤酸化剤の注入制御が可能である。
【0020】
還元剤は、第1鉄イオンなど還元性金属イオン、亜硫酸塩、チオ硫酸塩、硫化物、また排水などのCODとして測定される有機物や無機物である。
被処理物に酸化剤を添加し、測定された電位の変化を基に、電位の変化量がある最小の設定値幅になったら、被処理物への薬剤の添加を停止する。
ある設定電位なるまで酸化剤を添加してもよいし、ある設定電位になったら酸化剤の添加を開始し、次の設定電位になったら酸化剤の添加を停止してもよい。もちろん、測定された電位を電流値に変換した電流値や、測定された電位をそのまま、又は増幅させた電圧値を基に、酸化剤の注入を制御してもよい。
使用する電極は、概ね残留還元剤に対しては、金属や金属硫化物がよい。金属酸化物系では、酸化皮膜が還元剤で損傷する恐れがある。
【0021】
次に、本発明は、酸化剤により悪臭ガスの臭気成分を酸化分解除去する薬液洗浄法において、その循環液中の残留酸化剤濃度を、前記した方法により電極の電位として測定し、循環液への酸化剤を注入制御する脱臭方法である。
本発明の脱臭対象臭気は、亜硫酸ガス、アンモニア、アルデヒド類、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチル等である。
酸化剤は、塩素系酸化剤である次亜塩素酸ソーダ、臭素系酸化剤である次亜臭素酸塩やこれらの混合物である。
酸化剤と共に、循環液にはハロゲンガスの発生を防止するために、苛性ソーダなどのアルカリ剤が添加され、循環液をアルカリ性にする。
循環液中の酸化剤濃度は、塩素換算濃度で、循環液量に対して、10〜1000mg/lである。10mg/l未満では、脱臭効果が低い。1000mg/lを超えると、薬剤コストが問題である。
【0022】
循環液の電位を、比較電極と白金以外の金属で構成された電極、又は、比較電極と難溶性金属化合物で構成された電極、又は、比較電極とイオン電極で構成された電極で測定する。循環液の流路にこれら電極を配備してもよいし、循環液の一部を取り出し、その電位を測定してもよい。
ここで得られた電位は、酸化剤注入ポンプの制御部に転送されて、酸化剤注入制御に利用される。電圧を電圧値のまま、又は電流値に変換して酸化剤濃度測定に使用することもできる。
循環液に酸化剤を添加して測定された電位の変化量が、ある最小の設定値幅になったら循環液への薬剤の添加を停止する。
ある設定電位なるまで循環液に酸化剤を添加してもよいし、ある設定電位になったら酸化剤の添加を開始し、次の設定電位になったら酸化剤の添加を停止してもよい。
【0023】
図1は、縦型薬液洗浄脱臭装置の一例を示すフロー構成図で、以下にその概要を説明する。
悪臭ガスと酸化剤を含む循環液とを接触させる工程で構成された脱臭装置と、比較電極と白金以外の金属又は金属化合物で構成された電極、あるいは比較電極とイオン電極で構成された電極で循環液の電位を測定する装置と、その電位に対して酸化剤の添加量を決定する演算装置と、循環液に酸化剤を添加する酸化剤注入装置から構成される。
悪臭ガスは、装置底部に導かれ、プラスチックや磁器でできた市販の充填材が充填された充填層で、酸化剤を含む循環液と接触して大気に排出される。充填層の通過時に、循環液中の酸化剤やアルカリ剤によって、悪臭ガス中の臭気成分が酸化分解や吸収によって除去される。循環液の散水は、装置上部から連続的に行い、その散水量は、単位処理ガス量あたり1〜5リットル/m−ガス、通常3リットル/m−ガスである。
【0024】
循環液の一部を採取し、その電位を電位測定装置で測定し、その結果を演算装置で酸化剤の不足量を決定して、酸化剤注入装置から循環液に酸化剤が添加される。サンプリングの頻度は、連続でもよいし、間欠的でもよい。循環液量が多い場合や、悪臭ガス濃度の変動が少ない場合には、循環液の酸化剤濃度の変化が少ないので、30分間に1回等の間欠的な測定でよい。
循環液のpHは、循環液配管途中に設置されたpH計により測定され、苛性ソーダ注入装置から循環液に添加されて、pHが10〜11に維持される。
一般に、充填層の高さは500mm〜1000mmで、複数の充填層や複数の薬液洗浄装置を直列に使用することもある。
補給水は、水道水や井水や工業用水が使用できる。補給水は常時、脱臭装置に供給され、処理ガスで持ち去られる水分との差が、脱臭装置の外にブロー水として排出される。
ブロー水は循環液と同一組成であり、これによる薬剤の損失は無視できない。このために、循環液中の薬剤濃度を管理することにより、脱臭に使われずにブローされて、酸化剤など薬剤が無駄になるのが防止できる。
【0025】
また、本発明は、酸化剤による酸化処理や還元剤による還元処理による排水処理において、被処理水の残留酸化剤濃度又は還元剤濃度を前記した方法により、電極の電位として測定し、被処理水への酸化剤を注入制御する排水処理方法である。
本発明における被処理水は、各種産業排水、し尿、埋め立て処分揚浸出水、脱水ろ液、液状廃棄物や一般家庭、事業場等から排出される汚水や、雨水の混合した下水、又はそれらの凝集沈殿処理水や加圧浮上処理水や活性炭吸着処理水や化学酸化処理水や各種膜分離処理水や雨水、地下水である。
被処理水の電位を、比較電極と白金以外の金属で構成された電極、又は比較電極と難溶性金属化合物で構成された電極、又は比較電極とイオン電極で構成された電極で測定する。被処理水の流路である配管や水槽に、これら電極を配備してもよいし、被処理水の一部を取り出し、その電位を測定してもよい。
ここで取り出された電位は、薬品注入ポンプの制御部に転送されて、薬品注入制御に利用される。電圧を電圧値のまま、又は電流値に変換して濃度測定に使用することもできる。
【0026】
本発明の電極の設置場所は、被処理水の流入部、酸化処理水槽、還元処理水槽、酸化還元処理水槽の前段の中和槽又は流量調整槽などである。
酸化剤や還元剤の添加場所は、酸化剤や還元剤の設置場所又は、その前後である。
本発明で用いて酸化剤や還元剤は、前記と同様である。また、被処理水のCODは、酸化剤により酸化処理されるので、このCODは還元剤である。
酸化剤による被処理水の酸化処理は、COD除去を目的とした鉄塩と過酸化水素を使用するフェントン処理、第1鉄塩や硫化物や亜硫酸ソーダなどの還元剤成分を含む被処理水の過酸化水素などの酸化剤による酸化分解処理である。
還元剤による還元処理は、残留塩素などを含む被処理水を亜硫酸塩で還元処理するものである。
被処理水の酸化処理や還元処理における酸化剤や還元剤は、本発明の電位により処理水に残留する酸化剤濃度や還元剤濃度が検出、制御でき、薬剤添加率が決定される。
【0027】
酸化剤や還元剤の注入制御を、白金電極が使用されている市販のORP計で行おうとした場合には、酸化剤や還元剤濃度が10mg/lと低濃度ではORPの変化が検知できず、酸化剤や還元剤の最適添加率が判定できない。
図2に、還元剤を含む被処理水の酸化分解処理装置の一例のフロー構成図を示す。
亜硫酸塩などの還元剤を含む被処理水を、混合槽から電位測定用のサンプルを採取し、その電位を測定し、設定電位になるまでの酸化剤量を演算装置で決定する。
酸化剤は、酸化剤注入装置で分解槽に添加される。酸化還元反応が促進されるように、混合槽に酸又はアルカリ剤を添加して、pH調整することができる。pHはpH計により測定され、そのpHにより酸又はアルカリ剤の添加量が制御される。
【0028】
また、混合槽と分解槽を一つにして、混合槽の電位を直接電位測定装置で測定し、設定電位になるまで、酸化剤を添加することもできる。
図3に、被処理水のCOD酸化分解処理装置の一例のフロー構成図を示す。
CODを含む被処理水を混合槽(1)に導き、混合槽(1)から電位測定用のサンプルを採取し、その電位を測定し、設定電位になるまでの酸化剤量を演算装置で決定する。過酸化水素は、酸化剤注入装置で混合槽(2)に添加される。酸化還元反応が促進されるように、混合槽(1)に酸又はアルカリ剤を添加して、pH調整することができる。混合槽(1)には、フェントン処理の触媒となる第1鉄塩が添加される。
また、混合槽(2)の電位を直接、電位測定装置で測定し、設定電位になるまで、酸化剤を添加することもできる。
【0029】
また、本発明は、酸化剤系のスライム防止剤を添加する開放系冷却水のスライム防止方法において、冷却水の残留スライム防止剤濃度を前記した方法により、電極の電位として測定し、冷却水への酸化剤を注入制御するスライム防止方法である。
本発明における被処理物とは、各種プラントの冷却水、親水公園の親水、プールやスパの温泉水、天然温泉水又は中水道や再利用水に利用される雨水や各種処理水などである。
本発明におけるスライムとは、バイオフィルムと称されるもの、又は細菌、糸状菌、藻類などから構成される。
スライム防止剤は、次亜塩素酸塩などの塩素系、次亜臭素酸塩などの臭素系、次亜ヨウ素酸塩などのヨウ素系酸化剤化合物や過酸化水素などである。
【0030】
一般的なスライム防止剤の添加率は、冷却水量に対して、10〜300mg/lである。10mg/l未満では、スライム防止効果が低い。300mg/lを超えると、薬剤コストやプラントの腐食が問題である。
被処理物の電位を、比較電極と白金以外の金属で構成された電極、又は比較電極と難溶性金属化合物で構成された電極、又は比較電極とイオン電極で構成された電極で測定する。被処理物の流路である配管や水槽に、これら電極を配備してもよいし、被処理物の一部を取り出し、その電位を測定してもよい。
ここで取り出された電位は、スライム防止剤注入ポンプの制御部に転送されて、スライム防止剤注入制御に利用される。電圧を電圧値のまま、又は電流値に変換して濃度測定に使用することもできる。
【0031】
本発明の電極の設置場所は、被処理水の流入部、酸化処理水槽、還元処理水槽、酸化還元処理水槽の前段の中和槽又は流量調整槽などである。
スライム防止剤は、系内で循環されるので、スライム防止剤の添加場所は任意の場所に添加できるが、本発明の電極の設置場所、又は、その前が最適である。
図4に、本発明を説明するための冷却塔の一例を示すフロー構成図を示す。
本発明は、電位測定装置と、電位からスライム防止剤添加量を演算する演算装置と、スライム防止剤添加装置から構成される。
冷却塔への戻り水、又は、製造設備への送水配管、冷却塔内部に本発明の電極を設置し、冷却水の電位を測定する得られた電位から演算装置でスライム防止剤の添加量を演算し、スライム防止剤添加装置からスライム防止剤を、上記電極設置場所や冷却塔周りの任意の場所に添加する。
【0032】
さらに、本発明は、産業排水、汚濁物質を含む雨水、下水などの汚水又はその処理水に酸化剤系消毒剤を添加する消毒方法において、残留酸化剤濃度を前記した方法により、電極の電位として測定し、汚水又はその処理水への酸化剤を注入制御する汚水の消毒方法である。
本発明における汚水とは、各種産業排水、し尿、埋め立て処分場浸出水、脱水ろ液、液状廃棄物及び一般家庭、事業場等から排出される汚水や雨水の混合した下水である。
汚水と雨水が混合した下水は、汚水と雨水の混合割合には制限はない。汚水だけや雨水だけの下水に対しても、本発明が適用できる。一部の地域からの雨水が、下水道管で混合されたものも本発明の汚水である。従って、本発明は、少しでも雨水が混入する下水に対しては、本発明が適用でき、下水処理場流入下水に対して、最初沈殿池流入前までに本発明の方法が適用できる。また、下水道管途中の中継ポンプ場からの公共水域への汚水の放流に際しても、下水処理場流入下水と同様に本発明の方法が適用できる。
【0033】
各種産業排水や、し尿や、浄化槽汚泥やその他の液状廃棄物に、本発明の消毒剤を添加してもよいし、それらの処理水に添加した後に、放流や再利用のための工程で使用してもよい。
本発明の消毒剤は、ハロゲン系消毒剤や、オゾンや過酸化水素など分子に酸素を含むものである。ハロゲン系消毒剤は、塩素ガス、次亜臭素酸塩、次亜塩素酸塩、次亜ヨウ素酸塩、二酸化塩素などである。
消毒剤の添加率は、汚水量に対して、有効塩素換算濃度で1〜30mg/lである。1mg/l未満では、消毒除去効果が低い。30mg/lを越えると薬剤コストが問題であり、一般に臭素系消毒剤を10mg/lも添加すると、大腸菌群などの病原菌が消毒できる。
【0034】
被処理物の電位を、比較電極と白金以外の金属で構成された電極、又は比較電極と難溶性金属化合物で構成された電極、又は比較電極とイオン電極で構成された電極で測定する。被処理水の流路である配管や水槽にこれら電極を配備してもよいし、被処理物の一部を取出し、その電位を測定してもよい。
ここで取出された電位は、消毒剤注入ポンプの制御部に転送されて、消毒剤注入制御に利用される。電圧を電圧値のまま、又は電流値に変換して濃度測定に使用することもできる。
本発明の電極の設置場所は、被処理物の流入部である流量調整槽、原水槽、排水槽沈砂池、最初沈殿池、ろ過原水槽、ろ過水槽、活性炭原水槽、活性炭処理水槽、中和槽や処理水槽、放流水槽、再利用水槽、消毒槽などの水槽内部である。消毒剤の添加場所は、電極の設置場所の水槽や配管、又は、その前段の水槽や配管である。
【0035】
図5に、被処理水の消毒装置の一例のフロー構成図を示す。
本発明は、電位測定装置と、電位から消毒剤添加量を演算する演算装置と、消毒剤添加装置から構成される。
被処理水が流入する消毒槽の水槽内部に、本発明の電極を設置し、被処理水の電位を測定する。得られた電位を演算装置で消毒剤の添加量を演算し、消毒剤添加装置から消毒剤を消毒槽に添加する。
また、消毒剤添加装置から消毒剤を消毒槽に添加した後に、本発明の電極で消毒剤添加後の被処理水の電位を測定する。得られた電位から、演算装置で消毒剤の添加量を演算し、消毒剤添加装置から消毒剤添加量を制御する。
【0036】
【実施例】
以下に、本発明を実施例により具体的に説明する。
実施例1
市販の標準ガスと空気で調製した模擬ガスを原ガスとして、図1の装置を実験装置として用いて、組成が硫化水素2ppm、メチルメルカプタン1ppmの原ガスを充填層下部から連続的に通気し、循環液を充填層上部から連続的に散水し、空塔線速度が1.0m/秒、ガス温度が20〜25℃、散水量(単位処理ガス量あたりの散水量)が3リットル/mで実験した。
実験装置は、内径150mm、高さ2000mmの塩化ビニル製のカラム(断面積0.02m)で、その中に市販のプラスチック充填材(比表面積100m/m)を1000mm充填した。
薬剤は、塩素換算値で10%の市販の次亜塩素酸ソーダを用いた。塩素換算値は、JIS−K0102に記載のヨウ素滴定法から求めた。循環液に薬剤添加後、苛性ソーダで循環液のpHを10に調整した。
【0037】
循環液の配管途中に、ORP以外に以下の3組の電極を設置した。比較電極(参照電極とも呼ばれる)は塩化銀電極である。
(1)金属銅電極:純度99%の金属銅を使用。
(2)酸化鉛電極:金属鉛板を900℃で空気雰囲気で2時間加熱したものを使用。
(3)市販のフッ素イオン電極:フッ化ランタン結晶を感応部にしたものを使用。
表1に結果を示す。ORP計の電位は、50〜70mVで電位の変化が見られなかった。上記3種類の電極は、薬剤の添加により電位の変化が見られ、硫黄系臭気成分の濃度の低下が認められた。これら電極による薬剤の注入制御が可能である。
【0038】
【表1】

Figure 2004077169
【0039】
実施例2
初期COD53mg/l、亜硫酸イオン200mg/lを含む下水二次処理水の試料500mlに以下の電極を挿入し、試料に酸化剤の1%過酸化水素水溶液を添加し、電位と処理水CODと残留酸化剤濃度を測定した。過酸化水素添加後の試料のpHを、10%苛性ソーダで6〜7に調整した。
(1)金属銅電極:純度99%の金属銅を使用。
(2)酸化銅電極:金属銅板を900℃で空気雰囲気で2時間加熱したものを使用。
(3)市販の銅イオン電極:硫化銀結晶を感応部にしたものを使用。
(4)ORP計:白金電極使用。
表2に結果を示す。ORP計の電位は、添加率近傍で電位の変化が見られなかった。その他の電極は、薬剤の添加により電位の変化が見られ、CODや残留過酸化水素が低くでき、これら電極による薬剤の注入制御が可能である。
【0040】
【表2】
Figure 2004077169
【0041】
実施例3
pH6.9、SS24mg/l、COD23mg/lを含む下水二次処理水の試料1リットルに、実施例2と同じ電極を挿入し、試料に試薬1級の硫酸第1鉄を300mg/lを添加し、硫酸と苛性ソーダでpHを約3に維持し、酸化剤である1%過酸化水素水溶液の所定量を添加し、約2時間撹拌しつつ、過酸化水素添加時の電位を測定した。その後、苛性ソーダにてpHを6.5〜7.5に調整し、アニオン系高分子凝集剤(エバグロースA−151、荏原製作所製)を処理水量あたり1mg/l添加、凝集させて固液分離した。得られた処理水のCODと残留酸化剤濃度を測定した。
表3に結果を示す。ORP計の電位は、最適添加率である60mg/l近傍で電位の変化が見られなかった。その他の電極は、薬剤の添加により電位の変化が見られ、処理水CODや残留過酸化水素が低くでき、これら電極による薬剤の注入制御が可能である。
【0042】
【表3】
Figure 2004077169
【0043】
実施例4
初期COD65mg/l、過酸化水素100mg/lを含む模擬半導体製造排水(以下、試料)500mlに実施例2の電極を挿入し、試料に還元剤の10%亜硫酸ソーダ水溶液を添加し、電位と処理水CODと残留過酸化水素濃度を測定した。亜硫酸ソーダ添加後の試料のpHを、10%苛性ソーダで6〜7に調整した。
表4に結果を示す。ORP計の電位は、添加率近傍で電位の変化が見られなかった。その他の電極は、薬剤の添加により電位の変化が見られ、CODや残留亜硫酸ソーダが低くでき、これら電極による薬剤の注入制御が可能である。
【0044】
【表4】
Figure 2004077169
【0045】
実施例5
古紙を原料とする抄紙工程の白水を、硫酸バンド100g/l、アニオン系高分子凝集剤(エバグロースA151,荏原製作所製)で凝集沈殿処理して得られた処理水を試料として、スライム防止試験を行った。試料200mlを容量300mlの三角フラスコにとり、有効塩素110重量%の次亜塩素酸ソーダ水溶液を添加して、30℃で24時間又は72時間振とう培養した後に、標準寒天培地法で一般細菌数を測定した。試料の一般細菌数が3×10個/mlである。
(1)SUS316電極:ステンレスのSUS316を使用。
(2)酸化銅電極:金属銅板を900℃で空気雰囲気で2時間加熱したものを使用。
(3)市販の銅イオン電極:硫化銀結晶を感応部にしたものを使用。
(4)ORP計:白金電極使用。
表5に結果を示す。ORP計の電位は、最適添加率近傍で電位の変化が見られなかった。その他電極は、薬剤の添加により電位の変化が見られ、これら電極によるスライム防止剤の注入制御が可能である。
【0046】
【表5】
Figure 2004077169
【0047】
実施例6
水道水とし尿から調製したpH6.6、SS34mg/l、BOD150mg/l、大腸菌群数7×10CFU/mlの模擬下水を使用した。
以下に示す電極を挿入したガラスビーカーに模擬下水500mlをとり、撹拌羽根にて周速度0.5m/秒で撹拌しながら消毒剤の二酸化塩素を添加した。5分経過後採水し、大腸菌群数と残留塩素濃度を測定した。残留塩素濃度は、DPD法により測定し塩素換算値で表した。
(1)銀電極:純度99%以上の銀を使用。
(2)酸化銀電極:銀板を900℃で空気雰囲気で2時間加熱したものを使用。
(3)市販の銅イオン電極:硫化銀結晶を感応部にしたものを使用。
(4)ORP計:白金電極使用。
表6に結果を示す。ORP計の電位は、最適添加率近傍で電位の変化が見られなかった。その他の電極は、薬剤の添加により電位の変化が見られ、これら電極による消毒剤の注入制御が可能である。
【0048】
【表6】
Figure 2004077169
【0049】
【発明の効果】
本発明の効果は以下の通りである。
(1)10mg/l以下の低濃度の酸化剤や還元剤はORPによる検出が困難であるが、本発明の簡便な方法で低濃度の酸化剤や還元剤が検出可能である。
(2)市販のイオン電極が使用でき、測定装置が安価である。
(3)酸化剤を必要な量だけ脱臭装置の循環液に添加でき、薬剤コストの低減が図れ、脱臭効果が高く、安定した脱臭装置の運転が可能になる。また、ブロー水の酸化剤濃度を最小限に抑えられることから、薬剤の節約になる。
(4)冷却水中の薬剤濃度がリアルタイムに把握でき、運転管理が容易になる。また、ブロー水の酸化剤濃度を最小限に抑えられることから、薬剤の節約になる。
(5)共存する酸化剤や還元剤の影響を受けないために適切な薬品注入が可能。
(6)低濃度の消毒剤濃度が測定、制御できて、汚水の消毒の安定した運転が可能になる。
また、残留消毒剤が少なくできて放流先の環境が保全され、また再利用するに際しての腐食などのトラブルがない。
【図面の簡単な説明】
【図1】本発明による悪臭ガスの洗浄装置の一例を示すフロー構成図。
【図2】本発明による被処理水の酸化分解処理装置の一例を示すフロー構成図。
【図3】本発明による被処理水のCOD酸化分解処理装置の一例を示すフロー構成図。
【図4】本発明による冷却塔のスライム防止装置の一例を示すフロー構成図。
【図5】本発明による被処理水の消毒装置の一例を示すフロー構成図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the treatment of liquids using chemicals, especially the method for measuring the residual concentration of used chemicals, and the odor generated from organic waste such as sewage, sewage, human waste, septic tank sludge, and garbage. Wastewater, sewage, human waste, etc. wastewater treatment and disinfection methods by gas deodorization methods, oxidation treatment with oxidizing agents and reduction treatment with reducing agents, cooling towers, cooling equipment, tap water that reuses treated water, etc. The present invention relates to a method for preventing slime of process water in manufacturing equipment and manufacturing equipment, and a chemical injection control device.
[0002]
[Prior art]
Odor gas is generated during wastewater treatment such as sewage, human waste, industrial wastewater, and organic waste such as organic sludge and garbage generated during wastewater treatment, thereby improving the working environment. It is very important to take environmental measures for the local residents and prevent corrosion of equipment.
As a deodorizing method, a chemical cleaning method using an acid or an alkali, an activated carbon adsorption method, and a biological deodorizing method have been put into practical use. In particular, the chemical cleaning method is a highly versatile deodorizing method.
In the chemical cleaning method, a cleaning liquid containing an acid or an alkali is brought into contact with a malodorous gas through a filler, and an odor component in the malodorous gas is absorbed into the cleaning liquid or is oxidized and decomposed by a chemical of the cleaning liquid to deodorize. If the injection of the drug concentration can be controlled and a sufficient amount of the drug can be supplied, it is possible to cope with a wide range of concentrations of the odor components of the malodorous gas, and it is a highly versatile deodorizing method. Among the odor components, ammonia and trimethylamine can be removed from the odorous gas by a cleaning solution containing sulfuric acid. Sulfur-based odors such as hydrogen sulfide are oxidatively decomposed by a mixed agent of caustic soda and sodium hypochlorite, and are removed from malodorous gases.
[0003]
In the activated carbon adsorption method, an odor component is adsorbed on activated carbon having a large number of pores to deodorize the activated carbon. As the activated carbon, an impregnated activated carbon impregnated with an acid, an alkali, or an oxidizing agent is widely used.
This method can perform deodorization only by passing a malodorous gas through the activated carbon layer and has good operability, but can be applied only to low-concentration odor components.
As the biological deodorizing method, a packed tower type deodorizing method of deodorizing by contacting a odorous gas with a filler to which microorganisms are attached has been widely used. Although the deodorizing cost is low, the deodorizing performance is improved by extending the contact time between the filler and the odorous gas, but the device tends to be excessively large.
[0004]
Moreover, the COD removal method of the wastewater performs biological treatment and coagulation sedimentation treatment with low operation cost, and COD remaining in the treated water is treated by activated carbon adsorption method or chemical oxidation method.
The oxidizing agents used in the conventional chemical oxidation treatment include sodium hypochlorite, chlorine-based disinfectants such as chlorine, and hydrogen peroxide. Although these oxidizing agents are used alone, hydrogen peroxide has been put to practical use in chemical oxidation treatment and Fenton treatment in combination with ferrous salts.
Even if the oxidizing agent is added to the water to be treated, the oxidizing agent does not react and disappear, but remains in the treated water. Therefore, a post-treatment for removing the residual oxidizing agent is required. In order to remove the residual oxidizing agent, it is necessary to add a reducing agent and reduce and remove the remaining oxidizing agent.
In addition to the COD oxidation treatment described above, in addition to the COD oxidation treatment described above, a chlorine-based oxidizing agent or hydrogen peroxide is used to remove sulfite ions as a reducing agent contained in flue gas desulfurization wastewater and hydrazine in boiler wastewater. Is used.
As for the reduction treatment, ferrous salts and sodium sulfite are used to reduce the hydrogen peroxide contained in semiconductor manufacturing wastewater for the reduction treatment of strongly oxidizing hexavalent chromium ions in dyeing wastewater and plating wastewater. Uses sodium sulfite.
[0005]
Next, the cooling water cooled by the cooling tower is used for cooling in the manufacturing process. The return water from the manufacturing process and the heat exchanger is cooled again by the cooling tower to become cooling water. Make-up water is replenished to replenish the water emanating from the cooling tower, and the spent slime inhibitor is added to the cooling tower.
In a cooling water system such as a manufacturing plant such as a food factory or a paper mill, or a waste treatment facility, viscous biofilms and slimes composed of bacteria, filamentous fungi, algae, etc. are generated, which causes clogging of pipes and efficiency of a heat exchanger. In addition to slime obstacles such as deterioration and corrosion of equipment, there is a problem in productivity due to deterioration in quality due to mixing of exfoliated slime into products.
In the process of reusing treated water obtained in wastewater treatment as washing water, cooling water, or the like, slime damage due to propagation of microorganisms occurs. Odor problem caused by slime damage occurs.
[0006]
Conventionally, as a method for preventing a slime composed of such bacteria, filamentous fungi, algae, and the like by a drug, in addition to a slime inhibitor of a bactericidal system that kills bacteria constituting the generated slime, slime is constituted. There is the addition of an antibacterial agent that suppresses the generation of bacteria and the like. Antibacterial agents generally have low bactericidal activity and are inferior in immediate effect, but can suppress the generation of bacteria.
Conventional slime inhibitors include chlorinated slime inhibitors such as sodium hypochlorite, chlorine, mustard powder, and chlorine dioxide, and organic chlorinated compounds such as sodium hypobromite, hydrogen peroxide, and cyanuric acid. Ammonium salts and the like have been used. As the antibacterial agent, silver, glutaraldehyde, isocyanate-based, and halocyanoacetamide-based compounds are generally used.
[0007]
Furthermore, due to heavy rainfall, etc., when a large amount of sewage in rainy weather exceeding the sewage treatment capacity flows into the sewage treatment plant as the sewage treatment plant inflow sewage, sewage with a sewage treatment ability or more is subjected to simple treatment such as sedimentation, Released into public waters. SS and BOD removal equipment for sewage during rainy weather requires enormous investment, and it is difficult to take immediate measures. On the other hand, Escherichia coli group has a small capital investment, can be solved by adding a disinfectant, and is being put to practical use.
In the treatment of sewage containing pollutants, coliforms are simultaneously removed during the process of removing pollutants in the sewage by coagulation sedimentation treatment or biological treatment. In biological treatment, most coliforms are removed, but for safety reasons, a disinfectant is added to the treated water and released into public waters.
Disinfectants for sewage such as sewage and drainage during rainy weather include chlorinated disinfectants such as sodium hypochlorite, which is an oxidizing disinfectant with oxidizing power, chlorine, salad powder, chlorine dioxide, etc., and sodium hypobromite. Etc. have been used.
[0008]
These processing methods have the following problems.
(1) When a high concentration of an oxidizing agent or a reducing agent is contained, the injection of the drug can be controlled by the ORP, which is the oxidation-reduction potential of a conventional platinum electrode, but a low concentration of an oxidizing agent of 10 mg / l or less It is difficult to detect or inject the reducing agent by the conventional ORP and to control the injection.
(2) When the makeup water enters the deodorizing device, a part of the circulating fluid is discharged as blow water to the outside of the system. The blow water contains an unreacted drug and is a waste of drug. It is necessary to minimize the drug concentration in the circulating fluid.
(3) When the concentration of the odor component of the offensive odor gas increases, there is a temporary shortage of chemicals, and it is difficult to maintain the deodorizing effect.
[0009]
(4) When oxidizing the COD or the reducing agent of the water to be treated with the oxidizing agent, an excessive amount of the oxidizing agent is required for the COD, and as a result, a large amount of the oxidizing agent remains in the treated water, and Affect the environment. Further, the amount of the reducing agent used for the reduction treatment increases. There is no simple and practical way to control the injection of oxidizing or reducing agents.
(5) The amount of medicine consumed by blow water from a cooling facility such as a cooling tower is large, and there is no method that can always grasp the appropriate concentration of the medicine in the cooling water.
(6) If a large amount of the disinfectant remains in the effluent, the environment of the discharge destination is adversely affected. Therefore, appropriate injection control of the disinfectant is required. In the method of measuring the number of coliform bacteria and injecting the disinfectant, it takes time to determine the disinfectant addition rate. It is practical to measure the concentration of the residual disinfectant after adding the disinfectant and to add the disinfectant so that the concentration of the disinfectant is 0.1 mg / l or less, but the equipment cost is expensive and maintenance is difficult. .
[0010]
[Problems to be solved by the invention]
In view of the above prior art, the present invention stably and surely deodorizes odorous gas, stably and surely performs waste liquid treatment such as COD removal and oxidation treatment and reduction treatment of sewage, and stably and surely reduces slime. An object of the present invention is to provide a method for preventing and further stably performing sterilization stably and reliably, a method for measuring a residual substance of a drug therefor, and a drug injection control device.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, the potential in a liquid is measured with an electrode composed of a comparative electrode and an electrode using a metal other than platinum or a poorly soluble metal compound or an ion electrode, and the potential in the liquid is measured. And calculating a concentration of a residual halogen or a residual oxidizing agent or a residual reducing agent contained in the liquid.
Further, according to the present invention, in the deodorizing method of removing the odor component of the malodorous gas by circulating washing with a chemical solution containing an oxidizing agent to oxidatively decompose and remove the odor component, the residual oxidizing agent concentration in the circulating solution is calculated by the above-described residual substance calculating method. In the deodorizing method of injecting and controlling the amount of the oxidizing agent added to the circulating fluid based on the calculated value, or in the method of treating wastewater by the oxidizing treatment with the oxidizing agent or the reducing treatment with the reducing agent, the residual oxidizing agent in the water to be treated is A wastewater treatment method in which the concentration or the reducing agent concentration is calculated by the above-described residual substance calculating method, and the amount of the oxidizing agent or the reducing agent added to the water to be treated is controlled based on the calculated value, or an oxidizing slime. In the method for preventing slime of an open system cooling water to which an inhibitor is added, the residual oxidant concentration in the cooling water is calculated by the above-described method for calculating a residual substance, and based on the calculated value, the slime inhibitor is added to the cooling water. The slime prevention method of controlling the injection amount of the amount, or in the method of disinfecting wastewater or its treated water to which an oxidizing agent-based disinfectant is added, the residual oxidant concentration in the wastewater or its treated water is calculated by the above-described residual substance calculation method, Based on the calculated value, the disinfecting method is to inject and control the amount of disinfectant added to the sewage or the treated water.
[0012]
Furthermore, in the present invention, a potential measuring device consisting of an electrode composed of a comparative electrode for measuring the potential in the liquid and an electrode or an ionic electrode using a metal other than platinum or a poorly soluble metal compound, and based on the measured values. A calculating device for calculating the concentration of the residual halogen or the residual oxidizing agent or the residual reducing agent contained in the liquid, and control means for controlling an injection amount of the drug to be injected into the liquid based on the calculated concentration. A drug injection control device characterized by having the above.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention is a method for measuring the residual halogen or residual oxidizing agent concentration in water based on the potential of a reference electrode and an electrode composed of a metal other than platinum or a poorly soluble metal compound.
When a high concentration oxidizing agent is contained in the water to be treated, the injection of the oxidizing agent can be controlled by the ORP, which is the oxidation-reduction potential of a conventional platinum electrode, but the oxidizing agent having a low concentration of 10 mg / l or less On the other hand, in the conventional ORP, the change in the potential is small, and it is difficult to detect the oxidant and control the injection of the oxidant added to the water to be treated by the ORP.
The potential obtained by the comparative electrode of the present invention and an electrode composed of a metal other than platinum or a poorly soluble metal compound shows a large change in potential even with a low-concentration oxidizing agent of 10 mg / l or less, and the It is possible to detect the remaining oxidizing agent and control the injection of the chemical reducing agent added to the water to be treated.
The reference electrode (also referred to as a reference electrode) is a silver chloride electrode or a ginger electrode used in a commercially available pH meter or ORP meter.
[0014]
By attaching a metal other than platinum to the reference electrode and a metal wire having conductivity, for example, a copper wire, and connecting each end to a terminal of an electrometer or voltmeter, a commercially available recorder, a pH meter, etc., the present invention Is completed. The voltage value of this detection unit is defined as the potential in the present invention.
The metals other than platinum include carbon, graphite, transition metals such as copper and nickel, and alloys of transition metals and alkaline earth metals.
Poorly soluble metal compounds are alkali metals and alkaline earth metals, oxides of transition metals, halogen compounds such as sulfides and chlorides, compounds that are insoluble in weakly acidic aqueous solutions or weakly alkaline aqueous solutions such as phosphate compounds and sulfates. The electrode of the present invention can be obtained by mixing and molding several kinds of compounds.
[0015]
Residual halogen is a halogen compound whose residual halogen can be detected by an orthotolidine method or a DPD method in an aqueous solution, and is hypochlorous acid, hypochlorite ion, hypochlorite hypoiodite, hypoiodite. , Hypoiodite ion, hypobromite, hypobromite, and hypobromite ion.
The residual oxidizing agent is a compound detected by an iodine titration method described in JIS-K0102. Specifically, in addition to the above-mentioned halogen compounds, there are hydrogen peroxide, chlorate, bromate, iodate, perchlorate, persulfate, nitrite and the like.
The chemical is added to the object to be processed, and the addition of the chemical to the object to be processed is stopped when the amount of change in the potential reaches a certain minimum set value width based on the measured change in the potential.
The drug may be added until a certain potential is reached, or when the potential reaches a certain potential, the drug may be started, and when the potential reaches the next potential, the drug may be stopped.
Of course, the injection of the medicine may be controlled based on a current value obtained by converting the measured potential into a current value, or a voltage value obtained by amplifying the measured potential as it is or amplified.
[0016]
When the object to be treated is reducing, the agent is an oxidizing agent. In order to neutralize the reducibility of the object by the oxidizing power of the agent, the agent is added to the object. The concentration of the oxidizing agent remaining in the object after the oxidation-reduction reaction is measured by the potential.
On the other hand, when the object to be treated is oxidizing, the agent is a reducing agent system. A reducing agent is added to the object to be treated, and after the oxidation-reduction reaction, an excessive amount of the reducing agent remains in the object to be treated. Can control injection.
The potential in the present invention varies depending on the type of electrode other than platinum, but when metal sulfide is used instead of the platinum electrode, the potential is from -500 to +500 mV.
Compared to the ORP using a platinum electrode, the response of the potential to the residual oxidant concentration is better, and a low oxidant concentration can be detected.
Depending on the type of oxidant, the electrode to be used can be selected and the response of the potential to the residual oxidant concentration can be improved. The electrode used is preferably a metal oxide for halogen compounds and a metal sulfide for oxides other than halogen.
[0017]
Further, the present invention is a method for measuring the concentration of residual halogen or residual oxidant in water based on the potential of an electrode composed of a comparative electrode and an ion electrode.
The ion electrode of the present invention is in the form of a hardly soluble salt film, and is composed of at least one kind of a transition metal such as nickel, titanium, chromium, gold, silver, and lead or an alkaline earth metal compound such as lanthanum and calcium; It is formed of a substance having an action of detecting a cation or an anion in an aqueous solution, and is used for detecting a cation or an anion contained in wastewater or the like.
The material of the electrode that is sensitive to cations or anions is silver sulfide, a mixture of silver sulfide and silver chloride, a mixture of sulfide such as silver sulfide and lead oxide which is a metal oxide, or a halide such as lanthanum fluoride. It is a crystal of. These powdery metal compounds are molded under pressure at an arbitrary pressure, two or more types of metal compounds are mixed in powder form and then pressed, or two or more types of powdery metal compounds are pressed. What superimposed what was molded can be used.
[0018]
Depending on the material and shape of the sensitive member, commercially available ion electrodes may be insoluble salt films such as cadmium ions, copper ions, fluorine ions, sulfide ions, cyanide ions, etc., or ion exchange membranes such as nitrate ions and chloride ions. There are a shape, a gas permeable film type such as ammonia and nitrous acid, and a glass film type such as a sodium ion electrode. In consideration of maintenance and the like, the above-mentioned insoluble salt film type ion electrode is preferable.
It may be manufactured so that it can be used in the present invention, or a commercially available ion electrode may be diverted to the present invention.
Further, a commercially available ion electrode meter (ion concentration meter) includes a comparison electrode and an ion electrode, and calculates and displays a potential obtained between both electrodes to a target ion concentration. In the present invention, a commercially available ion electrode meter is used in the potential mode, and the load on the object to be processed can be controlled from the obtained potential.
The detection electrode of the present invention is obtained by attaching the comparison electrode and the ion electrode to a metal wire having conductivity, for example, a copper wire, and connecting each end to a terminal of an electrometer or a voltmeter, a commercially available recorder, a pH meter, or the like. The part is completed. The voltage value of this detection unit is defined as the potential in the present invention.
[0019]
Further, the present invention is a method for measuring the concentration of a residual reducing agent in water based on the potential of the electrode described above.
When the material to be treated is reducing, the added agent is an oxidizing agent. In order to neutralize the reducing property of the object by the oxidizing power of the agent, the agent is added to the object.
The concentration of the oxidizing agent remaining in the object after the oxidation-reduction reaction is measured by the potential.
When a high-concentration reducing agent is contained in the object, the injection of the oxidizing agent can be controlled by the ORP, which is the oxidation-reduction potential of a conventional platinum electrode. On the other hand, in the conventional ORP, the change in potential is small, and it is difficult to detect the reducing agent and control the injection of the chemical oxidizing agent added to the water to be treated by the ORP.
In the potential obtained by the comparative electrode of the present invention and an electrode composed of a metal other than platinum or a poorly soluble metal compound, the potential change is large even for a low-concentration reducing agent of 10 mg / l or less. It is possible to detect the remaining reducing agent and control the injection of the chemical oxidizing agent added to the water to be treated.
[0020]
The reducing agent is a reducing metal ion such as ferrous ion, a sulfite, a thiosulfate, a sulfide, or an organic or inorganic substance measured as COD such as wastewater.
An oxidizing agent is added to the object to be processed, and when the amount of change in the electric potential reaches a certain minimum set value width based on the measured change in the electric potential, the addition of the chemical to the object to be processed is stopped.
The oxidant may be added until a certain set potential is reached, or when the potential reaches a certain set potential, the addition of the oxidant may be started, and when the potential reaches the next set potential, the addition of the oxidant may be stopped. Of course, the injection of the oxidizing agent may be controlled based on a current value obtained by converting the measured potential into a current value, or based on the measured potential as it is or on a amplified voltage value.
The electrode used is generally a metal or metal sulfide for the residual reducing agent. In a metal oxide system, an oxide film may be damaged by a reducing agent.
[0021]
Next, the present invention provides a chemical cleaning method in which an odorous component of a malodorous gas is oxidatively decomposed and removed by an oxidizing agent. This is a deodorizing method for controlling injection of an oxidizing agent.
The odors to be deodorized according to the present invention include sulfurous acid gas, ammonia, aldehydes, hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide and the like.
The oxidizing agent is sodium hypochlorite as a chlorine-based oxidizing agent, hypobromite as a brominated oxidizing agent, or a mixture thereof.
An alkaline agent such as caustic soda is added to the circulating fluid together with the oxidizing agent to prevent generation of halogen gas, thereby making the circulating fluid alkaline.
The concentration of the oxidizing agent in the circulating fluid is 10 to 1000 mg / l with respect to the amount of the circulating fluid in terms of chlorine concentration. If it is less than 10 mg / l, the deodorizing effect is low. Above 1000 mg / l, drug cost is a problem.
[0022]
The potential of the circulating fluid is measured with a reference electrode and an electrode composed of a metal other than platinum, a reference electrode and an electrode composed of a poorly soluble metal compound, or an electrode composed of a comparative electrode and an ion electrode. These electrodes may be provided in the flow path of the circulating fluid, or a part of the circulating fluid may be taken out and its potential may be measured.
The potential obtained here is transferred to the control unit of the oxidant injection pump and used for oxidant injection control. The voltage can be used as it is, or converted to a current value, for measuring the oxidant concentration.
When the change in the potential measured by adding the oxidizing agent to the circulating fluid reaches a certain minimum set value width, the addition of the drug to the circulating fluid is stopped.
The oxidizing agent may be added to the circulating fluid until a certain potential is reached, or when the potential reaches a certain potential, the addition of the oxidizing agent may be stopped when the potential reaches the next potential.
[0023]
FIG. 1 is a flow configuration diagram showing an example of a vertical chemical cleaning and deodorizing apparatus, and its outline will be described below.
A deodorizing device composed of a step of contacting a odorous gas and a circulating liquid containing an oxidizing agent, and a comparative electrode and an electrode composed of a metal or a metal compound other than platinum, or an electrode composed of a comparative electrode and an ion electrode. It comprises a device for measuring the potential of the circulating fluid, an arithmetic device for determining the amount of the oxidizing agent to be added to the potential, and an oxidizing agent injection device for adding the oxidizing agent to the circulating fluid.
The odorous gas is led to the bottom of the device and is discharged to the atmosphere in contact with a circulating fluid containing an oxidizing agent in a packed bed filled with a commercially available filler made of plastic or porcelain. At the time of passing through the packed bed, the odor components in the malodorous gas are removed by oxidative decomposition and absorption by the oxidizing agent and the alkaline agent in the circulating liquid. Watering of the circulating liquid is performed continuously from the upper part of the apparatus, and the watering amount is 1 to 5 L / m per unit processing gas amount. 3 Gas, usually 3 l / m 3 -Gas.
[0024]
A part of the circulating fluid is collected, the potential is measured by a potential measuring device, and the result is used to determine the deficient amount of the oxidizing agent by an arithmetic device, and the oxidizing agent is added to the circulating fluid from the oxidizing agent injection device. The sampling frequency may be continuous or intermittent. When the amount of circulating fluid is large or when the change in the concentration of the offensive odor gas is small, the change in the oxidizing agent concentration of the circulating fluid is small.
The pH of the circulating fluid is measured by a pH meter provided in the middle of the circulating fluid piping, and is added to the circulating fluid from a caustic soda injector to maintain the pH at 10 to 11.
Generally, the height of the packed bed is 500 mm to 1000 mm, and a plurality of packed beds and a plurality of chemical cleaning devices may be used in series.
Tap water, well water, and industrial water can be used as makeup water. The makeup water is always supplied to the deodorizing device, and the difference from the water carried away by the processing gas is discharged as blow water outside the deodorizing device.
The blow water has the same composition as the circulating fluid, and the loss of the medicine due to this is not negligible. For this reason, by controlling the concentration of the drug in the circulating fluid, it is possible to prevent the chemical such as the oxidizing agent from being wasted without being used for deodorization.
[0025]
In the present invention, in the wastewater treatment by oxidation treatment with an oxidizing agent or reduction treatment with a reducing agent, the residual oxidant concentration or the reducing agent concentration of the water to be treated is measured as the potential of the electrode by the above-described method, and the water to be treated is treated. This is a wastewater treatment method that controls injection of an oxidant into the wastewater.
The water to be treated in the present invention is various industrial wastewater, night soil, landfill leachate, dewatered filtrate, liquid waste, sewage discharged from general homes, businesses, etc., sewage mixed with rainwater, or a mixture thereof. Coagulated sedimentation treatment water, pressurized flotation treatment water, activated carbon adsorption treatment water, chemical oxidation treatment water, various membrane separation treatment water, rainwater, and groundwater.
The potential of the water to be treated is measured with a comparative electrode and an electrode composed of a metal other than platinum, a comparative electrode and an electrode composed of a poorly soluble metal compound, or an electrode composed of a comparative electrode and an ion electrode. These electrodes may be provided in a pipe or a water tank which is a flow path of the water to be treated, or a part of the water to be treated may be taken out and its potential may be measured.
The potential extracted here is transferred to the control unit of the chemical injection pump and used for chemical injection control. The voltage can be used as it is, or converted to a current value and used for concentration measurement.
[0026]
The installation place of the electrode of the present invention is an inflow part of the water to be treated, an oxidation treatment water tank, a reduction treatment water tank, a neutralization tank or a flow rate adjustment tank preceding the oxidation reduction treatment water tank.
The oxidizing agent or the reducing agent is added at or before or after the oxidizing agent or the reducing agent is installed.
The oxidizing agent and the reducing agent used in the present invention are the same as described above. Further, since COD of the water to be treated is oxidized by the oxidizing agent, this COD is a reducing agent.
Oxidizing treatment of the water to be treated with an oxidizing agent includes Fenton treatment using iron salt and hydrogen peroxide for COD removal, and water to be treated containing a reducing agent component such as ferrous salt, sulfide and sodium sulfite. This is an oxidative decomposition treatment using an oxidizing agent such as hydrogen peroxide.
The reduction treatment with a reducing agent is to reduce the water to be treated containing residual chlorine and the like with a sulfite.
Regarding the oxidizing agent and the reducing agent in the oxidizing treatment and the reducing treatment of the water to be treated, the concentration of the oxidizing agent and the reducing agent remaining in the treated water can be detected and controlled by the potential of the present invention, and the chemical addition rate is determined.
[0027]
When attempting to control the injection of the oxidizing agent and the reducing agent with a commercially available ORP meter using a platinum electrode, a change in the ORP cannot be detected when the concentration of the oxidizing agent or the reducing agent is as low as 10 mg / l. In addition, the optimum addition ratio of the oxidizing agent or the reducing agent cannot be determined.
FIG. 2 shows a flow configuration diagram of an example of the oxidative decomposition treatment apparatus for the water to be treated containing a reducing agent.
For the water to be treated containing a reducing agent such as a sulfite, a sample for measuring the potential is collected from the mixing tank, the potential is measured, and the amount of the oxidizing agent until the potential reaches the set potential is determined by an arithmetic unit.
The oxidant is added to the decomposition tank by an oxidant injector. An acid or alkali agent can be added to the mixing tank to adjust the pH so that the oxidation-reduction reaction is promoted. The pH is measured by a pH meter, and the amount of the acid or alkali agent added is controlled by the pH.
[0028]
Alternatively, the mixing tank and the decomposition tank may be combined into one, and the potential of the mixing tank may be directly measured by a potential measuring device, and an oxidizing agent may be added until the potential reaches the set potential.
FIG. 3 shows a flow configuration diagram of an example of the COD oxidative decomposition treatment apparatus for the water to be treated.
The water to be treated containing COD is guided to the mixing tank (1), a sample for measuring the potential is collected from the mixing tank (1), the potential is measured, and the amount of the oxidizing agent until reaching the set potential is determined by the arithmetic unit. I do. Hydrogen peroxide is added to the mixing tank (2) by an oxidant injection device. An acid or alkali agent can be added to the mixing tank (1) to adjust the pH so that the oxidation-reduction reaction is promoted. A ferrous salt serving as a catalyst for the Fenton treatment is added to the mixing tank (1).
Alternatively, the potential of the mixing tank (2) can be directly measured by a potential measuring device, and an oxidizing agent can be added until the potential reaches the set potential.
[0029]
Further, the present invention provides a method for preventing slime of an open system cooling water to which an oxidizing slime preventing agent is added. This is a slime prevention method for controlling injection of an oxidizing agent.
The treatment object in the present invention is, for example, cooling water of various plants, hydrophilic water of a hydrophilic park, hot spring water of pools and spas, natural hot spring water, rainwater used for middle tap water and reused water, and various kinds of treated water.
The slime in the present invention is composed of what is called a biofilm, or bacteria, filamentous fungi, algae and the like.
The slime inhibitor is a chlorine-based compound such as hypochlorite, a bromine-based compound such as hypobromite, an iodine-based oxidizing compound such as hypoiodite, or hydrogen peroxide.
[0030]
The general addition rate of the slime inhibitor is 10 to 300 mg / l based on the amount of cooling water. If it is less than 10 mg / l, the slime prevention effect is low. If it exceeds 300 mg / l, chemical costs and plant corrosion are problems.
The potential of the object to be processed is measured with a reference electrode and an electrode composed of a metal other than platinum, a comparison electrode and an electrode composed of a poorly soluble metal compound, or an electrode composed of a comparative electrode and an ion electrode. These electrodes may be provided in a pipe or a water tank, which is a flow path of the object, or a part of the object may be taken out and its potential measured.
The potential extracted here is transferred to the control unit of the slime inhibitor injection pump and used for slime inhibitor injection control. The voltage can be used as it is, or converted to a current value and used for concentration measurement.
[0031]
The installation place of the electrode of the present invention is an inflow part of the water to be treated, an oxidation treatment water tank, a reduction treatment water tank, a neutralization tank or a flow rate adjustment tank preceding the oxidation reduction treatment water tank.
Since the slime inhibitor is circulated in the system, the slime inhibitor can be added to any location, but the location where the electrode of the present invention is installed or before it is optimal.
FIG. 4 shows a flow diagram illustrating an example of a cooling tower for explaining the present invention.
The present invention includes an electric potential measuring device, an arithmetic device for calculating an added amount of a slime inhibitor from an electric potential, and a slime inhibitor adding device.
Return water to the cooling tower, or a water supply pipe to the manufacturing facility, the electrode of the present invention is installed inside the cooling tower, and the potential of the cooling water is measured. The calculation is performed, and the slime inhibitor is added from the slime inhibitor adding device to the above-mentioned electrode installation place or an arbitrary place around the cooling tower.
[0032]
Furthermore, the present invention provides an industrial effluent, rainwater containing pollutants, sewage such as sewage, or a disinfection method of adding an oxidant-based disinfectant to treated water thereof, wherein the residual oxidant concentration is determined as the potential of the electrode by the method described above. This is a method for disinfecting sewage by measuring and injecting and controlling an oxidizing agent into sewage or its treated water.
The sewage in the present invention refers to various industrial wastewater, night soil, leachate from landfills, dewatered filtrate, liquid waste, and sewage mixed with sewage and rainwater discharged from general households and businesses.
There is no restriction on the mixing ratio of sewage and rainwater in sewage in which sewage and rainwater are mixed. The present invention can be applied to only sewage or rainwater. The sewage of the present invention also includes rainwater from some areas mixed in sewer pipes. Therefore, the present invention can be applied to sewage containing even a small amount of rainwater, and the method of the present invention can be applied to sewage flowing into a sewage treatment plant before flowing into a sedimentation basin. Further, the method of the present invention can be applied to the discharge of sewage from a relay pump station in the middle of a sewer pipe to a public water area in the same manner as the sewage flowing into a sewage treatment plant.
[0033]
The disinfectant of the present invention may be added to various industrial wastewater, night soil, septic tank sludge, and other liquid wastes, or after being added to the treated water, used in a process for discharge and reuse. May be.
The disinfectant of the present invention is a halogen-based disinfectant or a substance containing oxygen in molecules such as ozone and hydrogen peroxide. Halogen-based disinfectants include chlorine gas, hypobromite, hypochlorite, hypoiodite, chlorine dioxide and the like.
The addition rate of the disinfectant is 1 to 30 mg / l in terms of effective chlorine, based on the amount of wastewater. If it is less than 1 mg / l, the disinfecting and removing effect is low. If the amount exceeds 30 mg / l, the cost of chemicals is a problem. Generally, when 10 mg / l of a bromine-based disinfectant is added, pathogenic bacteria such as coliform bacteria can be disinfected.
[0034]
The potential of the object to be processed is measured with a reference electrode and an electrode composed of a metal other than platinum, a comparison electrode and an electrode composed of a poorly soluble metal compound, or an electrode composed of a comparative electrode and an ion electrode. These electrodes may be provided in a pipe or a water tank that is a flow path of the water to be treated, or a part of the substance to be treated may be taken out and its potential may be measured.
The potential extracted here is transferred to the control unit of the disinfectant injection pump and used for disinfectant injection control. The voltage can be used as it is, or converted to a current value and used for concentration measurement.
The installation place of the electrode of the present invention is a flow control tank, a raw water tank, a drainage tank, a sand basin, a first sedimentation basin, a filtration raw water tank, a filtration water tank, an activated carbon raw water tank, an activated carbon processing water tank, and a neutralization tank, which are inflow portions of an object to be treated. Inside tanks such as tanks, treatment tanks, discharge tanks, reuse tanks, and disinfection tanks. The disinfectant is added to a water tank or a pipe at a place where the electrode is installed, or a water tank or a pipe at a preceding stage.
[0035]
FIG. 5 shows a flow configuration diagram of an example of a device for disinfecting water to be treated.
The present invention includes a potential measuring device, a calculating device for calculating a disinfectant addition amount from a potential, and a disinfectant adding device.
The electrode of the present invention is installed inside the water tank of the disinfection tank into which the water to be treated flows, and the potential of the water to be treated is measured. The obtained potential is used to calculate the amount of disinfectant to be added to the disinfectant tank by the disinfectant adding device.
After the disinfectant is added to the disinfecting tank from the disinfectant adding device, the potential of the water to be treated after the disinfectant is added is measured by the electrode of the present invention. The addition amount of the disinfectant is calculated by the arithmetic device from the obtained potential, and the addition amount of the disinfectant is controlled by the disinfectant addition device.
[0036]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
Example 1
Using a commercially available standard gas and a simulated gas prepared with air as a raw gas, using the apparatus of FIG. 1 as an experimental apparatus, a raw gas having a composition of 2 ppm of hydrogen sulfide and 1 ppm of methyl mercaptan was continuously aerated from the bottom of the packed bed, The circulating liquid is continuously sprinkled from the top of the packed bed, the superficial line velocity is 1.0 m / sec, the gas temperature is 20 to 25 ° C., and the water spray amount (water spray amount per unit processing gas amount) is 3 liter / m. 3 Experimented with
The experimental apparatus is a column made of vinyl chloride having an inner diameter of 150 mm and a height of 2000 mm (having a cross-sectional area of 0.02 m). 2 ) In which a commercially available plastic filler (specific surface area 100 m 2 / M 3 ) Was filled to 1000 mm.
As the drug, a commercially available sodium hypochlorite having a chlorine conversion value of 10% was used. The chlorine conversion value was determined by an iodine titration method described in JIS-K0102. After the addition of the drug to the circulating fluid, the pH of the circulating fluid was adjusted to 10 with sodium hydroxide.
[0037]
In the middle of the circulating fluid piping, the following three sets of electrodes were installed in addition to the ORP. The reference electrode (also called the reference electrode) is a silver chloride electrode.
(1) Metal copper electrode: Metal copper having a purity of 99% is used.
(2) Lead oxide electrode: A metal lead plate heated at 900 ° C. in an air atmosphere for 2 hours is used.
(3) Commercially available fluorine ion electrode: using a lanthanum fluoride crystal as a sensitive part.
Table 1 shows the results. The potential of the ORP meter was 50 to 70 mV, and no change in the potential was observed. In the above three types of electrodes, a change in potential was observed due to the addition of the drug, and a decrease in the concentration of the sulfur-based odor component was observed. The injection of the medicine can be controlled by these electrodes.
[0038]
[Table 1]
Figure 2004077169
[0039]
Example 2
The following electrodes were inserted into a 500 ml sample of sewage secondary treatment water containing 53 mg / l of initial COD and 200 mg / l of sulfite ions, and a 1% aqueous solution of hydrogen peroxide as an oxidizing agent was added to the sample. The oxidant concentration was measured. The pH of the sample after the addition of hydrogen peroxide was adjusted to 6 to 7 with 10% sodium hydroxide.
(1) Metal copper electrode: Metal copper having a purity of 99% is used.
(2) Copper oxide electrode: A metal copper plate heated at 900 ° C. in an air atmosphere for 2 hours is used.
(3) Commercially available copper ion electrode: using a silver sulfide crystal as a sensitive part.
(4) ORP meter: using a platinum electrode.
Table 2 shows the results. As for the potential of the ORP meter, no change in the potential was observed near the addition rate. The other electrodes show a change in potential due to the addition of the drug, reduce COD and residual hydrogen peroxide, and can control the injection of the drug by these electrodes.
[0040]
[Table 2]
Figure 2004077169
[0041]
Example 3
The same electrode as in Example 2 was inserted into a 1 liter sample of sewage secondary treatment water containing pH 6.9, SS 24 mg / l, and COD 23 mg / l, and 300 mg / l of reagent grade 1 ferrous sulfate was added to the sample. Then, the pH was maintained at about 3 with sulfuric acid and caustic soda, a predetermined amount of a 1% aqueous hydrogen peroxide solution as an oxidizing agent was added, and the stirring was performed for about 2 hours, and the potential at the time of adding hydrogen peroxide was measured. Thereafter, the pH was adjusted to 6.5 to 7.5 with caustic soda, and 1 mg / l of an anionic polymer coagulant (Ebagrose A-151, manufactured by Ebara Corporation) was added per treated water amount, and the resulting mixture was coagulated for solid-liquid separation. . The COD of the obtained treated water and the concentration of the residual oxidizing agent were measured.
Table 3 shows the results. As for the electric potential of the ORP meter, no change in the electric potential was observed near the optimum addition rate of 60 mg / l. Other electrodes show a change in potential due to the addition of the drug, reduce the COD of the treated water and the residual hydrogen peroxide, and can control the injection of the drug by these electrodes.
[0042]
[Table 3]
Figure 2004077169
[0043]
Example 4
The electrode of Example 2 was inserted into 500 ml of a simulated semiconductor manufacturing wastewater (hereinafter referred to as a sample) containing 65 mg / l of initial COD and 100 mg / l of hydrogen peroxide, and a 10% aqueous sodium sulfite solution of a reducing agent was added to the sample, and the potential and treatment were performed. The water COD and the residual hydrogen peroxide concentration were measured. The pH of the sample after addition of sodium sulfite was adjusted to 6 to 7 with 10% sodium hydroxide.
Table 4 shows the results. As for the potential of the ORP meter, no change in the potential was observed near the addition rate. The other electrodes show a change in potential due to the addition of the drug, can reduce COD and residual sodium sulfite, and can control the injection of the drug by these electrodes.
[0044]
[Table 4]
Figure 2004077169
[0045]
Example 5
A slime prevention test was performed using treated water obtained by coagulating and sedimenting white water from the papermaking process using waste paper as a raw material in a 100 g / l sulfate band and an anionic polymer coagulant (Ebagrose A151, manufactured by Ebara Seisakusho). went. A 200-ml sample is placed in a 300-ml Erlenmeyer flask, an aqueous solution of sodium hypochlorite containing 110% by weight of available chlorine is added thereto, and cultured with shaking at 30 ° C. for 24 hours or 72 hours. It was measured. General bacteria count of the sample is 3 × 10 7 Pcs / ml.
(1) SUS316 electrode: Stainless steel SUS316 is used.
(2) Copper oxide electrode: A metal copper plate heated at 900 ° C. in an air atmosphere for 2 hours is used.
(3) Commercially available copper ion electrode: using a silver sulfide crystal as a sensitive part.
(4) ORP meter: using a platinum electrode.
Table 5 shows the results. As for the potential of the ORP meter, no change in the potential was observed near the optimum addition rate. Other electrodes show a change in potential due to the addition of the drug, and the injection of the slime inhibitor can be controlled by these electrodes.
[0046]
[Table 5]
Figure 2004077169
[0047]
Example 6
PH 6.6 prepared from tap water and urine, SS 34 mg / l, BOD 150 mg / l, number of coliforms 7 × 10 4 Simulated sewage at CFU / ml was used.
500 ml of simulated sewage was placed in a glass beaker into which electrodes shown below were inserted, and the disinfectant chlorine dioxide was added while stirring at a peripheral speed of 0.5 m / sec with a stirring blade. After 5 minutes, water was collected, and the number of coliform bacteria and the residual chlorine concentration were measured. The residual chlorine concentration was measured by the DPD method and expressed in terms of chlorine.
(1) Silver electrode: Silver having a purity of 99% or more is used.
(2) Silver oxide electrode: A silver plate heated at 900 ° C. in an air atmosphere for 2 hours is used.
(3) Commercially available copper ion electrode: using a silver sulfide crystal as a sensitive part.
(4) ORP meter: using a platinum electrode.
Table 6 shows the results. As for the potential of the ORP meter, no change in the potential was observed near the optimum addition rate. Other electrodes show a change in potential due to the addition of the drug, and the injection of the disinfectant can be controlled by these electrodes.
[0048]
[Table 6]
Figure 2004077169
[0049]
【The invention's effect】
The effects of the present invention are as follows.
(1) An oxidizing agent or a reducing agent having a low concentration of 10 mg / l or less is difficult to detect by ORP, but an oxidizing agent or a reducing agent having a low concentration can be detected by the simple method of the present invention.
(2) A commercially available ion electrode can be used, and the measuring device is inexpensive.
(3) The required amount of the oxidizing agent can be added to the circulating fluid of the deodorizing device, so that the cost of chemicals can be reduced, the deodorizing effect is high, and stable operation of the deodorizing device is possible. In addition, chemicals can be saved because the oxidizing agent concentration of the blow water can be minimized.
(4) The drug concentration in the cooling water can be grasped in real time, and operation management becomes easy. In addition, chemicals can be saved because the oxidizing agent concentration of the blow water can be minimized.
(5) Appropriate chemical injection is possible because it is not affected by coexisting oxidizing or reducing agents.
(6) A low concentration of the disinfectant can be measured and controlled, and stable operation of disinfecting sewage becomes possible.
In addition, the amount of residual disinfectant can be reduced, the environment of the discharge destination can be preserved, and there is no trouble such as corrosion when reused.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an example of an apparatus for cleaning odorous gas according to the present invention.
FIG. 2 is a flow diagram showing an example of an apparatus for oxidative decomposition of water to be treated according to the present invention.
FIG. 3 is a flow diagram showing an example of a COD oxidative decomposition treatment apparatus for water to be treated according to the present invention.
FIG. 4 is a flowchart showing an example of a cooling tower slime prevention device according to the present invention.
FIG. 5 is a flow diagram showing an example of an apparatus for disinfecting water to be treated according to the present invention.

Claims (6)

液体中の電位を、比較電極と白金以外の金属又は難溶性金属化合物を用いた電極又はイオン電極とで構成された電極により測定し、該液体中に含まれる残留ハロゲン又は残留酸化剤又は残留還元剤の濃度を算出することを特徴とする液体中の残留物質算出方法。The potential in the liquid is measured by an electrode composed of a reference electrode and an electrode using a metal other than platinum or a poorly soluble metal compound or an ionic electrode, and residual halogen or residual oxidizing agent or residual reduction contained in the liquid is measured. A method for calculating a residual substance in a liquid, comprising calculating a concentration of an agent. 悪臭ガスの臭気成分を、酸化剤を含む薬液により循環洗浄して酸化分解除去する脱臭方法において、該循環液中の残留酸化剤濃度を請求項1記載の残留物質算出方法により算出し、該算出値に基づいて、循環液への酸化剤添加量を注入制御することを特徴とする脱臭方法。In a deodorization method of circulating washing a odor component of a malodorous gas with a chemical solution containing an oxidizing agent to oxidatively decompose and remove the odor component, a concentration of the residual oxidizing agent in the circulating liquid is calculated by the method for calculating a residual substance according to claim 1, A deodorizing method characterized by controlling injection of an amount of an oxidizing agent added to a circulating fluid based on a value. 酸化剤による酸化処理又は還元剤による還元処理による排水の処理方法において、被処理水中の残留酸化剤濃度又は還元剤濃度を請求項1記載の残留物質算出方法により算出し、該算出値に基づいて、被処理水への酸化剤又は還元剤添加量を注入制御することを特徴とする排水処理方法。In the method for treating wastewater by oxidation treatment with an oxidizing agent or reduction treatment with a reducing agent, a residual oxidizing agent concentration or a reducing agent concentration in the water to be treated is calculated by the method for calculating a residual substance according to claim 1, and based on the calculated value. And a method for injecting and controlling the amount of an oxidizing agent or a reducing agent added to the water to be treated. 酸化剤系のスライム防止剤を添加する開放系冷却水のスライム防止方法において、冷却水中の残留酸化剤濃度を請求項1記載の残留物質算出方法により算出し、該算出値に基づいて、冷却水へのスライム防止剤添加量を注入制御することを特徴とするスライム防止方法。In the method for preventing slime of open cooling water to which an oxidizing slime inhibitor is added, the concentration of residual oxidizing agent in the cooling water is calculated by the method for calculating a residual substance according to claim 1, and the cooling water is calculated based on the calculated value. A method for preventing slime, which comprises controlling the amount of a slime inhibitor added to a mixture. 酸化剤系消毒剤を添加する汚水又はその処理水の消毒方法において、汚水又はその処理水中の残留酸化剤濃度を請求項1記載の残留物質算出方法により算出し、該算出値に基づいて、汚水又はその処理水への消毒剤添加量を注入制御することを特徴とする消毒方法。In a method for disinfecting sewage or treated water to which an oxidizing agent-based disinfectant is added, the residual oxidant concentration in the sewage or treated water is calculated by the residual substance calculating method according to claim 1, and based on the calculated value, the sewage is treated. Alternatively, a disinfecting method characterized by injecting and controlling the amount of a disinfectant added to the treated water. 液体中の電位を測定する比較電極と白金以外の金属又は難溶性金属化合物を用いた電極又はイオン電極とで構成された電極よりなる電位測定装置と、該測定値に基づいて該液体中に含まれる残留ハロゲン又は残留酸化剤又は残留還元剤の濃度を算出する算出装置と、該算出した濃度に基づいて前記液体中に注入する薬剤の注入量を制御する制御手段とを有することを特徴とする薬剤注入制御装置。A potential measuring device consisting of an electrode composed of a comparison electrode for measuring the potential in the liquid and an electrode or an ionic electrode using a metal other than platinum or a poorly soluble metal compound, and contained in the liquid based on the measured value A calculating device for calculating the concentration of the residual halogen or the residual oxidizing agent or the residual reducing agent, and control means for controlling an injection amount of the chemical to be injected into the liquid based on the calculated concentration. Drug injection control device.
JP2002234428A 2002-08-12 2002-08-12 Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus Pending JP2004077169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234428A JP2004077169A (en) 2002-08-12 2002-08-12 Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234428A JP2004077169A (en) 2002-08-12 2002-08-12 Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus

Publications (1)

Publication Number Publication Date
JP2004077169A true JP2004077169A (en) 2004-03-11

Family

ID=32019243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234428A Pending JP2004077169A (en) 2002-08-12 2002-08-12 Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus

Country Status (1)

Country Link
JP (1) JP2004077169A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215014A (en) * 2004-07-23 2006-08-17 Nagoya Institute Of Technology Method and apparatus for measuring scale inhibitor concentration
JP2011169859A (en) * 2010-02-22 2011-09-01 Nikuni:Kk Method and device for automatically managing chlorine concentration
CN113461221A (en) * 2021-07-28 2021-10-01 丰城市天壕新能源有限公司 Intelligent dosing system for dry quenching waste heat power generation
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215014A (en) * 2004-07-23 2006-08-17 Nagoya Institute Of Technology Method and apparatus for measuring scale inhibitor concentration
JP2011169859A (en) * 2010-02-22 2011-09-01 Nikuni:Kk Method and device for automatically managing chlorine concentration
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy
US12100285B2 (en) 2020-10-08 2024-09-24 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy
CN113461221A (en) * 2021-07-28 2021-10-01 丰城市天壕新能源有限公司 Intelligent dosing system for dry quenching waste heat power generation
CN113461221B (en) * 2021-07-28 2023-06-06 丰城市天壕新能源有限公司 An intelligent dosing system for CDQ waste heat power generation

Similar Documents

Publication Publication Date Title
Pal Industrial water treatment process technology
Tomar et al. Evaluation of chemicals to control the generation of malodorous hydrogen sulfide in waste water
WO1994002423A1 (en) Method and apparatus for controlling microorganisms
US20220024787A1 (en) Method and apparatus for copper-catalyzed electrochemical water treatment
Isidro et al. Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water?
US10835860B2 (en) Treatment of hydrogen sulfide gas under aerobic conditions
Edwards et al. Removal of hydrogen sulphide from water
Rahman et al. Kinetic modelling of peat water treatment with continuous electrocoagulation using aluminium electrodes
Wojtenko et al. Performance of ozone as a disinectant for combined sewer overflow
Devai et al. Effectiveness of selected chemicals for controlling emission of malodorous sulfur gases in sewage sludge
CN100503461C (en) sterilizing method for waste water of fowl and livestock breeding
JP2004077169A (en) Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus
CN104891717A (en) Method and apparatus for removing ammonia nitrogen in water by utilizing photoelectrochemical technology
Rice et al. Fundamental aspects of ozone chemistry in recirculating cooling water systems—Data evaluation needs
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
JP5990706B2 (en) Method for suppressing hydrogen sulfide generation in sludge treatment process
CN111747506A (en) A kind of agent and method for inhibiting by-product of oxidation coagulation precipitation in water
KR101075745B1 (en) Removing apparatus of malodorous substances from wastewater delivery facilities using electrolyzed water system
WO2002035908A2 (en) Air and water purification using continuous breakpoint halogenation and peroxygenation
JP5851789B2 (en) Nitrogen treatment method for waste leachate
Wang et al. Halogenation and disinfection
JP2829685B2 (en) Deodorizing method of dewatered sludge cake
Kanipriya et al. Estimation of Ozone Dosage and Residual Ozone for Effective Wastewater Treatment
Hung et al. Combined Sewer Overflow Treatment
Wang Water chlorination and chloramination