JP2004076086A - High-strength steel component superior in delayed fracture resistance, and manufacturing method therefor - Google Patents
High-strength steel component superior in delayed fracture resistance, and manufacturing method therefor Download PDFInfo
- Publication number
- JP2004076086A JP2004076086A JP2002237089A JP2002237089A JP2004076086A JP 2004076086 A JP2004076086 A JP 2004076086A JP 2002237089 A JP2002237089 A JP 2002237089A JP 2002237089 A JP2002237089 A JP 2002237089A JP 2004076086 A JP2004076086 A JP 2004076086A
- Authority
- JP
- Japan
- Prior art keywords
- less
- delayed fracture
- quenching
- heating
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 87
- 239000010959 steel Substances 0.000 title claims abstract description 87
- 230000003111 delayed effect Effects 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000002245 particle Substances 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 54
- 238000010791 quenching Methods 0.000 claims description 52
- 230000000171 quenching effect Effects 0.000 claims description 50
- 238000005496 tempering Methods 0.000 claims description 25
- 229910001566 austenite Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 4
- 238000005485 electric heating Methods 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims 2
- 239000013078 crystal Substances 0.000 abstract description 17
- 229910052719 titanium Inorganic materials 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 230000001965 increasing effect Effects 0.000 description 27
- 230000000694 effects Effects 0.000 description 15
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 11
- 229910052758 niobium Inorganic materials 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 10
- 229910052720 vanadium Inorganic materials 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 9
- 229910052804 chromium Inorganic materials 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229910052721 tungsten Inorganic materials 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- -1 C: 0.30 to 0.50% Inorganic materials 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、高強度ボルト、ばね、PC鋼棒、鉄筋などとして使用される高強度(例えば、引張強さ1000N/mm2程度以上)の鋼部品に関するものである。
【0002】
【従来の技術】
一般にボルトは引張強さが1000N/mm2程度以上の高強度になると、遅れ破壊が生じやすくなるため、使用に制約を受けている。そのため遅れ破壊特性に優れた高強度鋼部品が求められている。
【0003】
例えば、特開昭60−114551号公報では、合金元素および不純物元素によって遅れ破壊を防止すべく、高強度ボルト用鋼においてC:0.30〜0.50%、Si:0.15%未満、Mn:0.10〜0.40%、P:0.015%以下、S:0.010%以下、Cr:0.50〜4.50%、Mo:0.10〜0.70%以下、でかつSi+Mn+10(P+S):0.45%以下に制御することを提案している。なおこの公報では、Ti:0.05〜0.15%を任意成分として添加すると、炭窒化物を形成し、結晶粒の微細化に効果があり、耐力および靭延性の向上に有効であるとしている。またこの公報では、前記ボルト用鋼を鍛造・焼ならしした後、950℃で30分間加熱した後油焼入れし、焼戻ししている。
【0004】
特開平2−267243号公報では、Si、Crを高めることによって遅れ破壊に至らない限界の拡散性水素を増加できることに着目し、高強度ボルト用鋼においてC:0.18〜0.35%、Si:0.50〜1.50%、Mn:0.20〜0.60%、Cr:1.50〜3.50%、Al:0.008〜0.070%に制御することを提案している。なおこの公報では、0.005〜0.030%のTiを任意成分として添加すると、鋼の高強度化及び微細化に有用であるとしている。またこの公報では、前記ボルト用鋼をφ20mmの棒鋼とした後、通常の熱処理(焼入れ・焼戻し)を行っている。
【0005】
特開平3−243745号公報では、低P、低S化にして更に低Mn、低Si、低Cr化することにより、粒界偏析の著しい軽減化が行われ、それによって粒界が極めて強化されて耐遅れ破壊性が大きく改善されること、NiとMo、V及びNbとを複合添加すれば鋼の細粒化が著しく促進され、それに伴う粒界偏析の軽減が耐遅れ破壊性の改善に有効であること、前記NiとMo、V及びNbとの複合添加は、また鋼の焼戻し軟化抵抗を著しく高め、それによって高い焼戻し温度の採用が可能となり、耐遅れ破壊性の改善に有効であることなどに着目し、機械構造用鋼において、C:0.35〜0.50%、Si:0.20%以下、Mn:0.35%以下、P:0.012%以下、S:0.01%以下、Ni:1.0〜3.0%、Cr:0.25%以下、Mo:0.40〜1.5%、V:0.05〜0.50%、Nb:0.005〜0.20%、Al:0.005〜0.10%に制御することを提案している。なおこの公報では、Ti:0.10%以下を任意成分として添加すると、鋼の細粒化と高強度化に有用であるとしている。またこの公報では、前記成分からなる鋼片を1200〜1250℃に加熱して15mm厚に圧延し、これを870〜1020℃の温度から焼入れした後、焼き戻すことによって機械構造用鋼を製造している。
【0006】
しかしこれら公報に開示の方法によっても、化学成分が限定的であり、幅広い鋼部品に適用することは困難である。そもそも遅れ破壊は、非腐食環境下で起きるものと腐食性環境下で起きるものがあり、種々の要因が複雑にからみあって起きているため、真の原因を特定することは難しい。例えば、遅れ破壊特性に影響を与える要因として、上述したように粒界偏析の低減、及び各種元素の関与などが指摘されているが、その他にも焼戻し温度、組織、材料硬さなども指摘されており、真の遅れ破壊防止手段を確立することは難しく、種々の鋼部品の耐遅れ破壊特性を改善するためには試行錯誤的に種々の方法が採用されているに過ぎない。
【0007】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、幅広い成分組成であっても遅れ破壊特性を確実に向上できる高強度鋼部品、及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは前記課題を解決するために鋭意研究を重ねる過程において、Tiに着目した。すなわち高強度鋼部品は、鋼を所定の形状に加工した後、焼入れ・焼戻しを行うことによって製造されており、前記鋼がTiを含有する場合、このTiは焼入れ前には、フリーの状態の他、窒化物(以下、TiNと表記する場合がある)や粗大炭化物(以下、粗大TiCと表記する場合がある)として存在している。そして焼入れの加熱の際に粗大TiCが溶け込み、焼戻しの際に溶け込んだTiが微細TiCとして析出することによって、鋼部品の強度や耐遅れ破壊特性を高めることができる。なお微細TiCを析出させる場合、Nが多いとTiNを形成してTiCが不足してしまうため、Nを少なくすることが必要である。しかしNを少なくしても、微細TiCを多量に析出させて強度や耐遅れ破壊特性を高めるためには、通常、Ti量を十分に多くする必要があり、その結果、焼入れ加熱の際に溶け込むことができなかった粗大なTiCも多く残存することとなる。この粗大なTiCは、鋼部品の靭性を劣化させ、遅れ破壊特性も低下させる。
【0009】
従って本発明者らは、粗大なTiCを抑制しながら微細TiCを増大させれば、高強度鋼部品の遅れ破壊特性を著しく改善できることを見出した。しかし、通常、焼入れは加熱炉を用いて行っている。この加熱炉を用いた焼入れにおいて高温に加熱すると入熱量が大きくなり過ぎるために、オーステナイト粒(以下、単に結晶粒と称する場合がある)が粗大化し過ぎ、遅れ破壊特性が低下する懸念がある。そこで加熱炉を用いて結晶粒の粗大化を防止するためには比較的低温で加熱する必要があるものの、この場合には粗大TiCの溶け込み不足が生じてその後の焼戻しの際の微細TiCの析出量が不足し易いため、Ti量を十分に多くする必要がある。ところがTi量を多くすると、比較的低温での焼入れであるために粗大TiCが多く残存し、遅れ破壊特性を十分に向上させることは困難である。
【0010】
そして本発明者らは、高周波加熱などの急速加熱可能な設備を用いて内部まで短時間で急速に加熱すると、結晶粒の粗大化を防ぎながら粗大TiCを効率よく溶け込ませることができるために、鋼部品中の粗大TiC量を抑制しながら微細TiCを増大させることができ、遅れ破壊特性を著しく改善できることを見出し、本発明を完成した。
【0011】
すなわち、本発明に係る耐遅れ破壊特性に優れた高強度部品は、1)C:0.20〜0.55%(質量%の意。以下、同じ)、Ti:0.01〜0.10%、N:0.02%以下を含有し、2)オーステナイト結晶粒度がNo.7以上であり、3)粒径0.1μm以下である微細TiCの含有量が0.01%以上であり、4)前記微細TiCの含有量(質量%;[微細TiC])と全Tiの含有量(質量%;[Ti])が、下記式(1)を満足している点に要旨を有するものである。
【0012】
[微細TiC]/[Ti]≧0.4 …(1)
前記高強度部品は、第1の他の成分(Cr:2%以下、Mo:2%以下、V:1%以下、W:1%以下、Nb:1%以下など)、第2の他の成分(Cu:1%以下、Ni:4%以下など)を含有していてもよく、不純物であるP及びSは、P:0.02%以下、S:0.02%以下程度であるのが望ましい。
【0013】
前記耐遅れ破壊特性に優れた高強度部品は、C:0.20〜0.55%、Ti:0.01〜0.10%、N:0.02%以下を含有し、全Tiの含有量(質量%;[Ti])とNの含有量(質量%;[N])が、下記式(2)を満足する鋼から製造できる。
【0014】
[Ti]−3.4×[N]≧0.01% …(2)
すなわち前記鋼を焼入れ温度が900〜1300℃であって下記式(3)で規定される入熱強さAが3.0〜8.0となる条件で焼入れした後、温度500℃以上で焼戻しすることによって製造できる。
【0015】
A=log[t+(T−700)/(2×V)]−22×1000/(T+273)+20 …(3)
[式中、Tは焼入れ加熱温度(℃)を示し、Vは焼入れ加熱時の平均加熱速度(℃/秒)を示し、tは加熱後の保持時間(秒)を示す]
前記入熱強さAは、例えば、焼入れ工程における加熱時の平均加熱速度が10℃/秒以上の範囲から選択し、加熱後の保持時間が60秒以下の範囲することによって、3.0〜8.0の範囲に制御できる。前記焼入れは、高周波焼入れ、または通電加熱した後に急冷するのが簡便である。
【0016】
【発明の実施の形態】
本発明の高強度鋼部品は、少なくともC:0.20〜0.55%、Ti:0.01〜0.10%、N:0.02%以下を含有している。以下、各成分の限定理由について説明する。
【0017】
C:0.20〜0.55%
Cは鋼の焼入性と強度確保のために必要な元素である。すなわち本発明の高強度鋼部品は、後述するように高温で焼き戻すことによって製造されているため、焼戻し軟化を防止して高強度を確保するためにはCを0.20%以上、好ましくは0.25%以上、さらに好ましくは0.35%以上含有させなければならない。しかし添加量が多いと鋼の加工性を低下させ、さらには靭性が劣化し遅れ破壊特性が悪化する。従ってCは0.55%以下、好ましくは0.45%以下、さらに好ましくは0.40%以下とする。
【0018】
Ti:0.01〜0.10%
Tiは鋼部品の強度と耐遅れ破壊特性を向上するのに有用な元素である。すなわち本発明の高強度部品は、後述するように鋼を所定形状に加工した後、高温焼入れ・高温焼戻し処理することによって製造されている。Tiは焼入れ時の高温加熱の際に鋼中に溶け込み、焼戻し時に微細なTiCとして析出するため、高温焼戻しであっても高い強度が得られる。しかも微細なTiCは遅れ破壊の原因となる水素をトラップする作用を有しており、鋼部品の遅れ破壊特性を高めることができる。これらの作用を発揮させるためには、Tiは0.01%以上、好ましくは0.02%以上、さらに好ましくは0.05%以上とする。しかしTiが過剰になると、焼入れ前に存在する粗大TiC量が増えすぎるため、高温焼入れを行っても粗大TiCが多く溶け残り、鋼部品中の粗大TiC量が増大する。そのため鋼部品の靭性が劣化し、遅れ破壊特性が低下する。従ってTiは0.10%以下、好ましくは0.8%以下、さらに好ましくは0.7%以下とする。
【0019】
N:0.02%以下
Nは鋼の溶製後の凝固段階でTiと結合してTiNを形成する。TiNは高温で加熱しても溶解しないため、焼戻し時に生成する微細TiC量を低下させる。さらにはNは遅れ破壊特性に対して有害な元素でもある。従ってNは0.02%以下、好ましくは0.01%以下、さらに好ましくは0.007%以下、特に0.005%以下にする。なおNを0%にするのは困難であり、通常、0.0005%以上程度であり、0.001%以上程度であることが多い。
【0020】
本発明の鋼部品は、必要に応じてさらに種々の他の元素を含有していてもよく、例えば、Cr、Mo、V、W、Nbなどの第1の他の元素;Cu、Niなどの第2の他の元素を含有していてもよい。第1及び第2の他の元素は鋼部品の耐遅れ破壊特性をさらに向上させるのに有用であり、特に第2の他の元素は水素の浸入を抑制する点から鋼の耐遅れ破壊特性を向上させるのに有用である。前記第1の他の元素及び第2の他の元素は、単独で添加してもよく、組み合わせて添加してもよい。以下詳細に説明する。
【0021】
Cr:
Crは耐食性を向上させるため耐遅れ破壊特性の改善に有用であり、さらには焼入性を高めて高強度を獲得する上でも有用である。添加量の下限は特に限定されず0%超であればよいが、前記作用を顕著に発揮するためには0.2%以上、好ましくは0.3%以上とする。一方、Crが過剰になると炭化物を安定化して加工性に悪影響を与えるため、例えば、2%以下、好ましくは1.2%以下、さらに好ましくは0.5%以下とする。
【0022】
Mo:
Moは粒界強化作用によって耐遅れ破壊特性を向上させるのに有用であり、さらには焼入性を高めるにも有用である。添加量の下限は特に限定されず0%超であればよいが、前記作用を顕著に発揮するためには0.05%以上、好ましくは0.1%以上とする。一方、Moが過剰になると加工性を阻害するため、例えば、2%以下、好ましくは1%以下、さらに好ましくは0.6%以下とする。
【0023】
V、W、Nb:
V、W、及びNbは、Tiと同様に、微細な析出物(炭窒化物など)を形成し、耐遅れ破壊特性の向上に寄与する。さらにこれら炭化物及び窒化物は、窒素結晶粒の微細化に有効な元素でもある。Vの添加量の下限は特に限定されず0%超であればよいが、前記作用を顕著に発揮するためには0.03%以上、好ましくは0.05%以上とする。W及びNbの下限も、前記Vと同様である。一方、V、W、又はNbが過剰になると耐遅れ破壊特性及び靭性を阻害する。従ってVは、例えば、1%以下、好ましくは0.3%以下、さらに好ましくは0.1%以下とする。W及びNbの下限も、前記Vと同様である。
【0024】
これら第1の他の元素(Cr、Mo、V、W、Nbなど)は、単独で添加してもよく複数組み合わせて添加してもよい。好ましくは、Cr及びMoのうち少なくとも一方(特に両方)を添加する。
【0025】
Cu:
Cuは耐食性を高め、遅れ破壊に悪影響を及ぼす水素の浸入を抑制するのに有効である。添加量の下限は特に限定されず0%超であればよいが、前記作用を顕著に発揮するためには0.15%以上、好ましくは0.3%以上とする。一方、Cuが過剰になると前記効果が飽和するばかりでなく、鋼の靭性を低下させるため、例えば、1%以下、好ましくは0.7%以下、さらに好ましくは0.6%以下とする。
【0026】
Ni:
Niも耐食性を向上させ水素浸入を抑制する作用を有しており、さらには鋼の靭性及び焼入性を高めるのにも有用である。添加量の下限は特に限定されず0%超であればよいが、前記作用を顕著に発揮するためには0.05%以上、好ましくは0.3%以上とする。一方、Niが過剰になると前記効果が飽和してコストアップを招くだけであるため、例えば、4%以下、好ましくは3.5%以下、さらに好ましくは1%以下(特に0.6%以下)程度とする。
【0027】
これら第2の他の元素(Cu,Niなど)は単独で添加してもよく、組み合わせて添加してもよい。
【0028】
なお上記必須元素(C,Ti,N)及び任意元素(第1及び第2の他の元素)以外にも種々の元素を含有していてもよく、例えば、通常はMnを含有しており、Bを含有していてもよい。前記以外(残部)は、通常、Fe及び不純物(Al,Si,P,Sなど)であり、本発明の効果を損なわない範囲で不可避的不純物を含有していていもよい。前記Mn,Bを添加する場合のこれらの含有量、及び不純物の残存量は、例えば、以下の通りである。
【0029】
Mn:2%以下
Mnは焼入性向上元素であるため、Mnを添加すると部品の高強度化が容易になる。添加量の下限は特に限定されず0%超であればよいが、前記作用を顕著に発揮するためには0.3%以上、好ましくは0.5%以上とする。一方、Mnが過剰になると鋼の加工性を低下させ、更には粒界への偏析を助長して粒界強度を弱め耐遅れ破壊特性を低下させる。従ってMn量は、例えば、2%以下、好ましくは1.5%以下、さらに好ましくは0.8%以下とする。
【0030】
B:0.003%以下
Bは鋼の焼入性を向上させるのに有用である。添加量の下限は特に限定されず0%超であればよいが、前記作用を顕著に発揮するためには0.0005%以上、好ましくは0.001%以上とする。一方、Bが過剰になると靭性が低下する。従ってB量は、例えば、0.003%以下、好ましくは0.0025%以下、さらに好ましくは0.0020%以下とする。
【0031】
Al:0.1%以下
Alは酸化物系介在物を生成し、この介在物が耐遅れ破壊特性を低下させる。従ってAlは、例えば、0.1%以下、好ましくは0.07%以下、さらに好ましくは0.05%以下とする。なおAlの残存量は0%であることが望ましいものの、Alは鋼の溶製時に脱酸剤として使用されるために0%とするのは困難である。そのためAlは、例えば、0.02%以上(特に0.03%以上)程度であることが多い。
【0032】
Si:2%以下
Siは加工性を低下させ、しかも焼入れ等の熱処理時における粒界酸化を助長して耐遅れ破壊特性を低下させる。従ってSiは、例えば、2%以下、好ましくは1%以下、特に0.5%以下にするのが望ましい。なおSiの残存量は0%であることが望ましいものの、Siは鋼の溶製時に脱酸剤として使用されるために0%とするのは困難である。そのためSiは、例えば、0.005%以上(特に0.01%以上)程度であることが多い。
【0033】
P:0.02%以下
Pは粒界偏析を起こして耐遅れ破壊特性を劣化させる。従ってPは、例えば、0.02%以下、好ましくは0.015%以下、特に0.005%以下とする。なおPの残存量は0%であることが望ましいものの、コスト高につながるため、例えば、0.001%以上程度であることが多い。
【0034】
S:0.02%以下
Sは応力集中箇所となるMnSを形成するため、耐遅れ破壊特性を低下させる。従ってSは、例えば、0.02%以下、好ましくは0.01%以下、さらに好ましくは0.005%以下とする。なおSの残存量は0%であることが望ましいものの、コスト高につながるため、例えば、0.001%以上程度であることが多い。
【0035】
上記不純物(Al,Si,P,Sなど)のうち、特にPやSの量を制御するのが望ましい。
【0036】
そして本発明の高強度鋼部品では、微細TiCが多量に存在していると共に、粗大TiCが抑制されている。微細TiCは、引張強さを高める点で有用なだけでなく、水素をトラップする作用を有しており耐遅れ破壊特性の向上に有用である。一方、粗大TiCは靭性や耐遅れ破壊特性に有害である。そこで微細TiCの比率を高めることで鋼部品の靭性を高めることができ、しかも耐遅れ破壊特性を著しく高めることができる。加えて本発明の鋼部品では後述するようにTiNが抑制されている。TiNは焼入れの加熱の際に固溶しないために鋼部品中に粗大なTiNとして残存し易く、靭性や耐遅れ破壊特性に対して有害であるが、本発明の鋼部品ではかかるTiNが抑制されている。従って本発明の鋼部品の特徴は、鋼中にある有害Ti(粗大TiC、粗大TiN)を低減する一方で、望ましいTi(微細TiC)を増加している点にある。微細TiCと有害Ti(粗大TiC、粗大TiN)の比は、微細TiCと全Tiの比によって実質的に評価できる。
【0037】
微細TiCの含有量(質量%;以下、[微細TiC]と表記する場合がある)と全Tiの含有量(質量%;以下、[Ti]と表記する場合がある)の比([微細TiC]/[Ti])は、0.4以上、好ましくは0.5以上、さらに好ましくは0.6以上である。この比率([微細TiC]/[Ti])は大きいほど望ましいものの、通常は0.9以下程度である。
【0038】
なお前記微細TiCは粒径が0.1μm以下のTiCのことを意味している。本発明の鋼部品中の微細TiC量は、0.01%以上程度、好ましくは0.02%以上程度、さらに好ましくは0.03%以上程度である。微細TiCは多いほど望ましいものの、通常は0.10%以下程度である。
【0039】
なお本発明の鋼部品は、前記[微細TiC]/[Ti]の要件と、微細TiC量の要件の両方を兼ね備える必要がある。
【0040】
さらに本発明の高強度鋼部品は、結晶粒が粗大化していないため、この点からも遅れ破壊特性が改善されている。前記粗大化抑制の程度はオーステナイト粒の結晶粒度番号によって評価できる。前記結晶粒度番号は、No.7以上程度、好ましくはNo.8以上程度、さらに好ましくはNo.9以上程度、特にNo.10以上程度(例えば、No.11以上程度)である。結晶粒度番号は大きいほど望ましいものの、通常はNo.15以下程度である。
【0041】
上記本発明の鋼部品は、微細TiCが多く、粗大TiCが少なく、しかも結晶粒が粗大化していないため、耐遅れ破壊特性に著しく優れている。しかも所定量のCを含有しており、かつ微細TiCが多いために所定の強度を確保できる。そのため、従来の遅れ破壊強さの改善を求められていた高強度鋼部品に代わる優れた高強度鋼部品(例えば、高強度ボルト、ばね、PC鋼線、鉄筋などの線状又は棒状の鋼材の加工品など)として有用である。
【0042】
本発明の鋼部品の引張強度は、例えば、1000N/mm2以上程度(好ましくは1200N/mm2以上程度、さらに好ましくは1400N/mm2以上程度)である。なお引張強度は、1500N/mm2以下程度になることが多い。
【0043】
また本発明の鋼部品は、化学成分的にはC量、Ti量、N量を制御することによって耐遅れ破壊特性が改善されている。すなわち制御すべき化学成分の種類が少ないため、幅広い鋼部品に適用することができる。従って、耐遅れ破壊特性を改善するために使用されている種々の元素(例えば、Cr、Mo、V、Nb、Niなど)の使用が、製法や用途等の観点から困難である場合にも、本発明によればそれら元素の使用を簡便に回避でき、簡単に耐遅れ破壊特性に優れた高強度部品を提供することができる。
【0044】
上記鋼部品は、同等の化学成分を有する鋼を高温で速やかに焼入れ、高温で焼き戻すことによって製造できる。焼入れ温度を高くすることによって粗大TiCを効率よく溶解できるために、溶け残る粗大TiC量を抑制できると共に、焼戻し時に析出する微細TiC量を増大させることができる。しかも速やかに焼入れすることによって、焼入れ温度を高くしても結晶粒の粗大化を抑制することができる。
【0045】
前記焼入れ温度は、具体的には900℃以上程度、好ましくは950℃以上程度、さらに好ましくは1000℃以上程度、特に1100℃以上程度である。なお焼入れ温度が高すぎると、速やかに焼入れを行っても結晶粒が粗大化しやすくなって遅れ破壊特性が低下しやすくなる。従って焼入れ温度は、通常、1300℃以下程度、好ましくは1250℃以下程度、さらに好ましくは1150℃程度、特に1100℃以下程度である。
【0046】
焼入れの速やかさは、下記式(4)で表されるA値(「入熱強さ」と称する場合がある)によって評価できる。このA値自体は、焼戻しパラメータとしても使用されているものであり、入熱量の目安となるものである。
A=logt’−B×[Q/(R×Ta)]+C …(4)
[式中、t’は加熱時間(Hr)を示し、Qは活性化エネルギー(cal/mol)を示し、Rはガス定数(cal/mol)を示し、Taは加熱温度(K)を示し、B及びCは定数を示す]
本発明の場合、前記式(4)は下記式(5)のように整理することができる。A=log[t+(T−700)/(2×V)]−B’×(T+273)+C’
…(5)
[式中、Tは焼入れ加熱温度(℃)を示し、Vは焼入れ加熱時の平均加熱速度(℃/秒)を示し、tは加熱後の保持時間(秒)を示し、B’及びC’は定数を示す]
数多くの実験から得られた値を用いて回帰計算することによって、B’とC’を求めたところ、B’=22×1000、C’=20となったため、上記式(5)は下記式(3)のように書き直すことができる。
A=log[t+(T−700)/(2×V)]−22×1000/(T+273)+20 …(3)
焼入れの速やかさ(加熱速度、加熱後の保持時間など)を変えて適切なA値の範囲を求めたところ、A値が8.0以下程度(好ましくは7.5以下程度、さらに好ましくは7.0以下程度、特に6.0以下程度)となる条件で焼入れするのが望ましい。A値が大きすぎると、速やかに焼入れすることができず、結晶粒が粗大化するために遅れ破壊特性が劣化する。一方、A値が小さすぎる場合には、高温焼入れであっても加熱不足となってTiを十分に固溶させることができない。従ってA値が3.0以上程度、好ましくは4.0以上程度、さらに好ましくは4.5以上程度、特に5.0以上程度となる条件で焼入れするのが望ましい。
【0047】
高温加熱の条件下でA値を前記所定値以下に制御するためには、加熱速度を速くし、加熱後の保持時間を短くする必要がある。加熱速度は、例えば、10℃/秒以上程度、好ましくは20℃/秒以上程度、さらに好ましくは50℃/秒以上程度の範囲から選択できる。保持時間は加熱速度に応じて適宜設定できるが、例えば、60秒以内程度、好ましくは30秒以内程度、さらに好ましくは10秒以内程度の範囲から選択できる。
【0048】
一方A値を前記所定値以上に制御するためには、加熱速度を極端に速くせず、保持時間を極端に短くしない必要がある。加熱速度は、例えば、600℃/秒以下程度、好ましくは300℃/秒以下程度、さらに好ましくは100℃/秒以下程度の範囲から選択できる。保持時間は加熱速度に応じて適宜設定できるが、例えば、1秒以上程度、好ましくは3秒以上程度、さらに好ましくは5秒以上程度の範囲から選択できる。
【0049】
速やかに焼入れするためには、例えば、高周波加熱装置、通電加熱装置(通電に伴う抵抗発熱を利用した加熱装置)などの急速加熱装置を利用するのが便利である。
【0050】
焼戻しは500℃以上、好ましくは550℃以上、さらに好ましくは575℃以上の温度に加熱することによって行う。焼戻し温度が低すぎると、微細TiCが析出せず、遅れ破壊特性が改善されない。なお焼戻し温度は、通常、650℃以下程度(特に625℃以下程度)であることが多い。
【0051】
上述のようにして焼入れ・焼戻しをすることによって、結晶粒が小さく、全Ti量が抑制されているにも拘わらず微細TiCが多い鋼部品を製造することができる。ただし鋼中のN量が多すぎると、TiNが形成されてしまうために、上述のようにして焼入れ・焼戻しを行っても微細TiC量が不足してしまう。微細TiC量を前記所定の範囲にするためには、Ti量をN量よりも十分に多くする必要がある。例えば、鋼中のTi含有量を[Ti](質量%)、N含有量を[N](質量%)としたとき、式[Ti]−3.4×[N]によって求まる数値を、0.01%以上、好ましくは0.03%以上、さらに好ましくは0.05%以上にする。
【0052】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0053】
実験例1〜22
下記表1に示す化学成分(質量%)の供試鋼を鍛造・切断して丸棒(直径12mm×長さ100mm)を製造した後、温度850℃で60分間加熱して焼ならしした。高周波加熱装置を用い、前記丸棒を表2〜3に示す条件で短時間の急速加熱した後、油冷することによって焼入れした。次いで表2に示す条件で加熱した後、水冷することによって焼戻しした。
【0054】
上記焼戻し丸棒を横断し、D/4部(Dは直径を示す)のオーステナイト結晶粒の粒度No.を「鋼のオーステナイト結晶粒度試験方法」(JIS G 0551)に準拠して測定した。
【0055】
また焼戻し丸棒中の微細TiC量を以下に示す(1)〜(10)のようにして求めた。
【0056】
(1)前記丸棒を切断して測定試料とした(直径12mm×長さ20mm)。
【0057】
(2)10質量%のアセチルアセトンと1質量%のテトラメチルアンモニウムクロリドを溶かしたメタノール溶液(電解液)に前記試料を浸漬し、20mA/cm2の定電流を流して試料を約0.5g程度溶解(電解)する。
【0058】
(3)電解処理終了後、試料をメタノール中に浸漬し、試料表面に露出した析出物を超音波により剥離する。
【0059】
(4)粗大析出物を含む上記電解液と超音波処理液とを孔径0.1μmのメンブランフィルターによって吸引濾過し、粗大析出物を捕集する。
【0060】
(5)捕集した粗大析出物を前記メンブランフィルターと共に白金るつぼに移し、ガスバーナーによって加熱して灰化する。
【0061】
(6)白金るつぼにアルカリ融剤(炭酸ナトリウムと四硼酸ナトリウムの混合液)を加え、再びガスバーナーで加熱して残渣を融解する。
【0062】
(7)白金るつぼに塩酸と純水を加えて融解物を溶解し、メスフラスコに移す。さらにメスフラスコの標線に到達するまで純水を加えて分析液とする。
【0063】
(8)ICP発光分析法によってTi量を測定し、分析液中の粗大Ti化合物(粒径0.1μm超)の量WLarge−Tiを測定する。一方、上記電解処理及び超音波処理時の試料の溶解量W1を求めておき、下記式に基づいて試料中の粗大Ti化合物濃度([粗大Ti化合物])を算出する。
【0064】
[粗大Ti化合物]=WLarge−Ti/W1×100
(9)前記丸棒から約0.3g程度(溶解量:W2)の切粉を採取し、王水に入れ、加熱溶解する。この溶液に純水を加えて濃度を調節した後、ICP発光分析法によってTi量(Wtotal−Ti)を測定し、下記式に基づいて試料中の全Ti濃度([全Ti])を算出する。
【0065】
[全Ti]=Wtotal−Ti/W2×100
(10)下記式に基づき、試料中の微細TiC(粒径0.1μm以下)の濃度([微細TiC])を算出する。
【0066】
[微細TiC]=[全Ti]−[粗大Ti化合物]
上記焼戻し丸棒を切削加工して図1に示す引張試験片と図2に示す遅れ破壊試験片を製造した。これら試験片を用いて、引張強さと遅れ破壊強さを調べた。なお遅れ破壊強さは、試験片を蒸留水中に浸漬しながら応力を負荷し、破壊に至るまでの時間を測定する方法において、応力を複数の水準で負荷して破壊時間が100時間となるときの応力を求めることによって評価した(100時間遅れ破壊強さ)。
【0067】
実験例23〜24
加熱炉中に丸棒を入れて焼き入れる以外は、実験例1〜22と同様にした。
【0068】
結果を表2〜3に示す。
【0069】
【表1】
【0070】
【表2】
【0071】
【表3】
【0072】
実験例23から明らかなように、焼入れ温度を高くしてTiの溶け込み量を増やし、焼戻し後の微細なTiC量を増大させても、オーステナイト粒が粗大になるため遅れ破壊強さは低くなる。
【0073】
また実験例24から明らかなように、オーステナイト粒の粗大化を避けるために低温で焼き入れる条件において、鋼中のTi量を増やすことによって焼入れ時のTiの溶け込み量を増やし、焼戻し後の微細なTiC量を増大させても、鋼中に多量の粗大TiCが残存しているために、遅れ破壊強さも弱くなっている。
【0074】
これらに対して、実験例1では高周波によって短時間で焼入れしているため、オーステナイト粒の粗大化を防止しながら鋼中のTiを効率よく溶かし込むことができる。そのため、焼戻し丸棒において、結晶粒を小さくでき、且つ粗大TiC量を抑制しながらも微細なTiC量を増大でき(すなわち[微細TiC]/[Ti]を大きくでき)、引張強さ及び遅れ破壊強さを高めることができる。同様に実験例5〜15でも高周波によって短時間で焼入れしているため、引張強さ及び遅れ破壊強さを高めることができる。
【0075】
ただし実験例2では高周波焼入れの温度が低すぎてA値が低すぎるため、鋼中のTiを十分に溶かし込むことができず、微細TiC量が不足して引張強さが弱くなっている。実験例3では高周波焼入れ時の入熱量が大きすぎてA値が高くなりすぎるため、オーステナイト粒が粗大化して遅れ破壊強さが低下する。実験例4では焼戻し温度が低すぎるために、焼入れ時に溶け込んだTiが析出せず、微細TiCが不足して遅れ破壊強さが小さくなる。
【0076】
また実験例16、19、21、22では[Ti]−3.4[N]が小さいために、TiがNと結合してしまう結果、微細なTiCが析出し難くなっている。しかもオーステナイト粒の粗大化を抑止するTiCが不足するために、オーステナイト粒も粗大化している。そのため遅れ破壊強さが低くなる。
【0077】
実験例17ではC量が少ないために引張強さが低くなり、実験例18ではC量が多いために耐遅れ破壊強さが低下する。実験例20ではTi量が多すぎるために、微細なTiCが増えるだけでなく粗大なTiCも増えてしまい、遅れ破壊強さが低下する。
【0078】
【発明の効果】
本発明によれば、結晶粒の粗大化や粗大TiC量が抑制されているにも拘わらず、微細TiC量が多いために遅れ破壊特性を著しく高めることができる。しかも化学成分的には、C量、Ti量、N量を制御しているだけであるため、幅広い成分組成の高強度鋼部品に適用できる。
【0079】
前記高強度鋼部品は、高温で速やかに焼入れ、高温で焼き戻すことによって製造できる。
【図面の簡単な説明】
【図1】図1は実験例の引張試験片を示す概略平面図である。
【図2】図2は実験例の遅れ破壊試験片を示す概略平面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high strength (for example, a tensile strength of 1000 N / mm) used as a high strength bolt, a spring, a PC steel bar, a reinforcing bar, or the like. 2 Or more).
[0002]
[Prior art]
Generally, bolts have a tensile strength of 1000 N / mm 2 If the strength is higher than about the same, delayed fracture is likely to occur, so that use is restricted. Therefore, there is a demand for high-strength steel parts having excellent delayed fracture characteristics.
[0003]
For example, in JP-A-60-114551, in order to prevent delayed fracture due to alloying elements and impurity elements, in high-strength bolt steel, C: 0.30 to 0.50%, Si: less than 0.15%, Mn: 0.10 to 0.40%, P: 0.015% or less, S: 0.010% or less, Cr: 0.50 to 4.50%, Mo: 0.10 to 0.70% or less, And Si + Mn + 10 (P + S): 0.45% or less. In this publication, it is assumed that adding 0.05 to 0.15% of Ti as an optional component forms a carbonitride, which is effective for refining crystal grains and effective for improving proof stress and toughness and ductility. I have. Further, in this publication, after forging and normalizing the bolt steel, the steel is heated at 950 ° C. for 30 minutes, then oil quenched and tempered.
[0004]
In Japanese Patent Application Laid-Open No. 2-267243, attention is focused on the fact that increasing the amount of Si and Cr can increase the limit of diffusible hydrogen that does not lead to delayed fracture, and C: 0.18 to 0.35% in high-strength bolt steel. It is proposed to control Si: 0.50 to 1.50%, Mn: 0.20 to 0.60%, Cr: 1.50 to 3.50%, and Al: 0.008 to 0.070%. ing. This publication states that the addition of 0.005 to 0.030% of Ti as an optional component is useful for increasing the strength and reducing the size of steel. Further, in this publication, the steel for bolts is formed into a bar having a diameter of 20 mm and then subjected to a normal heat treatment (quenching and tempering).
[0005]
In Japanese Patent Application Laid-Open No. Hei 3-243745, grain boundary segregation is remarkably reduced by lowering P and S to lower Mn, lower Si and lower Cr, thereby greatly strengthening the grain boundaries. Therefore, if Ni and Mo, V, and Nb are added in combination, the refining of steel is remarkably promoted, and the reduction of grain boundary segregation is accompanied by an improvement in delayed fracture resistance. Being effective, the combined addition of Ni and Mo, V and Nb also significantly increases the tempering softening resistance of the steel, thereby making it possible to employ a high tempering temperature and effective in improving delayed fracture resistance. In the steel for machine structural use, C: 0.35 to 0.50%, Si: 0.20% or less, Mn: 0.35% or less, P: 0.012% or less, S: 0 0.01% or less, Ni: 1.0 to 3.0%, Cr: 0 25% or less, Mo: 0.40 to 1.5%, V: 0.05 to 0.50%, Nb: 0.005 to 0.20%, Al: 0.005 to 0.10% Propose that. This publication states that the addition of 0.10% or less of Ti as an optional component is useful for reducing the grain size and increasing the strength of steel. In this publication, a steel slab composed of the above components is heated to 1200 to 1250 ° C., rolled to a thickness of 15 mm, quenched from a temperature of 870 to 1020 ° C., and then tempered to produce steel for machine structural use. ing.
[0006]
However, even with the methods disclosed in these publications, the chemical components are limited and it is difficult to apply them to a wide range of steel parts. In the first place, delayed fracture may occur in a non-corrosive environment or in a corrosive environment, and since various factors are involved in a complicated manner, it is difficult to identify the true cause. For example, as factors affecting the delayed fracture characteristics, reduction of grain boundary segregation and participation of various elements have been pointed out as described above, but other factors such as tempering temperature, structure, and material hardness have also been pointed out. Therefore, it is difficult to establish a true means of preventing delayed fracture, and only various methods are employed by trial and error to improve the delayed fracture resistance of various steel parts.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-strength steel part capable of reliably improving delayed fracture characteristics even with a wide component composition, and a method of manufacturing the same. It is in.
[0008]
[Means for Solving the Problems]
The present inventors have focused on Ti in the course of intensive research to solve the above-mentioned problems. That is, a high-strength steel part is manufactured by processing steel into a predetermined shape and then performing quenching and tempering, and when the steel contains Ti, the Ti is in a free state before quenching. In addition, they exist as nitrides (hereinafter sometimes referred to as TiN) and coarse carbides (hereinafter sometimes referred to as coarse TiC). Then, the coarse TiC melts during heating during quenching, and the Ti melted during tempering precipitates as fine TiC, whereby the strength and delayed fracture resistance of the steel component can be increased. In the case of depositing fine TiC, if N is large, TiN is formed and TiC becomes insufficient, so it is necessary to reduce N. However, even if N is reduced, in order to precipitate a large amount of fine TiC and increase the strength and delayed fracture resistance, it is usually necessary to sufficiently increase the amount of Ti, and as a result, it melts during quenching and heating. A large amount of coarse TiC that could not be obtained also remains. This coarse TiC deteriorates the toughness of the steel component and also reduces the delayed fracture characteristics.
[0009]
Therefore, the present inventors have found that the delayed fracture characteristics of a high-strength steel part can be remarkably improved by increasing the fine TiC while suppressing the coarse TiC. However, quenching is usually performed using a heating furnace. In quenching using this heating furnace, heating to a high temperature causes an excessively large heat input, so that austenite grains (hereinafter sometimes simply referred to as crystal grains) are excessively coarse, and there is a concern that delayed fracture characteristics may deteriorate. Therefore, in order to prevent the crystal grains from being coarsened by using a heating furnace, it is necessary to perform heating at a relatively low temperature. However, in this case, insufficient penetration of coarse TiC occurs, and fine TiC precipitates during subsequent tempering. Since the amount is likely to be insufficient, it is necessary to sufficiently increase the amount of Ti. However, when the Ti content is increased, a large amount of coarse TiC remains due to quenching at a relatively low temperature, and it is difficult to sufficiently improve delayed fracture characteristics.
[0010]
And the present inventors, when using a facility capable of rapid heating such as high-frequency heating, to quickly heat the inside in a short time, it is possible to efficiently melt coarse TiC while preventing the coarsening of crystal grains, The present inventors have found that fine TiC can be increased while suppressing the amount of coarse TiC in a steel part, and that delayed fracture characteristics can be remarkably improved, and the present invention has been completed.
[0011]
That is, the high-strength parts having excellent delayed fracture resistance according to the present invention include: 1) C: 0.20 to 0.55% (meaning by mass%; the same applies hereinafter); Ti: 0.01 to 0.10. %, N: 0.02% or less, and 2) the austenite grain size is no. 7) 3) The content of fine TiC having a particle size of 0.1 μm or less is 0.01% or more. 4) The content of fine TiC (% by mass; [fine TiC]) and the total Ti The point is that the content (% by mass; [Ti]) satisfies the following formula (1).
[0012]
[Fine TiC] / [Ti] ≧ 0.4 (1)
The high-strength component includes a first other component (Cr: 2% or less, Mo: 2% or less, V: 1% or less, W: 1% or less, Nb: 1% or less), a second other component. A component (Cu: 1% or less, Ni: 4% or less) may be contained, and P and S, which are impurities, are about P: 0.02% or less and S: about 0.02% or less. Is desirable.
[0013]
The high-strength part having excellent delayed fracture resistance contains C: 0.20 to 0.55%, Ti: 0.01 to 0.10%, and N: 0.02% or less, and contains all Ti. It can be manufactured from steel whose amount (% by mass; [Ti]) and N content (% by mass; [N]) satisfy the following formula (2).
[0014]
[Ti] −3.4 × [N] ≧ 0.01% (2)
That is, after quenching the steel under the condition that the quenching temperature is 900 to 1300 ° C. and the heat input strength A defined by the following formula (3) is 3.0 to 8.0, the steel is tempered at a temperature of 500 ° C. or more. Can be manufactured.
[0015]
A = log [t + (T−700) / (2 × V)] − 22 × 1000 / (T + 273) +20 (3)
[In the formula, T indicates a quenching heating temperature (° C.), V indicates an average heating rate (° C./second) during quenching heating, and t indicates a holding time (second) after heating.]
The heat input strength A is, for example, selected from a range in which the average heating rate during heating in the quenching step is 10 ° C./sec or more, and a holding time after heating is in a range of 60 seconds or less. It can be controlled in the range of 8.0. The quenching is conveniently performed by induction hardening or rapid cooling after electric heating.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The high-strength steel part of the present invention contains at least C: 0.20 to 0.55%, Ti: 0.01 to 0.10%, and N: 0.02% or less. Hereinafter, the reasons for limiting each component will be described.
[0017]
C: 0.20 to 0.55%
C is an element necessary for securing hardenability and strength of steel. That is, since the high-strength steel part of the present invention is manufactured by tempering at a high temperature as described later, in order to prevent temper softening and secure high strength, C is 0.20% or more, preferably It must be contained at least 0.25%, more preferably at least 0.35%. However, when the addition amount is large, the workability of the steel is reduced, and further, the toughness is deteriorated and the delayed fracture characteristics are deteriorated. Therefore, C is set to 0.55% or less, preferably 0.45% or less, and more preferably 0.40% or less.
[0018]
Ti: 0.01 to 0.10%
Ti is an element useful for improving the strength and delayed fracture resistance of steel parts. That is, the high-strength component of the present invention is manufactured by processing steel into a predetermined shape as described later and then performing high-temperature quenching and high-temperature tempering. Ti melts into steel during high-temperature heating during quenching and precipitates as fine TiC during tempering, so that high strength can be obtained even during high-temperature tempering. In addition, fine TiC has an effect of trapping hydrogen that causes delayed fracture, and can enhance delayed fracture characteristics of steel parts. In order to exert these effects, Ti is made 0.01% or more, preferably 0.02% or more, and more preferably 0.05% or more. However, if the amount of Ti is excessive, the amount of coarse TiC existing before quenching is too large, so that even when high-temperature quenching is performed, a large amount of coarse TiC remains undissolved, and the amount of coarse TiC in a steel part increases. For this reason, the toughness of the steel part is deteriorated, and the delayed fracture characteristics are deteriorated. Therefore, Ti is set to 0.10% or less, preferably 0.8% or less, and more preferably 0.7% or less.
[0019]
N: 0.02% or less
N combines with Ti in the solidification stage after steel smelting to form TiN. Since TiN does not dissolve even when heated at a high temperature, it reduces the amount of fine TiC generated during tempering. Further, N is an element harmful to delayed fracture characteristics. Therefore, N is set to 0.02% or less, preferably 0.01% or less, more preferably 0.007% or less, and particularly 0.005% or less. It is difficult to set N to 0%, usually about 0.0005% or more, and often about 0.001% or more.
[0020]
The steel part of the present invention may further contain various other elements as necessary, for example, a first other element such as Cr, Mo, V, W, and Nb; A second other element may be contained. The first and second other elements are useful for further improving the delayed fracture resistance of the steel part. In particular, the second other element reduces the delayed fracture resistance of the steel from the viewpoint of suppressing the intrusion of hydrogen. Useful to improve. The first other element and the second other element may be added alone or in combination. The details will be described below.
[0021]
Cr:
Cr is useful for improving delayed fracture resistance in order to improve corrosion resistance, and is also useful for increasing hardenability and obtaining high strength. The lower limit of the addition amount is not particularly limited, and may be more than 0%. However, in order to remarkably exert the above-mentioned effect, the addition amount is set to 0.2% or more, preferably 0.3% or more. On the other hand, an excessive amount of Cr stabilizes carbides and adversely affects workability. Therefore, the content is, for example, 2% or less, preferably 1.2% or less, and more preferably 0.5% or less.
[0022]
Mo:
Mo is useful for improving delayed fracture resistance by a grain boundary strengthening action, and is also useful for improving hardenability. The lower limit of the addition amount is not particularly limited and may be more than 0%. However, in order to remarkably exert the above-mentioned effect, the addition amount is set to 0.05% or more, preferably 0.1% or more. On the other hand, if Mo is excessive, the workability is impaired. For example, the content is set to 2% or less, preferably 1% or less, and more preferably 0.6% or less.
[0023]
V, W, Nb:
V, W, and Nb, like Ti, form fine precipitates (carbonitrides and the like) and contribute to the improvement of delayed fracture resistance. Further, these carbides and nitrides are also effective elements for refining nitrogen crystal grains. The lower limit of the added amount of V is not particularly limited and may be more than 0%, but is set to 0.03% or more, preferably 0.05% or more in order to remarkably exert the above-mentioned effect. The lower limits of W and Nb are the same as those of V. On the other hand, when V, W, or Nb is excessive, the delayed fracture resistance and toughness are impaired. Therefore, V is, for example, 1% or less, preferably 0.3% or less, and more preferably 0.1% or less. The lower limits of W and Nb are the same as those of V.
[0024]
These first other elements (Cr, Mo, V, W, Nb, etc.) may be added alone or in combination of two or more. Preferably, at least one (particularly both) of Cr and Mo is added.
[0025]
Cu:
Cu is effective in enhancing corrosion resistance and suppressing the intrusion of hydrogen, which has an adverse effect on delayed fracture. The lower limit of the addition amount is not particularly limited and may be more than 0%, but is 0.15% or more, preferably 0.3% or more in order to exert the above-mentioned effect remarkably. On the other hand, when the content of Cu is excessive, the above effect is not only saturated, but also the toughness of the steel is reduced. Therefore, the content is, for example, 1% or less, preferably 0.7% or less, and more preferably 0.6% or less.
[0026]
Ni:
Ni also has the effect of improving corrosion resistance and suppressing hydrogen intrusion, and is also useful for increasing the toughness and hardenability of steel. The lower limit of the addition amount is not particularly limited and may be more than 0%, but is set to 0.05% or more, preferably 0.3% or more in order to exert the above-mentioned effect remarkably. On the other hand, when the amount of Ni is excessive, the effect is saturated and only the cost is increased. Therefore, for example, 4% or less, preferably 3.5% or less, more preferably 1% or less (particularly 0.6% or less). Degree.
[0027]
These second other elements (Cu, Ni, etc.) may be added alone or in combination.
[0028]
Various elements may be contained in addition to the above essential elements (C, Ti, N) and optional elements (first and second other elements), for example, usually containing Mn, B may be contained. Other than the above (remainder) are usually Fe and impurities (Al, Si, P, S, etc.), and may contain unavoidable impurities as long as the effects of the present invention are not impaired. The contents of these and the residual amounts of impurities when Mn and B are added are, for example, as follows.
[0029]
Mn: 2% or less
Since Mn is a hardenability improving element, the addition of Mn makes it easy to increase the strength of the component. The lower limit of the addition amount is not particularly limited, and may be more than 0%, but is 0.3% or more, preferably 0.5% or more in order to exert the above-mentioned effect remarkably. On the other hand, when Mn is excessive, the workability of the steel is reduced, and further, segregation at the grain boundaries is promoted to weaken the grain boundary strength and decrease the delayed fracture resistance. Therefore, the Mn content is, for example, 2% or less, preferably 1.5% or less, and more preferably 0.8% or less.
[0030]
B: 0.003% or less
B is useful for improving the hardenability of steel. The lower limit of the addition amount is not particularly limited, and may be more than 0%. However, in order to remarkably exert the above-mentioned effect, the addition amount is 0.0005% or more, preferably 0.001% or more. On the other hand, if B becomes excessive, the toughness decreases. Therefore, the B content is, for example, 0.003% or less, preferably 0.0025% or less, and more preferably 0.0020% or less.
[0031]
Al: 0.1% or less
Al forms oxide-based inclusions, which reduce the delayed fracture resistance. Therefore, Al content is, for example, 0.1% or less, preferably 0.07% or less, and more preferably 0.05% or less. Although the residual amount of Al is desirably 0%, it is difficult to reduce the amount of Al to 0% because it is used as a deoxidizing agent when smelting steel. Therefore, Al content is often, for example, about 0.02% or more (especially 0.03% or more).
[0032]
Si: 2% or less
Si lowers workability, and further promotes grain boundary oxidation during heat treatment such as quenching, thereby lowering delayed fracture resistance. Therefore, the content of Si is, for example, preferably 2% or less, preferably 1% or less, particularly preferably 0.5% or less. Although the remaining amount of Si is desirably 0%, it is difficult to reduce the amount of Si to 0% because it is used as a deoxidizing agent when smelting steel. Therefore, Si is often, for example, about 0.005% or more (particularly 0.01% or more).
[0033]
P: 0.02% or less
P causes grain boundary segregation and deteriorates delayed fracture resistance. Therefore, P is, for example, 0.02% or less, preferably 0.015% or less, and particularly 0.005% or less. Although the residual amount of P is desirably 0%, it leads to an increase in cost, and thus is often, for example, about 0.001% or more.
[0034]
S: 0.02% or less
Since S forms MnS, which is a stress concentration point, it deteriorates delayed fracture resistance. Therefore, S is set to, for example, 0.02% or less, preferably 0.01% or less, and more preferably 0.005% or less. Although the remaining amount of S is desirably 0%, it is often, for example, about 0.001% or more in order to increase the cost.
[0035]
Among the above impurities (Al, Si, P, S, etc.), it is particularly desirable to control the amounts of P and S.
[0036]
In the high-strength steel part of the present invention, a large amount of fine TiC is present and coarse TiC is suppressed. Fine TiC is useful not only in increasing the tensile strength, but also has an action of trapping hydrogen, and is useful in improving delayed fracture resistance. On the other hand, coarse TiC is detrimental to toughness and delayed fracture resistance. Therefore, by increasing the ratio of fine TiC, the toughness of the steel component can be increased, and the delayed fracture resistance can be significantly increased. In addition, in the steel part of the present invention, TiN is suppressed as described later. Since TiN does not form a solid solution at the time of heating during quenching, it tends to remain as coarse TiN in steel parts and is harmful to toughness and delayed fracture resistance. However, such TiN is suppressed in the steel parts of the present invention. ing. Therefore, a feature of the steel part of the present invention is that desirable Ti (fine TiC) is increased while harmful Ti (coarse TiC, coarse TiN) in steel is reduced. The ratio between fine TiC and harmful Ti (coarse TiC, coarse TiN) can be substantially evaluated by the ratio of fine TiC to total Ti.
[0037]
The ratio of the content of fine TiC (% by mass; hereinafter sometimes referred to as [fine TiC]) to the total content of Ti (% by mass; hereinafter sometimes referred to as [Ti]) ([fine TiC ] / [Ti]) is at least 0.4, preferably at least 0.5, more preferably at least 0.6. The ratio ([fine TiC] / [Ti]) is preferably as large as possible, but is usually about 0.9 or less.
[0038]
The fine TiC means TiC having a particle size of 0.1 μm or less. The fine TiC content in the steel part of the present invention is about 0.01% or more, preferably about 0.02% or more, and more preferably about 0.03% or more. The more fine TiC, the more desirable, but usually about 0.10% or less.
[0039]
The steel part of the present invention needs to have both the requirement of [fine TiC] / [Ti] and the requirement of fine TiC amount.
[0040]
Further, in the high-strength steel part of the present invention, since the crystal grains are not coarsened, the delayed fracture characteristics are also improved from this point. The degree of the coarsening suppression can be evaluated by the grain size number of austenite grains. The crystal grain size number is No. No. 7 or more, preferably no. No. 8 or more, more preferably no. No. 9 or more, especially No. 9 It is about 10 or more (for example, about No. 11 or more). Although the larger the crystal grain size number, the better, It is about 15 or less.
[0041]
The steel part of the present invention has a large amount of fine TiC, a small amount of coarse TiC, and a crystal grain that is not coarse, and thus has a remarkably excellent delayed fracture resistance. In addition, since it contains a predetermined amount of C and has a large amount of fine TiC, a predetermined strength can be secured. For this reason, superior high-strength steel parts (for example, high-strength bolts, springs, PC steel wires, rebars and other linear or rod-like steel materials) that replace conventional high-strength steel parts that have been required to improve delayed fracture strength. It is useful as a processed product.
[0042]
The tensile strength of the steel part of the present invention is, for example, 1000 N / mm. 2 Or more (preferably 1200 N / mm 2 About the above, more preferably 1400 N / mm 2 Above). The tensile strength is 1500 N / mm 2 It is often less than the following.
[0043]
Further, the steel component of the present invention has improved delayed fracture resistance by controlling the amounts of C, Ti, and N in terms of chemical components. That is, since there are few types of chemical components to be controlled, it can be applied to a wide range of steel parts. Therefore, even when it is difficult to use various elements (for example, Cr, Mo, V, Nb, Ni, etc.) used for improving the delayed fracture resistance, from the viewpoint of the production method, the use, and the like, According to the present invention, the use of these elements can be easily avoided, and a high-strength component excellent in delayed fracture resistance can be easily provided.
[0044]
The steel part can be manufactured by rapidly quenching steel having the same chemical composition at high temperature and tempering at high temperature. Since the coarse TiC can be efficiently dissolved by increasing the quenching temperature, the amount of the coarse TiC remaining undissolved can be suppressed, and the amount of the fine TiC precipitated during tempering can be increased. Moreover, by quenching promptly, even if the quenching temperature is increased, coarsening of crystal grains can be suppressed.
[0045]
The quenching temperature is specifically about 900 ° C. or more, preferably about 950 ° C. or more, more preferably about 1000 ° C. or more, and particularly about 1100 ° C. or more. If the quenching temperature is too high, even if quenching is performed quickly, the crystal grains are likely to become coarse and the delayed fracture characteristics are likely to be reduced. Therefore, the quenching temperature is usually about 1300 ° C. or lower, preferably about 1250 ° C. or lower, more preferably about 1150 ° C., and particularly about 1100 ° C. or lower.
[0046]
The quickness of quenching can be evaluated by the A value (sometimes referred to as “heat input strength”) represented by the following formula (4). The A value itself is also used as a tempering parameter and serves as a measure of the heat input.
A = logt′−B × [Q / (R × T a )] + C (4)
[In the formula, t ′ indicates a heating time (Hr), Q indicates an activation energy (cal / mol), R indicates a gas constant (cal / mol), and T a Represents a heating temperature (K), and B and C represent constants]
In the case of the present invention, the above equation (4) can be arranged as the following equation (5). A = log [t + (T−700) / (2 × V)] − B ′ × (T + 273) + C ′
… (5)
[Wherein T represents the quenching heating temperature (° C.), V represents the average heating rate during quenching heating (° C./second), t represents the holding time after heating (seconds), and B ′ and C ′ Indicates a constant]
When B ′ and C ′ were obtained by regression calculation using values obtained from many experiments, B ′ = 22 × 1000 and C ′ = 20. It can be rewritten as in (3).
A = log [t + (T−700) / (2 × V)] − 22 × 1000 / (T + 273) +20 (3)
The appropriate A value range was determined by changing the quenching speed (heating rate, holding time after heating, etc.), and the A value was about 8.0 or less (preferably about 7.5 or less, more preferably 7 or less). It is desirable to quench under the condition of about 0.0 or less, especially about 6.0 or less. If the A value is too large, quenching cannot be performed quickly, and the crystal grains become coarse, so that the delayed fracture characteristics deteriorate. On the other hand, if the A value is too small, heating will be insufficient even in high-temperature quenching, and Ti cannot be sufficiently dissolved. Therefore, it is desirable to quench under the condition that the A value is about 3.0 or more, preferably about 4.0 or more, more preferably about 4.5 or more, and particularly about 5.0 or more.
[0047]
In order to control the value A to be equal to or less than the predetermined value under the condition of high-temperature heating, it is necessary to increase the heating rate and shorten the holding time after heating. The heating rate can be selected, for example, from a range of about 10 ° C./sec or more, preferably about 20 ° C./sec or more, and more preferably about 50 ° C./sec or more. The holding time can be appropriately set according to the heating rate, and can be selected, for example, from a range of about 60 seconds or less, preferably about 30 seconds or less, and more preferably about 10 seconds or less.
[0048]
On the other hand, in order to control the A value to be equal to or more than the predetermined value, it is necessary that the heating rate is not extremely high and the holding time is not extremely short. The heating rate can be selected, for example, from a range of about 600 ° C./sec or less, preferably about 300 ° C./sec or less, and more preferably about 100 ° C./sec or less. The holding time can be appropriately set according to the heating rate, and can be selected, for example, from a range of about 1 second or more, preferably about 3 seconds or more, and more preferably about 5 seconds or more.
[0049]
For quick quenching, for example, it is convenient to use a rapid heating device such as a high-frequency heating device or an energizing heating device (a heating device utilizing resistance heat generated by energization).
[0050]
Tempering is performed by heating to a temperature of 500 ° C. or higher, preferably 550 ° C. or higher, more preferably 575 ° C. or higher. If the tempering temperature is too low, fine TiC does not precipitate, and the delayed fracture characteristics are not improved. The tempering temperature is usually about 650 ° C. or less (especially about 625 ° C. or less) in many cases.
[0051]
By performing the quenching and tempering as described above, it is possible to manufacture a steel part having a small number of crystal grains and a large amount of fine TiC despite suppression of the total Ti amount. However, if the amount of N in the steel is too large, TiN is formed, so that the amount of fine TiC becomes insufficient even when quenching and tempering are performed as described above. In order to keep the fine TiC amount within the above-mentioned predetermined range, it is necessary to make the Ti amount sufficiently larger than the N amount. For example, when the Ti content in steel is [Ti] (% by mass) and the N content is [N] (% by mass), the numerical value obtained by the formula [Ti] -3.4 × [N] is 0. 0.01% or more, preferably 0.03% or more, more preferably 0.05% or more.
[0052]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples, and may be appropriately modified within a range that can be adapted to the purpose of the preceding and the following. It is of course possible to carry out them, and all of them are included in the technical scope of the present invention.
[0053]
Experimental Examples 1 to 22
A test steel having the chemical composition (mass%) shown in Table 1 below was forged and cut to produce a round bar (diameter 12 mm × length 100 mm), which was then heated at 850 ° C. for 60 minutes for normalization. Using a high-frequency heating device, the round bar was rapidly heated under the conditions shown in Tables 2 and 3 for a short time, and then quenched by oil cooling. Then, after heating under the conditions shown in Table 2, it was tempered by water cooling.
[0054]
Across the tempered round bar, the particle size of austenitic crystal grains of D / 4 part (D indicates the diameter) Was measured in accordance with “Austenitic Grain Size Test Method for Steel” (JIS G 0551).
[0055]
The amount of fine TiC in the tempered round bar was determined as shown in (1) to (10) below.
[0056]
(1) The round bar was cut into a measurement sample (diameter: 12 mm × length: 20 mm).
[0057]
(2) The sample was immersed in a methanol solution (electrolyte solution) in which 10% by mass of acetylacetone and 1% by mass of tetramethylammonium chloride were dissolved, and 20 mA / cm 2 And a sample is dissolved (electrolysis) by about 0.5 g.
[0058]
(3) After completion of the electrolytic treatment, the sample is immersed in methanol, and the precipitate exposed on the sample surface is peeled off by ultrasonic waves.
[0059]
(4) The above electrolytic solution containing the coarse precipitate and the ultrasonic treatment solution are subjected to suction filtration through a membrane filter having a pore diameter of 0.1 μm to collect the coarse precipitate.
[0060]
(5) The collected coarse precipitate is transferred to a platinum crucible together with the membrane filter, and heated by a gas burner to incinerate.
[0061]
(6) An alkali flux (a mixture of sodium carbonate and sodium tetraborate) is added to the platinum crucible, and the residue is melted by heating again with a gas burner.
[0062]
(7) Hydrochloric acid and pure water are added to a platinum crucible to dissolve the melt and transferred to a volumetric flask. Further, pure water is added until reaching the marked line of the volumetric flask to obtain an analysis solution.
[0063]
(8) The amount of Ti was measured by ICP emission spectrometry, and the amount W of the coarse Ti compound (particle size of more than 0.1 μm) in the analysis solution W Large-Ti Is measured. On the other hand, the dissolved amount W of the sample during the electrolytic treatment and the ultrasonic treatment is W 1 Is calculated, and the concentration of the coarse Ti compound in the sample ([coarse Ti compound]) is calculated based on the following equation.
[0064]
[Coarse Ti compound] = W Large-Ti / W 1 × 100
(9) About 0.3 g from the round bar (dissolution amount: W 2 ) Is collected, put into aqua regia, and dissolved by heating. After adding pure water to this solution to adjust the concentration, the amount of Ti (W total-Ti ) Is measured, and the total Ti concentration ([total Ti]) in the sample is calculated based on the following equation.
[0065]
[All Ti] = W total-Ti / W 2 × 100
(10) Based on the following equation, the concentration ([fine TiC]) of fine TiC (particle size: 0.1 μm or less) in the sample is calculated.
[0066]
[Fine TiC] = [Total Ti]-[Coarse Ti compound]
The tempered round bar was cut to produce a tensile test piece shown in FIG. 1 and a delayed fracture test piece shown in FIG. Using these test pieces, tensile strength and delayed fracture strength were examined. The delayed fracture strength is measured by applying a stress while immersing a test piece in distilled water and measuring the time until failure. (100-hour delayed fracture strength).
[0067]
Experimental Examples 23 to 24
The procedure was the same as in Experimental Examples 1 to 22, except that a round bar was put in the heating furnace and quenched.
[0068]
The results are shown in Tables 2 and 3.
[0069]
[Table 1]
[0070]
[Table 2]
[0071]
[Table 3]
[0072]
As is clear from Experimental Example 23, even if the quenching temperature is increased to increase the amount of Ti penetration and the amount of fine TiC after tempering, the austenite grains become coarse and the delayed fracture strength decreases.
[0073]
Further, as is apparent from Experimental Example 24, under the condition of quenching at a low temperature in order to avoid coarsening of austenite grains, the amount of Ti dissolved in the quenching is increased by increasing the amount of Ti in the steel, and the fineness after tempering is increased. Even if the amount of TiC is increased, a large amount of coarse TiC remains in the steel, so that the delayed fracture strength is weak.
[0074]
On the other hand, in Experimental Example 1, quenching is performed in a short time by high frequency, so that Ti in steel can be efficiently dissolved while preventing coarsening of austenite grains. Therefore, in the tempered round bar, the crystal grain can be reduced, and the fine TiC content can be increased while suppressing the coarse TiC content (that is, [fine TiC] / [Ti] can be increased), and the tensile strength and delayed fracture Strength can be increased. Similarly, in Experimental Examples 5 to 15, since quenching is performed in a short time by high frequency, the tensile strength and the delayed fracture strength can be increased.
[0075]
However, in Experimental Example 2, since the temperature of the induction hardening was too low and the A value was too low, Ti in the steel could not be sufficiently dissolved, the amount of fine TiC was insufficient, and the tensile strength was weak. In Experimental Example 3, since the heat input during induction hardening is too large and the A value is too high, austenite grains are coarsened and the delayed fracture strength is reduced. In Experimental Example 4, since the tempering temperature was too low, the dissolved Ti at the time of quenching did not precipitate, and fine TiC was insufficient, and the delayed fracture strength was reduced.
[0076]
In Experimental Examples 16, 19, 21, and 22, since [Ti] -3.4 [N] is small, Ti is bonded to N, and as a result, fine TiC is not easily deposited. Moreover, the austenite grains are also coarse because TiC for suppressing the coarsening of the austenite grains is insufficient. Therefore, the delayed fracture strength decreases.
[0077]
In Experimental Example 17, the tensile strength is reduced due to the small amount of C, and in Experimental Example 18, the delayed fracture strength is reduced due to the large amount of C. In Experimental Example 20, since the amount of Ti is too large, not only the fine TiC increases but also the coarse TiC increases, and the delayed fracture strength decreases.
[0078]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, although the coarsening of a crystal grain and the coarse TiC content are suppressed, since the fine TiC content is large, delayed fracture characteristics can be remarkably improved. Moreover, in terms of chemical components, only the amounts of C, Ti, and N are controlled, so that it can be applied to high-strength steel parts having a wide range of component compositions.
[0079]
The high-strength steel part can be manufactured by rapidly quenching at high temperature and tempering at high temperature.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a tensile test piece of an experimental example.
FIG. 2 is a schematic plan view showing a delayed fracture test piece of an experimental example.
Claims (7)
C :0.20〜0.55%、
Ti:0.01〜0.10%、
N :0.02%以下
を含有し、
オーステナイト結晶粒度がNo.7以上であり、
粒径0.1μm以下である微細TiCの含有量が0.01%以上であって、
前記微細TiCの含有量(質量%;以下[微細TiC]と表記)と全Tiの含有量(質量%;以下[Ti]と表記)が、下記式(1)を満足していることを特徴とする耐遅れ破壊特性に優れた高強度鋼部品。
[微細TiC]/[Ti]≧0.4 …(1)Mass% (hereinafter the same),
C: 0.20 to 0.55%,
Ti: 0.01 to 0.10%,
N: contains 0.02% or less;
The austenite grain size is no. 7 or more,
The content of fine TiC having a particle size of 0.1 μm or less is 0.01% or more;
The content of the fine TiC (% by mass; hereinafter referred to as [fine TiC]) and the content of all Ti (% by mass; hereinafter referred to as [Ti]) satisfy the following formula (1). High strength steel parts with excellent delayed fracture resistance.
[Fine TiC] / [Ti] ≧ 0.4 (1)
Cr:2%以下、
Mo:2%以下、
V :1%以下、
W :1%以下、及び
Nb:1%以下
から選択された少なくとも一種を含有する請求項1に記載の高強度鋼部品。Still other ingredients,
Cr: 2% or less,
Mo: 2% or less,
V: 1% or less,
The high-strength steel part according to claim 1, which contains at least one selected from W: 1% or less and Nb: 1% or less.
Cu:1%以下、及び
Ni:4%以下
から選択された少なくとも一種を含有する請求項1又は2に記載の高強度鋼部品。Still other ingredients,
The high-strength steel part according to claim 1 or 2, containing at least one selected from Cu: 1% or less and Ni: 4% or less.
C :0.20〜0.55%、
Ti:0.01〜0.10%、
N :0.02%以下
を含有し、
全Tiの含有量(質量%;以下[Ti]と表記)とNの含有量(質量%;以下[N]と表記)が、下記式(2)を満足する鋼を、
焼入れ温度が900〜1300℃であって下記式(3)で規定される入熱強さAが3.0〜8.0となる条件で焼入れした後、
温度500℃以上で焼戻しすることを特徴とする耐遅れ破壊特性に優れた高強度鋼部品の製造方法。
[Ti]−3.4×[N]≧0.01% …(2)
A=log[t+(T−700)/(2×V)]−22×1000/(T+273)+20 …(3)
[式中、Tは焼入れ加熱温度(℃)を示し、Vは焼入れ加熱時の平均加熱速度(℃/秒)を示し、tは加熱後の保持時間(秒)を示す]Mass% (hereinafter the same),
C: 0.20 to 0.55%,
Ti: 0.01 to 0.10%,
N: contains 0.02% or less;
A steel having a total Ti content (% by mass; hereinafter referred to as [Ti]) and an N content (% by mass; hereinafter referred to as [N]) satisfying the following formula (2):
After quenching under the condition that the quenching temperature is 900 to 1300 ° C. and the heat input strength A defined by the following formula (3) is 3.0 to 8.0,
A method for producing a high-strength steel part having excellent delayed fracture resistance, characterized by tempering at a temperature of 500 ° C. or higher.
[Ti] −3.4 × [N] ≧ 0.01% (2)
A = log [t + (T−700) / (2 × V)] − 22 × 1000 / (T + 273) +20 (3)
[In the formula, T indicates a quenching heating temperature (° C.), V indicates an average heating rate (° C./second) during quenching heating, and t indicates a holding time (second) after heating.]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002237089A JP3836766B2 (en) | 2002-08-15 | 2002-08-15 | High strength steel parts with excellent delayed fracture resistance and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002237089A JP3836766B2 (en) | 2002-08-15 | 2002-08-15 | High strength steel parts with excellent delayed fracture resistance and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004076086A true JP2004076086A (en) | 2004-03-11 |
JP3836766B2 JP3836766B2 (en) | 2006-10-25 |
Family
ID=32021013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002237089A Expired - Lifetime JP3836766B2 (en) | 2002-08-15 | 2002-08-15 | High strength steel parts with excellent delayed fracture resistance and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3836766B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007031736A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
JP2011047010A (en) * | 2009-08-27 | 2011-03-10 | Kobe Steel Ltd | High strength bolt having improved delayed fracture resistance, and method for producing the same |
JP2012017484A (en) * | 2010-07-06 | 2012-01-26 | Kobe Steel Ltd | Steel for bolt, bolt, and method for production of the bolt |
WO2014034070A1 (en) * | 2012-08-31 | 2014-03-06 | Jfeスチール株式会社 | Steel for reinforcing bars, and reinforcing bar |
WO2015045951A1 (en) * | 2013-09-25 | 2015-04-02 | 株式会社神戸製鋼所 | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
JP2016050329A (en) * | 2014-08-29 | 2016-04-11 | 日産自動車株式会社 | Steel for high strength bolt and high strength bolt |
CN111378901A (en) * | 2020-05-15 | 2020-07-07 | 武钢集团昆明钢铁股份有限公司 | Special base metal wire rod for 1420 MPa-level PC steel rod and preparation method thereof |
CN114657468A (en) * | 2022-03-23 | 2022-06-24 | 承德建龙特殊钢有限公司 | Steel for wind power fastener and preparation method thereof |
WO2023167318A1 (en) * | 2022-03-04 | 2023-09-07 | 日本製鉄株式会社 | Steel material |
-
2002
- 2002-08-15 JP JP2002237089A patent/JP3836766B2/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007031736A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
JP2011047010A (en) * | 2009-08-27 | 2011-03-10 | Kobe Steel Ltd | High strength bolt having improved delayed fracture resistance, and method for producing the same |
JP2012017484A (en) * | 2010-07-06 | 2012-01-26 | Kobe Steel Ltd | Steel for bolt, bolt, and method for production of the bolt |
WO2014034070A1 (en) * | 2012-08-31 | 2014-03-06 | Jfeスチール株式会社 | Steel for reinforcing bars, and reinforcing bar |
KR20150034799A (en) * | 2012-08-31 | 2015-04-03 | 제이에프이 스틸 가부시키가이샤 | Steel for reinforcing bars, and reinforcing bar |
CN104603310A (en) * | 2012-08-31 | 2015-05-06 | 杰富意钢铁株式会社 | Steel for reinforcing bars, and reinforcing bar |
KR101631522B1 (en) | 2012-08-31 | 2016-06-17 | 제이에프이 스틸 가부시키가이샤 | Steel for reinforcing bars, and reinforcing bar |
US10060015B2 (en) | 2013-09-25 | 2018-08-28 | Kobe Steel, Ltd. | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt |
WO2015045951A1 (en) * | 2013-09-25 | 2015-04-02 | 株式会社神戸製鋼所 | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
JP2015063739A (en) * | 2013-09-25 | 2015-04-09 | 株式会社神戸製鋼所 | Steel for high strength bolt excellent in delayed fracture resistance and bold moldability and bolt |
EP3050987A4 (en) * | 2013-09-25 | 2017-05-31 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
JP2016050329A (en) * | 2014-08-29 | 2016-04-11 | 日産自動車株式会社 | Steel for high strength bolt and high strength bolt |
US10913993B2 (en) | 2014-08-29 | 2021-02-09 | Nissan Motor Co., Ltd. | Steel for high-strength bolt, and high-strength bolt |
CN111378901A (en) * | 2020-05-15 | 2020-07-07 | 武钢集团昆明钢铁股份有限公司 | Special base metal wire rod for 1420 MPa-level PC steel rod and preparation method thereof |
WO2023167318A1 (en) * | 2022-03-04 | 2023-09-07 | 日本製鉄株式会社 | Steel material |
JP7401841B1 (en) * | 2022-03-04 | 2023-12-20 | 日本製鉄株式会社 | steel material |
CN114657468A (en) * | 2022-03-23 | 2022-06-24 | 承德建龙特殊钢有限公司 | Steel for wind power fastener and preparation method thereof |
CN114657468B (en) * | 2022-03-23 | 2022-11-11 | 承德建龙特殊钢有限公司 | Steel for wind power fastener and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3836766B2 (en) | 2006-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4140556B2 (en) | Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking | |
JP4027956B2 (en) | High strength spring steel having excellent brittle fracture resistance and method for producing the same | |
JP5167616B2 (en) | Metal bolts with excellent delayed fracture resistance | |
WO2011078165A1 (en) | High-strength spring steel | |
EP3686306B1 (en) | Steel plate and method for manufacturing same | |
JP4998719B2 (en) | Ferritic stainless steel sheet for water heaters excellent in punching processability and method for producing the same | |
JP4688691B2 (en) | Case-hardened steel with excellent low cycle fatigue strength | |
JPH06306543A (en) | High strength PC bar wire excellent in delayed fracture resistance and its manufacturing method | |
EP3766999A1 (en) | Martensitic stainless steel sheet, method for manufacturing same, and spring member | |
JP3836766B2 (en) | High strength steel parts with excellent delayed fracture resistance and manufacturing method thereof | |
JP4485424B2 (en) | Manufacturing method of high-strength bolts with excellent delayed fracture resistance | |
JP4867638B2 (en) | High-strength bolts with excellent delayed fracture resistance and corrosion resistance | |
JPH09249940A (en) | High-strength steel material excellent in sulfide stress cracking resistance and method for producing the same | |
JP5653269B2 (en) | Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them. | |
JP2004360022A (en) | High-strength Al-plated wire and bolt excellent in delayed fracture resistance and method of manufacturing the same | |
JP4430559B2 (en) | High strength bolt steel and high strength bolt with excellent delayed fracture resistance | |
JP2003183781A (en) | Martensitic stainless steel | |
JP2006007289A (en) | Method for producing high nitrogen steel | |
JPH11131135A (en) | Induction hardened part and method of manufacturing the same | |
JP7543687B2 (en) | Manufacturing method for high strength bolt steel | |
JP2002327235A (en) | Mechanical structural steel excellent in hydrogen fatigue fracture resistance and method for producing the same | |
EP3825436A1 (en) | Steel sheet and method for manufacturing same | |
JP3468828B2 (en) | Manufacturing method of high strength PC steel rod | |
JP2008274344A (en) | High strength steel pipe with excellent delayed fracture resistance and fatigue properties | |
JP5935844B2 (en) | Cold-rolled steel sheet with excellent delayed fracture resistance of laser welds and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040810 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3836766 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090804 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |