[go: up one dir, main page]

JP2004074061A - Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method - Google Patents

Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method Download PDF

Info

Publication number
JP2004074061A
JP2004074061A JP2002239672A JP2002239672A JP2004074061A JP 2004074061 A JP2004074061 A JP 2004074061A JP 2002239672 A JP2002239672 A JP 2002239672A JP 2002239672 A JP2002239672 A JP 2002239672A JP 2004074061 A JP2004074061 A JP 2004074061A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
hydrogen
sio
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002239672A
Other languages
Japanese (ja)
Inventor
Kiyoshi Otsuka
大塚  潔
Takeshi Takenaka
竹中  壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiya Thermostat Co Ltd
Original Assignee
Uchiya Thermostat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co Ltd filed Critical Uchiya Thermostat Co Ltd
Priority to JP2002239672A priority Critical patent/JP2004074061A/en
Publication of JP2004074061A publication Critical patent/JP2004074061A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen producing catalyst having a long catalytic life in the decomposition of a hydrocarbon such as methane, a manufacturing method thereof and a hydrogen manufacturing method using the catalyst. <P>SOLUTION: The hydrogen producing catalyst contains a carrier comprising silica, titania, a graphitized carbon fiber or a carbon nanofiber and palladium and nickel supported on the carrier. The manufacturing method of the hydrogen producing catalyst includes a process for immersing silica, titania, graphitized carbon fiber or a carbon nanofiber becoming the carrier with a solution of a nickel compound and a palladium compound, and a process for drying the impregnated carrier. According to circumstances, a baking process or a reducing process using a reducing gas can be contained. The hydrogen manufacturing process contains a process for decomposing a hydrocarbon in the presence of the catalyst. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、メタン等の炭化水素を分解して水素を製造するための触媒、その触媒の製造方法、及びその触媒を用いた水素の製造方法に関する。
【0002】
【従来の技術】
近年、地球温暖化が深刻な問題となっている。そこで温暖化ガスである二酸化炭素(CO)を排出しないクリーンなエネルギー源として水素が注目されている。水素を燃料とする燃料電池に水素を供給するための水素製造法として、現在、軽質炭化水素の水蒸気改質や、部分酸化、シフト反応による方法が開発されている。しかし、いずれの方法も、温暖化ガスであるCOや、燃料電池の電極を被毒する一酸化炭素(CO)を副生するという問題がある。そこで、COやCOを副生しない水素製造法として、炭化水素を分解(C→nC+m/2H)して水素を製造する方法が開発されている。この方法では、気相生成物として水素のみが得られるので、生成した水素を燃料電池に直接供給しても、電極を被毒することがない。この反応に高い活性を示す触媒として、シリカ担持ニッケル(Ni/SiO)触媒が既に開発されているが、析出した炭素により触媒が失活するという問題がある。
【0003】
【発明が解決しようとする課題】
そこで本発明は、上記の問題点を鑑み、メタン等の炭化水素の分解において長い触媒寿命を有する水素製造用触媒と、その触媒の製造方法と、その触媒を用いた水素の製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る水素製造用触媒は、シリカ、チタニア、黒鉛化カーボンファイバ又はカーボンナノファイバからなる担体と、該担体に担持されたパラジウム及びニッケルとを含んでなるものである。
【0005】
シリカ担持ニッケル(Ni/SiO)触媒は、炭化水素の分解に対して高い活性を示す。そこで、Niに加えて、パラジウム(Pd)をさらに添加して担体に担持させることで、Pd種とNi種が相互作用して、触媒活性、特に、触媒寿命をNi/SiO触媒より向上させることができる。また、シリカの代わりに、チタニア、黒鉛化カーボンファイバ又はカーボンナノファイバを担体に用いることで、触媒寿命をシリカと同様又はそれ以上に向上させることができる。
【0006】
なお、本明細書において、「炭化水素の分解」とは、炭化水素を水素と炭素に直接分解することをいい、反応式としてはC→nC+m/2Hで示される。また、「カーボンナノファイバ」とは、ナノメータのオーダの直径を有する繊維状の炭素をいう。カーボンナノファイバは、例えば、触媒上で炭化水素を分解して水素ガスとともに生成させることができ、一般にはフィッシュボーン構造を有しているが、本発明においては、その他の製法と構造のカーボンナノファイバをも用いることができよう。
【0007】
パラジウムとニッケルの合計の担持量は、触媒全体に対して5〜90重量%の範囲であることが好ましく、30〜60重量%がより好ましい。また、パラジウム/ニッケルのモル比は、20/1から1/50の範囲であることが好ましい。特に、上記担体がシリカの場合、パラジウム/ニッケルのモル比は、3/1から1/50の範囲であることがさらに好ましい。上記担体がカーボンナノファイバの場合、パラジウム/ニッケルのモル比は20/1から1/20の範囲であることがさらに好ましい。
【0008】
本発明は、別の側面として、水素製造用触媒の製造方法であって、ニッケル化合物とパラジウム化合物の溶液に、担体となるシリカ、チタニア、黒鉛化カーボンファイバ又はカーボンナノファイバを浸漬させる工程と、浸漬させた担体を乾燥する工程とを含むことを特徴とする。
【0009】
上記担体がシリカ又はチタニアの場合、上記乾燥させた担体を空気の存在下で焼成する工程をさらに含めることができる。また、上記乾燥させた担体又は上記焼成した担体を還元ガスで還元処理する工程をさらに含めることができる。さらに、上記担体がカーボンナノファイバの場合、炭化水素を分解して得られるカーボンナノファイバを用いることが好ましい。
【0010】
また、本発明は、別の側面として、水素の製造方法であって、上記の触媒の存在下において炭化水素を分解する工程を含んでなるものである。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態を説明する。
本発明に係る水素製造用触媒の担体としては、シリカ(SiO)、チタニア(TiO)、黒鉛化カーボンファイバ(GrCF)、又は炭化水素の分解により生成したカーボンナノファイバ(以下、CF(HC)という。HCは分解に用いた炭化水素を示す)を用いる。炭化水素としては、特に限定されず、脂肪族炭化水素や、脂環式炭化水素、芳香族炭化水素を使用することができるが、その中でも特にメタン(CH)が好ましい。このような担体は、担体に担持する金属種間の固溶の程度に影響を与えるものと推定され、炭化水素の分解活性を向上させることができる。より好ましい担体は、CF(HC)である。
【0012】
本発明に係る水素製造用触媒の活性金属としては、パラジウム(Pd)とニッケル(Ni)を用いる。NiとPdを担体に担持させたPd−Ni触媒は、Pd触媒とNi触媒の単なる混合物と比べて、炭化水素の分解に対する触媒活性を著しく向上させることができる。Pd/Niのモル比は、水素の収量を向上させるために、20/1から1/50の範囲であることが好ましい。特に、担体としてSiOを用いる場合、Pd/Niのモル比は、3/1から1/50の範囲であることが好ましく、特に1/5から1/20の範囲であることがより好ましい。また、担体としてCF(HC)を用いる場合、Pd/Niのモル比は、20/1から1/20の範囲であることが好ましく、10/1から1/20の範囲であることがより好ましく、3/1から1/10の範囲であることがさらに好ましい。また、PdとNiの合計の担持量は、触媒全体に対して5〜90重量%の範囲であることが好ましく、特に30〜60重量%の範囲であることがより好ましい。活性金属の担持量をこれらの範囲内にすることで、水素収量を向上させることができる。
【0013】
本発明に係る水素製造用触媒の製造方法としては、担体にSiO又はTiOを用いる場合、先ず、担体をニッケル化合物の溶液とパラジウム化合物の溶液の混合溶液に浸漬させる。ニッケル化合物の溶液としては、例えば、硝酸ニッケル水溶液や硝酸ニッケルアセトン溶液などを用いることができる。また、パラジウム化合物の溶液としては、例えば、塩化パラジウム(PdCl)水溶液や、酢酸パラジウム(Pd(OAc))又はビス(アセチルアセトナト)パラジウム(Pd(acac))のアセトン溶液などを用いることができる。次に、担体が浸漬した溶液を攪拌しながら約80℃〜約100℃まで加熱して溶媒を蒸発させて乾燥する。これにより、担体にNiとPdを均一に分散して担持させることができる。なお、乾燥はこのような蒸発乾固に限られず、減圧乾燥によっても、同様の性能を有する触媒を得ることができる。
【0014】
さらに、蒸発乾固して得られた粉末を、約300℃〜約400℃で約〜15時間にわたり空気の存在下で焼成する。これにより、PdとNiの化合物を酸化物に変えて担体に固着させることができる。そして、焼成によって得られた酸化物を、水素ガス等の還元ガスにより約200℃〜約500℃の温度で約30分から約2時間にわたり還元処理する。これによって、PdとNiの酸化物が金属状態となり、担体にPdとNiが複合的に担持した水素製造用触媒を調製することができる。なお、空気存在下での焼成は省いても差し支えはない。また、反応させる炭化水素が還元剤として作用するので、前もっての還元処理を省略することも可能である。
【0015】
一方、担体にGrCF又はCF(HC)を用いる場合は、上記と同様に、担体をニッケル化合物の溶液とパラジウム化合物の溶液に浸漬させて、これを攪拌しながら蒸発乾固又は減圧乾燥した後、焼成を行わずに還元ガスで還元処理をする。これにより、上記と同様に、担体にPdとNiが複合的に担持した水素製造用触媒を調製することができる。担体がGrCF又はCF(HC)の場合は、焼成処理により担体が燃焼するおそれがあるため、焼成処理は避ける必要がある。
【0016】
なお、担体にCF(HC)を用いる場合、炭化水素を約400℃〜約600℃に加熱して炭化水素を分解することで、CF(HC)を合成することができる。この炭化水素の分解は触媒の存在下で行い、このような触媒としては、チタニア(TiO)、ジルコニア(ZrO)、シリカ(SiO)、アルミナ(Al)及びマグネシア(MgO)からなる群から選ばれた少なくとも1つの担体に、ニッケル(Ni)、コバルト(Co)及び鉄(Fe)からなる群から選ばれた少なくとも1つの鉄族金属を担持させた触媒を用いることが好ましい。その中でも高い活性を有する点で、Ni/TiO触媒とNi/SiO触媒がより好ましい。
【0017】
本発明に係る水素製造方法としては、上記によって得られた水素製造用触媒の存在下で炭化水素を約400℃〜約600℃に加熱し、炭化水素を分解する。これにより、水素ガスを得ることができる。炭化水素としては、特に限定されないが、メタンやブタンなどの炭素数1〜10の脂肪族炭化水素が好ましい。また、脂環式炭化水素や芳香族炭化水素も使用することができる。
【0018】
【実施例】
以下、本発明の実施例及び比較例について説明する。
(実施例1)
先ず、SiO(Cabot社製、商品名:Cab−O−Sil)に、5重量%のNi担持量になるように硝酸ニッケル水溶液を加え、さらに、0.91重量%のPd担持量になるように塩化パラジウム水溶液を加えて含浸させた(すなわち、Pd/Niのモル比は1/10とした)。そして、これを攪拌しながら蒸発乾固した後、350℃で10時間にわたり空気の存在下で焼成した。さらに、300℃で1時間にわたり水素ガスを供給して還元処理することにより、Pd−Ni/SiO触媒を得た。
【0019】
次に、常圧固定床流通式反応装置に上記で得られたPd−Ni/SiO触媒を40mg充填し、圧力101kPa、温度530℃の条件下で、メタンを40ml/minの流量で流通させ、メタンの分解を行った。メタン分解中、装置出口のガスをサンプリングしてガス中の水素とメタンの組成を求め、これからメタン転化率を計算した(メタン転化率[%]={0.5×(出口の水素流量[mol/h]/入口のメタン流量[mol/h])}×100)。そして、触媒が失活してメタン転化率が0%になった時点でメタンの流通を止めた。この時のメタン転化率の経時変化を図1に示す。また、この時のH/(M+Ni)値(メタン分解における活性金属1モル当りの水素生成量(モル))を図2に示す。
【0020】
(比較例1〜5)
塩化パラジウム水溶液を加えなかったことを除いて、又は塩化パラジウム水溶液を加える代わりに、銅、ロジウム、イリジウム、又は白金の各添加金属の塩化物の水溶液を、M(添加金属)/Niのモル比が1/10になるように加えたことを除いて、実施例1と同様に調製して、Ni/SiO触媒(比較例1)、Cu−Ni/SiO触媒(比較例2)、Rh−Ni/SiO触媒(比較例3)、Ir−Ni/SiO触媒(比較例4)、Pt−Ni/SiO触媒(比較例5)を得た。そして、これらの触媒を用いてそれぞれメタン分解を行った。これらのメタン転化率の経時変化を図1に示す。また、この時のH/(M+Ni)値を図2に示す。
【0021】
図1に示すように、実施例1のPd−Ni/SiO触媒は、初期のメタン転化率が約12%と高く、メタンの流通時間の経過に従ってメタン転化率はゆるやかに低下し、約600分の流通時間でも失活しなかった。一方、比較例1のNi/SiO触媒は、初期のメタン転化率が約14%と高い値を示したが、流通時間の経過に従いメタン転化率は急激に低下し、約200分で失活した。比較例2のCu−Ni/SiO触媒は、実施例1と同様にメタン転化率はゆるやかな低下を示したが、初期のメタン転化率は約10%と低かった。また、比較例3〜5のRh−Ni/SiO、Ir−Ni/SiO、Pt−Ni/SiOの各触媒は、比較例1と同様に流通時間の経過に従ってメタン転化率は急激に低下した。
【0022】
また、図2に示すように、実施例1のPd−Ni/SiO触媒は、H/(M+Ni)値が4000を超えており、比較例1のNi/SiO触媒と比べて約2倍の水素を得ることができた。一方、比較例2〜5のCu−Ni/SiO、Rh−Ni/SiO、Ir−Ni/SiO、Pt−Ni/SiOの各触媒は、比較例1より低いH/(M+Ni)値であった。
【0023】
(比較例6)
硝酸ニッケル水溶液を加えなかったことを除いて、実施例1と同様に調製して、Pd/SiO触媒(Pd=0.91wt%)を得た(比較例6)。そして、この触媒を用いてメタン分解を行った。このメタン転化率の経時変化を、Pd−Ni/SiO触媒(Pd=0.91wt%、Ni=5重量%)の実施例1と、Ni/SiO触媒(Ni=5wt%)の比較例1とともに図3に示す。また、実施例1と比較例1及び6について、それぞれのメタン分解によって得られた水素生成量(mmol)を図4に示す。
【0024】
図3に示すように、活性成分がNiのみの比較例1は、約13%と初期に高いメタン転化率を示すが、流通時間の経過に従い急激に低下して、約250分で失活した。また、活性成分がPdのみの比較例6は、メタン転化率が約1%と非常に低いが、約500分まで活性を有していた。一方、NiにPdを添加した実施例1は、初期のメタン転化率が約12%と高く、かつメタン転化率の低下もゆるやかで、流通時間が600分以上経過しても活性を有していた。このように、NiにPdを添加することで、高い初期活性と長い触媒寿命の両方の性質を備える水素製造用触媒を調製できることがわかった。
【0025】
また、図4に示すように、実施例1のPd−Ni/SiO触媒によって生成した水素生成量は約170mmolであった。これは、Pd/SiO触媒とNi/SiO触媒のそれぞれの水素生成量の和である約80mmolに比べて遥かに多く、Pd種とNi種の相互作用によりメタン分解に対する触媒作用が改善されたことがわかった。
【0026】
(実施例2〜6、比較例7〜8)
Pd/Niのモル比を1/10にする代わりに1/50(実施例2)、1/20(実施例3)、1/5(実施例4)、4/5(実施例5)、5/1(実施例6)、Niのみ(比較例7)、Pdのみ(比較例8)としたことと、PdとNiの担持量を5.91重量%にする代わりに4.55モル%にしたことを除き、実施例1と同様にして触媒をそれぞれ調製した。そして、得られた触媒を用いてそれぞれメタン分解を行った。これらのメタン転化率の経時変化を図5に示す。また、この時のH/(M+Ni)値を図6に示す。
【0027】
図5に示すように、Pd/Niのモル比が1/20である実施例3は、初期のメタン転化率が10%以上と高い値を示すとともに、流通時間の経過に従ってゆるやかに低下し、約56時間の流通時間にわたり活性を示した。Pd/Niのモル比が4/5である実施例5と5/1である実施例6は、初期のメタン転化率が約3〜7%と高くなかったものの、その低下はゆるやかで、約28時間にわたり活性を示した。一方、Niのみの比較例7は、初期のメタン転化率が約13%と高い値を示したが、急激に低下して約4時間で失活した。また、Pdのみの比較例8は、初期のメタン転化率が約2%と低く、低下はゆるやかであるが約12時間で失活した。
【0028】
また、図6に示すように、Pd/Niのモル比が1/20である実施例3は、H/(M+Ni)値が約4500と、実施例2〜6の中で最大値を示した。実施例3と比べてNiのモル比を高くした1/50の実施例2は、H/(M+Ni)値が約2600に低下し、Niのみの比較例7は約2000まで低下した。一方、Pdのモル比を高くした1/5、4/5、5/1の実施例4〜6は、H/(M+Ni)値が約3700、約2200、約1300と低下し、Pdのみの比較例8は約600まで低下した。
【0029】
(実施例7〜9、比較例9〜11)
Pd/Niのモル比を1/10にする代わりに1/20としたことと、NiとPdの担持量を5重量%と0.91重量%にする代わりにNiとPdの合計で30、60、90重量%にしたことを除いて、実施例1と同様にして触媒をそれぞれ調製した(実施例7〜9)。一方、Pdを添加せずにNiの担持量を30、60、90重量%にしたことを除いて、実施例1と同様にして触媒をそれぞれ調製した(比較例9〜11)。そして、得られた触媒を用いてそれぞれメタン分解を行った。これらのメタン転化率の経時変化を図7に示す。また、この時のH/(M+Ni)値又はH/Ni値を図8に示す。
【0030】
図7に示すように、Pd−Ni/SiO触媒の実施例7〜9は、初期のメタン転化率が11〜13%と高く、また、流通時間の経過に従ってゆるやかに低下し、80時間以上にわたって活性を示した。その中でも、PdとNiの合計の担持量が60重量%である実施例8が、メタン分解の開始から70時間までにわたって高いメタン転化率を維持した。一方、Ni/SiO触媒の比較例9〜11は、9〜13%と高い初期のメタン転化率を示したが、流通時間の経過によって急激に低下した。この中で触媒寿命が最大であったNi担持量が60重量%の比較例10でも、約35時間で失活した。
【0031】
また、図8に示すように、Pd−Ni/SiO触媒において、PdとNiの合計の担持量が30重量%であるときに、H/(M+Ni)値が約6000と最大値を示した。一方、Ni/SiO触媒においても、Niの担持量が30重量%であるときにH/(Ni)値は約3000と最大値を示した。しかし、これはPd−Ni/SiO触媒の最大値の約半分しかなかった。また、触媒1g当りの水素生成量(リットル(STP))に換算した値を、図8の右側の軸に示す。このように触媒1g当りで換算すると、金属の担持量を60重量%にした場合に、最大値の約900Lの水素ガスが得られることがわかった。
【0032】
(実施例10及び11、比較例12及び13)
SiO(Cabot社製、商品名:Cab−O−Sil)、TiO(触媒学会参照触媒、TIO−4)、MgO(触媒学会参照触媒、MGO−1)に、27.5重量%のNi担持量になるように硝酸ニッケル水溶液を加え、さらに、2.5重量%のPd担持量になるように塩化パラジウム水溶液を加えて含浸させた(すなわち、Pd/Niのモル比は1/20とした)。そして、これを80℃で6時間攪拌しながら蒸発乾固した後、350℃で空気焼成することにより、Pd−Ni/SiO(実施例10)、Pd−Ni/TiO(実施例11)、Pd−Ni/MgO(比較例12)の各触媒を得た。また、Niのみを30重量%でSiOに担持させたことを除き、上記と同様にしてNi/SiO触媒(比較例13)を得た。
【0033】
(実施例12及び13)
CF(CH)(Ni(30wt%)/SiO上での530℃におけるメタン分解で生成させた)、GrCF(旭化成株式会社製、黒鉛化カーボンファイバ)に、27.5重量%のNi担持量になるように硝酸ニッケルアセトン溶液を加え、さらに、2.5重量%のPd担持量になるように塩化パラジウム水溶液を加えて含浸させた(すなわち、Pd/Niのモル比は1/20とした)。そして、これを室温で1日攪拌しながら減圧乾燥した後、300℃で1時間水素還元することにより、Pd−Ni/CF(CH)(実施例12)、Pd−Ni/GrCF(実施例13)の各触媒を得た。
【0034】
そして、常圧固定床流通式反応装置に上記で得られた触媒を20mg充填し、圧力101kPa、温度550℃の条件下で、メタンを50ml/minの流量で流通させ、メタンの分解を行った。メタン分解中、装置出口のガスをサンプリングしてガス中の水素とメタンの組成を求め、これからメタン転化率を計算した。そして、触媒が失活してメタン転化率が0%になった時点でメタンの流通を止めた。この時のメタン転化率の経時変化を図9に示す。
【0035】
図9に示すように、担体としてSiO、TiO、CF(CH)、GrCFを用いた実施例10〜13は、初期のメタン転化率が12〜14%と高い値を示し、流通時間の経過に従ってメタン転化率は低下するが、その後も低い転化率ながら30時間以上にわたり活性を示し、長い触媒寿命を有していた。その中でも、CF(CH)を用いた実施例12がメタン転化率の低下が最もゆるやかであった。メタン分解の開始から30時間までに得られた水素生成量を比較すると、CF(CH)を用いた実施例12が最も多く、以下、生成量が多い順に、TiOを用いた実施例11、GrCFを用いた実施例13、SiOを用いた実施例10であった。一方、担体としてMgOを用いた比較例12は、初期のメタン転化率が約9%と低く、さらにメタン分解の開始直後から急激に転化率は低下し、約18時間で完全に失活した。なお、これら触媒の活性金属1モル当りの炭素生成モル量(C/Ms値)を表1に示す。
【0036】
【表1】

Figure 2004074061
【0037】
そこで、Pd−Ni触媒における担体の効果を調べる目的で、粉末X線回析(XRD)装置を用いてPd−Ni触媒のXRDパターンを測定した。実施例12のPd−Ni/CF(CH)触媒のXRDパターンでは、PdとNiからなる合金に由来する回析線のみが観測された。一方、実施例10のPd−Ni/SiO触媒のXRDパターンでは、合金に加えて、金属Niと金属Pdのそれぞれの回析線が確認された。つまり、担体の違いによって、担体に担持する金属種間の固溶の程度が異なり、メタン分解に対する活性に影響を与えたものと推定される。
【0038】
(実施例14〜19、比較例14及び15)
Pd/Niのモル比を、1/20(実施例14)、1/3(実施例15)、7/13(実施例16)、1/1(実施例17)、3/1(実施例18)、20/1(実施例19)、Niのみ(比較例14)、Pdのみ(比較例15)としたこと(NiとPdの担持量は表2を参照)と、メタン分解の温度を873Kにしたことを除き、担体としてCF(CH)を用いた実施例12と同様にして、それぞれ触媒を調製し、得られた触媒を用いてそれぞれメタン分解を行った。この時のメタン転化率の経時変化を図10に示す。
【0039】
【表2】
Figure 2004074061
【0040】
図10に示すように、Pd/Niのモル比が1/3である実施例15、7/13である実施例16、1/1である実施例17は、初期のメタン転化率が15〜18%と非常に高く、また流通時間の経過に従ってゆるやかに減少するものの、3000分以上にわたり高いメタン分解活性を有していた。特に、Pd/Niのモル比が1/1である実施例17は、メタン分解の開始から50時間までのH/(M+Ni)値が約14000と非常に高い値を得ることができた。また、Pd/Niのモル比が1/20である実施例14は、初期のメタン転化率が20%以上と非常に高い値を有し、実施例15〜17に比べて急な低下を示したが、500分以上にわたり活性を有していた。さらに、Pd/Niのモル比が3/1である実施例18と、20/1である実施例19は、初期のメタン転化率が5〜10%と比較的に低いものの、その低下はゆるやかであった。一方、Niのみの比較例14は、初期のメタン転化率が約17%と高かったが、急激な低下を示して数十分で失活した。また、Pdのみの比較例15は、初期のメタン転化率も低く、かつ急激な低下を示した。
【0041】
【発明の効果】
上記したところから明らかなように、本発明によれば、メタン等の炭化水素の分解において長い触媒寿命を有する水素製造用触媒と、その触媒の製造方法と、その触媒を用いた水素の製造方法とを提供することができる。
【図面の簡単な説明】
【図1】本発明の一例であるPd−Ni/SiO触媒のメタン転化率の経時変化を、比較例とともに示すグラフである。
【図2】本発明の一例であるPd−Ni/SiO触媒のH/(M+Ni)値を、比較例とともに示す棒グラフである。
【図3】本発明の一例であるPd−Ni/SiO触媒と、比較例であるNiのみ及びPdのみの各触媒のメタン転化率の経時変化を示すグラフである。
【図4】本発明の一例であるPd−Ni/SiO触媒と、比較例であるNiのみ及びPdのみの各触媒の水素生成量を示す棒グラフである。
【図5】Pd−Ni/SiO触媒において、Pd/Niのモル比を変化させた場合のメタン転化率の経時変化を示すグラフである。
【図6】Pd−Ni/SiO触媒において、Pd/Niのモル比を変化させた場合のH/(M+Ni)値を示す棒グラフである。
【図7】本発明に係るPd−Ni/SiO触媒において、金属の担持量を変化させた場合のメタン転化率の経時変化を、比較例とともに示すグラフである。
【図8】本発明に係るPd−Ni/SiO触媒において、金属の担持量を変化させた場合のH/(M+Ni)値を、比較例とともに示すグラフである。
【図9】本発明に係るPd−Ni触媒に各種担体を用いた場合のメタン転化率の経時変化を、比較例とともに示すグラフである。
【図10】Pd−Ni/CF(CH)触媒において、Pd/Niのモル比を変化させた場合のメタン転化率の経時変化を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for producing hydrogen by decomposing a hydrocarbon such as methane, a method for producing the catalyst, and a method for producing hydrogen using the catalyst.
[0002]
[Prior art]
In recent years, global warming has become a serious problem. Therefore, hydrogen is attracting attention as a clean energy source that does not emit carbon dioxide (CO 2 ), which is a greenhouse gas. As a hydrogen production method for supplying hydrogen to a fuel cell using hydrogen as a fuel, a method based on steam reforming, partial oxidation, and shift reaction of light hydrocarbons is currently being developed. However, each of these methods has a problem in that CO 2 which is a warming gas and carbon monoxide (CO) which poisons electrodes of a fuel cell are by-produced. Therefore, as a hydrogen production method which does not by-produce CO 2 and CO, a method for producing hydrogen by decomposing hydrocarbons (C n H m → nC + m / 2H 2) has been developed. In this method, since only hydrogen is obtained as a gas phase product, even if the generated hydrogen is directly supplied to the fuel cell, the electrode is not poisoned. As a catalyst having high activity in this reaction, a silica-supported nickel (Ni / SiO 2 ) catalyst has already been developed, but there is a problem in that the deposited carbon deactivates the catalyst.
[0003]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides a catalyst for hydrogen production having a long catalyst life in the decomposition of hydrocarbons such as methane, a method for producing the catalyst, and a method for producing hydrogen using the catalyst. The purpose is to:
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the hydrogen production catalyst according to the present invention comprises silica, titania, a support made of graphitized carbon fiber or carbon nanofiber, and palladium and nickel supported on the support. Things.
[0005]
Silica-supported nickel (Ni / SiO 2 ) catalysts show high activity against hydrocarbon decomposition. Therefore, by adding palladium (Pd) to the carrier in addition to Ni, the Pd species and the Ni species interact to improve the catalytic activity, particularly the catalyst life, as compared with the Ni / SiO 2 catalyst. be able to. Further, by using titania, graphitized carbon fiber or carbon nanofiber as a carrier instead of silica, the catalyst life can be improved to be equal to or longer than that of silica.
[0006]
In this specification, the term "cracking of hydrocarbons", a hydrocarbon refers to the direct decomposition into hydrogen and carbon represented by C n H m → nC + m / 2H 2 as Scheme. Further, “carbon nanofiber” refers to fibrous carbon having a diameter on the order of nanometers. Carbon nanofibers can be generated together with hydrogen gas by, for example, decomposing hydrocarbons on a catalyst, and generally have a fishbone structure. However, in the present invention, carbon nanofibers of other manufacturing methods and structures are used. Fiber could also be used.
[0007]
The total carrying amount of palladium and nickel is preferably in the range of 5 to 90% by weight, more preferably 30 to 60% by weight, based on the whole catalyst. Further, the molar ratio of palladium / nickel is preferably in the range of 20/1 to 1/50. In particular, when the carrier is silica, the molar ratio of palladium / nickel is more preferably in the range of 3/1 to 1/50. When the carrier is a carbon nanofiber, the molar ratio of palladium / nickel is more preferably in the range of 20/1 to 1/20.
[0008]
The present invention, as another aspect, is a method for producing a catalyst for hydrogen production, a step of immersing a silica, titania, graphitized carbon fiber or carbon nanofiber serving as a carrier in a solution of a nickel compound and a palladium compound, Drying the immersed carrier.
[0009]
When the carrier is silica or titania, a step of calcining the dried carrier in the presence of air can be further included. The method may further include a step of subjecting the dried carrier or the calcined carrier to a reduction treatment with a reducing gas. Further, when the carrier is a carbon nanofiber, it is preferable to use a carbon nanofiber obtained by decomposing a hydrocarbon.
[0010]
Further, as another aspect, the present invention relates to a method for producing hydrogen, which comprises a step of decomposing a hydrocarbon in the presence of the above-mentioned catalyst.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described.
As a carrier of the catalyst for hydrogen production according to the present invention, silica (SiO 2 ), titania (TiO 2 ), graphitized carbon fiber (GrCF), or carbon nanofiber (hereinafter referred to as CF (HC) HC indicates the hydrocarbon used for the decomposition). The hydrocarbon is not particularly limited, and aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons can be used. Among them, methane (CH 4 ) is particularly preferable. Such a carrier is presumed to affect the degree of solid solution between the metal species supported on the carrier, and can improve the activity of decomposing hydrocarbons. A more preferred carrier is CF (HC).
[0012]
Palladium (Pd) and nickel (Ni) are used as active metals of the hydrogen production catalyst according to the present invention. A Pd-Ni catalyst in which Ni and Pd are supported on a carrier can significantly improve the catalytic activity for decomposing hydrocarbons as compared with a simple mixture of a Pd catalyst and a Ni catalyst. The molar ratio of Pd / Ni is preferably in the range of 20/1 to 1/50 in order to improve the yield of hydrogen. In particular, when SiO 2 is used as the carrier, the molar ratio of Pd / Ni is preferably in the range of 3/1 to 1/50, and more preferably in the range of 1/5 to 1/20. When CF (HC) is used as the carrier, the molar ratio of Pd / Ni is preferably in the range of 20/1 to 1/20, more preferably in the range of 10/1 to 1/20. More preferably, it is in the range of 3/1 to 1/10. The total amount of Pd and Ni carried is preferably in the range of 5 to 90% by weight, more preferably in the range of 30 to 60% by weight, based on the whole catalyst. By setting the amount of the active metal carried in these ranges, the hydrogen yield can be improved.
[0013]
In the method for producing a hydrogen production catalyst according to the present invention, when SiO 2 or TiO 2 is used as a carrier, first, the carrier is immersed in a mixed solution of a nickel compound solution and a palladium compound solution. As the solution of the nickel compound, for example, an aqueous solution of nickel nitrate or an acetone solution of nickel nitrate can be used. As the solution of the palladium compound, for example, using palladium chloride and (PdCl 2) solution, and acetone solution of palladium acetate (Pd (OAc) 2) or bis (acetylacetonato) palladium (Pd (acac) 2) be able to. Next, the solution in which the carrier is immersed is heated to about 80 ° C. to about 100 ° C. while stirring to evaporate and dry the solvent. Thereby, Ni and Pd can be uniformly dispersed and supported on the carrier. The drying is not limited to the evaporation to dryness, and a catalyst having the same performance can be obtained by drying under reduced pressure.
[0014]
Further, the powder obtained by evaporation to dryness is calcined at about 300 ° C. to about 400 ° C. for about 2 to 15 hours in the presence of air. Thereby, the compound of Pd and Ni can be changed to an oxide and fixed to the carrier. Then, the oxide obtained by the calcination is subjected to reduction treatment with a reducing gas such as hydrogen gas at a temperature of about 200 ° C. to about 500 ° C. for about 30 minutes to about 2 hours. Thereby, the oxide of Pd and Ni is in a metal state, and a catalyst for hydrogen production in which Pd and Ni are supported on the carrier in a complex manner can be prepared. It is to be noted that firing in the presence of air may be omitted. Further, since the hydrocarbon to be reacted acts as a reducing agent, it is possible to omit the reduction treatment in advance.
[0015]
On the other hand, when GrCF or CF (HC) is used for the carrier, the carrier is immersed in a solution of a nickel compound and a solution of a palladium compound and evaporated to dryness or dried under reduced pressure while stirring as described above. A reduction treatment is performed with a reducing gas without performing firing. Thereby, similarly to the above, a catalyst for hydrogen production in which Pd and Ni are supported on the carrier in a complex manner can be prepared. When the carrier is GrCF or CF (HC), the baking treatment must be avoided because the baking treatment may burn the carrier.
[0016]
When CF (HC) is used as the carrier, CF (HC) can be synthesized by heating the hydrocarbon to about 400 ° C. to about 600 ° C. to decompose the hydrocarbon. The decomposition of the hydrocarbon is carried out in the presence of a catalyst, such as titania (TiO 2 ), zirconia (ZrO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ) and magnesia (MgO) It is preferable to use a catalyst that supports at least one iron group metal selected from the group consisting of nickel (Ni), cobalt (Co) and iron (Fe) on at least one carrier selected from the group consisting of . Among them, the Ni / TiO 2 catalyst and the Ni / SiO 2 catalyst are more preferable in that they have high activity.
[0017]
In the method for producing hydrogen according to the present invention, the hydrocarbon is heated to about 400 ° C. to about 600 ° C. in the presence of the catalyst for hydrogen production obtained as described above to decompose the hydrocarbon. Thereby, hydrogen gas can be obtained. Although it does not specifically limit as a hydrocarbon, C1-C10 aliphatic hydrocarbons, such as methane and butane, are preferable. In addition, alicyclic hydrocarbons and aromatic hydrocarbons can also be used.
[0018]
【Example】
Hereinafter, examples and comparative examples of the present invention will be described.
(Example 1)
First, an aqueous solution of nickel nitrate was added to SiO 2 (trade name: Cab-O-Sil, manufactured by Cabot) so that the Ni loading amount was 5% by weight, and the Pd loading amount was 0.91% by weight. An aqueous palladium chloride solution was added as described above to impregnate (that is, the molar ratio of Pd / Ni was 1/10). Then, this was evaporated to dryness with stirring, and then calcined at 350 ° C. for 10 hours in the presence of air. Furthermore, hydrogen gas was supplied at 300 ° C. for 1 hour to perform a reduction treatment, thereby obtaining a Pd—Ni / SiO 2 catalyst.
[0019]
Next, 40 mg of the above-obtained Pd-Ni / SiO 2 catalyst was charged into a normal-pressure fixed-bed flow reactor, and methane was flowed at a flow rate of 40 ml / min under the conditions of a pressure of 101 kPa and a temperature of 530 ° C. , The decomposition of methane. During methane decomposition, the gas at the outlet of the apparatus was sampled to determine the composition of hydrogen and methane in the gas, and the methane conversion was calculated from this (methane conversion [%] = {0.5 × (hydrogen flow at outlet [mol] / H] / methane flow rate at inlet [mol / h])} × 100). Then, when the catalyst was deactivated and the methane conversion became 0%, the flow of methane was stopped. FIG. 1 shows the change over time in the methane conversion at this time. FIG. 2 shows the H 2 / (M + Ni) value (the amount of hydrogen generated (mol) per mole of active metal in the decomposition of methane).
[0020]
(Comparative Examples 1 to 5)
Except that the aqueous solution of palladium chloride was not added, or instead of adding the aqueous solution of palladium chloride, an aqueous solution of a chloride of each additional metal of copper, rhodium, iridium, or platinum was added to a molar ratio of M (additive metal) / Ni. Was prepared in the same manner as in Example 1 except that Ni was added so as to become 1/10, and a Ni / SiO 2 catalyst (Comparative Example 1), a Cu—Ni / SiO 2 catalyst (Comparative Example 2), Rh -ni / SiO 2 catalyst (Comparative example 3), Ir-Ni / SiO 2 catalyst (Comparative example 4), to obtain a Pt-Ni / SiO 2 catalyst (Comparative example 5). Then, methane decomposition was performed using these catalysts. FIG. 1 shows the change over time of these methane conversion rates. FIG. 2 shows the H 2 / (M + Ni) value at this time.
[0021]
As shown in FIG. 1, the Pd—Ni / SiO 2 catalyst of Example 1 had a high initial methane conversion of about 12%, and the methane conversion gradually decreased with the passage of methane. Even in a distribution time of minutes, it was not deactivated. On the other hand, the Ni / SiO 2 catalyst of Comparative Example 1 showed a high initial methane conversion rate of about 14%, but the methane conversion rate rapidly decreased with the passage of the flow time, and was deactivated in about 200 minutes. did. The Cu—Ni / SiO 2 catalyst of Comparative Example 2 showed a gradual decrease in methane conversion as in Example 1, but the initial methane conversion was as low as about 10%. Further, each of the catalysts of Rh-Ni / SiO 2 , Ir-Ni / SiO 2 , and Pt-Ni / SiO 2 of Comparative Examples 3 to 5 showed that the methane conversion rate increased rapidly with the passage of the flow time similarly to Comparative Example 1. Dropped.
[0022]
As shown in FIG. 2, the Pd—Ni / SiO 2 catalyst of Example 1 had an H 2 / (M + Ni) value exceeding 4000, which was about 2 times smaller than that of the Ni / SiO 2 catalyst of Comparative Example 1. Twice the amount of hydrogen could be obtained. On the other hand, Cu-Ni / SiO 2, Rh-Ni / SiO 2, Ir-Ni / SiO 2, each of the catalysts Pt-Ni / SiO 2 of Comparative Example 2-5 is lower than Comparative Example 1 H 2 / (M + Ni ) Value.
[0023]
(Comparative Example 6)
A Pd / SiO 2 catalyst (Pd = 0.91 wt%) was obtained in the same manner as in Example 1 except that the aqueous nickel nitrate solution was not added (Comparative Example 6). And methane decomposition was performed using this catalyst. The change with time of the methane conversion was evaluated by comparing the time-dependent change of the methane conversion rate in Example 1 of the Pd-Ni / SiO 2 catalyst (Pd = 0.91 wt%, Ni = 5 wt%) with that of the Ni / SiO 2 catalyst (Ni = 5 wt%). 1 and FIG. FIG. 4 shows the amount of generated hydrogen (mmol) obtained by decomposition of methane for Example 1 and Comparative Examples 1 and 6.
[0024]
As shown in FIG. 3, Comparative Example 1 in which the active component was only Ni showed a high methane conversion rate of about 13% at the initial stage, but dropped sharply with the passage of time, and was deactivated in about 250 minutes. . Comparative Example 6, in which the active ingredient was only Pd, had a very low methane conversion of about 1%, but had activity up to about 500 minutes. On the other hand, in Example 1 in which Pd was added to Ni, the initial methane conversion was as high as about 12%, and the methane conversion was gradually decreased. Was. Thus, it was found that by adding Pd to Ni, a catalyst for hydrogen production having both the properties of high initial activity and long catalyst life can be prepared.
[0025]
Further, as shown in FIG. 4, the amount of hydrogen generated by the Pd—Ni / SiO 2 catalyst of Example 1 was about 170 mmol. This is much larger than the sum of the respective hydrogen generation amounts of the Pd / SiO 2 catalyst and the Ni / SiO 2 catalyst of about 80 mmol, and the interaction between Pd and Ni species improves the catalytic action on methane decomposition. I knew that
[0026]
(Examples 2 to 6, Comparative Examples 7 to 8)
Instead of making the molar ratio of Pd / Ni 1/10, 1/50 (Example 2), 1/20 (Example 3), 1/5 (Example 4), 4/5 (Example 5), 5/1 (Example 6), only Ni (Comparative Example 7), only Pd (Comparative Example 8), and 4.55 mol% instead of 5.91% by weight of the supported amount of Pd and Ni. Catalysts were respectively prepared in the same manner as in Example 1 except that Then, methane decomposition was performed using the obtained catalysts. FIG. 5 shows the change over time of these methane conversion rates. FIG. 6 shows the H 2 / (M + Ni) value at this time.
[0027]
As shown in FIG. 5, in Example 3 in which the molar ratio of Pd / Ni was 1/20, the initial methane conversion showed a high value of 10% or more, and gradually decreased with the passage of the flow time. It showed activity over a flow time of about 56 hours. In Example 5 in which the molar ratio of Pd / Ni was 4/5 and Example 6 in which the molar ratio of Pd / Ni was 5/1, although the initial methane conversion was not as high as about 3 to 7%, the decrease was slow. It showed activity for 28 hours. On the other hand, in Comparative Example 7 containing only Ni, the initial methane conversion showed a high value of about 13%, but rapidly decreased and was inactivated in about 4 hours. In Comparative Example 8 containing only Pd, the initial methane conversion was as low as about 2%, and although the decrease was slow, it was inactivated in about 12 hours.
[0028]
Further, as shown in FIG. 6, in Example 3 in which the molar ratio of Pd / Ni is 1/20, the H 2 / (M + Ni) value was about 4500, which is the largest value among Examples 2 to 6. Was. In Example 2 in which the molar ratio of Ni was 1/50 as compared with Example 3, the H 2 / (M + Ni) value was reduced to about 2600, and in Comparative Example 7 containing only Ni, the value was reduced to about 2000. On the other hand, in Examples 4 to 6 of 1/5, 4/5, and 5/1 in which the molar ratio of Pd was increased, the H 2 / (M + Ni) value was reduced to about 3700, about 2200, and about 1300, and only Pd was used. In Comparative Example 8 of Comparative Example 8, the value was reduced to about 600.
[0029]
(Examples 7 to 9, Comparative Examples 9 to 11)
The molar ratio of Pd / Ni is 1/20 instead of 1/10, and the total amount of Ni and Pd is 30 instead of 5% and 0.91% by weight of Ni and Pd, Catalysts were prepared in the same manner as in Example 1 except that the amounts were 60 and 90% by weight, respectively (Examples 7 to 9). On the other hand, catalysts were prepared in the same manner as in Example 1 except that the amount of Ni supported was 30, 60, and 90% by weight without adding Pd (Comparative Examples 9 to 11). Then, methane decomposition was performed using the obtained catalysts. FIG. 7 shows the change over time of the methane conversion. FIG. 8 shows the H 2 / (M + Ni) value or the H 2 / Ni value at this time.
[0030]
As shown in FIG. 7, in Examples 7 to 9 of the Pd-Ni / SiO 2 catalyst, the initial methane conversion was as high as 11 to 13%, and gradually decreased with the passage of the flow time, and was 80 hours or more. Showed activity over a period of time. Among them, Example 8 in which the total carrying amount of Pd and Ni was 60% by weight maintained a high methane conversion rate over 70 hours from the start of methane decomposition. On the other hand, Comparative Examples 9 to 11 of the Ni / SiO 2 catalyst showed a high initial methane conversion of 9 to 13%, but sharply decreased with the passage of the flow time. Even in Comparative Example 10 in which the amount of Ni supported was 60% by weight, which had the longest catalyst life, the catalyst was inactivated in about 35 hours.
[0031]
Further, as shown in FIG. 8, when the total carrying amount of Pd and Ni is 30% by weight in the Pd-Ni / SiO 2 catalyst, the H 2 / (M + Ni) value shows a maximum value of about 6000. Was. On the other hand, in the case of the Ni / SiO 2 catalyst, the H 2 / (Ni) value showed a maximum value of about 3000 when the amount of Ni supported was 30% by weight. However, this was only about half of the maximum value of Pd-Ni / SiO 2 catalyst. The value converted into the amount of hydrogen generated per gram of catalyst (liter (STP)) is shown on the right axis of FIG. When converted in terms of 1 g of the catalyst in this way, it was found that the maximum value of about 900 L of hydrogen gas was obtained when the amount of supported metal was 60% by weight.
[0032]
(Examples 10 and 11, Comparative Examples 12 and 13)
27.5% by weight of Ni was added to SiO 2 (manufactured by Cabot, trade name: Cab-O-Sil), TiO 2 (catalyst society reference catalyst, TIO-4), and MgO (catalyst society reference catalyst, MGO-1). An aqueous solution of nickel nitrate was added so as to have a loading amount, and an aqueous solution of palladium chloride was further added so as to have a loading amount of 2.5% by weight (that is, the molar ratio of Pd / Ni was 1/20 and 1/20). did). The mixture was evaporated to dryness while stirring at 80 ° C. for 6 hours, and then calcined in air at 350 ° C., whereby Pd—Ni / SiO 2 (Example 10) and Pd—Ni / TiO 2 (Example 11). And Pd-Ni / MgO (Comparative Example 12) were obtained. Also, a Ni / SiO 2 catalyst (Comparative Example 13) was obtained in the same manner as above, except that only Ni was supported on SiO 2 at 30% by weight.
[0033]
(Examples 12 and 13)
27.5 wt% Ni loading on CF (CH 4 ) (produced by methane decomposition at 530 ° C. on Ni (30 wt%) / SiO 2 ) and GrCF (graphitized carbon fiber manufactured by Asahi Kasei Corporation) Aqueous nickel nitrate-acetone solution was added, and an aqueous solution of palladium chloride was further added and impregnated to a Pd carrying amount of 2.5% by weight (that is, the molar ratio of Pd / Ni was 1/20. did). This was dried under reduced pressure while stirring at room temperature for 1 day, and then hydrogen-reduced at 300 ° C. for 1 hour to obtain Pd—Ni / CF (CH 4 ) (Example 12) and Pd—Ni / GrCF (Example). 13) Each catalyst was obtained.
[0034]
Then, 20 mg of the catalyst obtained above was charged into a normal-pressure fixed-bed flow reactor, and methane was flowed at a flow rate of 50 ml / min at a pressure of 101 kPa and a temperature of 550 ° C. to decompose methane. . During methane decomposition, the gas at the outlet of the apparatus was sampled to determine the composition of hydrogen and methane in the gas, and the methane conversion was calculated from this. Then, when the catalyst was deactivated and the methane conversion became 0%, the flow of methane was stopped. FIG. 9 shows the change over time in the methane conversion at this time.
[0035]
As shown in FIG. 9, in Examples 10 to 13 using SiO 2 , TiO 2 , CF (CH 4 ), and GrCF as the carrier, the initial methane conversion showed a high value of 12 to 14%, and the flow time The conversion of methane decreased with the passage of time, but the activity was maintained for 30 hours or more at a low conversion rate, and the catalyst had a long catalyst life. Among them, Example 12 using CF (CH 4 ) showed the slowest decrease in methane conversion. Comparing the hydrogen production amounts obtained up to 30 hours from the start of methane decomposition, Example 12 using CF (CH 4 ) was the largest, and hereafter, Example 11 using TiO 2 was used in descending order of the production amount. Example 13 using GrCF and GrCF, and Example 10 using SiO 2 . On the other hand, in Comparative Example 12 using MgO as the carrier, the initial methane conversion was as low as about 9%, and the conversion rapidly decreased immediately after the start of methane decomposition, and was completely inactivated in about 18 hours. Table 1 shows the molar amount of carbon generated per mole of active metal (C / Ms value) of these catalysts.
[0036]
[Table 1]
Figure 2004074061
[0037]
Then, in order to investigate the effect of the carrier on the Pd-Ni catalyst, the XRD pattern of the Pd-Ni catalyst was measured using a powder X-ray diffraction (XRD) apparatus. The XRD pattern of an embodiment Pd-Ni / CF (CH 4 ) of Example 12 catalyst, only diffraction lines derived from an alloy consisting of Pd and Ni are observed. On the other hand, in the XRD pattern of the Pd-Ni / SiO 2 catalyst of Example 10, diffraction lines of metal Ni and metal Pd were confirmed in addition to the alloy. In other words, it is presumed that the degree of solid solution between the metal species supported on the carrier varies depending on the carrier, and the activity on methane decomposition is affected.
[0038]
(Examples 14 to 19, Comparative Examples 14 and 15)
The molar ratios of Pd / Ni were 1/20 (Example 14), 1/3 (Example 15), 7/13 (Example 16), 1/1 (Example 17), and 3/1 (Example). 18), 20/1 (Example 19), only Ni (Comparative Example 14), and only Pd (Comparative Example 15) (see Table 2 for the supported amounts of Ni and Pd). Catalysts were prepared in the same manner as in Example 12 using CF (CH 4 ) as the carrier, except that the temperature was changed to 873K, and methane decomposition was performed using the obtained catalysts. FIG. 10 shows the change over time in the methane conversion at this time.
[0039]
[Table 2]
Figure 2004074061
[0040]
As shown in FIG. 10, Examples 15 and 17 in which the molar ratio of Pd / Ni is 1/3, Examples 16 and 7/13, and 1/1 have an initial methane conversion of 15 to 15. Although it was as high as 18% and gradually decreased with the passage of time, it had a high methane decomposition activity over 3000 minutes or more. In particular, in Example 17 in which the molar ratio of Pd / Ni was 1/1, a very high value of H 2 / (M + Ni) was obtained at about 14000 from the start of methane decomposition to 50 hours. Further, Example 14 in which the molar ratio of Pd / Ni was 1/20 had a very high initial methane conversion of 20% or more, and showed a sharp decrease as compared with Examples 15 to 17. However, it had activity for more than 500 minutes. Further, in Example 18 in which the molar ratio of Pd / Ni was 3/1 and Example 19 in which the molar ratio of Pd / Ni was 20/1, although the initial methane conversion was relatively low at 5 to 10%, the decrease was slow. Met. On the other hand, in Comparative Example 14 containing only Ni, the initial methane conversion was as high as about 17%, but showed a sharp decrease and was inactivated by several tens of minutes. In Comparative Example 15 containing only Pd, the initial methane conversion was also low and showed a sharp decrease.
[0041]
【The invention's effect】
As is apparent from the above description, according to the present invention, a hydrogen production catalyst having a long catalyst life in the decomposition of hydrocarbons such as methane, a method for producing the catalyst, and a method for producing hydrogen using the catalyst And can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a change over time of a methane conversion rate of a Pd—Ni / SiO 2 catalyst which is an example of the present invention, together with a comparative example.
FIG. 2 is a bar graph showing the H 2 / (M + Ni) value of a Pd—Ni / SiO 2 catalyst, which is an example of the present invention, together with a comparative example.
FIG. 3 is a graph showing the change over time in the methane conversion rate of a Pd—Ni / SiO 2 catalyst as an example of the present invention and a Ni-only and Pd-only catalyst as comparative examples.
FIG. 4 is a bar graph showing the amount of hydrogen generated by a Pd—Ni / SiO 2 catalyst, which is an example of the present invention, and respective catalysts of only Ni and Pd, which are comparative examples.
FIG. 5 is a graph showing the change over time of the methane conversion when the molar ratio of Pd / Ni is changed in a Pd—Ni / SiO 2 catalyst.
FIG. 6 is a bar graph showing H 2 / (M + Ni) values when the molar ratio of Pd / Ni is changed in a Pd—Ni / SiO 2 catalyst.
FIG. 7 is a graph showing, with a comparative example, the change over time of the methane conversion when the amount of supported metal is changed in the Pd—Ni / SiO 2 catalyst according to the present invention.
FIG. 8 is a graph showing the H 2 / (M + Ni) value when the amount of supported metal is changed in the Pd—Ni / SiO 2 catalyst according to the present invention, together with a comparative example.
FIG. 9 is a graph showing the change over time of the methane conversion rate when various supports are used for the Pd—Ni catalyst according to the present invention, together with a comparative example.
FIG. 10 is a graph showing the change over time of the methane conversion when the molar ratio of Pd / Ni is changed in a Pd—Ni / CF (CH 4 ) catalyst.

Claims (11)

シリカ、チタニア、黒鉛化カーボンファイバ又はカーボンナノファイバからなる担体と、該担体に担持されたパラジウム及びニッケルとを含んでなる水素製造用触媒。A hydrogen production catalyst comprising: a support made of silica, titania, graphitized carbon fiber or carbon nanofiber; and palladium and nickel supported on the support. パラジウムとニッケルの合計の担持量が触媒全体に対して5〜90重量%の範囲である請求項1に記載の水素製造用触媒。The catalyst for hydrogen production according to claim 1, wherein the total supported amount of palladium and nickel is in the range of 5 to 90% by weight based on the whole catalyst. パラジウムとニッケルの合計の担持量が触媒全体に対して30〜60重量%の範囲である請求項2に記載の水素製造用触媒。The catalyst for hydrogen production according to claim 2, wherein the total amount of palladium and nickel carried is in the range of 30 to 60% by weight based on the whole catalyst. パラジウム/ニッケルのモル比が20/1から1/50の範囲である請求項1〜3のいずれかに記載の水素製造用触媒。The catalyst for producing hydrogen according to any one of claims 1 to 3, wherein a molar ratio of palladium / nickel is in a range of 20/1 to 1/50. 上記担体がシリカであり、パラジウム/ニッケルのモル比が3/1から1/50の範囲である請求項4に記載の水素製造用触媒。The catalyst for hydrogen production according to claim 4, wherein the carrier is silica, and the molar ratio of palladium / nickel is in the range of 3/1 to 1/50. 上記担体がカーボンナノファイバであり、パラジウム/ニッケルのモル比が20/1から1/20の範囲である請求項4に記載の水素製造用触媒。The catalyst for hydrogen production according to claim 4, wherein the carrier is a carbon nanofiber, and a molar ratio of palladium / nickel is in a range of 20/1 to 1/20. ニッケル化合物とパラジウム化合物の溶液に、担体となるシリカ、チタニア、黒鉛化カーボンファイバ又はカーボンナノファイバを浸漬させる工程と、浸漬させた担体を乾燥する工程とを含んでなる水素製造用触媒の製造方法。A method for producing a catalyst for hydrogen production comprising a step of immersing silica, titania, graphitized carbon fiber or carbon nanofiber serving as a carrier in a solution of a nickel compound and a palladium compound, and a step of drying the immersed carrier . 上記担体がシリカ又はチタニアの場合、上記乾燥させた担体を空気の存在下で焼成する工程をさらに含んでなる請求項7に記載の水素製造用触媒の製造方法。The method for producing a catalyst for hydrogen production according to claim 7, further comprising a step of calcining the dried carrier in the presence of air when the carrier is silica or titania. 上記乾燥させた担体又は上記焼成した担体を還元ガスで還元処理する工程をさらに含んでなる請求項7又は8に記載の水素製造用触媒の製造方法。The method for producing a catalyst for hydrogen production according to claim 7 or 8, further comprising a step of subjecting the dried carrier or the calcined carrier to a reduction treatment with a reducing gas. 上記カーボンナノファイバが炭化水素を分解して得られたものである請求項7に記載の水素製造用触媒の製造方法。The method for producing a catalyst for hydrogen production according to claim 7, wherein the carbon nanofiber is obtained by decomposing a hydrocarbon. 請求項1〜6のいずれかに記載の触媒の存在下において炭化水素を分解する工程を含んでなる水素の製造方法。A method for producing hydrogen, comprising a step of decomposing a hydrocarbon in the presence of the catalyst according to claim 1.
JP2002239672A 2002-08-20 2002-08-20 Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method Withdrawn JP2004074061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239672A JP2004074061A (en) 2002-08-20 2002-08-20 Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239672A JP2004074061A (en) 2002-08-20 2002-08-20 Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method

Publications (1)

Publication Number Publication Date
JP2004074061A true JP2004074061A (en) 2004-03-11

Family

ID=32022711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239672A Withdrawn JP2004074061A (en) 2002-08-20 2002-08-20 Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method

Country Status (1)

Country Link
JP (1) JP2004074061A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501383A1 (en) * 2005-02-10 2006-08-15 Electrovac Preparing gas mixture, used for producing e.g. nanofibers, comprises supplying feed gas in reformer and secondary reformer, contacting nano-structured catalyst with feed gas, and combining carbon monoxide and carbon dioxide free exhaust gas
WO2006084295A3 (en) * 2005-02-10 2007-06-21 Electrovac Ag Method and device for production of hydrogen
KR100732538B1 (en) * 2005-08-24 2007-06-27 요업기술원 Process for producing hydrogen directly from hydrocarbon using catalyst
RU2312059C1 (en) * 2006-04-03 2007-12-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Method of production of hydrogen and the nanofibrous carbon
JP2009513466A (en) * 2005-10-31 2009-04-02 エレクトロファック アクチェンゲゼルシャフト Use of hydrogen production method
JP2009514805A (en) * 2005-10-10 2009-04-09 フェアストック テクノロジーズ コーポレイション Method and associated apparatus for converting organic compounds using liquefied metal alloys
US7735616B2 (en) 2005-11-22 2010-06-15 Honda Motor Co., Ltd. Dog clutch
WO2011104719A1 (en) * 2010-02-23 2011-09-01 Dow Global Technologies Llc Process for making polyol ethers
US8535632B2 (en) 2008-03-20 2013-09-17 The University Of Akron Ceramic nanofibers containing nanosize metal catalyst particles and medium thereof
RU2633354C1 (en) * 2016-12-20 2017-10-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Catalyst and method of separate producing hydrogen and carbon monoxide from methane
KR20190086941A (en) * 2018-01-15 2019-07-24 한국과학기술연구원 Catalyst, catalyst composition comprising pd-ni alloy and methods for synthesizing of hydrogen peroxide using them

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034321B2 (en) 2005-02-10 2011-10-11 Electrovac Ag Hydrogen production
AT501383B1 (en) * 2005-02-10 2006-11-15 Electrovac Preparing gas mixture, used for producing e.g. nanofibers, comprises supplying feed gas in reformer and secondary reformer, contacting nano-structured catalyst with feed gas, and combining carbon monoxide and carbon dioxide free exhaust gas
WO2006084295A3 (en) * 2005-02-10 2007-06-21 Electrovac Ag Method and device for production of hydrogen
JP2008529943A (en) * 2005-02-10 2008-08-07 エレクトロファック アクチェンゲゼルシャフト Hydrogen production
AT501383A1 (en) * 2005-02-10 2006-08-15 Electrovac Preparing gas mixture, used for producing e.g. nanofibers, comprises supplying feed gas in reformer and secondary reformer, contacting nano-structured catalyst with feed gas, and combining carbon monoxide and carbon dioxide free exhaust gas
KR100732538B1 (en) * 2005-08-24 2007-06-27 요업기술원 Process for producing hydrogen directly from hydrocarbon using catalyst
JP2009514805A (en) * 2005-10-10 2009-04-09 フェアストック テクノロジーズ コーポレイション Method and associated apparatus for converting organic compounds using liquefied metal alloys
US9561957B2 (en) 2005-10-31 2017-02-07 Bestrong International Limited Use of a process for hydrogen production
JP2009513466A (en) * 2005-10-31 2009-04-02 エレクトロファック アクチェンゲゼルシャフト Use of hydrogen production method
US7735616B2 (en) 2005-11-22 2010-06-15 Honda Motor Co., Ltd. Dog clutch
RU2312059C1 (en) * 2006-04-03 2007-12-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Method of production of hydrogen and the nanofibrous carbon
US8535632B2 (en) 2008-03-20 2013-09-17 The University Of Akron Ceramic nanofibers containing nanosize metal catalyst particles and medium thereof
WO2011104719A1 (en) * 2010-02-23 2011-09-01 Dow Global Technologies Llc Process for making polyol ethers
RU2633354C1 (en) * 2016-12-20 2017-10-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Catalyst and method of separate producing hydrogen and carbon monoxide from methane
KR20190086941A (en) * 2018-01-15 2019-07-24 한국과학기술연구원 Catalyst, catalyst composition comprising pd-ni alloy and methods for synthesizing of hydrogen peroxide using them
KR102178389B1 (en) 2018-01-15 2020-11-12 한국과학기술연구원 Catalyst, catalyst composition comprising pd-ni alloy and methods for synthesizing of hydrogen peroxide using them

Similar Documents

Publication Publication Date Title
Takenaka et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2016159209A (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP3882044B2 (en) Method for preparing Fischer-Tropsch synthesis catalyst
JP4777670B2 (en) Ammonia synthesis catalyst and method for producing the same
JP6305980B2 (en) High temperature combustion catalyst
CN103170335A (en) Effective carbon dioxide conversion catalyst and preparing method thereof
JP2004074061A (en) Catalyst for manufacturing hydrogen, manufacturing method thereof and hydrogen manufacturing method
CN109622000A (en) A kind of base metal selective hydrocatalyst of acetylene and its preparation method and application
JP2010155234A (en) Hydrocarbon reforming catalyst, manufacturing method thereof and fuel cell containing this catalyst
JP2009279584A (en) Catalytic method for reduction and oxidation
JP5624343B2 (en) Hydrogen production method
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
WO2010060736A1 (en) Non-noble metals based catalysts for ammonia decomposition and their preparation
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
US11691128B2 (en) Thermally stable monolith catalysts for methane reforming and preparing method of the same
JP2004261771A (en) Unsupported hydrocarbon direct cracking catalyst, method for producing the same, and method for producing hydrogen and carbon by direct hydrocarbon cracking
KR100912725B1 (en) Catalyst for syngas production from natural gas using carbon dioxide, preparation method thereof and method for producing syngas from natural gas using the catalyst and carbon dioxide
JP4654413B2 (en) Hydrocarbon steam reforming catalyst
CN114471636A (en) A kind of preparation method of supported nickel-based catalyst and application thereof
JP2009062230A (en) Method for manufacturing vapor-phase growth carbon fiber and vapor-phase growth carbon fiber
JP2012020888A (en) Reformer and method for manufacturing the same
KR101151836B1 (en) High-yield Supporting Method of Uniform Nano-catalyst on surface of the carbonized cellulose, And The Nano-catalyst Support Using The Same
CN1061320C (en) Nickel based catalyst for prepn. of synthetic gas by methane direct oxidation
KR100741788B1 (en) Catalyst for Aqueous Transition Reaction of Fuel Cell and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050428

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20060803

Free format text: JAPANESE INTERMEDIATE CODE: A761

A521 Written amendment

Effective date: 20060904

Free format text: JAPANESE INTERMEDIATE CODE: A523