[go: up one dir, main page]

JP2004067964A - Method of treating polyethylene terephthalate - Google Patents

Method of treating polyethylene terephthalate Download PDF

Info

Publication number
JP2004067964A
JP2004067964A JP2002232755A JP2002232755A JP2004067964A JP 2004067964 A JP2004067964 A JP 2004067964A JP 2002232755 A JP2002232755 A JP 2002232755A JP 2002232755 A JP2002232755 A JP 2002232755A JP 2004067964 A JP2004067964 A JP 2004067964A
Authority
JP
Japan
Prior art keywords
polyethylene terephthalate
acid
polycondensation reaction
pellets
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002232755A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Yamamoto
山本 智義
Minoru Suzuki
鈴木 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2002232755A priority Critical patent/JP2004067964A/en
Publication of JP2004067964A publication Critical patent/JP2004067964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treating polyethylene terephthalate for a remarkable reduction of the problem of white powder adhesion to a mold in a molding process and for obtaining a wrapping material for films or vessels which is excellent in increasing productivity, transparency, heat resistance and mechanical strengths. <P>SOLUTION: To reduce an oligomer contained in pellets of polyethylene terephthalate, which is obtained by using a titanium compound as a condensation polymerization catalyst, by bringing the pellets into contact with water in an arbitrary stage of applying it to a solid state condensation polymerization. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、成形時に金型等に付着し問題となる、オリゴマーに起因する白粉の減少に著しく効果があり、生産性向上、透明性、耐熱性及び機械的強度に優れたフィルム又は容器等の包装材料を得ることのできる、ポリエチレンテレフタレートの処理方法に関する。
【0002】
【従来の技術】
ポリエステル、特にポリエチレンテレフタレートは、その優れた機械的性質、化学的性質から、繊維、フィルム、工業用樹脂、ボトル、カップ、トレイ等に成形されて広く用いられている。
【0003】
しかしながら、その成形過程において、例えば繊維紡糸時にはポリエステル中に存在するオリゴマー又は成形中に生成されるオリゴマーが、延伸ローラー、熱処理ローラー等に付着し、また、染色加工時にはスカムが発生して染色液を汚染するという問題が、フィルム製膜時には繊維と同様各種ローラーの汚染や、磁気テープにおけるいわゆるドロップアウト等、製品欠陥の原因になるという問題が、更に、中空容器や工業用樹脂の成形時においては、成形金型を汚染したり、ペント部等にオリゴマーが付着し、ひけを起こしたりして、満足な状態の成形品が得られなくなる。加えて延伸、熱処理時に発生するオリゴマーが金型などに付着し、転写により成形品の透明性が著しく損なわれる等の、種々の問題もあった。
【0004】
これらの問題を解決する為に、ポリエステル中に含有されているオリゴマーを減少させる方法が検討され、数多くの提案がなされており、例えば、ポリエステルをその融点以下において高真空状態で加熱処理する方法(特開昭48−101462号公報、特開昭51−48505号公報)、ポリエステルを不活性気体雰囲気下で融点以下の温度で熱処理する方法(特開昭55−189331号公報)等のいわゆる固相重縮合反応法によるオリゴマー減少方法が提案されている。
【0005】
しかしながら、この方法でオリゴマーを低減する場合、オリゴマー量が比較的多いポリマーに対しては白粉低減効果を有するが、逆にオリゴマー量が比較的少ないポリマーに対しては白粉低減効果を発揮出来ないばかりか、逆に白粉が増加したりすることがある。
【0006】
また、この技術に関連して、特開平3−47830号公報では成形時に生成するオリゴマーを低減させるため、固相重縮合反応後のポリエチレンテレフタレートを水で処理することが提案されているが、処理液が水である為十分な効果を得るためには比較的高温にするか、低温の水を用いて長時間の処理を行わなければならなかった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術が有していた問題を解決し、成形時に金型に付着し問題となる白粉の減少が著しく、生産性向上、透明性、耐熱性及び機械的強度に優れたフィルム又は容器等の包装材料を得ることができる、ポリチレンテレフタレートの処理方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。
【0009】
即ち、本発明の目的は、
重縮合反応触媒としてチタン系化合物を用いて得たポリエチレンテレフタレートポリマーのペレットを、固相重縮合反応に供する以前の任意の段階で水と接触させて、該ペレット中に含まれるオリゴマーを低減させる、ポリエチレンテレフタレートの処理方法によって達成することができる。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明のポリエチレンテレフタレートは主たる酸成分がテレフタル酸成分であり、主たるグリコール成分がエチレングリコール成分であるポリエステルである。ここで「主たる」とは85mol%以上を該成分が占めることをいう。
【0011】
したがって15mol%以下の範囲においてテレフタル酸成分、エチレングリコール成分以外の他のエステル単位を含むことができ、このような共重合成分としては、テレフタル酸、エチレングリコール以外のジカルボン酸成分及びジオール成分又はオキシ酸成分を挙げることができ、具体的には、芳香族ジカルボン酸成分として例えば、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルケトンジカルボン酸、ナトリウム−スルホイソフタル酸、ジブロモテレフタル酸などを、脂肪族ジカルボン酸成分として例えば、デカリンジカルボン酸、ヘキサヒドロテレフタル酸などを、脂肪族ジカルボン酸として例えば、マロン酸、コハク酸、アジピン酸などを挙げることができる。
【0012】
また、グリコール成分としては、脂肪族ジオール成分として例えば、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコールなどを、芳香族ジオール成分として例えば、ビトロノン、カテコール、ナフタレンジオール、レゾルシン、4,4’−ジヒドロキシ−ジフェニル−スルホン、ビスフェノールA[2,2’−ビス(4−ヒドロキシフェニル)プロパン]、テトラブロモビスフェノールA、ビスヒドロキシエトキシビスフェノールAなどを、脂環式ジオール成分として例えばシクロヘキサンジオールなどを、脂肪族オキシカルボン酸成分として例えば、グリコール酸、ヒドロアクリル酸、3−オキシプロピオン酸などを、脂環式オキシカルボン酸成分として例えば、アシアチン酸、キノバ酸などを、芳香族オキシカルボン酸成分として例えばサリチル酸、m−オキシ安息香酸、p−オキシ安息香酸、マンデル酸、アトロラクチン酸などを挙げることができる。
【0013】
更にポリエステルの構成する高分子鎖が実質的に線状である範囲内で3価以上の多官能化合物、例えばグリセリン、トリメチロールプロパン、ペンタエリスリトール、トリメリット酸、トリメシン酸、ピロメリット酸、トリカルバリル酸、没食子酸などを共重合してもよく、必要に応じて単官能化合物、例えばo−ベンゾイル安息香酸、ナフトエ酸などを添加してもよい。
【0014】
上記ポリエステルは、従来公知のポリエチレンテレフタレート製造方法を用いて製造すればよく、例えば、テレフタル酸及びエチレングリコールを用いてエステル化反応を行い、あるいはテレフタル酸の低級アルキルエステル(例えばジメチルエステル)及びエチレングリコールを用いてエステル交換反応を行って、得られた反応生成物を更に重縮合反応させることによって製造できる。
【0015】
これらのポリエステルを製造する際にエステル交換反応触媒、重縮合反応触媒、安定剤などを使用することが好ましい。これらのエステル交換反応触媒、安定剤などはポリエステル、特にポリエチレンテレフタレートのエステル交換反応触媒、安定剤などとして知られているものを用いることができるが、重縮合反応触媒としては、チタン系化合物を用いた場合に限り、本発明の効果が得られる。
【0016】
例えば重縮合反応触媒としてゲルマニウム系化合物を用いた場合、ゲルマニウム系化合物は水との接触によりその触媒活性を失い、その後の固相重縮合反応において重縮合反応触媒として機能しなくなるため、本願発明の方法を適用することはできない。
【0017】
勿論、必要に応じて他の添加剤、例えば、着色剤、抗酸化剤、紫外線吸収剤、帯電防止剤、難燃剤などを使用してもよい。
【0018】
本発明においては、固相重縮合反応させる以前の任意の段階のポリエチレンテレフタレートペレットと水とを直接接触させる必要がある。
【0019】
水の接触方法としてはバッチ式、連続式のいずれでもよく、バッチ式とする場合には、処理装置に水と固相重縮合反応させる前のポリエチレンテレフタレートのペレットとを入れて接触させる方法等を行えばよく、また連続式の場合は連続的に水を向流あるいは並流で供給し、ペレットと接触させる方法などが例示できる。
【0020】
前述の処理条件は水温等によって適切な浸漬処理時間が異なる他、固相重縮合反応に供するポリエチレンテレフタレートの固有粘度、オリゴマー含有率、及びペレットの大きさ等によって適宜選択すればよく、また前述の水を連続的に供給する場合には、水の流量、向流か並流かについても適宜選択すればよい。
【0021】
これらの方法により処理されたペレットは乾燥させた後、固相重縮合反応に供するが、この乾燥処理は、通常用いられるポリエチレンテレフタレートの乾燥処理方法を用いることができる。
【0022】
また、乾燥後のペレットは少なくとも1段の固相重縮合反応工程で重縮合反応させなければならないが、その固相重縮合反応に関しては従来公知のいずれの方法を採用してもよい。
【0023】
この時、固相重縮合反応完了後のポリエチレンテレフタレートペレットの固有粘度は、成形品の機械的強度の点より、0.65以上であることが好ましく、またポリマー中に含有するオリゴマー(環状三量体)は0.35wt%以下であることが好ましい。
【0024】
【発明の効果】
本発明の処理方法によって得られたポリチレンテレフタレートは、成形時に金型に付着し問題となる白粉の減少が著しく、生産性向上、透明性、耐熱性及び機械的強度に優れたフィルム又は容器等の包装材料を得ることができる。
【0025】
【実施例】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。なお、実施例中の各値は以下の方法により求めた。
1)固有粘度:
常法に従って、フェノール/テトラクロロエタン(重量比60/40)の混合溶媒を用い35℃で測定した。
2)オリゴマー(環状三量体)含有量:
サンプルを一定容量定量し、ヘキサフロロイソプロパノール/クロロホルム=1/1(容積比)で溶解した後、クロロホルムで希釈して、GPC(ゲル・パーミエーション・クロマトグラフィー(ウォーターズ社製ALC/GPC744))で測定して求めた。
3)オリゴマー再生量:
ペレットと溶融剪断処理(フローテスタ(株式会社島津製作所製フローテスタCFT−500使用)305℃×6分間、保持ダイ0.5mm径×2.0mm、荷重110kg)した押出サンプルとのオリゴマー(環状三量体)含有量差から求めた。
【0026】
[実施例1]
予め225部のオリゴマーが滞留する反応器内に、撹拌下、窒素雰囲気で255℃、常圧下に維持された条件下に、179部の高純度テレフタル酸と95部のエチレングリコールとを混合して調製されたスラリーを一定速度供給し、反応で発生する水とエチレングリコールを系外に留去ながら、エステル化反応を4時間し反応を完結させた。この時のエステル化率は、98%以上で、生成されたオリゴマーの重合度は、約5〜7であった。
【0027】
このエステル化反応で得られたオリゴマー225部を重縮合反応槽に移し、重縮合反応触媒として、テトラブトキシチタネート0.018重量部を投入した。引き続き系内の反応温度を255℃から280℃、また、反応圧力を常圧から60Paにそれぞれ段階的に上昇及び減圧し、反応で発生する水、エチレングリコールを系外に除去しながら重縮合反応を行った。
【0028】
重縮合反応の進行度合いを、系内の撹拌翼への負荷をモニターしなから確認し、所望の重合度に達した時点で、反応を終了した。その後、系内の反応物を吐出部からストランド状に連続的に押し出し、冷却、カッティングして、約3mm程度の粒状ペレットを得た。この時の重縮合反応時間は、110分間であり、得られたポリエチレンテレフタレートペレットの固有粘度は0.52であった。
【0029】
この得られたペレット(オリゴマー(環状三量体)0.30wt%)1kgを90℃の水を入れた容積5リットルの処理装置に入れて0.5時間接触処理させ、引き続き、水を除いた後、160℃、5時間窒素気流下で乾燥させた。
【0030】
乾燥させたペレットを、220℃、15時間真空下で固相重縮合反応させたところ、得られたペレットの固有粘度は0.75であった。結果を表1に示す。
【0031】
[実施例2〜3]
実施例1において、水処理条件を変更したこと以外は同様の操作を行った。結果と併せて表1に示す。
【0032】
[比較例1]
実施例1において、ポリエチレンテレフタレートペレットと水との接触処理を行なわなかったこと以外は同様の操作を行った。結果を表1に示す。
【0033】
[比較例2]
実施例1と同様にエステル化反応を実施して得られたオリゴマー225部を重縮合反応槽に移し、重縮合反応触媒として、二酸化ゲルマニウム0.10重量部を投入した。引き続き実施例1と同様に重縮合反応を行った。
【0034】
重縮合反応の進行度合いを、系内の撹拌翼への負荷をモニターしなから確認し、所望の重合度に達した時点で、反応を終了した。その後、系内の反応物を吐出部からストランド状に連続的に押し出し、冷却、カッティングして、約3mm程度の粒状ペレットを得た。この時の重縮合反応時間は、112分間であり、得られたポリエチレンテレフタレートペレットの固有粘度は0.52であった。
【0035】
この得られたペレット(オリゴマー(環状三量体)0.31wt%)1kgを90℃の水を入れた容積5リットルの処理装置に入れて0.5時間接触処理させ、引き続き、水を除いた後、160℃、5時間窒素気流下で乾燥させた。
【0036】
乾燥させたペレットを、220℃、15時間真空下で固相重縮合反応させたが、反応はほとんど進まず、得られたペレットの固有粘度は0.57であった。結果を表1に示す。
【0037】
【表1】

Figure 2004067964
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a remarkable effect on the reduction of white powder caused by oligomers, which is problematic when adhered to a mold or the like at the time of molding, and improves the productivity, transparency, heat resistance and mechanical strength of a film or container. The present invention relates to a method for treating polyethylene terephthalate, from which a packaging material can be obtained.
[0002]
[Prior art]
Polyesters, especially polyethylene terephthalate, are widely used in the form of fibers, films, industrial resins, bottles, cups, trays, etc. due to their excellent mechanical and chemical properties.
[0003]
However, in the molding process, for example, the oligomers present in the polyester during the fiber spinning or the oligomers generated during the molding adhere to the stretching roller, the heat treatment roller, etc. The problem of contamination, such as the contamination of various rollers as well as the fibers during film formation, and the problem of causing product defects such as so-called dropouts on magnetic tape, is further problematic when molding hollow containers and industrial resins. In addition, the molding die is contaminated, and the oligomer adheres to the pent portion and causes sink marks, so that a satisfactory molded product cannot be obtained. In addition, there are various problems such as oligomers generated during stretching and heat treatment adhering to a mold or the like, and the transfer significantly impairs the transparency of the molded article.
[0004]
In order to solve these problems, methods for reducing the amount of oligomers contained in the polyester have been studied, and many proposals have been made. For example, a method of heat-treating the polyester at a temperature lower than its melting point in a high vacuum ( JP-A-48-101462, JP-A-51-48505), and a so-called solid phase such as a method in which a polyester is heat-treated at a temperature lower than its melting point in an inert gas atmosphere (JP-A-55-189331). An oligomer reduction method by a polycondensation reaction method has been proposed.
[0005]
However, when the oligomer is reduced by this method, the polymer has a white powder reducing effect for a polymer having a relatively large amount of the oligomer, but cannot exert the white powder reducing effect for a polymer having a relatively small amount of the oligomer. Or, conversely, white powder may increase.
[0006]
In connection with this technique, Japanese Patent Application Laid-Open No. 3-47830 proposes treating polyethylene terephthalate after the solid-phase polycondensation reaction with water in order to reduce oligomers generated during molding. Since the liquid is water, a relatively high temperature or a long-time treatment using low-temperature water had to be performed to obtain a sufficient effect.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the above-mentioned conventional technology, to significantly reduce the amount of white powder that becomes a problem by adhering to a mold during molding, and to improve productivity, transparency, heat resistance, and mechanical strength. It is an object of the present invention to provide a method for treating polyethylene terephthalate, which can obtain a packaging material such as a film or a container.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-described conventional technology, and as a result, completed the present invention.
[0009]
That is, the object of the present invention is to
A polyethylene terephthalate polymer pellet obtained using a titanium compound as a polycondensation reaction catalyst is brought into contact with water at an arbitrary stage before subjecting to a solid-phase polycondensation reaction to reduce oligomers contained in the pellet. This can be achieved by a processing method for polyethylene terephthalate.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The polyethylene terephthalate of the present invention is a polyester whose main acid component is a terephthalic acid component and whose main glycol component is an ethylene glycol component. Here, “main” means that the component accounts for 85 mol% or more.
[0011]
Therefore, the ester component other than the terephthalic acid component and the ethylene glycol component can be contained in the range of 15 mol% or less. Examples of such a copolymer component include terephthalic acid, a dicarboxylic acid component other than ethylene glycol, a diol component, and an oxy component. Acid components can be mentioned. Specifically, examples of the aromatic dicarboxylic acid component include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfondicarboxylic acid, diphenylketonedicarboxylic acid, and sodium-sulfoisophthalic acid. Acid, dibromoterephthalic acid, etc., as an aliphatic dicarboxylic acid component, for example, decalin dicarboxylic acid, hexahydroterephthalic acid, etc., as an aliphatic dicarboxylic acid, for example, malonic acid, succinic acid, Such as phosphate can be mentioned.
[0012]
Examples of the glycol component include aliphatic diol components such as diethylene glycol, trimethylene glycol, tetramethylene glycol, and hexamethylene glycol, and aromatic diol components such as vitronone, catechol, naphthalene diol, resorcinol and 4,4 ′. -Dihydroxy-diphenyl-sulfone, bisphenol A [2,2'-bis (4-hydroxyphenyl) propane], tetrabromobisphenol A, bishydroxyethoxybisphenol A, etc., and a cycloaliphatic diol component such as cyclohexanediol. Examples of the aliphatic oxycarboxylic acid component include glycolic acid, hydroacrylic acid, and 3-oxypropionic acid, and examples of the alicyclic oxycarboxylic acid component include asiatic acid and quinova. Etc., aromatic oxycarboxylic acid components as such as salicylic acid, m- oxybenzoate, p- hydroxybenzoic acid, mandelic acid, and the like atrolactic acid.
[0013]
Further, a polyfunctional compound having a valence of 3 or more, such as glycerin, trimethylolpropane, pentaerythritol, trimellitic acid, trimesic acid, pyromellitic acid, and tricarbaryl, is used as long as the polymer chains constituting the polyester are substantially linear. An acid or gallic acid may be copolymerized, and a monofunctional compound such as o-benzoylbenzoic acid or naphthoic acid may be added as necessary.
[0014]
The polyester may be produced using a conventionally known method for producing polyethylene terephthalate. For example, an esterification reaction is performed using terephthalic acid and ethylene glycol, or a lower alkyl ester of terephthalic acid (eg, dimethyl ester) and ethylene glycol are used. The transesterification reaction is carried out using the compound (A), and the obtained reaction product is further subjected to a polycondensation reaction.
[0015]
When producing these polyesters, it is preferable to use a transesterification catalyst, a polycondensation reaction catalyst, a stabilizer and the like. As these transesterification catalysts, stabilizers and the like, those known as transesterification catalysts and stabilizers for polyesters, particularly polyethylene terephthalate, can be used, and titanium compounds are used as polycondensation reaction catalysts. The effect of the present invention can be obtained only when there is.
[0016]
For example, when a germanium-based compound is used as a polycondensation reaction catalyst, the germanium-based compound loses its catalytic activity by contact with water, and does not function as a polycondensation reaction catalyst in the subsequent solid-phase polycondensation reaction. The method cannot be applied.
[0017]
Of course, other additives such as a coloring agent, an antioxidant, an ultraviolet absorber, an antistatic agent and a flame retardant may be used as needed.
[0018]
In the present invention, it is necessary to directly contact the polyethylene terephthalate pellets at any stage before the solid-phase polycondensation reaction with water.
[0019]
The method of contacting water may be any of a batch type and a continuous type, and in the case of a batch type, a method in which water and polyethylene terephthalate pellets before the solid-phase polycondensation reaction are put into a treatment device and brought into contact with each other is used. In the case of a continuous system, a method in which water is continuously supplied in countercurrent or cocurrent and brought into contact with pellets can be exemplified.
[0020]
The above-mentioned treatment conditions may be appropriately selected depending on the proper immersion treatment time depending on the water temperature and the like, the intrinsic viscosity of polyethylene terephthalate to be subjected to the solid-phase polycondensation reaction, the oligomer content, the size of the pellets, and the like. When water is supplied continuously, the flow rate of water and whether it is countercurrent or cocurrent may be appropriately selected.
[0021]
After the pellets treated by these methods are dried, they are subjected to a solid-phase polycondensation reaction, and this drying treatment can be carried out by a commonly used drying treatment method for polyethylene terephthalate.
[0022]
The dried pellets must be subjected to a polycondensation reaction in at least one solid phase polycondensation reaction step, and any conventionally known method may be employed for the solid phase polycondensation reaction.
[0023]
At this time, the intrinsic viscosity of the polyethylene terephthalate pellet after completion of the solid-phase polycondensation reaction is preferably 0.65 or more from the viewpoint of the mechanical strength of the molded article, and the oligomer (cyclic trimer) contained in the polymer is preferably used. Is preferably 0.35% by weight or less.
[0024]
【The invention's effect】
Polyethylene terephthalate obtained by the treatment method of the present invention has a remarkable reduction in white powder which is attached to a mold at the time of molding, which is problematic, and is a film or container excellent in productivity, transparency, heat resistance and mechanical strength. Packaging material can be obtained.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In addition, each value in an Example was calculated | required by the following method.
1) Intrinsic viscosity:
According to a conventional method, the measurement was performed at 35 ° C. using a mixed solvent of phenol / tetrachloroethane (weight ratio: 60/40).
2) Oligomer (cyclic trimer) content:
The sample was quantified in a fixed volume, dissolved in hexafluoroisopropanol / chloroform = 1/1 (volume ratio), diluted with chloroform, and subjected to GPC (gel permeation chromatography (ALC / GPC744 manufactured by Waters)). Measured and determined.
3) Regeneration amount of oligomer:
An oligomer (circular ring) of a pellet and an extruded sample subjected to melt shearing treatment (using a flow tester (using a flow tester CFT-500 manufactured by Shimadzu Corporation) at 305 ° C. for 6 minutes, holding die 0.5 mm diameter × 2.0 mm, load 110 kg) Monomer) content difference.
[0026]
[Example 1]
179 parts of high-purity terephthalic acid and 95 parts of ethylene glycol were mixed in a reactor in which 225 parts of the oligomer had been retained in advance under stirring and under a nitrogen atmosphere at 255 ° C. and under normal pressure. The prepared slurry was fed at a constant rate, and while the water and ethylene glycol generated in the reaction were distilled out of the system, the esterification reaction was carried out for 4 hours to complete the reaction. At this time, the esterification ratio was 98% or more, and the degree of polymerization of the produced oligomer was about 5 to 7.
[0027]
225 parts of the oligomer obtained by this esterification reaction was transferred to a polycondensation reaction tank, and 0.018 parts by weight of tetrabutoxytitanate was charged as a polycondensation reaction catalyst. Subsequently, the reaction temperature in the system was increased from 255 ° C. to 280 ° C., and the reaction pressure was gradually increased and reduced from normal pressure to 60 Pa. The polycondensation reaction was performed while removing water and ethylene glycol generated in the reaction outside the system. Was done.
[0028]
The progress of the polycondensation reaction was confirmed by monitoring the load on the stirring blades in the system, and the reaction was terminated when the desired degree of polymerization was reached. Thereafter, the reactants in the system were continuously extruded from the discharge section into a strand, cooled and cut to obtain granular pellets of about 3 mm. At this time, the polycondensation reaction time was 110 minutes, and the intrinsic viscosity of the obtained polyethylene terephthalate pellets was 0.52.
[0029]
1 kg of the obtained pellet (oligomer (cyclic trimer) 0.30 wt%) was placed in a 5 liter processing apparatus containing water at 90 ° C., and was subjected to contact treatment for 0.5 hour, followed by removal of water. Thereafter, drying was performed at 160 ° C. for 5 hours under a nitrogen stream.
[0030]
The dried pellets were subjected to a solid-state polycondensation reaction under vacuum at 220 ° C. for 15 hours. As a result, the intrinsic viscosity of the obtained pellets was 0.75. Table 1 shows the results.
[0031]
[Examples 2 to 3]
The same operation as in Example 1 was performed except that the water treatment conditions were changed. The results are shown in Table 1 together with the results.
[0032]
[Comparative Example 1]
In Example 1, the same operation was performed except that the contact treatment between the polyethylene terephthalate pellets and water was not performed. Table 1 shows the results.
[0033]
[Comparative Example 2]
225 parts of the oligomer obtained by carrying out the esterification reaction in the same manner as in Example 1 were transferred to a polycondensation reaction tank, and 0.10 parts by weight of germanium dioxide was charged as a polycondensation reaction catalyst. Subsequently, a polycondensation reaction was carried out in the same manner as in Example 1.
[0034]
The progress of the polycondensation reaction was confirmed by monitoring the load on the stirring blades in the system, and the reaction was terminated when the desired degree of polymerization was reached. Thereafter, the reactants in the system were continuously extruded from the discharge section into a strand, cooled and cut to obtain granular pellets of about 3 mm. At this time, the polycondensation reaction time was 112 minutes, and the intrinsic viscosity of the obtained polyethylene terephthalate pellets was 0.52.
[0035]
1 kg of the obtained pellet (oligomer (cyclic trimer) 0.31 wt%) was placed in a 5 liter processing apparatus containing water at 90 ° C., and subjected to contact treatment for 0.5 hour, followed by removal of water. Thereafter, drying was performed at 160 ° C. for 5 hours under a nitrogen stream.
[0036]
The dried pellets were subjected to a solid-state polycondensation reaction at 220 ° C. for 15 hours under vacuum, but the reaction hardly proceeded, and the intrinsic viscosity of the obtained pellets was 0.57. Table 1 shows the results.
[0037]
[Table 1]
Figure 2004067964

Claims (1)

重縮合反応触媒としてチタン系化合物を用いて得たポリエチレンテレフタレートポリマーのペレットを、固相重縮合反応に供する以前の任意の段階で水と接触させて、該ペレット中に含まれるオリゴマーを低減させる、ポリエチレンテレフタレートの処理方法。A polyethylene terephthalate polymer pellet obtained using a titanium compound as a polycondensation reaction catalyst is brought into contact with water at an arbitrary stage before subjecting to a solid-phase polycondensation reaction to reduce oligomers contained in the pellet. A method for treating polyethylene terephthalate.
JP2002232755A 2002-08-09 2002-08-09 Method of treating polyethylene terephthalate Pending JP2004067964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232755A JP2004067964A (en) 2002-08-09 2002-08-09 Method of treating polyethylene terephthalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232755A JP2004067964A (en) 2002-08-09 2002-08-09 Method of treating polyethylene terephthalate

Publications (1)

Publication Number Publication Date
JP2004067964A true JP2004067964A (en) 2004-03-04

Family

ID=32018059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232755A Pending JP2004067964A (en) 2002-08-09 2002-08-09 Method of treating polyethylene terephthalate

Country Status (1)

Country Link
JP (1) JP2004067964A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016114A1 (en) 2006-08-02 2008-02-07 Mitsubishi Chemical Corporation Polyester resin particle and method for producing the same
JP2008056918A (en) * 2006-08-02 2008-03-13 Mitsubishi Chemicals Corp Production method of polyester resin, crystallized polyester prepolymer pellet and polyester resin pellet
CN103214665A (en) * 2013-04-26 2013-07-24 大连合成纤维研究设计院股份有限公司 A pretreatment method for thickening polytrimethylene terephthalate resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219328A (en) * 1983-05-28 1984-12-10 Toyobo Co Ltd Production of high-polymerization degree polyester
JPH04248834A (en) * 1991-01-25 1992-09-04 Mitsui Petrochem Ind Ltd Method for manufacturing saturated polyester
JP2001048972A (en) * 1999-08-12 2001-02-20 Mitsui Chemicals Inc Hollow molded body and method for producing the same
JP2001048966A (en) * 1999-08-12 2001-02-20 Mitsui Chemicals Inc Polyester polymer and its hollow moldings
JP2001131267A (en) * 1999-03-05 2001-05-15 Kanebo Ltd Polyester resin and method for production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219328A (en) * 1983-05-28 1984-12-10 Toyobo Co Ltd Production of high-polymerization degree polyester
JPH04248834A (en) * 1991-01-25 1992-09-04 Mitsui Petrochem Ind Ltd Method for manufacturing saturated polyester
JP2001131267A (en) * 1999-03-05 2001-05-15 Kanebo Ltd Polyester resin and method for production thereof
JP2001048972A (en) * 1999-08-12 2001-02-20 Mitsui Chemicals Inc Hollow molded body and method for producing the same
JP2001048966A (en) * 1999-08-12 2001-02-20 Mitsui Chemicals Inc Polyester polymer and its hollow moldings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016114A1 (en) 2006-08-02 2008-02-07 Mitsubishi Chemical Corporation Polyester resin particle and method for producing the same
JP2008056918A (en) * 2006-08-02 2008-03-13 Mitsubishi Chemicals Corp Production method of polyester resin, crystallized polyester prepolymer pellet and polyester resin pellet
US8329857B2 (en) 2006-08-02 2012-12-11 Mitsubishi Chemical Corporation Polyester resin particle and method for producing the same
CN103214665A (en) * 2013-04-26 2013-07-24 大连合成纤维研究设计院股份有限公司 A pretreatment method for thickening polytrimethylene terephthalate resin

Similar Documents

Publication Publication Date Title
JPH08283394A (en) Method for producing polyethylene terephthalate
EP0677079B1 (en) Production of polyesters and polyester articles having good clarity
WO1996007690A1 (en) Branched copolyesters especially suitable for extrusion blow molding
CN112888723B (en) Polyester resin for heat-shrinkable film, heat-shrinkable label, and package
JP2004143442A (en) Method for producing polyester resin
JP2745676B2 (en) Polyester production method
MXPA05002468A (en) Polyester polymer particles having a small surface to center molecular weight gradient.
JPS59219328A (en) Production of high-polymerization degree polyester
JP2017525821A (en) Method for producing poly (trimethylene terephthalate) with low by-product content
JPH08283393A (en) Polyethylene terephthalate and method for producing the same
JP2004067964A (en) Method of treating polyethylene terephthalate
JP3056563B2 (en) Processing method of polyethylene terephthalate
JP3241731B2 (en) Manufacture of branched polyester
JP3809131B2 (en) Processing method of polyethylene terephthalate
JP3999620B2 (en) Production method of polyester resin
JP2008523213A5 (en)
JP2004307606A (en) Treatment method for polyester pellet
JPH07126369A (en) Treatment of polyethylene terephthalate
JPH07126368A (en) Treatment of polyethylene terephthalate
JP2005154671A (en) Method for producing polyethylene terephthalate
JP4649221B2 (en) Method for producing polyethylene terephthalate with low acetaldehyde content in molded article
KR101327235B1 (en) Method for preparing polyethylene terephthalate
JPH08231689A (en) Method for producing polyethylene terephthalate
JP2006213838A (en) Polyethylene terephthalate giving molded articles having small cyclic trimer content
JPH0790064A (en) Production of polyester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070813

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071102