JP2004067460A - Glass composition - Google Patents
Glass composition Download PDFInfo
- Publication number
- JP2004067460A JP2004067460A JP2002230384A JP2002230384A JP2004067460A JP 2004067460 A JP2004067460 A JP 2004067460A JP 2002230384 A JP2002230384 A JP 2002230384A JP 2002230384 A JP2002230384 A JP 2002230384A JP 2004067460 A JP2004067460 A JP 2004067460A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- optical filter
- wdm optical
- glass composition
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Filters (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、光通信分野における光の波長分割多重化(Wave−lengthDivision Multiplexing、WDMと呼称) に使用される、特定の波長域のみを通過させるWDM光フィルター材料としてのWDM光フィルター用ガラス組成物に関する。
【0002】
【従来の技術】
光フィルターと称されるものには、特定の波長をカットするもの、透過させるもの、光の透過を落とすものなどがある。前者の光フィルターには、特定の波長のみを透過するバンドパスフィルター、特定の波長のみをカットするノッチパスフィルター、特定の波長よりも短波長側の波だけを透過するローパスフィルター、特定の波長よりも長波長側の波だけを透過するハイパスフィルターなどがある。後者の光フィルターには、NDフィルターなどが代表的である。
【0003】
波長多重光通信では、波長が僅かに異なる光を合波したり、逆に、複数の波長成分を含んだ光から特定波長光を選択的に取り出すために分波することが行われ、バンドパスフィルターが用いられている。
【0004】
このような波長分割多重化 WDM システムの発展に伴うナローバンドパスフィルターは、WDM光フィルターと呼ばれ、特開平10−339825号公報、特表平10−512975号公報にて開示されており、その構成は、石英基板上に、SiO2、TiO2、Ta2O5などからなる誘電体多層膜を形成したものである。
【0005】
波長分割多重化 WDM システムの高精度化により、従来よりも高密度な波長多重光通信を行うために、WDM光フィルターの透過波長のバンド幅を狭くすることが求められている。透過波長のバンド幅を狭くすると、バンドの中心波長のずれの許容範囲も狭くなることから、わずかな温度変動による波長中心のずれも大きく影響することになる。このため、WDM光フィルター部材の使用温度の変動による屈折率変動を回避し、波長の温度シフトをゼロに近づけることが要求されている。
【0006】
温度シフトは、ガラスと誘電体多層膜の熱膨張係数に依存することが知られている。温度シフトをゼロに近づける方法として、ガラスの熱膨張係数と誘電体多層膜の熱膨張係数との差を考慮したガラスが特開2001−89184号公報、特開2001−48584号公報および特開2001−66425号公報等にて開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開2001−66425号公報、特開2001−89184号公報に記載された、ガラス組成のガラスは脆く、ダイヤモンドカッターでダイシング加工しチップに切り出す際に端部がかけ、歩留が悪いという問題があった。
【0008】
また、特開2001−48584号公報においてはガラスセラミックス、即ち、結晶化ガラスが用いられているが、結晶化工程が必要で、その際には長時間の加熱処理を要することから、コスト高になるという問題があった。
【0009】
【課題を解決するための手段】
このような問題を解決するために、本発明者が、WDM光フィルター用に好適な物性値を有し、ガラス作製時における高温下での長時間の加熱処理を必要とせず、ガラスとした後も加工性がよく、さらには光の伝播特性も良好なガラスについて鋭意検討し、本発明のWDM光フィルター用ガラスを完成させるに至った。
【0010】
即ち、本発明は、表面にバンドパス用光多層膜を形成するWDM光フィルター用ガラスであって、重量%で表して、そのガラス組成が、SiO2、50〜60%、Al2O3、1〜10%、ZrO2、0〜4%、Li2O、0〜5%、Na2O、10〜25%、K2O、1〜20%、MgO、0〜5%、CaO、0〜10%、BaO、0〜10%、ZnO、1〜6%、Li2O+Na2O+K2O、20〜30%、MgO+CaO+BaO、2〜20%の範囲のWDM光フィルター用ガラス組成物である。
【0011】
更に、本発明は、上記のWDM光フィルター用ガラスであって、50〜150℃における平均熱膨張係数が115〜130×10−7/℃、ヤング率が65〜80GPa以下、密度が2.7g/cm3以下、95℃の蒸留水に40時間浸漬する耐水性試験における重量減少量が0.75mg/cm2以下であることを特徴とするWDM光フィルター用ガラス組成物である。
【0012】
【発明の実施の形態】
WDM光フィルター用ガラスにおける熱膨張係数については、最適な範囲が存在することが知られている。すなわち、熱膨張係数が小さい場合は、光学多層膜に十分な圧縮応力をかけることができず、フィルターの中心波長の温度シフトは正の方向に大きくなる。また、熱膨張係数が大きい場合は、温度シフトが負の方向に大きくなり、多層膜が剥離してしまう、あるいは基板が破壊に至るなどの問題が生じる。
【0013】
本発明者が、蒸着法によりSiO2/Ta2O5系の3キャビティーバンドパスフィルターを作製し、確認したところ、50〜150℃における好ましい平均熱膨張係数は115〜130×10−7/℃であることがわかった。当該範囲内であれば多層膜に適度な圧縮応力をかけることができ、成膜方法にもよるが、フィルタ特性の温度依存性を限りなくゼロに近づけることができる。よって、本発明のWDM光フィルター用ガラスの好ましい平均熱膨張係数は、50〜150℃において115〜130×10−7/℃である。より好ましくは、120〜125×10−7/℃である。
【0014】
ヤング率については、いわゆる強度とも密接に関係し、一般的にヤング率が高くなると材料の強度は高くなる傾向にある。本発明者が、実際に多層膜を形成したヤング率が異なる複数の基板を同条件でダイシング加工し、得られたチップ端部の欠けの程度を評価したところ、ヤング率が80GPa以下であれば、多層膜成膜時のガラスの欠けを許容範囲内に抑制できることを見いだすに至った。また65GPa以上であれば、成膜後の研削・ダイシング加工時に基板が破壊に至ることが無く、ガラスの機械的強度が十分であることを見いだすに至った。よって、本発明のWDM光フィルター用ガラスの好ましいヤング率は、切削・ダイシング加工時の作業温度下において、65〜80GPaである。より好ましくは70〜75GPaである。
【0015】
密度については、同じガラス系であれば、密度が高くなればガラスは脆くなる傾向がある。よって、本発明のWDM光フィルター用ガラスの好ましい密度は、切削加工時の作業温度下において、2.7g/cm3以下である。
【0016】
耐水性については、ガラスの研磨と密接な関係にある。ガラスの研磨は、機械的に表層を除去する機械的研磨と、化学的に表層を溶解する化学的研磨が競争的に行われる。耐水性が著しく悪いと、化学的研磨が進行しすぎ、平滑な表面を得ることができない上に、研磨後の表面がヤケるといった問題が生じる。よって、本発明のWDM光フィルター用ガラスの好ましい耐水性は、95℃の蒸留水に40時間浸漬する耐水性試験における重量減少量で0.75mg/cm2以下である。
【0017】
本発明において、本発明者が、必須成分にSiO2、Al2O3、Na2O、K2O、ZnOを、付加的成分にZrO2、MgO、CaO、BaO、Li2Oを用いたガラスを、各々の成分のガラス組成を調整しつつガラスを作製し、50〜150℃における平均熱膨張係数が115〜130×10−7/℃、作業温度におけるヤング率が65〜80GPa、密度が2.7g/cm3以下、95℃の蒸留水に40時間浸漬する耐水性試験における重量減少量が0.75mg/cm2以下であるWDM光フィルター用ガラス組成物を得、本発明を完成させるに至った。
【0018】
前記各成分の役割およびガラス組成について、以下詳細に説明する。
【0019】
SiO2は、ガラスの骨格を形成するためにガラスに導入する、本発明のWDM光フィルター用ガラスの必須成分である。SiO2のガラス組成が50wt%未満では、ガラス状態が不安定となり失透などが生じやすく、安定したガラスとならない。また、SiO2に替わり導入されることになるアルカリ土類成分などの付加的成分により密度が大きくなりすぎる。一方、60wt%を超えると、熱膨張係数が低くなりすぎる。
【0020】
Al2O3は、ガラス状態を安定化させる効果があるとともに、熱膨張係数およびヤング率の調整をガラス組成の加減で行うためにガラスに導入される、本発明のWDM光フィルター用ガラスの必須成分である。但し、ガラス組成が1wt%未満ではその効果は期待できない。一方、10wt%を超えると、熱膨張係数が低くなりすぎるとともに、ヤング率が大きくなりすぎる。
【0021】
ZrO2は、少量の導入量であればガラス状態を安定化させる効果があるとともに、ガラスの耐水性を向上させるためにガラスに導入する、本発明のWDM光フィルター用ガラスの付加的成分である。但し、ガラス組成が4wt%を超えると、逆にガラスの失透傾向を大きくすると共に、熱膨張係数が小さくなりすぎる。
【0022】
Li2Oは、熱膨張係数やヤング率の調整のために導入する、本発明のWDM光フィルター用ガラスの付加的成分である。5wt%を超えると、ガラスが不安定になり、失透などを発生しやすくなる。なお、Li2Oのより好ましいガラス組成範囲は0〜3wt%である。
【0023】
Na2Oは、熱膨張係数を高くするためにガラスに導入する、本発明のWDM光フィルター用ガラスの必須成分である。ガラス組成が10wt%未満では、ガラスの熱膨張係数を高くする効果は得られない。一方、25wt%を超えるとガラス状態が不安定になり、失透しやすいとともに、耐水性が損なわれヤケが発生しやすい。よって、Na2Oの好ましいガラス組成範囲は10〜25wt%である。
【0024】
K2Oは、熱膨張係数を高くするためにガラスに導入する、本発明のWDM光フィルター用ガラスの必須成分である。ガラス組成が1wt%未満ではその効果は期待できない。一方、20wt%を超えると耐水性が損なわれる。よって、K2Oの好ましいガラス組成範囲は1〜20wt%である。
【0025】
MgOは熱膨張係数やヤング率の調整のためにガラスに導入する、本発明のWDM光フィルター用ガラスの付加的成分である。5wt%を超えると、膨張係数が小さくなりすぎる。
【0026】
CaOは熱膨張係数やヤング率の調整のためにガラスに導入する、本発明のWDM光フィルター用ガラスの付加的成分である。10wt%を超えると、失透傾向が強くなるとともに膨張係数が小さくなりすぎる。
【0027】
BaOは熱膨張係数やヤング率の調整のためにガラスに導入する、本発明のWDM光フィルター用ガラスの付加的成分である。10wt%を超えると、密度が大きくなりすぎるとともに、ガラスの耐水性が低下する。
【0028】
ZnOは少量の含有量でガラスを安定化し、熱膨張係数やヤング率の調整のためにガラスに導入する、本発明のWDM光フィルター用ガラスの必須成分である。1wt%未満ではその効果は期待できない。一方、6wt%を超えると、ガラスの耐水性が低下する。
【0029】
Li2O+Na2O+K2Oの合計量は、膨張係数、耐水性およびガラスの安定性に影響する。20%未満では膨張係数が小さくなりすぎる。30%を超えるとガラスが不安定になり、耐水性が低くなりすぎる。場合によってはガラスとならない。よって、Li2O+Na2O+K2Oの合計量は20〜30%の範囲である。
【0030】
MgO+CaO+BaOの合計量は、密度および耐水性に影響し、その調整のために導入する。2%未満ではその効果は得られない。20%を超えると密度が大きくなりすぎるとともに、耐水性も低下する。
【0031】
【実施例】
以下、実施例をあげて本発明を説明する。ガラスの各成分の原料にそれぞれ相当する酸化物、炭酸塩、硝酸塩等を使用し、得られるガラスが表1の実施例1〜7、表2の比較例1〜9に記載した組成となるように、所定の割合で秤量し混合した。
【0032】
混合した前記原料を、容量2000ml、ロジウム10wt%を含有した白金製の坩堝に入れて、1400℃に昇温した電気炉内で、5時間溶融させた後、溶融ガラスに含まれる微細な泡を除去するため適切な温度まで炉内で冷却したあとグラファイト製の型枠内に流しだし、予めガラス転移点付近に保持した電気炉内に投入し、2時間保持した後、室温まで冷却することで、厚さ、30mm、サイズ200mm×300mmのガラスブロックを得た。
【0033】
次いで、ガラスブロックを薄くスライスした後、円筒状に研削し、更に両面を研磨し、片方の研磨面にTa2O5とSiO2を交互に堆積させて誘電体多層膜を得た。誘電体多層膜および反射防止膜の作製方法としては、例えば、RFイオンプレーティング法、マグネトロンスパッタリング法、プラズマイオンプレーティング法、蒸着法等があるが、本例では蒸着法により行った。その後、成膜していない側から、厚み1mmになるまで研削・研磨し、さらに、多層膜と反対側の研磨面に反射防止膜を成膜した。
【0034】
次いで、金属円盤にダイヤモンド粉を付着させたダイヤモンドカッターを回転させつつ、誘電体多層膜を成膜したガラス基板に非成膜面側から当てる、いわゆるダイシング加工により、厚さ、1mm、サイズ、1.5mm角のチップに切り出しを行った。
【0035】
このようにして作製したガラスについて、熱膨張係数、ヤング率、密度および耐水性について測定した。熱膨張係数は、温度範囲を50℃から150℃とし、シリカガラスを標準試料とした示差熱膨張計により測定した。ヤング率は5MHzのトランスデューサーを用いた超音波パルス法(シングアラウンド法)により、室温で測定した。また、密度については蒸留水を浸液としたアルキメデス法により測定した。耐水性については、20×50×2mmtに研磨したガラスを試料に用い、95℃の蒸留水に40時間浸漬した場合の重量減少量により評価した。なお、この耐水性の試験条件は、JISR3502およびJOGIS06−99の概念に準じており、例えばディスプレイ基板の評価用として使われている。
【0036】
表1に示したガラスの代表的な内部透過率曲線(板厚1mm)を図1に示す。透過率については、自記分光光度計(日立製作所製、U4000型)を用い、内部透過率については、日本光学硝子工業会規格(JOGIS17−82)に準じて求めた。板厚1mmにおける内部透過率が、1300nm以上の領域で99%以上であることが確認され、本系のガラスがWDMフィルター用に好適であることが確認できた。
【0037】
【表1】
【0038】
表1は、本発明のWDM光フィルターに関わり、その組成物および各組成物のガラス組成が、重量%で表して、実施例1〜7のガラスの組成物、重量%で表したそのガラス組成、50〜150℃における平均熱膨張係数(α50−150)、ヤング率、密度および95℃の蒸留水に40時間浸漬した場合の重量減少量(△M)を示したものである。また、代表的なガラスの内部透過率曲線(板厚1mm)を図1に示す。この例は実施例1の場合であるが、他の例もほぼ同様の傾向を示した。
【0039】
【表2】
【0040】
表2は、前記組成および各含有物のガラス組成の範囲から外れた比較例1〜9のガラスの組成物、その重量%で表したガラス組成、50〜150℃における平均熱膨張係数(α50−150)、ヤング率、密度および耐水性(△M)の評価結果を示したものである。
【0041】
表1に示すように、 本発明のWDM光フィルター用ガラスの組成物を用い、各組成物のガラス組成を前記範囲とした実施例1〜7のガラスは、50〜150℃における平均熱膨張係数が115〜130×10−7/℃、ヤング率が65〜80GPa、密度が2.7g/cm3以下、耐水性試験時の重量減少量が0.75mg/cm2以下であることを全て満足した。
【0042】
なお、図1に示した内部透過率曲線における光通信波長域(1300nm以上)の透過率および熱膨張係数等の物性を損なわない範囲であれば、ガラスに着色成分を導入することができる。すなわち、TiO2、CeO2、Eu2O3、Cr2O3、Mn3O4などの酸化物着色成分を5wt%までの範囲で導入することができる。また、清澄剤として各種硫酸塩、硝酸塩の他、Sb2O3、As2O3などを前記物性を損なわない範囲で使用することができる。
【0043】
それに比較して、表2に示すように、各組成物のガラス組成が前記組成から外れた比較例1〜9のガラスは、50〜150℃における平均熱膨張係数が115〜130×10−7/℃、ヤング率が65〜80GPa、密度が2.7g/cm3以下、耐水性試験時の重量減少量が0.75mg/cm2以下であることについて満足しなかった。ここでは明記しなかったが、ガラス化しなかった場合には当然ながら評価はNGとなる。
【0044】
【発明の効果】
本発明のWDM光フィルター用ガラスは、前述のガラス組成およびガラス物性の範囲に限定することで、満足できる性能を示した。また、結晶化ガラスではないので、長時間の加熱処理が必要なく価格が安く抑えられた。さらに、必要な熱膨張係数が容易に得られたことで多層膜成膜時に発生する応力による基板の反りを改善するとともに、ヤング率、密度を適切化することでチップの加工性と基板の機械的強度を両立し、さらに耐水性にも優れたガラスである。
【図面の簡単な説明】
【図1】実施例1の板厚1mmにおける内部透過率曲線。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass composition for a WDM optical filter used as a WDM optical filter material that passes only a specific wavelength range and is used for wavelength division multiplexing (WDM) of light in the field of optical communication. About.
[0002]
[Prior art]
Examples of what is called an optical filter include a filter that cuts a specific wavelength, a filter that transmits a specific wavelength, and a filter that reduces transmission of light. The former optical filter includes a band-pass filter that transmits only specific wavelengths, a notch-pass filter that cuts only specific wavelengths, a low-pass filter that transmits only wavelengths shorter than the specific wavelength, and a Also, there is a high-pass filter that transmits only the wave on the long wavelength side. An ND filter or the like is representative of the latter optical filter.
[0003]
In wavelength-division multiplexing optical communication, light having slightly different wavelengths is multiplexed, or conversely, demultiplexed to selectively extract light of a specific wavelength from light containing a plurality of wavelength components. A filter is used.
[0004]
Such a narrow band-pass filter accompanying the development of the wavelength division multiplexing WDM system is called a WDM optical filter, and is disclosed in Japanese Patent Application Laid-Open No. 10-339825 and Japanese Patent Application Laid-Open No. 10-512975. Is obtained by forming a dielectric multilayer film made of SiO 2 , TiO 2 , Ta 2 O 5 or the like on a quartz substrate.
[0005]
Wavelength Division Multiplexing With the increase in the accuracy of WDM systems, it is required to reduce the bandwidth of the transmission wavelength of WDM optical filters in order to perform higher-density wavelength-division multiplexing optical communication than before. When the band width of the transmission wavelength is narrowed, the allowable range of the shift of the center wavelength of the band is also narrowed, so that the shift of the wavelength center due to a slight temperature fluctuation also has a great effect. For this reason, it is required to avoid a change in the refractive index due to a change in the operating temperature of the WDM optical filter member and to make the temperature shift of the wavelength close to zero.
[0006]
It is known that the temperature shift depends on the thermal expansion coefficients of the glass and the dielectric multilayer film. As a method of bringing the temperature shift closer to zero, glass taking into account the difference between the thermal expansion coefficient of the glass and the thermal expansion coefficient of the dielectric multilayer film is disclosed in JP-A-2001-89184, JP-A-2001-48584, and JP-A-2001-2001. -66425 and the like.
[0007]
[Problems to be solved by the invention]
However, the glass of the glass composition described in JP-A-2001-66425 and JP-A-2001-89184 is brittle, and when dicing with a diamond cutter and cutting into chips, the end portion is cut off, resulting in poor yield. There was a problem.
[0008]
In Japanese Patent Application Laid-Open No. 2001-48584, glass ceramics, that is, crystallized glass is used. However, a crystallization step is required, and a long-time heat treatment is required at that time. There was a problem of becoming.
[0009]
[Means for Solving the Problems]
In order to solve such a problem, the present inventor has a physical property value suitable for a WDM optical filter, does not require a long-time heat treatment at a high temperature at the time of glass production, after the glass The present inventors have conducted intensive studies on a glass having good workability and good light propagation characteristics, and completed the glass for a WDM optical filter of the present invention.
[0010]
That is, the present invention relates to a glass for a WDM optical filter which forms an optical multilayer film for a band pass on the surface, and the glass composition is represented by weight% and is SiO 2 , 50 to 60%, Al 2 O 3 , 1~10%, ZrO 2, 0~4% , Li 2 O, 0~5%, Na 2 O, 10~25%, K 2 O, 1~20%, MgO, 0~5%, CaO, 0 10%, a BaO, 0~10%, ZnO, 1~6 %, Li 2 O + Na 2 O +
[0011]
Furthermore, the present invention is the above-mentioned glass for a WDM optical filter, which has an average thermal expansion coefficient at 50 to 150 ° C. of 115 to 130 × 10 −7 / ° C., a Young's modulus of 65 to 80 GPa or less, and a density of 2.7 g. / cm 3 or less, a glass composition for a WDM optical filter, wherein the weight reduction is 0.75 mg / cm 2 or less in the water resistance test of immersing for 40 hours in 95 ° C. distilled water.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
It is known that an optimum range exists for the thermal expansion coefficient of the glass for a WDM optical filter. That is, when the thermal expansion coefficient is small, sufficient compressive stress cannot be applied to the optical multilayer film, and the temperature shift of the center wavelength of the filter increases in the positive direction. If the coefficient of thermal expansion is large, the temperature shift becomes large in the negative direction, causing problems such as peeling of the multilayer film or destruction of the substrate.
[0013]
The present inventor produced a SiO 2 / Ta 2 O 5 -based three-cavity bandpass filter by a vapor deposition method and confirmed that the preferable average thermal expansion coefficient at 50 to 150 ° C. was 115 to 130 × 10 −7 /. ° C. Within this range, an appropriate compressive stress can be applied to the multilayer film, and the temperature dependence of the filter characteristics can be made as close to zero as possible depending on the film formation method. Therefore, the preferable average thermal expansion coefficient of the glass for a WDM optical filter of the present invention is 115 to 130 × 10 −7 / ° C. at 50 to 150 ° C. More preferably, it is 120 to 125 × 10 −7 / ° C.
[0014]
The Young's modulus is closely related to the so-called strength, and generally, as the Young's modulus increases, the strength of the material tends to increase. The present inventor performed dicing processing on a plurality of substrates having different Young's moduli actually formed with a multilayer film under the same conditions, and evaluated the degree of chipping of the obtained chip end portion. If the Young's modulus was 80 GPa or less, It has been found that chipping of glass at the time of forming a multilayer film can be suppressed within an allowable range. Further, when it is 65 GPa or more, it has been found that the substrate does not break during the grinding and dicing processing after the film formation, and the mechanical strength of the glass is sufficient. Therefore, the preferable Young's modulus of the glass for a WDM optical filter of the present invention is 65 to 80 GPa at the working temperature during cutting and dicing. More preferably, it is 70 to 75 GPa.
[0015]
Regarding the density, if the glass type is the same, the glass tends to be brittle as the density increases. Therefore, the preferred density of the glass for a WDM optical filter of the present invention is 2.7 g / cm 3 or less at the working temperature during cutting.
[0016]
Water resistance is closely related to glass polishing. Glass polishing is performed competitively: mechanical polishing for mechanically removing the surface layer and chemical polishing for chemically dissolving the surface layer. If the water resistance is extremely poor, chemical polishing proceeds too much to obtain a smooth surface, and furthermore, the surface after polishing becomes burnt. Therefore, the preferable water resistance of the glass for a WDM optical filter of the present invention is 0.75 mg / cm 2 or less in terms of weight loss in a water resistance test in which the glass is immersed in distilled water at 95 ° C. for 40 hours.
[0017]
In the present invention, the inventor used SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, and ZnO as essential components, and ZrO 2 , MgO, CaO, BaO, and Li 2 O as additional components. The glass is produced while adjusting the glass composition of each component. The average thermal expansion coefficient at 50 to 150 ° C. is 115 to 130 × 10 −7 / ° C., the Young's modulus at the working temperature is 65 to 80 GPa, and the density is A glass composition for a WDM optical filter having a weight loss of 0.75 mg / cm 2 or less in a water resistance test of immersion in distilled water at a temperature of 2.7 g / cm 3 or less and 95 ° C. for 40 hours to complete the present invention. Reached.
[0018]
The role of each component and the glass composition will be described in detail below.
[0019]
SiO 2 is an essential component of the glass for a WDM optical filter of the present invention, which is introduced into glass to form a glass skeleton. If the glass composition of SiO 2 is less than 50 wt%, the glass state becomes unstable, devitrification and the like are likely to occur, and the glass does not become stable. Further, the density becomes too large due to additional components such as alkaline earth components to be introduced instead of SiO 2 . On the other hand, if it exceeds 60% by weight, the coefficient of thermal expansion becomes too low.
[0020]
Al 2 O 3 has the effect of stabilizing the glass state, and is essential for the glass for a WDM optical filter of the present invention, which is introduced into the glass to adjust the thermal expansion coefficient and Young's modulus by adjusting the glass composition. Component. However, if the glass composition is less than 1 wt%, the effect cannot be expected. On the other hand, if it exceeds 10 wt%, the thermal expansion coefficient becomes too low and the Young's modulus becomes too large.
[0021]
ZrO 2 is an additional component of the glass for a WDM optical filter of the present invention, which is effective for stabilizing the glass state when introduced in a small amount and is introduced into the glass to improve the water resistance of the glass. . However, when the glass composition exceeds 4% by weight, the tendency of devitrification of the glass is increased, and the coefficient of thermal expansion is too small.
[0022]
Li 2 O is an additional component of the glass for a WDM optical filter of the present invention, which is introduced for adjusting the coefficient of thermal expansion and the Young's modulus. If it exceeds 5 wt%, the glass becomes unstable, and devitrification and the like are likely to occur. A more preferred glass composition range of Li 2 O is a 0 to 3wt%.
[0023]
Na 2 O is an essential component of the glass for a WDM optical filter of the present invention, which is introduced into glass to increase the coefficient of thermal expansion. If the glass composition is less than 10% by weight, the effect of increasing the thermal expansion coefficient of the glass cannot be obtained. On the other hand, if the content exceeds 25 wt%, the glass state becomes unstable, the glass tends to be devitrified, the water resistance is impaired, and burns easily occur. Therefore, the preferable glass composition range of Na 2 O is 10 to 25 wt%.
[0024]
K 2 O is an essential component of the glass for a WDM optical filter of the present invention, which is introduced into glass to increase the coefficient of thermal expansion. If the glass composition is less than 1% by weight, the effect cannot be expected. On the other hand, if it exceeds 20 wt%, the water resistance is impaired. Therefore, a preferable glass composition range of K 2 O is 1 to 20 wt%.
[0025]
MgO is an additional component of the glass for a WDM optical filter of the present invention, which is introduced into the glass for adjusting the coefficient of thermal expansion and the Young's modulus. If it exceeds 5 wt%, the expansion coefficient becomes too small.
[0026]
CaO is an additional component of the glass for a WDM optical filter of the present invention, which is introduced into the glass for adjusting the coefficient of thermal expansion and the Young's modulus. If it exceeds 10% by weight, the devitrification tendency becomes strong and the expansion coefficient becomes too small.
[0027]
BaO is an additional component of the glass for a WDM optical filter of the present invention, which is introduced into the glass for adjusting the coefficient of thermal expansion and the Young's modulus. If it exceeds 10 wt%, the density becomes too large and the water resistance of the glass decreases.
[0028]
ZnO is an essential component of the glass for a WDM optical filter of the present invention, which stabilizes the glass with a small content and is introduced into the glass for adjusting the coefficient of thermal expansion and the Young's modulus. If it is less than 1 wt%, the effect cannot be expected. On the other hand, if it exceeds 6% by weight, the water resistance of the glass decreases.
[0029]
Li the total amount of 2 O + Na 2 O + K 2 O has an effect on the stability of the coefficient of expansion, water resistance and glass. If it is less than 20%, the expansion coefficient becomes too small. If it exceeds 30%, the glass becomes unstable and the water resistance becomes too low. In some cases, it does not become glass. Thus, the total amount of Li 2 O + Na 2 O + K 2 O is in the range of 20-30%.
[0030]
The total amount of MgO + CaO + BaO affects the density and the water resistance and is introduced for its adjustment. If it is less than 2%, the effect cannot be obtained. If it exceeds 20%, the density becomes too large, and the water resistance also decreases.
[0031]
【Example】
Hereinafter, the present invention will be described with reference to examples. Using the oxides, carbonates, nitrates, etc. corresponding to the raw materials of the respective components of the glass, the resulting glass has the composition described in Examples 1 to 7 of Table 1 and Comparative Examples 1 to 9 of Table 2. Were weighed and mixed at a predetermined ratio.
[0032]
The mixed raw material was put in a platinum crucible containing 2000 ml of volume and 10 wt% of rhodium, and was melted for 5 hours in an electric furnace heated to 1400 ° C., after which fine bubbles contained in the molten glass were removed. After cooling in a furnace to an appropriate temperature to remove it, pour it into a graphite mold, put it in an electric furnace previously held near the glass transition point, hold it for 2 hours, and then cool it to room temperature. A glass block having a thickness of 30 mm and a size of 200 mm x 300 mm was obtained.
[0033]
Next, the glass block was sliced thinly, ground into a cylindrical shape, further polished on both surfaces, and Ta 2 O 5 and SiO 2 were alternately deposited on one polished surface to obtain a dielectric multilayer film. Examples of a method for producing the dielectric multilayer film and the antireflection film include an RF ion plating method, a magnetron sputtering method, a plasma ion plating method, and a vapor deposition method. Thereafter, grinding and polishing were performed from the side where the film was not formed to a thickness of 1 mm, and an antireflection film was formed on the polished surface opposite to the multilayer film.
[0034]
Next, while rotating a diamond cutter in which diamond powder is adhered to a metal disk, the glass substrate on which the dielectric multilayer film is formed is applied from the non-film-forming surface side by a so-called dicing process, so that the thickness, 1 mm, size, A 0.5 mm square chip was cut out.
[0035]
The glass thus produced was measured for its coefficient of thermal expansion, Young's modulus, density and water resistance. The coefficient of thermal expansion was measured by a differential thermal dilatometer using silica glass as a standard sample in a temperature range of 50 ° C. to 150 ° C. The Young's modulus was measured at room temperature by an ultrasonic pulse method (sing-around method) using a 5 MHz transducer. The density was measured by the Archimedes method using distilled water as an immersion liquid. The water resistance was evaluated by using a glass polished to 20 × 50 × 2 mm t as a sample and determining the weight loss when immersed in 95 ° C. distilled water for 40 hours. The test conditions for the water resistance conform to the concepts of JISR3502 and JOGIS06-99, and are used, for example, for evaluating display substrates.
[0036]
FIG. 1 shows a typical internal transmittance curve (plate thickness: 1 mm) of the glass shown in Table 1. The transmittance was measured using a self-recording spectrophotometer (U4000, manufactured by Hitachi, Ltd.), and the internal transmittance was determined according to the Japan Optical Glass Industry Association Standard (JOGIS17-82). It was confirmed that the internal transmittance at a plate thickness of 1 mm was 99% or more in a region of 1300 nm or more, confirming that the glass of the present system was suitable for a WDM filter.
[0037]
[Table 1]
[0038]
Table 1 relates to the WDM optical filter of the present invention, wherein the compositions and the glass composition of each composition are represented by weight%, the compositions of the glasses of Examples 1 to 7, and the glass composition represented by weight%. It shows the average thermal expansion coefficient (α 50-150 ) at 50 to 150 ° C., the Young's modulus, the density, and the weight loss (ΔM) when immersed in 95 ° C. distilled water for 40 hours. FIG. 1 shows an internal transmittance curve (plate thickness: 1 mm) of a typical glass. This example is the case of the first embodiment, but the other examples showed almost the same tendency.
[0039]
[Table 2]
[0040]
Table 2 shows the compositions of the glasses of Comparative Examples 1 to 9, which were out of the ranges of the glass compositions of the above-mentioned compositions and the respective components, the glass compositions expressed in terms of% by weight, and the average thermal expansion coefficient (α 50) at 50 to 150 ° C. -150 ), evaluation results of Young's modulus, density and water resistance (ΔM).
[0041]
As shown in Table 1, using the glass composition for a WDM optical filter of the present invention, the glasses of Examples 1 to 7 in which the glass composition of each composition was in the above range, the average thermal expansion coefficient at 50 to 150 ° C. Is 115-130 × 10 −7 / ° C., the Young's modulus is 65-80 GPa, the density is 2.7 g / cm 3 or less, and the weight loss during the water resistance test is 0.75 mg / cm 2 or less. did.
[0042]
It should be noted that a coloring component can be introduced into glass as long as physical properties such as transmittance and thermal expansion coefficient in the optical communication wavelength range (1300 nm or more) in the internal transmittance curve shown in FIG. 1 are not impaired. That is, oxide coloring components such as TiO 2 , CeO 2 , Eu 2 O 3 , Cr 2 O 3 , and Mn 3 O 4 can be introduced in a range of up to 5 wt%. Sb 2 O 3 , As 2 O 3, and the like can be used as a fining agent in addition to various sulfates and nitrates as long as the physical properties are not impaired.
[0043]
In comparison, as shown in Table 2, the glasses of Comparative Examples 1 to 9 in which the glass composition of each composition deviated from the above-described compositions had an average coefficient of thermal expansion at 50 to 150 ° C. of 115 to 130 × 10 −7. / C, the Young's modulus was 65 to 80 GPa, the density was 2.7 g / cm 3 or less, and the weight loss during the water resistance test was 0.75 mg / cm 2 or less. Although not specified here, when the glass is not vitrified, the evaluation is naturally NG.
[0044]
【The invention's effect】
The glass for a WDM optical filter of the present invention exhibited satisfactory performance by being limited to the above-mentioned ranges of glass composition and glass physical properties. In addition, since it is not crystallized glass, a long-time heat treatment is not required and the price is kept low. Furthermore, the required coefficient of thermal expansion was easily obtained, thereby improving the warpage of the substrate due to the stress generated during the formation of the multilayer film. It is a glass that has both good mechanical strength and excellent water resistance.
[Brief description of the drawings]
FIG. 1 is an internal transmittance curve of Example 1 at a plate thickness of 1 mm.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002230384A JP2004067460A (en) | 2002-08-07 | 2002-08-07 | Glass composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002230384A JP2004067460A (en) | 2002-08-07 | 2002-08-07 | Glass composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004067460A true JP2004067460A (en) | 2004-03-04 |
Family
ID=32016477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002230384A Pending JP2004067460A (en) | 2002-08-07 | 2002-08-07 | Glass composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004067460A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015141465A1 (en) * | 2014-03-18 | 2015-09-24 | 日本電気硝子株式会社 | Glass substrate for dielectric multilayer film filter |
WO2016098499A1 (en) * | 2014-12-16 | 2016-06-23 | 日本電気硝子株式会社 | Support glass substrate and laminate using same |
WO2016121506A1 (en) * | 2015-01-26 | 2016-08-04 | 日本電気硝子株式会社 | Glass substrate for dielectric multilayer film filters |
JP2016155736A (en) * | 2014-12-16 | 2016-09-01 | 日本電気硝子株式会社 | Support glass substrate and laminate using the same |
WO2017115731A1 (en) * | 2015-12-28 | 2017-07-06 | 旭硝子株式会社 | Glass substrate, laminated substrate, laminate, and method for producing semiconductor package |
CN108605101A (en) * | 2016-01-25 | 2018-09-28 | 肖特玻璃科技(苏州)有限公司 | The system of optical detection for parameter |
GB2573650A (en) * | 2018-04-18 | 2019-11-13 | Saleh A Alzahrani Ali | Composition and method |
CN115108719A (en) * | 2014-09-03 | 2022-09-27 | 日本电气硝子株式会社 | Supporting glass substrate and laminate using same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183638A (en) * | 1989-12-11 | 1991-08-09 | Nippon Electric Glass Co Ltd | Glass for sealing stainless steel |
JPH04310537A (en) * | 1991-04-08 | 1992-11-02 | Nippon Electric Glass Co Ltd | Infrared absorbing glass |
JPH0558671A (en) * | 1991-09-03 | 1993-03-09 | Nippon Electric Glass Co Ltd | Ir ray-absorbing glass |
JP2001066425A (en) * | 1999-08-30 | 2001-03-16 | Ohara Inc | Glass for optical filter and optical filter |
JP2001089184A (en) * | 1999-08-02 | 2001-04-03 | Hoya Corp | Glass substrate for wdm optical filter, wdm optical filter, optical multiplexer/demultiplexer apparatus for wdm and method for producing glass for the same glass substrate |
JP2004026511A (en) * | 2001-09-10 | 2004-01-29 | Nippon Electric Glass Co Ltd | Substrate glass for multilayered film filter and multilayered film filter |
-
2002
- 2002-08-07 JP JP2002230384A patent/JP2004067460A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183638A (en) * | 1989-12-11 | 1991-08-09 | Nippon Electric Glass Co Ltd | Glass for sealing stainless steel |
JPH04310537A (en) * | 1991-04-08 | 1992-11-02 | Nippon Electric Glass Co Ltd | Infrared absorbing glass |
JPH0558671A (en) * | 1991-09-03 | 1993-03-09 | Nippon Electric Glass Co Ltd | Ir ray-absorbing glass |
JP2001089184A (en) * | 1999-08-02 | 2001-04-03 | Hoya Corp | Glass substrate for wdm optical filter, wdm optical filter, optical multiplexer/demultiplexer apparatus for wdm and method for producing glass for the same glass substrate |
JP2001066425A (en) * | 1999-08-30 | 2001-03-16 | Ohara Inc | Glass for optical filter and optical filter |
JP2004026511A (en) * | 2001-09-10 | 2004-01-29 | Nippon Electric Glass Co Ltd | Substrate glass for multilayered film filter and multilayered film filter |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015141465A1 (en) * | 2014-03-18 | 2015-09-24 | 日本電気硝子株式会社 | Glass substrate for dielectric multilayer film filter |
CN115108719A (en) * | 2014-09-03 | 2022-09-27 | 日本电气硝子株式会社 | Supporting glass substrate and laminate using same |
WO2016098499A1 (en) * | 2014-12-16 | 2016-06-23 | 日本電気硝子株式会社 | Support glass substrate and laminate using same |
JP2016155736A (en) * | 2014-12-16 | 2016-09-01 | 日本電気硝子株式会社 | Support glass substrate and laminate using the same |
KR102630404B1 (en) * | 2014-12-16 | 2024-01-29 | 니폰 덴키 가라스 가부시키가이샤 | Support glass substrate and laminate using same |
CN107074618A (en) * | 2014-12-16 | 2017-08-18 | 日本电气硝子株式会社 | Support glass substrate and use its layered product |
KR20170095798A (en) * | 2014-12-16 | 2017-08-23 | 니폰 덴키 가라스 가부시키가이샤 | Support glass substrate and laminate using same |
KR102509782B1 (en) | 2014-12-16 | 2023-03-14 | 니폰 덴키 가라스 가부시키가이샤 | Support glass substrate and laminate using same |
KR20230021766A (en) * | 2014-12-16 | 2023-02-14 | 니폰 덴키 가라스 가부시키가이샤 | Support glass substrate and laminate using same |
WO2016121506A1 (en) * | 2015-01-26 | 2016-08-04 | 日本電気硝子株式会社 | Glass substrate for dielectric multilayer film filters |
JPWO2017115731A1 (en) * | 2015-12-28 | 2018-10-18 | Agc株式会社 | GLASS SUBSTRATE, LAMINATED BOARD, LAMINATE, AND SEMICONDUCTOR PACKAGE MANUFACTURING METHOD |
US20180305241A1 (en) * | 2015-12-28 | 2018-10-25 | Asahi Glass Company, Limited | Glass substrate, laminated substrate, laminate, and method for producing semiconductor package |
US10882778B2 (en) | 2015-12-28 | 2021-01-05 | AGC Inc. | Glass substrate, laminated substrate, laminate, and method for producing semiconductor package |
KR20180098556A (en) * | 2015-12-28 | 2018-09-04 | 에이지씨 가부시키가이샤 | Glass substrate, laminated substrate, laminate, and method of manufacturing semiconductor package |
CN108473362A (en) * | 2015-12-28 | 2018-08-31 | 旭硝子株式会社 | The manufacturing method of glass substrate, multilayer board, laminated body and semiconductor packages |
KR102602900B1 (en) | 2015-12-28 | 2023-11-16 | 에이지씨 가부시키가이샤 | Method for manufacturing glass substrates, laminated substrates, laminates, and semiconductor packages |
WO2017115731A1 (en) * | 2015-12-28 | 2017-07-06 | 旭硝子株式会社 | Glass substrate, laminated substrate, laminate, and method for producing semiconductor package |
CN108605101B (en) * | 2016-01-25 | 2021-07-06 | 肖特玻璃科技(苏州)有限公司 | System for optical detection of parameters |
CN108605101A (en) * | 2016-01-25 | 2018-09-28 | 肖特玻璃科技(苏州)有限公司 | The system of optical detection for parameter |
GB2573650A (en) * | 2018-04-18 | 2019-11-13 | Saleh A Alzahrani Ali | Composition and method |
GB2573650B (en) * | 2018-04-18 | 2021-12-08 | Saleh A Alzahrani Ali | Method of forming glass-ceramic materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10974987B2 (en) | Glass substrate for high-frequency device and circuit board for high-frequency device | |
US6410466B1 (en) | Glass-ceramics for a light filter | |
TWI623508B (en) | Glass ceramics and multilayer inorganic film filters | |
JP3399883B2 (en) | Glass for optical filter and optical filter | |
US6582826B1 (en) | Glass-ceramics | |
JP2003279749A (en) | Polarizing glass | |
JP2004067460A (en) | Glass composition | |
US6677259B2 (en) | Glass-ceramics for a light filter | |
JP2005162520A (en) | Glass composition for wdm optical filter | |
JP2004026580A (en) | Colored glass | |
JP4736207B2 (en) | Crystallized glass for optical filter substrate and optical filter | |
JP2005187215A (en) | Glass composition for wavelength division multiplexing optical filter | |
JP4136589B2 (en) | Glass for optical filter and optical filter | |
KR100523240B1 (en) | Glass for wavelength division multiplexing optical filter | |
JP2004026510A (en) | Substrate glass for multilayered film filter and multilayered film filter | |
US7005187B2 (en) | Glass for a light filter and a light filter | |
JP3202981B2 (en) | Light filter | |
JP2003342036A (en) | Glass for wdm light filter | |
JP2003342037A (en) | Glass for wdm light filter | |
JP2002311201A (en) | Substrate for optical filter and optical filter | |
JP2004053997A (en) | Substrate for dielectric multilayer film filter and dielectric multilayer film filter | |
US7101625B2 (en) | Glass for a light filter and a light filter | |
JP2004026511A (en) | Substrate glass for multilayered film filter and multilayered film filter | |
WO2016121506A1 (en) | Glass substrate for dielectric multilayer film filters | |
WO2015141465A1 (en) | Glass substrate for dielectric multilayer film filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050202 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080318 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080729 |