[go: up one dir, main page]

JP2004064902A - Synchronous motor control device and equipment using it - Google Patents

Synchronous motor control device and equipment using it Download PDF

Info

Publication number
JP2004064902A
JP2004064902A JP2002220588A JP2002220588A JP2004064902A JP 2004064902 A JP2004064902 A JP 2004064902A JP 2002220588 A JP2002220588 A JP 2002220588A JP 2002220588 A JP2002220588 A JP 2002220588A JP 2004064902 A JP2004064902 A JP 2004064902A
Authority
JP
Japan
Prior art keywords
voltage
motor
current
synchronous motor
exciting current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002220588A
Other languages
Japanese (ja)
Other versions
JP4167863B2 (en
JP2004064902A5 (en
Inventor
Yukio Kawabata
川端 幸雄
Tsunehiro Endo
遠藤 常博
Yuhachi Takakura
高倉 雄八
Kiyoshi Sakamoto
坂本  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Ltd
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Home and Life Solutions Inc filed Critical Hitachi Ltd
Priority to JP2002220588A priority Critical patent/JP4167863B2/en
Publication of JP2004064902A publication Critical patent/JP2004064902A/en
Publication of JP2004064902A5 publication Critical patent/JP2004064902A5/ja
Application granted granted Critical
Publication of JP4167863B2 publication Critical patent/JP4167863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Washing Machine And Dryer (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】モータ脱調時の電流増加を抑制し、脱調停止を検知する良好な同期モータ制御装置を提供する。
【解決手段】本発明の同期モータの制御装置は、電流検出手段により検出したモータ電流から励磁電流を演算して、インバータ回路の出力電圧を、モータ発電定数と励磁電流指令と前記励磁電流とを用いて電圧指令を決定するとともに、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成し、この電圧補正量と予め定めた所定値とを比較して同期モータの脱調をすみやかに検出する。
【選択図】 図1
A good synchronous motor control device that suppresses an increase in current at the time of motor out-of-step and detects stop of out-of-step is provided.
A control device for a synchronous motor according to the present invention calculates an excitation current from a motor current detected by current detection means, and outputs an output voltage of an inverter circuit to a motor power generation constant, an excitation current command, and the excitation current. In addition to determining the voltage command, a voltage correction amount is created so that the excitation current command matches the excitation current, and the voltage correction amount is compared with a predetermined value to quickly step out of the synchronous motor. To be detected.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石同期モータの回転速度を所望の回転速度に制御する制御装置と、この制御装置を用いた空調機,冷蔵庫,電気掃除機に関する。
【0002】
【従来の技術】
同期モータ、特に永久磁石回転子と固定子巻線を組み合わせた永久磁石同期モータは、メンテナンスフリーであることから空調機,冷凍機,洗濯機等に採用されている。永久磁石同期モータの駆動制御では、回転子の磁極位置と、通電すべき固定子巻線の位置とを密接に関係付けて制御することが必要である。空調機等のコンプレッサ用モータでは、モータとコンプレッサとが同じ筐体に入っていて、温度条件が厳しい。そのためにホール素子等の回転子位置検出センサをモータに内蔵することができず、そのために回転子の磁極位置を推定してモータ駆動する位置センサレス駆動方法を用いている。
【0003】
しかしながら、上記の位置センサレス駆動方式は、回転子の磁極位置を直接検出しているわけではないので、モータの負荷の急変などが起きると、脱調してモータ停止する場合がある。
【0004】
特開2001−25282号公報には、脱調停止時の無効電流の周期と電圧の周期とを比較して、脱調判定を行う脱調検出装置が開示されている。
【0005】
【発明が解決しようとする課題】
前記従来技術で、モータが脱調停止すると、無効電流が増大する。すなわち、モータ制御時,正常動作中は、モータ回転時に発生する誘起電圧分を考慮して、印加電圧が決定されている。しかし、負荷の急変時等でモータが脱調停止した場合には、モータが停止し誘起電圧が発生していないのにも関わらず、従来技術の制御方法では誘起電圧が発生していると見なして制御電圧を印加し続けるために、無効電流である励磁電流が増大し、結果的にモータ電流が増加してモータ及びパワー素子が発熱する。
【0006】
本発明の目的は、モータ脱調時の電流増加を抑制して、脱調停止を検知する同期モータ制御装置の提供である。
【0007】
【課題を解決するための手段】
本発明の同期モータの制御装置は、電流検出手段により検出したモータ電流から励磁電流を演算して、インバータ回路の出力電圧を、モータ定数設定値と励磁電流指令と前記励磁電流とを用いて電圧指令を決定するとともに、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成し、この電圧補正量と所定値とを比較して同期モータの脱調をすみやかに検出する。
【0008】
本発明の同期モータの制御装置は、上記のモータ定数設定値としてモータ発電定数を選び、このモータ発電定数設定値を補正して電圧指令を補正する。
【0009】
また、モータ電流は、直流電源からインバータ回路に流れる直流電流を検出し、この直流電流からモータ電流を検出する。
【0010】
本発明の同期モータの制御モジュールは、パッケージに、直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを含み、前記制御回路が、モータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成する電圧指令補正手段とを備え、前記電圧補正量と予め設定した所定値とを比較して前記同期モータの脱調を検出する。
【0011】
また、上記の脱調検出機能を備えたモータ制御装置によって、エアコン,冷蔵庫,洗濯機,掃除機の同期モータを駆動する。
【0012】
【発明の実施の形態】
以下、本発明の同期モータの制御装置と、該制御装置によって駆動される同期モータを使用した機器との実施例を、図1〜図9を用いて説明する。
【0013】
(実施例1)
図1は、本実施例の同期モータ制御装置のブロック図である。本実施例の同期モータ3は回転子が永久磁石の同期モータ(以下、永久磁石同期モータと略す。)である。本実施例の同期モータ制御装置は、直流電源1の電圧を3相交流電圧に変換して同期モータ3の固定子巻線に供給し、該同期モータ3を回転させるインバータ回路2と、指令速度に応じて前記同期モータ3の制御処理を行う制御回路4と、この制御回路4に従ってインバータ回路2を駆動するドライバ5と、直流電流を検出する抵抗器6とを備えている。
【0014】
インバータ回路2は、直流電源1の電圧をIGBTや、パワーMOSFET,バイポーラパワートランジスタ等の電力半導体スイッチング素子で3相交流電圧に変換する。
【0015】
制御回路4はワンチップマイコンあるいはハイブリットICであって、図1に示すように、制御回路4は、前記抵抗器6の両端に発生する検出電圧6aから、モータ電流情報を出力するモータ電流情報再現部7と、3相のモータ電流情報7aをdq座標軸の電流値である励磁電流Idcとトルク電流Iqcとに変換する座標変換部8と、励磁電流指令値Id を作成する励磁電流指令発生器9と、トルク電流Iqcからトルク電流指令Iq を作成するトルク電流指令発生器10と、発電定数設定値Ke 及び他のモータ定数設定値群11aを設定するモータ定数設定器11と、励磁電流Idcと励磁電流指令値Id と発電定数設定値Ke とから補正後発電定数Ke**を作成し、また発電定数設定値Ke と補正後発電定数Ke**とから脱調を検出してPWM信号15aを遮断するPWM信号出力停止信号12aを出力する発電定数補正演算及び脱調検出器12と、指令速度ωと他のモータ定数設定値群11aとトルク電流指令Iq と励磁電流指令Id と、補正後発電定数Ke**とから、d軸電圧指令Vdc とq軸電圧指令Vqc とを出力するモータ印加電圧生成部13と、d軸電圧指令Vdc とq軸電圧指令Vqc から3相電圧指令14aに座標変換するdq逆変換部14と3相電圧指令14aからPWM信号15aを作成してドライバ5へ出力するPWM信号作成器15とを備えている。
【0016】
次に本発明の主要部であって、電圧指令補正手段である、発電定数補正演算及び脱調検出器12について説明する。図2は、発電定数補正演算及び脱調検出器12のブロック図である。発電定数補正演算及び脱調検出器12は、励磁電流指令値Id と励磁電流Idcとの差20aに基づいて発電定数補正値ΔKeを演算する発電定数補正値演算部21と、発電定数設定値Keと発電定数補正値ΔKeとを加算して補正後発電定数Ke**を求め、発電定数設定値Ke と補正後発電定数Ke**とを比較して脱調判定する脱調判定部23とを備えている。この脱調判定部23で脱調有りと判定した場合には、PWM信号出力停止信号12aを出力する。
【0017】
次に、本実施例の脱調検出原理を説明する。モータ印加電圧は、図1のモータ印加電圧生成部13で作成されるd軸電圧指令Vdc とq軸電圧指令Vqc とから決定される。これらのd軸電圧指令Vdc とq軸電圧指令Vqc は、抵抗設定値R と、dq軸インダクタンス設定値Ld ,Lq と、励磁電流指令Id と、トルク電流指令Iq と、指令速度ω と、補正後発電定数Ke**とから、(数1)式,(数2)式で作成する。
【0018】
Vdc =R・Id−ω・Lq・Iq           …(数1)
Vqc =R・Iq+ω・Ld・Id+ω・Ke**    …(数2)
従来技術では、前記(数2)式の補正後発電定数Ke**の代わりに発電定数設定値Ke を用いた(数3)式で、q軸電圧指令Vqc を求めている。
【0019】
Vqc =R・Iq+ω・Ld・Id+ω・Ke     …(数3)
この(数2)式を用いて制御する従来技術のモータ印加電圧波形と、モータが正常回転中のモータ電流波形と、正常回転中の励磁電流波形と、脱調してモータが停止した時のモータ電流と、脱調してモータが停止した時の励磁電流とを図3に示す。
【0020】
モータが停止した場合には、前記(数1)式と(数2)式の指令速度ω が0となるので、本来なら以下に示す(数4)式,(数5)式に示す電圧指令が必要である。
【0021】
Vdc =R・Id                    …(数4)
Vqc =R・Iq                    …(数5)
脱調を検出できないまま前記(数1)式と(数2)式で電圧指令値を作成すると、前記(数1)式と(数2)式では0でない指令速度ω を用いているため、モータが停止しても運転中と同じ電圧指令が作成される。一方、励磁電流指令Id は検出したトルク電流Iqから作成しているため、殆ど0となる。結局、(数1)式の(数2)式のω ・Ke**分だけ電圧が過大になって、モータ電流が増加するので、実質的にd軸電圧指令Vdc とq軸電圧指令Vqc とは、次の(数6)式,(数7)式に示すようになる。
【0022】
Vdc =R・Id                    …(数6)
Vqc =ω・Ld・Id+ω・Ke           …(数7)
この結果、q軸電圧指令Vqc は正方向に必要以上に大きな値となるために、励磁電流Idcが正方向に大きく流れる。
【0023】
本発明では、脱調を速やかに検出し、脱調が生じた際に電圧を低くして電流を下げる。このことを図1,図2を参照しながら説明する。まず、電圧を低くするために、(数2)式でq軸電圧指令Vqc を形成している指令速度ω と発電定数設定値Ke との積を下げる。そのために、励磁電流指令値Id と励磁電流Idcとが一致するように発電定数補正値ΔKeを作成し、次に発電定数設定値Ke と発電定数補正値ΔKeの和である補正後発電定数Ke**に、指令速度ω を乗じて、q軸電圧指令Vqc を形成する。この結果、脱調時には励磁電流Idcが正方向に大きくなるので、発電定数補正値ΔKeが負となり、q軸電圧指令Vqc が低下するので、電圧指令も低下して電流の増加を抑制できる。
【0024】
一方、補正後発電定数Ke**は、発電定数設定値Ke より小さくなるので、本実施例では所定値として0を選び、補正後発電定数Ke**と0とを比較して、この補正後発電定数Ke**がゼロ近傍であれば、モータが脱調停止していると判定してPWM信号出力停止信号12aを出力する。
【0025】
モータの用途によっては、脱調時に完全に停止しないでモータの回転子がわずかに振動する場合がある。このような場合には、補正後発電定数Ke**が0近傍にならないため、比較する所定値を、発電定数設定値Ke に対して60%以下の値、好ましくは40%以下の値とする。
【0026】
図4に、本実施例でモータの脱調停止した時の、モータ印加電圧波形とモータ電流波形とを示す。図4に示すように発電定数を補正することで、脱調時のモータ電流を少なくでき、さらに脱調検出後では、PWM信号を遮断することでモータ電流を0にする。
【0027】
以上の実施例では、インバータ回路2に流れている直流電流からモータ電流情報を得てモータを制御したが、モータ電流情報を直接モータ巻線から得ても良い。
【0028】
(実施例2)
図5は、実施例1に示した同期モータ制御装置のインバータ回路2と制御回路4とドライバ5(図示せず)とを1つのパッケージ内に内蔵したモジュール50の模式図であり、図5では上面の蓋を省略してある。本実施例のモジュール50では、インバータ回路2と制御回路4とドライバ5とが、2組の対向辺がある略長方形の樹脂モールドパッケージに収められている。制御回路4は別の基板に搭載されていて、インバータ回路2やドライバ5を載せた基板に、リード線で接続してある。さらに、モジュール上面の蓋の上に平滑コンデンサを載せて実装できる。
【0029】
樹脂モールドパッケージの底面には、樹脂あるいはセラミックス板などの電気絶縁層を介してアルミニウム合金や、銅合金などの熱伝導性が良い金属放熱板を配置してある。モジュールの一辺にはインバータ回路2の出力を同期モータ3に接続する3本のケーブルを接続する出力端子部51が樹脂モールドパッケージに一体成型されている。
【0030】
出力端子部を配置した辺に対向する辺には、直流電源1の電圧を入力する端子や、速度指令を入力する端子,制御回路4やドライバ5の電源端子等が一列に一体成型で配置してあって、直流電源の入力端子52と、速度指令を入力する端子,制御回路4やドライバ5の電源端子等の制御端子等53との間に、図5に示すように切り欠きを設けてモジュール内部に設けたコネクタに接続する電線の通路にしてある。なお、直流電流を検出する抵抗器6は、図5ではモジュール50に外付けしているが、これをモジュール50に内蔵しても良い。
【0031】
このように制御回路4とドライバ5とインバータ回路2とをモジュールに内蔵してあるので、制御回路4からドライバ5への信号線にノイズが入ることがなく、負荷急変に伴いモータ脱調停止しても、モータ電流を増大させずに、モータ停止状態を判定し、この判定結果に基づいてモータ電流を迅速に停止できる。
【0032】
(実施例3)
図6は、本発明の制御回路4を含む同期モータ制御装置60aを圧縮機の駆動源として備えた空調機の室外機60の模式図である。本実施例の空調機は、冷媒を圧縮する圧縮機を備えた室外機と、圧縮した冷媒を断熱膨張させて吸熱させる、あるいは圧縮して発熱した冷媒を放熱させる室内機とを備えている。本実施例では、同期モータ制御装置60aが実施例2に示したモジュールになっている。
【0033】
本発明の同期モータ制御装置を、圧縮機の駆動源である永久磁石同期モータに適用すると、負荷急変に伴いモータ脱調停止時においても、モータ電流が増大することなく、モータ停止状態を判定し、この判定結果を基にモータ電流を停止することができ、良好なモータ制御が実現できる。また、トルクに関係しない無効電流が増えないため、低損失で良質な空調機を実現することができる。さらに、モータ停止状態を判断できるため、再起動により空調機としての能力回復を迅速に行うことができ、高性能な空調機を実現することができる。本実施例では圧縮機のモータの運転制御に実施例1,実施例2を適用したが、室外機のファンモータや室内機のファンモータに実施例1,実施例2を適用してもよいことは言うまでもない。また、実施例2のモジュールに代えて、個別部品を搭載したプリント配線基板としてもよい。
【0034】
(実施例4)
図7は、本発明の制御回路4を含む同期モータ制御装置70aを冷蔵庫用の圧縮機の駆動源として備えた冷蔵庫70の模式図である。図7には示していないが、本実施例の冷蔵庫は、冷蔵室と冷凍室とを備え、さらに、圧縮機と凝縮器と冷凍室用蒸発器と冷蔵室用蒸発器とを具備している。本実施例では、圧縮機と永久磁石同期モータとが同じケースに内蔵されていて、モータに回転子位置センサが無い。本実施例の冷蔵庫では、同期モータ制御装置70aが実施例2に示したモジュールになっている。
【0035】
本発明の同期モータの制御装置を冷蔵庫用の圧縮機の駆動源として使用すると、モータ停止状態を判断できるため、再起動により冷蔵庫としての能力回復を迅速に行うことができるため、内部温度の変化が少なく、食品等を痛めることが少ない冷蔵庫を実現できる。なお、実施例2のモジュールに代えて、個別部品を搭載したプリント配線基板としてもよい。
【0036】
(実施例5)
本発明のモータ制御装置を洗濯機のモータの制御装置に適用した洗濯機80の模式図を図8に示す。本実施例の洗濯機は、略円筒形の洗濯槽兼脱水槽と、この洗濯槽兼脱水槽の底部に配置した撹拌翼と、洗濯槽兼脱水槽を内蔵する外槽と、撹拌翼あるいは洗濯槽兼脱水槽を回転させる永久磁石同期モータとを備えている。本実施例の洗濯機では、同期モータ制御装置80aが実施例2に示したモジュールになっていて、モジュールを水に濡れにくいモータより上部に離して配置してある。
【0037】
本発明の同期モータの制御装置を洗濯機の駆動源として使用すると、モータ停止状態を判断できるため、再起動により洗濯機としての能力回復を迅速に行うことができ、洗濯能力を落とさずに洗濯を続けることができる。
【0038】
なお、実施例2のモジュールに代えて、個別部品を搭載したプリント配線基板としてもよい。
【0039】
(実施例6)
図9は、本発明の同期モータ制御装置90aを掃除機の駆動源として備えた掃除機90の模式図である。本実施例の掃除機は塵埃を吸い込むための送風機を備えた掃除機本体と、塵埃を吸い込む吸口と、吸口と本体を連通させるホースあるいはパイプ部とを備えていて、送風機を永久磁石同期モータで駆動する。本実施例の掃除機では同期モータ制御装置90aとして、実施例2に示したモジュールを用いた。
【0040】
本発明の同期モータの制御装置を掃除機のモータの制御に適用すると、モータ電流が増大しないため、低損失な掃除機を実現でき、特に2次電池を本体に内蔵したバッテリー駆動型の掃除機の場合には、2次電池の消耗を抑えた長時間運転が可能な掃除機を実現できる。さらに、モータ停止状態を判断できるため、再起動により掃除機としての能力回復を迅速に行うことができる掃除機を実現できる。
【0041】
なお、実施例2のモジュールに代えて、個別部品を搭載したプリント配線基板としてもよい。
【0042】
【発明の効果】
本発明によれば、負荷急変に伴うモータ脱調停止時においても、モータ電流が増大することなく、モータ停止状態を判定し、この判定結果を基に励磁電流を停止することができる。
【図面の簡単な説明】
【図1】実施例1の同期モータ制御装置のブロック図である。
【図2】実施例1の発電定数補正演算及び脱調検出器のブロック図である。
【図3】従来技術の制御による脱調停止時の電圧電流波形の説明図である。
【図4】実施例1の発電定数補正演算及び脱調検出器の動作説明図である。
【図5】実施例2の同期モータ制御装置モジュールの模式図である。
【図6】実施例3の空調機の模式図である。
【図7】実施例4の冷蔵庫の模式図である。
【図8】実施例5の洗濯機の模式図である。
【図9】実施例6の掃除機の模式図である。
【符号の説明】
1…直流電源、2…インバータ回路、3…同期モータ、4…制御回路、5…ドライバ、6…抵抗器、6a…検出電圧、7…モータ電流情報再現部、7a…モータ電流情報、8…座標変換部、9…励磁電流指令発生器、10…トルク電流指令発生器、11…モータ定数設定器、11a…モータ定数設定値群、12…発電定数補正演算及び脱調検出器、12a…PWM信号出力停止信号、13…モータ印加電圧生成部、14…dq逆変換部、14a…3相電圧指令、15…PWM信号作成器、15a…PWM信号、21…発電定数補正値演算部、23…脱調判定部、50…モジュール、51…出力端子部、52…入力端子、53…制御端子等、60…空調機の室外機、60a,70a,80a,90a…同期モータ制御装置、70…冷蔵庫、80…洗濯機、90…掃除機、Idc…励磁電流、Iqc…トルク電流、Id …励磁電流指令値、Ke …発電定数設定値、ΔKe…発電定数補正値、Ke**…補正後発電定数、Vdc …d軸電圧指令、Vqc …q軸電圧指令。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device that controls the rotation speed of a permanent magnet synchronous motor to a desired rotation speed, and an air conditioner, a refrigerator, and a vacuum cleaner using the control device.
[0002]
[Prior art]
Synchronous motors, especially permanent magnet synchronous motors combining permanent magnet rotors and stator windings, are maintenance-free and have been used in air conditioners, refrigerators, washing machines and the like. In the drive control of the permanent magnet synchronous motor, it is necessary to control the position of the magnetic pole of the rotor and the position of the stator winding to be energized closely. In a motor for a compressor such as an air conditioner, the motor and the compressor are housed in the same housing, and the temperature condition is severe. For this reason, a rotor position detection sensor such as a Hall element cannot be built in the motor. Therefore, a position sensorless driving method of estimating the magnetic pole position of the rotor and driving the motor is used.
[0003]
However, in the above-described position sensorless driving method, the magnetic pole position of the rotor is not directly detected, so that when the load of the motor suddenly changes, the motor may step out and stop.
[0004]
Japanese Patent Application Laid-Open No. 2001-25282 discloses a step-out detection device that compares a period of a reactive current and a period of a voltage when step-out is stopped to determine step-out.
[0005]
[Problems to be solved by the invention]
In the related art, when the motor loses synchronism, the reactive current increases. That is, during motor control and during normal operation, the applied voltage is determined in consideration of the induced voltage generated during motor rotation. However, when the motor stops synchronizing due to a sudden change in the load or the like, the control method of the related art considers that the induced voltage is generated even though the motor is stopped and the induced voltage is not generated. As a result, the exciting current, which is a reactive current, increases, and as a result, the motor current increases, and the motor and the power element generate heat.
[0006]
An object of the present invention is to provide a synchronous motor control device that detects a step-out stop by suppressing an increase in current at the time of motor step-out.
[0007]
[Means for Solving the Problems]
The synchronous motor control device of the present invention calculates the exciting current from the motor current detected by the current detecting means, and outputs the output voltage of the inverter circuit using the motor constant set value, the exciting current command, and the exciting current. A command is determined, a voltage correction amount is created so that the excitation current command matches the excitation current, and the voltage correction amount is compared with a predetermined value to immediately detect a step-out of the synchronous motor.
[0008]
The synchronous motor control device of the present invention selects a motor power generation constant as the above-mentioned motor constant set value, and corrects the motor power generation constant set value to correct the voltage command.
[0009]
As the motor current, a DC current flowing from the DC power supply to the inverter circuit is detected, and the motor current is detected from the DC current.
[0010]
The synchronous motor control module according to the present invention includes, in a package, an inverter circuit that drives a synchronous motor by converting a DC voltage into a three-phase AC voltage, a control circuit that performs control processing according to a command speed, and drives the inverter circuit. A control circuit for calculating an exciting current from a motor current, an exciting current command generating means, an output voltage of an inverter circuit, a motor constant set value, an exciting current command, and the exciting current. And a voltage command generator that determines a voltage correction amount so that the excitation current command matches the excitation current, and the voltage correction amount and a predetermined value set in advance. The step out of the synchronous motor is detected by comparison.
[0011]
Further, the synchronous motors of the air conditioner, refrigerator, washing machine, and vacuum cleaner are driven by the motor control device having the step-out detection function.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a synchronous motor control device of the present invention and a device using a synchronous motor driven by the control device will be described with reference to FIGS. 1 to 9.
[0013]
(Example 1)
FIG. 1 is a block diagram of the synchronous motor control device of the present embodiment. The synchronous motor 3 of the present embodiment is a synchronous motor having a permanent magnet as a rotor (hereinafter abbreviated as a permanent magnet synchronous motor). The synchronous motor control device according to the present embodiment converts the voltage of the DC power supply 1 into a three-phase AC voltage, supplies the three-phase AC voltage to the stator winding of the synchronous motor 3, and rotates the synchronous motor 3; A control circuit 4 for controlling the synchronous motor 3 according to the control signal, a driver 5 for driving the inverter circuit 2 in accordance with the control circuit 4, and a resistor 6 for detecting a direct current.
[0014]
The inverter circuit 2 converts the voltage of the DC power supply 1 into a three-phase AC voltage using a power semiconductor switching element such as an IGBT, a power MOSFET, or a bipolar power transistor.
[0015]
The control circuit 4 is a one-chip microcomputer or a hybrid IC. As shown in FIG. 1, the control circuit 4 outputs motor current information based on a detection voltage 6a generated at both ends of the resistor 6. Unit 7, a coordinate converter 8 for converting the three-phase motor current information 7a into an exciting current Idc and a torque current Iqc, which are current values on the dq coordinate axis, and an exciting current command generator for creating an exciting current command value Id * . 9, a torque current command generator 10 for generating a torque current command Iq * from the torque current Iqc, a motor constant setter 11 for setting a power generation constant set value Ke * and another motor constant set value group 11a, and an exciting current. create a corrected EMF constant Ke ** from the exciting current command value Id * and the generator constant setting value Ke * Idc, also EMF constant set value Ke * and corrected EMF constant Ke * A back EMF constant correction operation and the step-out detector 12 outputs a PWM signal output stop signal 12a for blocking the PWM signal 15a to detect the out-of-step from a, the command speed ω and the other motor constant setting value group 11a and the torque A motor applied voltage generator 13 for outputting a d-axis voltage command Vdc * and a q-axis voltage command Vqc * from the current command Iq * , the excitation current command Id *, and the corrected power generation constant Ke ** ; A dq inverse converter 14 for performing coordinate conversion from the command Vdc * and the q-axis voltage command Vqc * to a three-phase voltage command 14a; a PWM signal generator 15 for generating a PWM signal 15a from the three-phase voltage command 14a and outputting it to the driver 5; It has.
[0016]
Next, a description will be given of a power generation constant correction calculation and step-out detector 12, which is a main part of the present invention and is a voltage command correction means. FIG. 2 is a block diagram of the power generation constant correction calculation and step-out detector 12. The power generation constant correction calculation and out-of-step detector 12 includes a power generation constant correction value calculation unit 21 that calculates a power generation constant correction value ΔKe based on a difference 20a between the excitation current command value Id * and the excitation current Idc, and a power generation constant set value. Ke * and EMF constant correction value by adding the ΔKe seeking corrected EMF constant Ke **, power generation constant setting value Ke * and corrected EMF constant Ke ** compares the in out-determining out-of-step judging unit 23. If the step-out determination unit 23 determines that there is step-out, it outputs a PWM signal output stop signal 12a.
[0017]
Next, the principle of step-out detection of this embodiment will be described. The motor applied voltage is determined from the d-axis voltage command Vdc * and the q-axis voltage command Vqc * created by the motor applied voltage generator 13 in FIG. The d-axis voltage command Vdc * and the q-axis voltage command Vqc * include a resistance setting value R * , dq-axis inductance setting values Ld * and Lq * , an excitation current command Id *, and a torque current command Iq * . It is created from the command speed ω * and the corrected power generation constant Ke ** by the formulas (1) and (2).
[0018]
Vdc * = R * · Id * −ω * · Lq * · Iq * (Equation 1)
Vqc * = R * · Iq * + ω * · Ld * · Id * + ω * · Ke ** (Equation 2)
In the prior art, the q-axis voltage command Vqc * is obtained by Expression (3) using the power generation constant set value Ke * instead of the corrected power generation constant Ke ** of Expression (2).
[0019]
Vqc * = R * · Iq * + ω * · Ld * · Id * + ω * · Ke * (Equation 3)
The motor voltage waveform of the prior art, which is controlled by using the equation (2), the motor current waveform during normal rotation of the motor, the excitation current waveform during normal rotation, and the time when the motor stops due to step-out. FIG. 3 shows the motor current and the exciting current when the motor stops due to step-out.
[0020]
When the motor is stopped, the command speed ω * in the above-described equations (1) and (2) becomes 0, and the voltages shown in the following equations (4) and (5) should be used. Directive is required.
[0021]
Vdc * = R * · Id * (Equation 4)
Vqc * = R * · Iq * (Equation 5)
If a voltage command value is created by the above-described equations (1) and (2) without detecting step-out, the non-zero command speed ω * is used in the equations (1) and (2). Even if the motor stops, the same voltage command as during operation is created. On the other hand, the excitation current command Id * is almost zero because it is created from the detected torque current Iq. As a result, the voltage becomes excessively large by ω * · Ke ** in the formula (1) and the motor current increases, so that the d-axis voltage command Vdc * and the q-axis voltage command are substantially obtained. Vqc * is as shown in the following Expression (6) and Expression (7).
[0022]
Vdc * = R * · Id * (Equation 6)
Vqc * = ω * · Ld * · Id * + ω * · Ke * (Equation 7)
As a result, the q-axis voltage command Vqc * has an unnecessarily large value in the positive direction, so that the exciting current Idc largely flows in the positive direction.
[0023]
In the present invention, step-out is detected quickly, and when step-out occurs, the voltage is lowered to lower the current. This will be described with reference to FIGS. First, in order to lower the voltage, reducing the product of the equation 2 with the q-axis voltage command Vqc * a form to which the command speed omega * and the generator constant setting value Ke *. For this purpose, a power generation constant correction value ΔKe is created so that the excitation current command value Id * and the excitation current Idc match, and then a corrected power generation constant that is the sum of the power generation constant set value Ke * and the power generation constant correction value ΔKe The command speed ω * is multiplied by Ke ** to form a q-axis voltage command Vqc * . As a result, at the time of step-out, the exciting current Idc increases in the positive direction, the power generation constant correction value ΔKe becomes negative, and the q-axis voltage command Vqc * decreases, so that the voltage command also decreases and the increase in current can be suppressed.
[0024]
On the other hand, since the corrected power generation constant Ke ** is smaller than the power generation constant set value Ke * , in this embodiment, 0 is selected as the predetermined value, and the corrected power generation constant Ke ** is compared with 0 to determine the correction. If the post-generation constant Ke ** is close to zero, it is determined that the motor is out of synchronization and the PWM signal output stop signal 12a is output.
[0025]
Depending on the application of the motor, the rotor of the motor may slightly vibrate without stopping completely at the time of step-out. In such a case, since the corrected power generation constant Ke ** does not become close to 0, the predetermined value to be compared is set to a value of 60% or less with respect to the power generation constant set value Ke * , preferably a value of 40% or less. I do.
[0026]
FIG. 4 shows a waveform of a motor applied voltage and a waveform of a motor current when the motor stops synchronizing in this embodiment. By correcting the power generation constant as shown in FIG. 4, the motor current at the time of step-out can be reduced, and after the detection of step-out, the PWM signal is cut off to make the motor current zero.
[0027]
In the above embodiment, the motor is controlled by obtaining the motor current information from the DC current flowing in the inverter circuit 2. However, the motor current information may be obtained directly from the motor winding.
[0028]
(Example 2)
FIG. 5 is a schematic diagram of a module 50 in which the inverter circuit 2, the control circuit 4, and the driver 5 (not shown) of the synchronous motor control device shown in the first embodiment are incorporated in one package. The lid on the top is omitted. In the module 50 of the present embodiment, the inverter circuit 2, the control circuit 4, and the driver 5 are housed in a substantially rectangular resin mold package having two sets of opposing sides. The control circuit 4 is mounted on another substrate, and is connected to the substrate on which the inverter circuit 2 and the driver 5 are mounted by lead wires. Further, a smoothing capacitor can be mounted on the lid on the upper surface of the module.
[0029]
On the bottom surface of the resin mold package, a metal heat radiating plate having good heat conductivity such as an aluminum alloy or a copper alloy is disposed via an electric insulating layer such as a resin or ceramic plate. On one side of the module, an output terminal portion 51 for connecting three cables for connecting the output of the inverter circuit 2 to the synchronous motor 3 is integrally molded with a resin mold package.
[0030]
A terminal for inputting the voltage of the DC power supply 1, a terminal for inputting the speed command, a power supply terminal for the control circuit 4 and the driver 5, and the like are arranged in a row on the side opposite to the side on which the output terminal portion is disposed. As shown in FIG. 5, a notch is provided between the input terminal 52 of the DC power supply and the terminal 53 for inputting the speed command and the control terminal 53 such as the power supply terminal of the control circuit 4 and the driver 5. It is a passage for electric wires connected to the connector provided inside the module. Although the resistor 6 for detecting a direct current is externally attached to the module 50 in FIG. 5, it may be built in the module 50.
[0031]
As described above, since the control circuit 4, the driver 5, and the inverter circuit 2 are built in the module, no noise enters the signal line from the control circuit 4 to the driver 5, and the motor stops synchronizing with a sudden change in load. However, the motor stop state can be determined without increasing the motor current, and the motor current can be stopped quickly based on the determination result.
[0032]
(Example 3)
FIG. 6 is a schematic diagram of an outdoor unit 60 of an air conditioner provided with a synchronous motor control device 60a including the control circuit 4 of the present invention as a drive source of a compressor. The air conditioner according to the present embodiment includes an outdoor unit including a compressor that compresses a refrigerant, and an indoor unit that adiabatically expands the compressed refrigerant to absorb heat, or that compresses the refrigerant to generate heat and radiates heat. In the present embodiment, the synchronous motor control device 60a is the module shown in the second embodiment.
[0033]
When the synchronous motor control device of the present invention is applied to a permanent magnet synchronous motor that is a driving source of a compressor, even when the motor loses synchronism due to a sudden change in load, the motor current does not increase and the motor stop state is determined. The motor current can be stopped based on this determination result, and good motor control can be realized. In addition, since the reactive current unrelated to the torque does not increase, a high-quality air conditioner with low loss can be realized. Furthermore, since the motor stop state can be determined, the capacity of the air conditioner can be quickly restored by restarting, and a high-performance air conditioner can be realized. In this embodiment, the first and second embodiments are applied to the operation control of the motor of the compressor. However, the first and second embodiments may be applied to a fan motor of an outdoor unit and a fan motor of an indoor unit. Needless to say. Further, instead of the module of the second embodiment, a printed wiring board on which individual components are mounted may be used.
[0034]
(Example 4)
FIG. 7 is a schematic diagram of a refrigerator 70 including a synchronous motor control device 70a including the control circuit 4 of the present invention as a drive source of a refrigerator compressor. Although not shown in FIG. 7, the refrigerator of the present embodiment includes a refrigerator compartment and a freezer compartment, and further includes a compressor, a condenser, a freezer compartment evaporator, and a refrigerator compartment evaporator. . In this embodiment, the compressor and the permanent magnet synchronous motor are housed in the same case, and the motor has no rotor position sensor. In the refrigerator of the present embodiment, the synchronous motor control device 70a is the module shown in the second embodiment.
[0035]
When the control device of the synchronous motor of the present invention is used as a drive source of a compressor for a refrigerator, it is possible to determine the motor stop state, and it is possible to quickly recover the capacity of the refrigerator by restarting, so that the internal temperature change It is possible to realize a refrigerator with less damage and less damage to foods and the like. Instead of the module of the second embodiment, a printed wiring board on which individual components are mounted may be used.
[0036]
(Example 5)
FIG. 8 shows a schematic diagram of a washing machine 80 in which the motor control device of the present invention is applied to a motor control device of a washing machine. The washing machine of the present embodiment includes a substantially cylindrical washing tub and dewatering tub, a stirring blade disposed at the bottom of the washing tub and dewatering tub, an outer tub containing the washing tub and dewatering tub, a stirring blade or a washing tub. A permanent magnet synchronous motor for rotating the tub / dehydration tub. In the washing machine of this embodiment, the synchronous motor control device 80a is the module shown in the second embodiment, and the module is arranged above the motor which is hardly wetted by water.
[0037]
When the control device for a synchronous motor of the present invention is used as a drive source of a washing machine, the motor stop state can be determined, so that the performance of the washing machine can be quickly restored by restarting, and the washing performance can be reduced without reducing the washing capacity. Can be continued.
[0038]
Instead of the module of the second embodiment, a printed wiring board on which individual components are mounted may be used.
[0039]
(Example 6)
FIG. 9 is a schematic diagram of a cleaner 90 provided with the synchronous motor control device 90a of the present invention as a drive source of the cleaner. The vacuum cleaner of the present embodiment includes a vacuum cleaner main body including a blower for sucking dust, a suction port for sucking dust, and a hose or a pipe portion communicating the suction port with the main body, and the blower is driven by a permanent magnet synchronous motor. Drive. In the vacuum cleaner of this embodiment, the module shown in Embodiment 2 was used as the synchronous motor control device 90a.
[0040]
When the control device for a synchronous motor of the present invention is applied to control of a motor of a vacuum cleaner, the motor current does not increase, so that a low-loss vacuum cleaner can be realized. In particular, a battery-driven vacuum cleaner having a secondary battery built in the main body. In this case, a vacuum cleaner that can be operated for a long time while suppressing the consumption of the secondary battery can be realized. Further, since the motor stop state can be determined, it is possible to realize a cleaner capable of quickly recovering its capacity as a cleaner by restarting.
[0041]
Instead of the module of the second embodiment, a printed wiring board on which individual components are mounted may be used.
[0042]
【The invention's effect】
According to the present invention, even at the time of motor out-of-synchronization stop due to a sudden change in load, the motor stop state can be determined without increasing the motor current, and the excitation current can be stopped based on the determination result.
[Brief description of the drawings]
FIG. 1 is a block diagram of a synchronous motor control device according to a first embodiment.
FIG. 2 is a block diagram of a power generation constant correction calculation and a step-out detector according to the first embodiment.
FIG. 3 is an explanatory diagram of a voltage / current waveform at the time of stopping out-of-step by control according to the related art.
FIG. 4 is an explanatory diagram of a power generation constant correction calculation and an operation of a step-out detector according to the first embodiment.
FIG. 5 is a schematic diagram of a synchronous motor control device module according to a second embodiment.
FIG. 6 is a schematic diagram of an air conditioner according to a third embodiment.
FIG. 7 is a schematic view of a refrigerator according to a fourth embodiment.
FIG. 8 is a schematic view of a washing machine according to a fifth embodiment.
FIG. 9 is a schematic view of a vacuum cleaner according to a sixth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Inverter circuit, 3 ... Synchronous motor, 4 ... Control circuit, 5 ... Driver, 6 ... Resistor, 6a ... Detection voltage, 7 ... Motor current information reproduction part, 7a ... Motor current information, 8 ... Coordinate conversion unit, 9: excitation current command generator, 10: torque current command generator, 11: motor constant setting unit, 11a: motor constant setting value group, 12: power generation constant correction calculation and step-out detector, 12a: PWM Signal output stop signal, 13 ... motor applied voltage generator, 14 ... dq inverse converter, 14a ... 3-phase voltage command, 15 ... PWM signal generator, 15a ... PWM signal, 21 ... power generation constant correction value calculator, 23 ... Step-out determination unit, 50 module, 51 output terminal unit, 52 input terminal, 53 control terminal, etc. 60 outdoor unit of air conditioner, 60a, 70a, 80a, 90a synchronous motor control device, 70 refrigerator , 80 Washing machines, 90 ... vacuum cleaner, Idc ... the excitation current, Iqc ... torque current, Id * ... the excitation current command value, Ke * ... power generation constant setting value, ΔKe ... power generation constant correction value, Ke ** ... correction after the power generation constant, Vdc * : d-axis voltage command, Vqc * : q-axis voltage command.

Claims (11)

直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、同期モータに流れる電流を検出する電流検出手段と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを具備した同期モータの制御装置において、
前記制御回路が、前記電流検出手段により検出したモータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成する電圧指令補正手段とを備え、前記電圧補正量と予め設定した所定値とを比較して前記同期モータの脱調を検出することを特徴とする同期モータの制御装置。
An inverter circuit that converts a DC voltage into a three-phase AC voltage to drive a synchronous motor; a current detection unit that detects a current flowing through the synchronous motor; a control circuit that performs control processing according to a command speed; and drives the inverter circuit. In a control device for a synchronous motor including a driver,
The control circuit is a coordinate conversion means for calculating an exciting current from the motor current detected by the current detecting means, an exciting current command generating means, an output voltage of the inverter circuit, a motor constant set value, an exciting current command, Voltage command generating means for determining using the exciting current, and voltage command correcting means for creating a voltage correction amount so that the exciting current command and the exciting current coincide with each other. A synchronous motor control device for detecting step-out of the synchronous motor by comparing
請求項1に記載の同期モータの制御装置において、前記モータ定数設定値がモータ発電定数設定値であって、前記電圧補正量が、該モータ発電定数設定値を補正するモータ発電定数補正値であることを特徴とする同期モータの制御装置。2. The control device for a synchronous motor according to claim 1, wherein the motor constant setting value is a motor power generation constant setting value, and the voltage correction amount is a motor power generation constant correction value for correcting the motor power generation constant setting value. A control device for a synchronous motor, characterized in that: 請求項2に記載の同期モータの制御装置において、前記電流検出手段が、直流電源から前記インバータ回路に流れる直流電流を検出し、該直流電流からモータ電流を検出することを特徴とする同期モータの制御装置。3. The synchronous motor control device according to claim 2, wherein the current detecting means detects a DC current flowing from the DC power supply to the inverter circuit, and detects a motor current from the DC current. Control device. 請求項2に記載の同期モータの制御装置において、前記電圧補正量であるモータ発電定数補正値が、前記モータ発電定数設定値の0〜60%であることを特徴とする同期モータの制御装置。3. The synchronous motor control device according to claim 2, wherein the motor power generation constant correction value as the voltage correction amount is 0 to 60% of the motor power generation constant set value. パッケージに、直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを含む同期モータの制御モジュールにおいて、
前記制御回路が、モータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成する電圧指令補正手段とを備え、前記電圧補正量と予め設定した所定値とを比較して前記同期モータの脱調を検出することを特徴とする同期モータの制御モジュール。
A synchronous motor control module including a package, an inverter circuit that converts a DC voltage into a three-phase AC voltage and drives a synchronous motor, a control circuit that performs control processing according to a command speed, and a driver that drives the inverter circuit. ,
The control circuit determines the coordinate conversion means for calculating the exciting current from the motor current, the exciting current command generating means, and the output voltage of the inverter circuit by using the motor constant set value, the exciting current command and the exciting current. Voltage command generating means for performing voltage synchronization, and a voltage command correcting means for generating a voltage correction amount such that the exciting current command matches the exciting current. A synchronous motor control module for detecting step-out of a motor.
請求項5において、前記制御モジュールが同期モータに流れる電流を検出する電流検出手段を内蔵していることを特徴とする同期モータの制御モジュール。6. The synchronous motor control module according to claim 5, wherein said control module includes a current detecting means for detecting a current flowing through the synchronous motor. 請求項5において、前記インバータ回路の半導体スイッチング素子がIGBTであることを特徴とする同期モータの制御モジュール。6. The synchronous motor control module according to claim 5, wherein the semiconductor switching element of the inverter circuit is an IGBT. 冷媒を圧縮する圧縮機を備えた室外機と、圧縮した冷媒を断熱膨張させる室内機とを備えた空調機において、
前記圧縮機を駆動する同期モータの制御装置が、直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、同期モータに流れる電流を検出する電流検出手段と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを具備し、
前記制御回路が、前記電流検出手段により検出したモータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成する電圧指令補正手段とを備え、前記電圧補正量と予め設定した所定値とを比較して前記同期モータの脱調を検出することを特徴とする空調機。
In an air conditioner including an outdoor unit including a compressor that compresses a refrigerant and an indoor unit that adiabatically expands the compressed refrigerant,
A control device for the synchronous motor driving the compressor, an inverter circuit for converting the DC voltage into a three-phase AC voltage to drive the synchronous motor, current detecting means for detecting a current flowing through the synchronous motor, and controlling according to a command speed A control circuit that performs processing, and a driver that drives the inverter circuit;
The control circuit is a coordinate conversion means for calculating an exciting current from the motor current detected by the current detecting means, an exciting current command generating means, an output voltage of the inverter circuit, a motor constant set value, an exciting current command, Voltage command generating means for determining using the exciting current, and voltage command correcting means for creating a voltage correction amount so that the exciting current command and the exciting current coincide with each other. Wherein the step-out of the synchronous motor is detected by comparing
冷蔵室と、冷凍室と、冷媒を圧縮する圧縮機と、凝縮器と、冷凍室用蒸発器と、冷蔵室用蒸発器とを備えた冷蔵庫において、
前記圧縮機を駆動する同期モータの制御装置が、直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、同期モータに流れる電流を検出する電流検出手段と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを具備し、
前記制御回路が、前記電流検出手段により検出したモータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成する電圧指令補正手段とを備え、前記電圧補正量と予め設定した所定値とを比較して前記同期モータの脱調を検出することを特徴とする冷蔵庫。
In a refrigerator including a refrigerator compartment, a freezer compartment, a compressor that compresses a refrigerant, a condenser, a freezer compartment evaporator, and a refrigerator compartment evaporator,
A control device for the synchronous motor driving the compressor, an inverter circuit for converting the DC voltage into a three-phase AC voltage to drive the synchronous motor, current detecting means for detecting a current flowing through the synchronous motor, and controlling according to a command speed A control circuit that performs processing, and a driver that drives the inverter circuit;
The control circuit is a coordinate conversion means for calculating an exciting current from the motor current detected by the current detecting means, an exciting current command generating means, an output voltage of the inverter circuit, a motor constant set value, an exciting current command, Voltage command generating means for determining using the exciting current, and voltage command correcting means for creating a voltage correction amount so that the exciting current command and the exciting current coincide with each other. Wherein the step-out of the synchronous motor is detected by comparing
洗濯槽兼脱水槽と、該洗濯槽兼脱水槽の底部に配置した撹拌翼と、前記洗濯槽兼脱水槽を内蔵する外槽と、前記撹拌翼あるいは洗濯槽兼脱水槽を回転させる同期モータを備えた洗濯機において、
前記同期モータの制御装置が、直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、同期モータに流れる電流を検出する電流検出手段と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを具備し、
前記制御回路が、前記電流検出手段により検出したモータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成する電圧指令補正手段とを備え、前記電圧補正量と予め設定した所定値とを比較して前記同期モータの脱調を検出することを特徴とする洗濯機。
A washing tub and spin-drying tub, a stirring blade disposed at the bottom of the washing tub and spin-drying tub, an outer tub containing the washing tub and spin-drying tub, and a synchronous motor for rotating the stirring blade or the washing tub and spin-drying tub. In the equipped washing machine,
An inverter circuit for converting the DC voltage into a three-phase AC voltage to drive the synchronous motor, a current detecting means for detecting a current flowing through the synchronous motor, and a control circuit for performing control processing according to a command speed And a driver for driving the inverter circuit,
The control circuit is a coordinate conversion means for calculating an exciting current from the motor current detected by the current detecting means, an exciting current command generating means, an output voltage of the inverter circuit, a motor constant set value, an exciting current command, Voltage command generating means for determining using the exciting current, and voltage command correcting means for creating a voltage correction amount so that the exciting current command and the exciting current coincide with each other. Wherein the step-out of the synchronous motor is detected by comparing
塵埃を吸い込むための送風機を備えた本体と、塵埃を吸い込む吸口と、吸口と本体を連通させるホースあるいはパイプ部とを備えた掃除機において、
前記送風機を駆動する同期モータの制御装置が、直流電圧を3相交流電圧に変換して同期モータを駆動するインバータ回路と、同期モータに流れる電流を検出する電流検出手段と、指令速度に従って制御処理を行う制御回路と、前記インバータ回路を駆動するドライバとを具備し、
前記制御回路が、前記電流検出手段により検出したモータ電流から励磁電流を演算する座標変換手段と、励磁電流指令発生手段と、インバータ回路の出力電圧を、モータ定数設定値と、励磁電流指令と前記励磁電流とを用いて決定する電圧指令発生手段と、励磁電流指令と前記励磁電流が一致するように電圧補正量を作成する電圧指令補正手段とを備え、前記電圧補正量と予め設定した所定値とを比較して前記同期モータの脱調を検出することを特徴とする掃除機。
In a vacuum cleaner having a main body having a blower for sucking dust, a suction port for sucking dust, and a hose or a pipe portion communicating the suction port with the main body,
A control device for the synchronous motor that drives the blower, an inverter circuit that converts the DC voltage into a three-phase AC voltage to drive the synchronous motor, current detection means that detects a current flowing through the synchronous motor, and control processing according to the command speed. And a driver for driving the inverter circuit,
The control circuit is a coordinate conversion means for calculating an exciting current from the motor current detected by the current detecting means, an exciting current command generating means, an output voltage of the inverter circuit, a motor constant set value, an exciting current command, Voltage command generating means for determining using the exciting current, and voltage command correcting means for creating a voltage correction amount so that the exciting current command and the exciting current coincide with each other. Wherein the step-out of the synchronous motor is detected by comparing
JP2002220588A 2002-07-30 2002-07-30 Synchronous motor control device and equipment using the same Expired - Fee Related JP4167863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220588A JP4167863B2 (en) 2002-07-30 2002-07-30 Synchronous motor control device and equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220588A JP4167863B2 (en) 2002-07-30 2002-07-30 Synchronous motor control device and equipment using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007129984A Division JP4512611B2 (en) 2007-05-16 2007-05-16 Synchronous motor control device and equipment using the same

Publications (3)

Publication Number Publication Date
JP2004064902A true JP2004064902A (en) 2004-02-26
JP2004064902A5 JP2004064902A5 (en) 2005-06-23
JP4167863B2 JP4167863B2 (en) 2008-10-22

Family

ID=31941135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220588A Expired - Fee Related JP4167863B2 (en) 2002-07-30 2002-07-30 Synchronous motor control device and equipment using the same

Country Status (1)

Country Link
JP (1) JP4167863B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304412A (en) * 2005-04-18 2006-11-02 Fuji Electric Fa Components & Systems Co Ltd Permanent magnet synchronous motor drive device
WO2007013291A1 (en) * 2005-07-27 2007-02-01 Kabushiki Kaisha Yaskawa Denki Inverter device
JP2007212106A (en) * 2006-02-13 2007-08-23 Orion Mach Co Ltd Cooling system
JP2010051151A (en) * 2008-08-25 2010-03-04 Jtekt Corp Motor control apparatus
US7808203B2 (en) 2006-04-07 2010-10-05 Sanyo Electric Co., Ltd. Motor control device
CN103208961A (en) * 2012-01-16 2013-07-17 日立空调·家用电器株式会社 Driving device of synchronous motor; refrigeration apparatuses, air conditioners and refrigerators using same; and driving method of synchronous motor
JP2016056976A (en) * 2014-09-08 2016-04-21 シャープ株式会社 Compressor step-out detection system and step-out detection method in a refrigeration cycle
JP2019158315A (en) * 2018-03-16 2019-09-19 三菱重工サーマルシステムズ株式会社 Step-out detection device, duct type air conditioner with the same, step-out detection method and step-out detection program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286450B2 (en) 2013-12-24 2018-02-28 株式会社日立産機システム Power converter
CN111277195A (en) 2018-12-04 2020-06-12 爱信精机株式会社 motor control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126400A (en) * 1994-10-24 1996-05-17 Meidensha Corp Vector controller for induction motor
JPH08322279A (en) * 1995-05-29 1996-12-03 Nippondenso Co Ltd Controller for brushless dc motor
JPH1118436A (en) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd Inverter device and inverter control system device
JP2000175476A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Inverter device
JP2001025282A (en) * 1999-07-05 2001-01-26 Toshiba Corp Step-out detector for sensorless brushless motor
JP2002095263A (en) * 2000-09-14 2002-03-29 Mitsubishi Electric Corp Inverter device, compressor drive, refrigerating and air- conditioning apparatus, and control method for inverter device
JP2002159195A (en) * 2000-11-16 2002-05-31 Toshiba Tec Corp PWM control circuit, electric blower and vacuum cleaner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126400A (en) * 1994-10-24 1996-05-17 Meidensha Corp Vector controller for induction motor
JPH08322279A (en) * 1995-05-29 1996-12-03 Nippondenso Co Ltd Controller for brushless dc motor
JPH1118436A (en) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd Inverter device and inverter control system device
JP2000175476A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Inverter device
JP2001025282A (en) * 1999-07-05 2001-01-26 Toshiba Corp Step-out detector for sensorless brushless motor
JP2002095263A (en) * 2000-09-14 2002-03-29 Mitsubishi Electric Corp Inverter device, compressor drive, refrigerating and air- conditioning apparatus, and control method for inverter device
JP2002159195A (en) * 2000-11-16 2002-05-31 Toshiba Tec Corp PWM control circuit, electric blower and vacuum cleaner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304412A (en) * 2005-04-18 2006-11-02 Fuji Electric Fa Components & Systems Co Ltd Permanent magnet synchronous motor drive device
WO2007013291A1 (en) * 2005-07-27 2007-02-01 Kabushiki Kaisha Yaskawa Denki Inverter device
US7843161B2 (en) 2005-07-27 2010-11-30 Kabushiki Kaisha Yaskawa Denki Inverter device
JP2007212106A (en) * 2006-02-13 2007-08-23 Orion Mach Co Ltd Cooling system
US7808203B2 (en) 2006-04-07 2010-10-05 Sanyo Electric Co., Ltd. Motor control device
US7893639B2 (en) 2006-04-07 2011-02-22 Sanyo Electric Co., Ltd. Motor control device
JP2010051151A (en) * 2008-08-25 2010-03-04 Jtekt Corp Motor control apparatus
CN103208961A (en) * 2012-01-16 2013-07-17 日立空调·家用电器株式会社 Driving device of synchronous motor; refrigeration apparatuses, air conditioners and refrigerators using same; and driving method of synchronous motor
JP2016056976A (en) * 2014-09-08 2016-04-21 シャープ株式会社 Compressor step-out detection system and step-out detection method in a refrigeration cycle
JP2019158315A (en) * 2018-03-16 2019-09-19 三菱重工サーマルシステムズ株式会社 Step-out detection device, duct type air conditioner with the same, step-out detection method and step-out detection program
JP7034782B2 (en) 2018-03-16 2022-03-14 三菱重工サーマルシステムズ株式会社 Step-out detector, duct type air conditioner equipped with it, step-out detection method, and step-out detection program

Also Published As

Publication number Publication date
JP4167863B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP3832257B2 (en) Synchronous motor start control method and control device
Kim et al. Commutation torque ripple reduction in a position sensorless brushless DC motor drive
CN103560745B (en) Control device of electric motor and refrigerator
CN101625172B (en) Refrigerating device
JP4818145B2 (en) Motor drive control device and ventilation fan, liquid pump, refrigerant compressor, blower, air conditioner and refrigerator
JP4561838B2 (en) Inverter device
JP6463966B2 (en) Motor driving device, motor driving module and refrigeration equipment
KR102580148B1 (en) Motor driving apparatus and freezing equipment
JP5778045B2 (en) Synchronous motor drive device, refrigeration apparatus, air conditioner, refrigerator, and synchronous motor drive method using the same
CN102457225A (en) Refrigerating apparatus and controller for permanent magnet synchronous motor
JP2008160950A (en) Motor drive device and refrigerator equipped with the same
CN111742484A (en) Motor driving device and refrigeration cycle application equipment
JP4167863B2 (en) Synchronous motor control device and equipment using the same
KR20140053766A (en) Vector controller and motor controller using the same, air-conditioner
JP4512611B2 (en) Synchronous motor control device and equipment using the same
JPH05272823A (en) Method of controlling variable capability type air conditioner
CN112154294A (en) Outdoor unit and refrigeration cycle device
JP4818176B2 (en) Motor drive control device and ventilation fan, liquid pump, refrigerant compressor, blower, air conditioner and refrigerator
JP4744505B2 (en) Motor drive control device, motor drive control method and coordinate conversion method, ventilation fan, liquid pump, blower, refrigerant compressor, air conditioner, and refrigerator
JP5200569B2 (en) Inverter device
JP2010226842A (en) Control method and control apparatus for brushless dc motor
JP2011030423A (en) Synchronous motor, exhaust fan, refrigerant compressor, air blower, liquid pump, air conditioner, and refrigerator
JP4645560B2 (en) Motor drive device for washing and drying machine
JP2020139461A (en) Electric compressor
JP2005323414A (en) Motor drive device, electric compressor equipped with the motor drive device, and vehicle air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Ref document number: 4167863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees