[go: up one dir, main page]

JP2004063386A - Method of manufacturing positive electrode material for secondary battery, and secondary battery - Google Patents

Method of manufacturing positive electrode material for secondary battery, and secondary battery Download PDF

Info

Publication number
JP2004063386A
JP2004063386A JP2002222870A JP2002222870A JP2004063386A JP 2004063386 A JP2004063386 A JP 2004063386A JP 2002222870 A JP2002222870 A JP 2002222870A JP 2002222870 A JP2002222870 A JP 2002222870A JP 2004063386 A JP2004063386 A JP 2004063386A
Authority
JP
Japan
Prior art keywords
positive electrode
firing
electrode material
secondary battery
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002222870A
Other languages
Japanese (ja)
Other versions
JP4297406B2 (en
Inventor
Naoki Hatta
八田 直樹
Shigeto Okada
岡田 重人
Junichi Yamaki
山木 準一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31942789&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004063386(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2002222870A priority Critical patent/JP4297406B2/en
Publication of JP2004063386A publication Critical patent/JP2004063386A/en
Application granted granted Critical
Publication of JP4297406B2 publication Critical patent/JP4297406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】焼成により目的の正極材料を原料から確実に合成し、優れた導電性を付与するとともに、該正極材料の1次粒子の結晶成長を抑制して細粒化することが可能な2次電池用正極材料の新規な製造方法を提供すること。
【解決手段】原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、▲1▼加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行うか、▲2▼導電製炭素を第一段階の焼成前の原料に添加して焼成を行うか、または前記▲1▼および▲2▼の両方を行い、さらに好ましくは水素、水および水蒸気よりなる群から選ばれる1種または2種以上を、第二段階の焼成における少なくとも500℃以上の温度において添加する。
【選択図】 なし
A secondary material capable of reliably synthesizing a target positive electrode material from raw materials by baking, imparting excellent conductivity, and suppressing the crystal growth of primary particles of the positive electrode material to make it finer. To provide a novel method for producing a positive electrode material for a battery.
In a method of manufacturing a positive electrode material for a secondary battery, in which a raw material is fired to manufacture a positive electrode material, a firing process includes a first stage from normal temperature to 300 ° C. to 450 ° C., and a first step from normal temperature to a firing completion temperature. (1) adding a substance capable of producing conductive carbon by thermal decomposition to the raw material after the first firing, and then performing the second firing, or (2) conducting carbon Is added to the raw material before firing in the first stage, and firing is performed, or both of the above (1) and (2) are performed, and one or more selected from the group consisting of hydrogen, water and steam are more preferable. The seed or more is added at a temperature of at least 500 ° C. or more in the second stage firing.
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、2次電池正極材料の製造方法及びその正極材料を有する2次電池に関し、より詳しくは、例えば、リチウム、ナトリウム等のアルカリ金属や、これらの化合物を活物質とする、金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等に代表される2次電池に用いる正極材料の製造方法、および該方法により製造される正極材料を有する2次電池に関する。
【0002】
【従来の技術】
金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等の2次電池に用いられる金属酸化物、及びこれらにおいて金属原子が部分置換された酸化物や、LiFePO、LiCoPO等のリン酸塩、Fe(SO等の硫酸塩などの正極材料は、放電あるいは充電の過程で、リチウム等のアルカリ金属イオンのドープ/脱ドープを伴う形で電極酸化還元反応が進行する。こうした2次電池は、大容量電池として近年脚光を浴びている。しかし、これらの電池の正極においては、固相拡散によって電極材料内部を移動するアルカリ金属イオンの速度が電極反応速度を制限するために、充放電時の電極反応分極が一般に大きく、比較的大きな電流密度での充放電が困難である。また、この分極が特に大きい場合には、通常の電圧・電流密度条件では充放電が十分進行せず、理論容量よりはるかに小さい容量しか利用できなくなってしまう。また、これら正極材料に用いられることが多い金属酸化物、燐酸塩、硫酸塩、金属オキソ酸塩等は一般に導電率が小さく、この点も電極反応の分極を増大させる要因となる。
【0003】
上記の諸問題を改善するには、正極材料の結晶粒子を細粒化し、アルカリ金属イオンを粒子内部へ出入りし易くさせることが有効である。また、結晶粒子を細粒化すれば、通例正極材料と混合して用いられるカーボンブラックなどの導電性付与材と正極材料との接触面積が増大するため導電性が改善され、その結果、正極反応分極の低減とともに電圧効率と実効電池容量の向上を図ることができる。
【0004】
この目的のため、焼成による正極材料の合成に際し、近年、反応性の高い原料を用いて焼成温度を下げ、さらに焼成時間を制限することによって正極材料の結晶成長を押さえ、粒径の小さい正極材料を得る試みが報告されている。例えば、リチウム2次電池用正極材料であるLiFePOの製造に際しては、リチウム原料として反応性の高いLiOH・HOを用い、焼成温度を従来(通常800〜900℃程度)より低い675℃に下げて、アルゴン中で比較的短時間(24時間程度)焼成を行うことにより、正極材料粉末の焼結(粒径増大)を抑え、大きな放電容量を得たという報告[第40回 電池討論会 発表3C14(同予稿集、p349、1999);社団法人電気化学会(日本)]がなされている。
【0005】
また、電極材料の結晶成長を抑制する方法ではないが、特開2001−15111号公報では、化学式A(式中、Aはアルカリ金属、MはFe、Mn、V、Ti、Mo、Nb、Wその他の遷移金属、ZはS、Se、P、As、Si、Ge、B、Snその他の非金属)で表わされる複合酸化物(硫酸塩、リン酸塩、ケイ酸塩等のオキソ酸塩を含む)の粒子表面に炭素を析出させて表面導電性を上げることにより、これらの複合体を電池等の電極系に用いた場合、電極酸化還元反応の過程で前記複合酸化物粒子、集電(導電性付与)材および電解質界面一帯の電場を均一化・安定化して効率を向上させるという方法が開示されている。そこでは、炭素を前記複合酸化物の粒子表面に析出させる方法として、熱分解により炭素を析出する有機物(高分子、モノマー、低分子等)を共存させ、あるいは一酸化炭素を添加して、これらを熱分解する方法が提案されている(前記複合酸化物の原料にこれらを共存させ、還元的条件で一度に熱反応させて、前記複合酸化物と表面炭素の複合体を得ることもできる、とされている)。これらの手段により、特開2001−15111号公報では、前述のような複合酸化物粒子表面の導電率向上を実現し、例えばLiFePO等の正極材料粒子表面に炭素を析出させた複合体を作成してLiポリマー電池を構成した場合などにおいて、大きな放電容量等の高い電極性能が得られている。
【0006】
さらに、特開2002−110163号公報によれば、一般式LixFePO(ただし、0<x≦1である)で表される化合物の合成原料を混合し、ミリングを施し、焼成するいずれかの時点で炭素材料を添加するとともに、焼成雰囲気中の酸素濃度を1012ppm(体積)以下とする正極活物質の製造方法が提案されている。そして、この公報に記載の方法では、焼成により合成されるLiFePO炭素複合体中のFeが焼成雰囲気中の酸素によって酸化され、3価のFe化合物(Fe)などの不純物が生成して、LiFePOの単相合成が妨げられることを防止するために、酸素濃度を前記1012ppm(体積)に抑える目的で不活性ガスや水素等の還元性ガスを添加することも示唆されている。
【0007】
【発明が解決しようとする課題】
前記第40回電池討論会発表3C14(同予稿集p349、1999)の方法のように、焼成による正極材料の合成に際し、温度を下げたり、焼成時間を短くしたりする方法では、焼成が不十分となって最終製品にまで化学変化しなかったり、中間生成物が残留したりする恐れがあるため、細粒化の方法としては限界がある。
【0008】
また、特開2001−15111号公報の方法は、電極材料の表面導電性を向上させるものとしては有効であるが、電極材料の合成時における結晶成長の抑制については全く記述がなく、また、電極材料への炭素の析出を、電極性能上、より好適に制御する方法についても全く記述がない。
【0009】
特開2002−110163号公報に記載の方法では、非酸素雰囲気とすることの意味は前記したように焼成過程におけるFeの酸化を防止するために他ならない。また、この公報に記載の方法で添加される炭素材料は、アセチレンブラックなどの非晶質系炭素材料であり、焼成後の原料に添加することも可能であると述べられ、しかも「LiFePO炭素複合体」が、「LiFePO粒子の表面に炭素材料の粒子が多数個付着してなるもの」と定義されていることから明らかなように、添加された炭素材料は、正極活物質粒子間に付着して電子伝導性を向上させるに止まる。このため、特開2002−110163号公報では、例えば導電性炭素を均一に正極活物質上に析出させるという技術思想は皆無である。また、炭素材料を電極性能上、より望ましい形態で存在させるための条件については何ら検討されておらず、焼成条件も、単純な昇温過程が採用されているにすぎない。
【0010】
本発明の課題は、焼成により目的の正極材料を原料から確実に合成し、しかも該正極材料の1次粒子の結晶成長を抑制して細粒化するとともに優れた導電性を付与することが可能な2次電池用正極材料の新規な製造方法を提供することにあり、さらには、正極材料の細粒化および導電性付与の最適化によって正極材料粒子内部と電解質との間でリチウムを初めとするアルカリ金属イオンの出入りを促進させ、電極反応分極を抑制するとともに、正極材料と導電性付与材との接触面積を増大させて導電性を改善し、電圧効率と実効電池容量を向上させた高性能2次電池を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載の2次電池正極材料の製造方法の発明は、原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行うことを特徴とする。
【0012】
この2次電池正極材料の製造方法の発明によれば、加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加して第二段階の焼成を行うことにより、加熱分解により導電性炭素を生じ得る物質が、焼成中に原料の分解により生成するガスにより発泡することを防ぐことができる。その結果、融解状態にある該物質がより均一に正極材料の表面に溶融状態で広がり、より均一に熱分解炭素を析出させることができる。このため、得られる正極材料の表面導電性がさらに良好になり、また接触が強固に安定化される。
【0013】
また、請求項2に記載の2次電池正極材料の製造方法の発明は、原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うとともに、加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行うことを特徴とする。
【0014】
この2次電池正極材料の製造方法の発明によれば、請求項1と同様の作用効果に加え、さらに導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うことにより、加熱反応する原料と該導電性炭素との接触時間を長く取ることが可能になり、その間に反応によって生じる正極材料の構成元素の拡散により、該炭素の粒界に正極材料が入り込み、より均一で安定な炭素−正極材料複合体を形成するとともに、正極材料粒子同士の焼結を効果的に防止することができる。
【0015】
また、請求項3に記載の2次電池正極材料の製造方法の発明は、原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うことを特徴とする。
【0016】
この2次電池正極材料の製造方法の発明によれば、正極材料の1次粒子の結晶成長を抑制して、得られる正極材料の結晶粒子を細粒化することができる。すなわち、導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うことにより、加熱反応する原料と導電性炭素との接触時間を長く取ることができ、その間に反応によって生じる正極材料の構成元素の拡散により、導電性炭素の粒界に正極材料が入り込み、より均一で安定な炭素−正極材料複合体を形成させることができる。
【0017】
また、請求項4に記載の2次電池正極材料の製造方法の発明は、請求項1または請求項2において、前記加熱分解により導電性炭素を生じ得る物質が、ビチューメン類である。ビチューメン類は、加熱分解により導電性炭素を生じて正極材料に導電性を付与することができる。
【0018】
また、請求項5に記載の2次電池正極材料の製造方法の発明は、請求項4において、前記ビチューメン類が、軟化温度80℃から350℃の範囲内にあり、加熱分解による減量開始温度が350℃から450℃の範囲内にあり、かつ、500℃から800℃の加熱分解・焼成により導電性炭素を析出し得る石炭ピッチである。
【0019】
かかる性質を有する石炭ピッチは、非常に安価であるとともに、焼成中に融解して焼成中の原料粒子の表面に均一に広がり、熱分解後、高い導電性を発現する炭素析出物となるため、導電性炭素を生じ得る物質として優れた性質を有する物質である。
【0020】
また、請求項6に記載の2次電池正極材料の製造方法の発明は、請求項1または請求項2において、前記加熱分解により導電性炭素を生じ得る物質が、糖類であることを特徴とする。糖類を用いることによって、より優れた結晶成長抑制効果と導電性付与効果を同時に得ることができる。糖類は加熱分解によって導電性炭素を生じて正極材料に導電性を付与するだけでなく、糖類に含まれる多くの水酸基が原料および生じた正極材料粒子表面に強く相互作用することにより、結晶成長抑制作用も併せ持つと推測されるためである。
【0021】
また、請求項7に記載の2次電池正極材料の製造方法の発明は、請求項6において、前記糖類が、250℃以上500℃未満の温度域において分解を起こし、かつ150℃から分解までの昇温過程において一度は少なくとも部分的に融液状態をとり、さらに500℃以上800℃以下までの加熱分解によって導電性炭素を生成する糖類である。かかる特定の性質を有する糖類は、融解により加熱反応中の正極材料粒子の表面に好適にコートされ、加熱分解後生じた正極材料粒子表面に導電性炭素を良好に析出させる。また、この過程で前記したように結晶成長を抑制する。このため、上記特定の性質の糖類は、特に優れた結晶成長抑制効果と導電性付与効果を奏する。
【0022】
また、請求項8に記載の2次電池正極材料の製造方法の発明は、請求項1から請求項7のいずれか1項において、水素、水および水蒸気よりなる群から選ばれる1種または2種以上を、少なくとも前記第二段階の焼成における500℃以上の温度において添加することを特徴とする。この特徴によれば、正極材料の1次粒子の結晶成長を抑制して、得られる正極材料の結晶粒子を細粒化することができる。
【0023】
すなわち、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含む焼成に際し、第一段階の焼成後の原料に加熱分解により導電性炭素を生じ得る物質を添加した後、第二段階の焼成を行い、少なくともその500℃以上の温度において、水素および/または水分(水または水蒸気)を添加する場合には、請求項1において記した効果に加え、生じる正極材料の1次粒子を効率的に細粒化させ、さらに均一かつ安定に導電性炭素を正極材料粒子上に析出させ、より高い正極性能を得ることができる。この過程において、水素(水分から生じる水素を含む)が加熱により、融解・熱分解する導電性炭素前駆物質に接触すると、恐らくは水素付加反応により、該物質の融液粘性を低下させるため、さらに良好な炭素析出状態を実現できる。
【0024】
また、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含む焼成に際し、導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うとともに、加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行い、少なくともその500℃以上の温度域において、水素および/または水分(水または水蒸気)を添加する場合にも、請求項2に記した効果に加え、生じる正極材料の1次粒子を効率的に細粒化させ、さらに均一かつ安定に導電性炭素を正極材料粒子上に析出させ、より高い正極性能を得ることができる。
【0025】
また、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含む焼成に際し、導電性炭素を、第一段階の焼成前の原料に添加して焼成を行い、少なくとも第二段階の焼成の500℃以上の温度域において、水素および/または水分(水または水蒸気)を添加する場合には、請求項3に記した効果に加え、生じる正極材料の1次粒子を効率的に細粒化させることが可能である。
【0026】
また、本発明方法によれば、原料の焼成が不十分で最終製品にまで化学変化しなかったり、中間生成物が残留したりする恐れはなく、焼成によって目的の正極材料を原料から確実に合成できる。
【0027】
また、水素および/または水分は、強い結晶成長抑制作用、および加熱分解により導電性炭素を析出する物質の正極材料への付着状態を改善する強い作用を持つとともに、取り扱いが容易であり、しかも安価であるため、効率的である。
【0028】
さらに、前記加熱分解により導電性炭素を生じ得る物質が、ビチューメン類、その中でも特に、軟化温度が80℃から350℃の範囲にあり、加熱分解による減量開始温度が350℃から450℃の範囲にあり、かつ、500℃から800℃の加熱分解・焼成により導電性炭素を生じ得る石炭ピッチである場合には、かかる石炭ピッチが第二段階の焼成中に加熱により融解・熱分解する過程で、少なくとも500℃以上の温度域において、水素および/水分(水または水蒸気)に接触することになるため、得られる正極材料粒子上に析出する導電性炭素の析出状態が、正極性能上、より良好な状態に改善される。
【0029】
また、前記加熱分解により導電性炭素を生じ得る物質が、糖類、その中でも特に250℃以上500℃未満の温度域において分解を起こし、かつ150℃から分解までの昇温過程において一度は少なくとも部分的に融液状態をとり、さらに500℃以上800℃以下までの加熱分解・焼成によって導電性炭素を生じ得る糖類(例えばデキストリン等)である場合にも、かかる糖類が、第二段階の焼成中に加熱により融解・熱分解する過程で、少なくとも500℃以上の温度域において、水素および/水分(水または水蒸気)に接触することになるため、得られる正極材料粒子上に析出する導電性炭素の析出状態が、正極性能上、より良好な状態に改善される。
【0030】
また、請求項9に記載の2次電池正極材料の製造方法の発明は、請求項1から請求項8のいずれか1項において、前記正極材料が、アルカリ金属、遷移金属及び酸素を含み、酸素ガス不存在下において前記原料を焼成して合成し得る化合物(以下、「遷移金属化合物」と記すことがある)である。
【0031】
前記正極材料がかかる遷移金属化合物である場合には、その原料に、導電性炭素および/または加熱により導電性炭素を生じ得る物質を添加して焼成する際、酸素ガス不存在下で焼成できるために、これらが焼失することがなく、得られる遷移金属化合物の正極材料の表面に良好に導電性炭素を析出させることができる。さらに、酸素ガス不存在下で水素、水および水蒸気よりなる群から選ばれる1種または2種以上を添加して原料を焼成する場合には、得られる正極材料の結晶粒子がより細粒化され、また特に、加熱分解により導電性炭素を生じ得る物質の析出状態を正極性能上良好に制御できる。また、水素は還元性を併せ持つため、酸素ガス不存在下での焼成においても避けがたい残存酸素による酸化で生成したり、あるいは原料中に元々存在していた酸化態不純物(例えば、正極材料LiFe2+PO中におけるリチウム欠損酸化態不純物Fe3+POや酸化態酸化物Fe等;これらの混在は、一般に電池の放電容量の低下を招く)は、還元性を有する水素の作用により還元されて目的の正極材料に変化するので、酸化態不純物が正極材料に混入することを防ぐこともできる。また、水または水蒸気(以下、「水分」とする)を添加する場合は、導電性炭素または加熱により導電性炭素を生じ得る物質と水分が焼成中に反応して水素を生じるため、いわゆる水性ガス反応と同様の効果を生じる。
【0032】
また、原料の選定の仕方によっては、原料中の前記遷移金属元素が正極材料中の遷移金属元素より高い価数を有しており、酸素ガス不存在下で焼成される過程だけでは、目的の正極材料中の遷移金属元素と同一の価数を持つには至らないような場合もあり得る。このような場合でも、原料に対して必要かつ十分な還元性を併せ持つ水素(または水分から二次的に生じる水素)を添加することによって、生じる正極材料を必要十分なだけ還元することが可能となり、目的とする正極材料を得ることができる。さらには、原料中の前記遷移金属元素が正極材料中の遷移金属元素より高い価数を有しており、酸素ガス不存在下で焼成するだけでは目的の正極材料中の遷移金属元素と同一の価数を持つには至らないような場合にも、水素の存在下で焼成することによって必要十分なだけ還元を行い、目的の正極材料を得ることができる場合がある。
【0033】
また、請求項10に記載の2次電池正極材料の製造方法の発明は、請求項9において、前記正極材料が、M )a )x[ここで、M はLiまたはNaを示し、M はFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)またはCu(II)を示し、AはPまたはSを示し、aは0〜3から選ばれる数、xは1〜2から選ばれる数、yは1〜3から選ばれる数、zは4〜12から選ばれる数、をそれぞれ示す]の一般式で示される物質またはこれらの複合体であることを特徴とする。
【0034】
また、請求項11に記載の2次電池正極材料の製造方法の発明は、請求項9において、前記正極材料が、LiFePO、LiCoPOまたはLiMnPO(ここで、qは0〜1から選ばれる数を示す)の一般式で示される物質またはこれらの複合体であることを特徴とする。
【0035】
上記請求項10および請求項11に記載の正極材料については、目的の正極材料中と同一価数の遷移元素を有する化合物をその原料として採用でき、該原料から、酸素不存在条件(例えば不活性ガス中)における焼成によって目的の正極材料を合成することが可能である。このため、導電性炭素や加熱分解により導電性炭素を生じ得る物質、および還元性を有する水素ガス等を焼成中に添加しても、それが燃焼・消費されてしまうことを避けることができ、また局所温度の著しい上昇を起こすこともなく焼成を安定して制御できる。その上、特にこれらの正極材料系の場合には、水素等を添加して焼成する場合、その還元力によって中心金属元素[Fe、Co、Mn、Ni、V、Cu等]の価数がさらに低下して正極材料中に不純物(例えば金属状態)を生じたりすることも起こりにくい。
【0036】
また、請求項12に記載の2次電池の発明は、請求項1から請求項11のいずれか1項に記載の方法により製造された正極材料を構成要素に持つ。本発明方法によって製造された正極材料を用いた2次電池は、正極材料の結晶粒子が細粒化されているので、正極材料と電解質との界面においてリチウムイオンを初めとするアルカリ金属イオンの脱ドープ/ドープを伴う電気化学的酸化/還元を該正極材料が受ける際の表面積が大きく、正極材料の粒子内部と電解質との界面でアルカリ金属イオンが容易に出入りできるため、電極反応分極が抑制される。さらに、正極材料に通例混合されるカーボンブラック等の導電性付与材と正極材料との接触が著しく向上するため、導電性が改善されており、正極材料の活物質としての利用率が高く、セル抵抗の小さい、電圧効率と有効電池放電容量が著しく向上した2次電池である。
【0037】
【発明の実施の形態】
本発明の2次電池正極材料の製造方法は、原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、▲1▼加熱分解により導電性炭素を生じ得る物質(以下、「導電性炭素前駆物質」と記す)を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行うか、▲2▼導電製炭素を第一段階の焼成前の原料に添加して焼成を行うか、または前記▲1▼および▲2▼の両方を行うことにより実施される。さらに特に好ましい実施形態では、前記▲1▼および/または▲2▼に加え、水素、水および水蒸気よりなる群から選ばれる1種または2種以上を、少なくとも第二段階の焼成における500℃以上の温度において添加することにより一層良好に実施される。
【0038】
なお、本発明において、気体である水素や水蒸気を「添加する」ことには、水素等のガスの存在下(つまり、水素雰囲気下等)で原料の焼成を行うことが含まれる。
【0039】
<正極材料>
本発明における正極材料としては、例えば、アルカリ金属、遷移金属及び酸素を含み、酸素ガス不存在下において原料を焼成して合成し得る化合物が好ましい。より具体的には、正極材料としては、例えば、M )a )x[ここで、M はLiまたはNaを示し、M はFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)またはCu(II)を示し、AはPまたはSを示し、aは0〜3から選ばれる数、xは1〜2から選ばれる数、yは1〜3から選ばれる数、zは4〜12から選ばれる数、をそれぞれ示す]の一般式で示される物質またはこれらの複合体を挙げることができる。ここで、(II)、(III)等は遷移金属元素M(2)の価数を示し、x、y、zは、該材料の化学量論的(電気的)な中性条件を満たす値をとる。また、M(2)としては、上記で例示されている遷移金属元素のうち、同一価数のものの複数の組合せも含むものとする[例えば、M(2)がFe(II)Co(II)あるいはFe(II)Mn(II)である場合などが該当する。この時、Fe(II)とCo(II)、あるいはFe(II)とMn(II)の合計含有モル数が、Li 1モルに対しxモルの比率となる(上記M(1)=Liで、かつa=1の場合)]。
【0040】
これらの物質は、一般に酸素ガス不存在下(すなわち、例えばアルゴン、窒素、ヘリウム等の不活性ガス雰囲気中)における焼成によってその原料から合成され得るもので、その結晶骨格構造(スピネル型、オリビン型、ナシコン型等を一般にとる)が電気化学的酸化還元によってほとんど変化しない場合、繰返し充放電が可能なアルカリ金属系2次電池用の正極材料として用いることができる。正極材料としては、これらの物質のそのままの状態は放電状態に相当し、電解質との界面での電気化学的酸化によって、アルカリ金属M の脱ドープを伴いながら中心金属元素M(2)が酸化され、充電状態になる。充電状態から電気化学的還元を受けると、アルカリ金属M(1)の再ドープを伴いながら中心金属元素M(2)が還元され、元の放電状態に戻る。
【0041】
好ましい正極材料としては、LiFePO、LiCoPOまたはLiMnPO(ここで、qは0〜1から選ばれる数を示す)の一般式で示される物質またはこれらの複合体を例示することができ、特に、LiFePO(ここで、qは前記と同じ意味を有する)の一般式で示される物質が好ましい。これらの物質は、酸素ガス不存在下における約900℃以下の温度での焼成によりその原料から合成され得るもので、例えばリチウム電池、リチウムイオン電池、リチウムポリマー電池等のリチウム系2次電池の正極材料として好適に使用できる。
【0042】
<原料>
正極材料の原料としては、例えば、アルカリ金属、前記遷移金属および酸素を少なくとも含む化合物(遷移金属化合物)または複数の化合物を組合せて用いることができる。通例は、原料中の遷移金属元素は正極材料中の遷移金属元素と同一の価数を元々有しているか、あるいは所定の焼成温度および焼成時間において酸素ガス不存在下にて焼成される過程で還元され、正極材料中の遷移金属元素と同一の価数を持つに至る。この時、水素等を添加して原料を焼成すると、得られる正極材料の結晶粒子がより細粒化される。
【0043】
より具体的には、正極材料の原料物質としては、例えば、アルカリ金属導入用の原料として、LiOH、NaOH等の水酸化物、LiCO、NaCO、NaHCO等の炭酸塩や炭酸水素塩、LiClやNaCl等の塩化物を含むハロゲン化物、LiNO、NaNO等の硝酸塩等、その他、アルカリ金属のみ目的の正極材料中に残留するような分解揮発性化合物、(例えば有機酸塩等)が用いられる。また、目的の正極材料が燐酸塩の場合には、LiPO、LiHPO、LiHPO、NaPO、NaHPO、NaHPO等の燐酸塩や燐酸水素塩、さらに、目的の正極材料が硫酸塩の場合には、LiSO、LiHSO、NaSO、NaHSO等の硫酸塩や硫酸水素塩を用いることもできる。
【0044】
また、Fe、Co、Mn、V等の遷移金属導入用の原料としては、例えば水酸化物、炭酸塩や炭酸水素塩、塩化物等のハロゲン化物、硝酸塩、その他、該遷移金属のみが目的の正極材料中に残留するような分解揮発性化合物(例えば、シュウ酸塩や酢酸塩等の有機酸塩、アセチルアセトン錯体類や、メタロセン錯体等の有機錯体など)が用いられる。また、目的の正極材料が燐酸塩の場合には、燐酸塩や燐酸水素塩、さらに目的の正極材料が硫酸塩の場合には、硫酸塩や硫酸水素塩、およびこれら遷移金属オキソ酸塩とアンモニウム等との複塩を用いることもできる。
【0045】
また、目的の正極材料が燐酸塩の場合には、無水燐酸P、燐酸HPO、および燐酸イオンのみ目的の正極材料中に残留するような分解揮発性燐酸塩や燐酸水素塩(例えば、(NHHPO、NHPO、(NHPO等のアンモニウム塩)、さらに目的の正極材料が硫酸塩の場合には、硫酸HSO、および硫酸イオンのみ目的正極材料中に残留するような分解揮発性硫酸塩や硫酸水素塩(例えば、NHHSO、(NHSO等のアンモニウム塩)を用いることもできる。
【0046】
これらの原料において、目的の正極材料中に残存した場合に好ましくない元素や物質を含む場合には、これらが焼成中に分解・揮発することが必要である。また、目的生成物が例えば燐酸塩の場合、原料には燐酸イオン以外の不揮発性オキソ酸塩等を用いるべきでないことは言うまでもない。なお、これらにおいては、その水和物を用いる場合もあるが(例えば、LiOH・HO、Fe(PO・8HO等)、上記においては水和物としての表記は全て省略している。
【0047】
正極材料の原料には、必要に応じて第一段階の焼成前に、粉砕したり、原料同士(場合によって添加される導電性炭素を含む)を混合、混練したりする処理を施すことができる。また、第一段階の焼成後に導電性炭素前駆物質(加熱分解により導電性炭素を生じ得る物質)を添加する場合には、その際にも粉砕、混合、混練等の処理を行うことができる。
【0048】
以上の原料を、水素、水、水蒸気等を共存させて焼成する場合には、通例は特に問題が生じることはないが、焼成の早期に両者が急激な反応を起こして目的の正極材料が得られなくなったり、不純物が生じたりすることがないよう、両者の選定および組合せには留意する必要がある。
【0049】
<導電性炭素>
本発明で用いられる導電性炭素としては、例えば、黒鉛質炭素、無定形炭素等を挙げることができる。ここで、黒鉛質炭素や無定形炭素には、いわゆる、すす、カーボンブラックなども含まれる。
<導電性炭素前駆物質(加熱分解により導電性炭素を生じ得る物質)>
また、導電性炭素前駆物質としては、例えば、ビチューメン類(いわゆるアスファルト;石炭や石油スラッジから得られるピッチ類を含む)、糖類、スチレン−ジビニルベンゼン共重合体、ABS樹脂、フェノール樹脂、その他芳香族基を有する架橋高分子などが挙げられる。これらの中でも、ビチューメン類(特に、精製された、いわゆる石炭ピッチ)および糖類が好ましい。これらのビチューメン類や糖類は加熱分解によって導電性炭素を生じて正極材料に導電性を付与する。特に、精製された石炭ピッチは、非常に安価であり、かつ焼成中に融解して焼成中の原料粒子の表面に均一に広がり、また熱分解過程を経て比較的低温(650℃〜800℃)での焼成後、高い導電性を発現する炭素析出物となる。また、糖類の場合は、糖類に含まれる多くの水酸基が原料および生じた正極材料粒子表面に強く相互作用することにより、結晶成長抑制作用も併せ持つため、糖類を用いることによって、より優れた結晶成長抑制効果と導電性付与効果を得ることができるからである。
【0050】
ここで、精製石炭ピッチとしては、軟化温度が80℃から350℃の範囲内にあり、熱分解による減量開始温度が350℃から450℃の範囲内にあり、500℃以上800℃以下までの加熱分解・焼成により、導電性炭素を生成するものが好適に用いられる。正極性能をより高めるためには、軟化温度が200℃〜300℃の範囲内にある精製石炭ピッチがより好ましい。また、精製石炭ピッチの含有不純物としては、正極性能に悪影響を与えることがないものが良いことは言うまでもないが、特に灰分が5000ppm以下であることが好ましい。
【0051】
さらに、糖類としては、250℃以上500℃未満の温度域において分解を起こし、かつ150℃から前記温度域までの昇温過程において一度は少なくとも部分的に融液状態をとり、さらに500℃以上800℃以下までの加熱分解・焼成によって導電性炭素を生成する糖類が特に好ましい。かかる特定の性質を有する糖類は、融解により加熱反応中の正極材料粒子の表面に好適にコートされ、加熱分解後生じた正極材料粒子表面に導電性炭素を良好に析出するとともに、この過程で上記したように結晶成長を抑制するからである。ここで、良好な導電性を生じさせるために、加熱分解温度は、正極材料の種類にもよるが、好ましくは570℃以上850℃以下、より好ましくは650℃以上800℃以下に設定できる。また、上記糖類は加熱分解によって、該糖類の焼成前の乾燥重量に対し、少なくとも15重量%以上、好ましくは20重量%以上の導電性炭素を生じ得るものがよい。これは、生じる導電性炭素の量的な管理を容易にするためである。以上のような性質を有する糖類としては、例えばデキストリンなどのオリゴ糖や、可溶性でんぷん、加熱により融解しやすい架橋の少ないでんぷん(例えば50%以上のアミロースを含むでんぷん)等の高分子多糖類が挙げられる。
【0052】
<導電性炭素前駆物質等の添加と焼成>
上記導電性炭素や、精製石炭ピッチ、糖類に代表される導電性炭素前駆物質は、適切なタイミングで原料(中間生成物を含む)中に混合して添加される。添加時には、必要に応じて原料と充分に混合するための操作、例えば粉砕や混練を行うこともできる。
【0053】
導電性炭素や導電性炭素前駆物質は、生じる正極材料中において、導電性炭素の重量濃度が0.1%以上10%以下、好ましくは0.5%以上7%以下、より好ましくは1%以上5%以下となるように添加することができる。
【0054】
焼成は、対象となる正極材料にもよるが、一般に採用されるような300〜900℃に至る焼成過程において、適切な温度範囲及び時間を選んで実施することができる。また、焼成は、酸化態不純物の生成防止や、残存する酸化態不純物の還元を促すため、酸素ガス不存在下で行うことが好ましい。
【0055】
本発明方法において、焼成は、一連の昇温およびこれに引き続く温度保持過程の一回のみにより実施するのではなく、第一段階のより低温域での焼成過程(通例常温〜300ないし450℃の温度範囲;以下、「仮焼成」と記すことがある)、および第二段階のより高温域での焼成過程[通例常温〜焼成完了温度(500℃ないし800℃程度);以下、「本焼成」と記すことがある]の2段階に分けて行われる。この場合、以下のタイミングで導電性炭素や導電性炭素前駆物質の混合を行うことにより、得られる正極材料の性能をより向上させることができる。
【0056】
仮焼成においては、正極材料の原料が加熱により最終的な正極材料に至る中間的な状態まで反応し、その際、多くの場合は熱分解によるガス発生を伴う。仮焼成の終了温度としては、発生ガスの大部分が放出し終わり、かつ最終生成物の正極材料に至る反応が完全には進行しない温度(すなわち、より高温域での第二段階の本焼成時に正極材料中の構成元素の再拡散・均一化が起こる余地を残した温度)が選択される。
【0057】
仮焼成に続く本焼成では、構成元素の再拡散・均一化が起こるとともに、正極材料への反応が完了し、しかも焼結などによる結晶成長を極力防げるような温度域まで昇温および温度保持がなされる。
【0058】
導電性炭素前駆物質、特に加熱により融解する石炭ピッチや糖類を用いる場合は、仮焼成前の原料に添加することも可能であるが(この場合でも相応の正極性能向上効果が得られる)、さらに高性能の正極材料を得るには、仮焼成後の原料(既に原料からのガス発生の大半が終了し、中間生成物となった状態)に添加し、本焼成を行うことがより好ましい。つまり、焼成過程における仮焼成と本焼成との間に、原料への導電性炭素前駆物質の添加工程を設けることになる。
【0059】
これにより、加熱により融解・熱分解する石炭ピッチや糖類等の物質が、原料から発生するガスにより発泡することを防ぎ、より均一に正極材料の表面に溶融状態で広がり、より均一に熱分解炭素を析出させることができる。
【0060】
これは以下の理由による。
すなわち、仮焼成において原料の分解により発生するガスの大半が放出されてしまう結果、本焼成ではガスの発生が殆ど起こらず、仮焼成後のタイミングで導電性炭素前駆物質を添加することにより、均一な導電性炭素の析出が可能になる。このため、得られる正極材料の表面導電性がさらに良好になり、また接触が強固に安定化される。これに対し、仮焼成前の原料に導電性炭素前駆物質を添加すると、仮焼成中に原料から旺盛に発生するガスにより、融解状態で未だ完全には熱分解していない導電性炭素前駆物質が発泡し、均一な析出が妨げられる。
【0061】
また、既に導電性を有し、加熱による重量減少、形態変化やガス発生が最早殆ど起こらなくなった炭素(導電性炭素;例えば、スス、カーボンブラックなどの黒鉛質炭素や無定形炭素など)を添加する場合は、仮焼成前の原料にこれらの所定量を混合し、仮焼成から一連の焼成過程を開始することが好ましい。これにより、加熱反応する原料と該導電性炭素との接触時間を長く取ることができ、その間に反応によって生じる正極材料の構成元素の拡散により、導電性炭素の粒界に正極材料が入り込み、より均一で安定な炭素−正極材料複合体を形成するとともに、正極材料粒子同士の焼結を効果的に防止できるからである。
【0062】
また、導電性炭素前駆物質、例えば加熱により融解・熱分解する石炭ピッチや糖類等の物質と、導電性炭素との両方を添加することは、高い正極性能を持つ正極材料を得る上で有効である。この場合、導電性炭素は仮焼成前の原料に添加し、加熱により融解・熱分解する石炭ピッチや糖類等の物質は仮焼成後の原料に添加することが好ましい。
【0063】
<水素等の供給>
本発明のさらに好ましい方法においては、所定量の水素や水分(水、水蒸気等)を継続的に炉内に不活性ガスとともに供給しながら原料を焼成する。例えば、焼成過程の全時間に渡って、または特に500℃以下から焼成完了までの温度、好ましくは400℃以下から焼成完了までの温度、より好ましくは300℃以下から焼成完了までの焼成温度において、水素や水分を添加することができる。
【0064】
気体である水素を用いる場合、対象となる正極材料にもよるが、一般に採用されるような300〜900℃に至る焼成過程において、適切な温度範囲及び時間を選んで必要十分な量の水素を供給でき、正極材料表面の酸素原子への付加や脱酸素、正極材料の還元等を効果的に起こすことが可能である。
【0065】
本発明方法では、水素は、第二段階の焼成時の、少なくとも500℃以上の温度範囲において添加することができる。例えば第二段階の焼成時の好ましくは500℃以下から焼成完了温度までの温度範囲にわたって、より好ましくは400℃以下から焼成完了温度まで、望ましくは300℃以下から焼成完了温度までの範囲(例えば、ほぼ焼成期間全域)にわたって添加することができる。この範囲においては、恐らくは後述する理由から、結晶成長の抑制が効果的に起こる。なお、第一段階の焼成時に水素を添加することもできる。
【0066】
上記温度範囲における雰囲気中の水素の体積濃度は、およそ0.1%以上20%以下とすることができ、1%以上10%以下とすることが好ましい。これによって、前記遷移金属化合物からなる正極材料の結晶成長が好適に抑制される。
【0067】
本発明者らによる研究では、正極材料の原料を、酸素ガス不存在下で水素および/または水分を供給しながら焼成すると、生じる正極材料の粒子の結晶性にわずかな乱れが生じ、生成する1次粒子がより細粒化されることが判明した。すなわち、水素および水分は有力な結晶成長抑制剤となることが実証された。このメカニズムは未だ明らかではないが、焼成中に原料から合成され、成長する正極材料の結晶粒子の成長面において、表面酸素原子に水素が結合して水酸基を生じたり、その水酸基から生成した水分子が再脱離したりすることにより、結晶表面構造に乱れや不整合が生じる結果、粒子の成長が抑制されるものと考えられる。
【0068】
水は、水素と同様に結晶成長抑制効果を有する。その理由は未だ明らかではないが、水素ガス添加時と同様に、原料および正極活物質の表面に水酸基を生じさせ、これが結晶成長を遅らせるためではないかと推定される。また、水蒸気は、導電性炭素または熱分解により導電性炭素を生じ得る物質と高温(約500℃以上)で接触することによって、いわゆる水性ガス反応により水素と一酸化炭素を生じ、この水素によっても結晶成長抑制効果および還元効果が得られる。つまり、水分を連続的に供給し続けた場合、500℃以上の高温域においても、水性ガス反応によって、より多くの水素を確実に、かつ継続的に発生させることが可能であり、結晶成長抑制作用および還元作用を最大限に発揮させることが可能となる。
【0069】
水分の供給方法としては、炉内に噴霧するか、好ましくは予気化して水蒸気の形で供給する。供給温度範囲および供給量は水素の場合と同様にすることができる。すなわち、水は、第二段階の焼成時の、少なくとも500℃以上から焼成が完了する温度範囲において添加することが好ましい。例えば好ましくは第二段階の焼成時の500℃以下から焼成完了温度までの温度範囲にわたって、より好ましくは400℃以下から焼成完了温度まで、望ましくは300℃程度から焼成完了温度までの範囲(例えば、ほぼ焼成期間全域)にわたって、添加することができる。この範囲においては、恐らくは前記遷移金属化合物の表面酸素原子への水素付加や水酸基形成が良好に起こりやすいため、結晶成長の抑制が効果的に起こると考えられる。なお、第一段階の焼成時に水素を添加することもできる。
【0070】
上記温度範囲における雰囲気中の水蒸気の体積濃度は、およそ0.1%以上20%以下とすることができ、1%以上10%以下とすることが好ましい。これによって、正極材料の結晶成長が好適に抑制される。
【0071】
また、本焼成中において水素を添加して焼成する場合、添加された水素(水分から生じる水素を含む)が、加熱により融解・熱分解する石炭ピッチや糖類等の導電性炭素前駆物質に接触すると、恐らくは該物質の融液粘性を低下させるため、前述の炭素析出法において、さらに良好な状態を実現できる。例えば、導電性炭素前駆物質として、軟化温度が80℃から350℃の範囲内にあり、熱分解による減量開始温度が350℃から450℃の範囲内にあり、500℃以上800℃以下までの加熱分解により、導電性炭素を生成する精製石炭ピッチを用いる場合、焼成過程で融解状態になった石炭ピッチに水素(水分から生じる水素を含む)が作用すると、その粘性が低下し、流動性が向上して得られる正極材料中で極めて均一かつ被覆厚みの薄い析出状態が実現できる。
【0072】
従って、水素(水分から生じる水素を含む)は、少なくとも本焼成中の500℃以下から焼成完了温度までの間、好ましくは400℃以下から焼成完了温度までの間、あるいは本焼成中全域に渡って添加するのがよい。さらに、仮焼成中においても水素を添加すると、その還元性により正極材料の酸化が防止できる等の効果も期待できる。
【0073】
本発明による正極材料の製造方法の概要の例を示せば次のとおりである。
まず、二段階に分けて行われる焼成の第一段階の仮焼成後に導電性炭素前駆物質を添加する場合は、[必要に応じて原料の粉砕、混合、混練等を行う工程]、[第一段階の焼成工程]、[導電性炭素前駆物質の添加(必要に応じて、粉砕、混合、混練等を行うこともできる)]、[第二段階の本焼成工程]の順に実施される。
【0074】
また、二段階に分けて行われる焼成の第一段階の仮焼成前に導電性炭素を添加し、かつ第一段階の仮焼成後に導電性炭素前駆物質を添加する場合は、[導電性炭素の添加を行う工程(必要に応じて原料とともに粉砕、混合、混練等を行うこともできる)]、[第一段階の仮焼成工程]、[導電性炭素前駆物質の添加(必要に応じて、原料(中間体)とともに粉砕、混合、混練等を行うことができる)]、[第二段階の本焼成工程]の順に実施される。
【0075】
さらに、二段階に分けて行われる焼成の第一段階の仮焼成前に導電性炭素を添加する場合は、[導電性炭素の添加を行う工程(必要に応じて原料とともに粉砕、混合、混練等を行うこともできる)]、[第一段階の仮焼成工程]、[必要に応じて原料(中間体)の粉砕、混合、混練等を行う工程]、[第二段階の本焼成工程]の順に実施される。
【0076】
以上において、水素または水分を添加する場合は、少なくとも第二段階の本焼成工程の一部において、望ましくは第二段階の本焼成工程全域において、さらに望ましくは、これに加えて第一段階の仮焼成工程の少なくとも一部においても添加される。
【0077】
<2次電池>
以上のようにして得られる本発明の正極材料を使用した2次電池としては、例えば、金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等を挙げることができる。
【0078】
以下、アルカリ金属がリチウムの場合を例として、アルカリイオン電池の基本構成を説明する。リチウムイオン電池は、俗にロッキングチェア型とか、シャトルコック(バトミントンの羽根)型などと言われるように、充放電に伴い、負極、正極活物質の間をLiイオンが往復することを特徴とする2次電池である(図1参照)。充電時には負極(現行系は黒鉛などのカーボンが用いられる)の内部にLiイオンが挿入されて層間化合物を形成し(この時、負極カーボンが還元され、Liの抜けた正極が酸化される)、放電時には、正極(現行の主流は酸化コバルト系であるが図1ではリン酸鉄リチウムなど鉄(II)/(III)の酸化還元系を例に挙げている)の内部にLiイオンが挿入されて鉄化合物−リチウムの複合体を形成する(この時、正極の鉄が還元され、Liの抜けた負極は酸化されて黒鉛等に戻る)。Liイオンは充放電の間、電解質中を往復し、同時に電荷を運ぶ。電解質としては、例えばエチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトンなどの環状有機溶媒と、例えばジメチルカーボネート、エチルメチルカーボネート等の鎖状有機溶媒との混合溶液に、例えばLiPF、LiCFSO、LiClO等の電解質塩類を溶解させた液状電解質、これらの液状電解質を高分子ゲル状物質に含浸させたゲル電解質、部分架橋ポリエチレンオキシドに前記電解質を含浸させたもの等の固体ポリマー電解質等が用いられる。液状電解質を用いる場合には、正極と負極が電池内で短絡しないようにポリオレフィン製等の多孔質隔膜(セパレータ)をそれらの間に挟んで絶縁させる。正極および負極は、正極材料および負極材料にそれぞれカーボンブラック等の導電性付与剤を所定量加え、例えばポリ4弗化エチレンやポリ弗化ビニリデン、フッ素樹脂等の合成樹脂、エチレンプロピレンゴムなどの合成ゴム等の結着剤および必要な場合はさらに極性有機溶媒を加えて混練、薄膜化させたものを用い、金属箔や金属網等で集電して電池が構成される。一方、負極に金属リチウムを用いた場合、負極ではLi(O)/Liの変化が充放電とともに起こり、電池が形成される。
【0079】
【作用】
一般に、前記したM )a )x[ここで、M 、M 、A、a、x、y、zは、それぞれ前記と同じ意味を有する]などの正極材料を、その原料から焼成により合成する際は、加熱昇温過程における合成反応中に分解ガス発生を伴う場合がほとんどであり、また、常温から350℃ないし450℃に至る温度範囲までに、その8割以上の量のガス発生が起こるのが普通である。本発明の一形態においては、導電性炭素前駆物質(加熱分解により導電性炭素を生じ得る物質)を常温から350℃ないし450℃に至る第一段階の焼成後の正極材料の原料に添加した後、第二段階の焼成を行うことにより、原料の正極材料の熱分解が既に半ば進行し、大半のガス発生を最早終えているために、融解した該導電性炭素前駆物質が発泡しにくく、均一に広がり、熱分解・焼成され、良好な状態に炭素を析出させることができる。
【0080】
また、本発明者らによる研究では、正極材料の原料を、酸素ガス不存在下で水素および/または水分を供給しながら焼成すると、生じる正極材料の粒子の結晶性にわずかな乱れが生じ、生成する1次粒子がより細粒化されることが判明した。すなわち、水素および水分は有力な結晶成長抑制剤となることが実証された。このメカニズムは未だ明らかではないが、焼成中に原料から合成され成長する正極材料の結晶粒子の成長面において、表面酸素原子に水素が結合したり、表面の金属−酸素間の結合を水分子が切断、付加するなどの現象によって水酸基を生じたり、その水酸基から生成した水分子が再脱離したりすることにより、結晶表面構造に乱れや不整合が生じる結果、粒子の成長が抑制されるものと考えられる。
【0081】
また、導電性炭素前駆物質を仮焼成後の原料に添加して焼成を行う場合、水素(水分と石炭ピッチや糖類等の導電性炭素前駆物質との反応で生じる水素を含む)を添加することにより、得られる正極材料の炭素析出が均一化し、より高い正極性能が得られることが判明した。このメカニズムも未だ明らかではないが、導電性炭素前駆物質を仮焼成後の原料に添加することにより、水素が融解した状態の導電性炭素前駆物質に付加することにより、その粘性を低下させ、正極材料粒子に導電性炭素を均一に析出させる効果があるためと推測される。
【0082】
一方、導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うことにより、加熱反応する原料と導電性炭素との接触時間を長く取ることができ、その間に反応によって生じる正極材料の構成元素の拡散により、導電性炭素の粒界に正極材料が入り込み、より均一で安定な炭素−正極材料複合体を形成することが可能になる。
【0083】
そして、少なくとも第二段階の焼成における500℃以上の温度において水素および/または水分(水または水蒸気)を供給しながら焼成することにより、生じる正極材料の1次粒子を効率的に細粒化させ、正極材料粒子同士の焼結を効果的に防止できる。
【0084】
【実施例】
次に、実施例等により、本発明を更に詳細に説明するが、本発明はこれらによって制約されるものではない。
実施例1
(1)正極材料の調製:
正極材料LiFePOを、以下の手順で合成した。
5.0532gのFeC・2HO(和光純薬工業株式会社製)、3.7094gの(NHHPO(和光純薬工業株式会社製)、1.1784gのLiOH・HO(和光純薬工業株式会社製)に略1.5倍体積のエタノールを加え、2mm径ジルコニアビーズおよびジルコニアポットを有する遊星ボールミルを用いて粉砕・混合後、減圧下50℃にて乾燥した。乾燥後の粉砕・混合物をアルミナ製るつぼに入れ、5体積%水素(H)/95体積%アルゴン(Ar)の混合ガスを200ml/分の流量で通気しながら、まず400℃にて5時間仮焼成した。取出した仮焼成後の原料2.1364gに、0.1097gの軟化温度200℃の精製石炭ピッチ[アドケムコ株式会社製MCP−200(商品名)]を加え、めのう乳鉢にて粉砕後、さらに同雰囲気で775℃にて10時間本焼成を行った(混合ガスは、昇温開始前から焼成中、さらに放冷後まで流通しつづけた)。これにより合成された正極材料は、粉末X線回折によりオリビン型結晶構造を有するLiFePOであると同定された。一方、酸化態不純物であるα−Fe、FePOなどや、それ以外の不純物の結晶回折ピークは全く認められなかった。
【0085】
また、元素分析から精製石炭ピッチの熱分解により生じた炭素が3.08重量%含有されていることが判ったものの、X線回折からは黒鉛結晶の回折ピークは認められなかったことから、非晶質炭素との複合体を形成していると推定された。また、結晶子サイズは、64nmであった。
【0086】
(2)2次電池の調製:
この正極材料と、導電性付与材としてのアセチレンブラック[デンカブラック(登録商標);電気化学工業株式会社製、50%プレス品]と、結着材としての未焼成PTFE(ポリテトラフルオロエチレン)粉とを重量比で70.6/24.4/5となるように混合・混練して、厚さ0.7mmのシート状に圧延し、これを直径1.0cmに打抜いたペレットを正極とした。
【0087】
その後、ステンレス製コイン電池ケース(型番CR2032)に金属チタン網、金属ニッケル網をそれぞれ正負極集電体としてスポット溶接し、前記正極及び金属リチウム箔負極を多孔質ポリエチレン製隔膜を介して組入れ、電解液として1MのLiPFを溶解したジメチルカーボネート/エチレンカーボネートの1/1混合溶液を満たして封入し、コイン型リチウム2次電池を作製した。正負極、隔膜、電解液等の一連の電池組立ては、アルゴン置換されたグローブボックス内で行った。
【0088】
以上のようにして得た正極材料を組み込んだ2次電池に対して、正極ペレットの見かけ面積当たりの電流密度0.5mA/cmおよび1.6mA/cmにて、3.0V〜4.0Vの作動電圧範囲で充放電を繰り返したところ、1〜20サイクルの平均初期放電容量は表1に示すとおりであった(初期放電容量は、生成物中の正極活物質量で規格化した)。
【0089】
比較例1
実施例1に対し、軟化温度200℃の精製石炭ピッチを仮焼成前の原料に加えて仮焼成および本焼成を行った以外は、実施例1と同様の合成方法によって正極材料オリビン型LiFePOを得た。
すなわち、実施例1と同量のFeC・2HO、(NHHPO、およびLiOH・HOに0.1940gの軟化温度200℃の精製石炭ピッチを加え、遊星ボールミルを用いて粉砕・混合、および乾燥後、アルミナ製るつぼ中で同一雰囲気にて400℃で5時間仮焼成し、粉砕後、さらに同雰囲気で775℃にて10時間本焼成した。得られた正極材料は、X線回折では実施例1とほとんど差異が見られず、また結晶子サイズは64nmであり、実施例1と差がなかった。また、元素分析から、精製石炭ピッチの熱分解により生じた炭素が3.04重量%含有されており、析出炭素量も実施例1と大きな差はないことが判明した。
【0090】
この正極材料について、実施例1と同様に構成したコイン型リチウム2次電池を作製し、実施例1と同様にして充放電サイクル試験を実施した。この1〜20サイクルの平均初期放電容量も表1に示した。
【0091】
表1に示すように、比較例1の初期放電容量については、水素添加および精製石炭ピッチの添加による効果が認められ、かなり大きな初期放電容量を示すが、実施例1では初期放電容量がさらに大きくなることが判る。
【0092】
以上から、実施例1に示されるように、水素を添加しながら原料を仮焼成および本焼成する際、軟化温度200℃の石炭ピッチを仮焼成後の原料に添加して本焼成することによって、正極材料LiFePOを用いた2次電池の初期放電容量が一層増加し、高性能化されたことが判る。
【0093】
この際、実施例1と比較例1の正極材料中の析出炭素含有量がほぼ同量であり、また、結晶子サイズにも差がなかったことから、実施例1においては、本焼成中に石炭ピッチから生じる炭素の正極材料粒子表面への析出が比較例1に比べより良好な状態で起こり、その結果、より高い正極性能がもたらされたことになる。これは以下の理由によるものと推定される。
第1に、200℃の軟化温度を持つ精製石炭ピッチが本焼成の昇温中に良好に融解する一方、原料の分解により生成するガスの大部分は仮焼成過程で放出されてしまい、本焼成中には原料からのガスはもはや少量しか発生しないため、精製石炭ピッチの融液は発泡することがない。第2に、添加した水素が石炭ピッチの融液の粘性を低下させるため、生成する正極材料粒子の表面にいっそう均一に広がり、その状態で熱分解されることにより、非常に均一に導電性炭素が析出する。以上のことから、極めて高い正極性能が得られたものと考えられる。
【0094】
実施例2
正極材料LiFePOを、以下の手順で合成した。
5.0161gのFe(PO・8HO(添川理化学株式会社製)、1.1579gのLiPO(和光純薬工業株式会社製)に略1.5倍体積のエタノールを加え、2mm径ジルコニアビーズおよびジルコニアポットを有する遊星ボールミルを用いて粉砕・混合後、減圧下50℃にて乾燥した。乾燥後の粉砕・混合物をアルミナ製るつぼに入れ、5体積%水素(H)/95体積%アルゴン(Ar)の混合ガスを200ml/分の流量で通気しながら、まず400℃にて5時間仮焼成した。取出した仮焼成後の原料4.0712gに、0.1879gの軟化温度200℃の精製石炭ピッチ[アドケムコ株式会社製MCP−200(商品名)]を加え、めのう乳鉢にて粉砕後、さらに同雰囲気で725℃にて10時間本焼成を行った(混合ガスは、昇温開始前から焼成中、さらに放冷後まで流通しつづけた)。これにより合成された正極材料は、粉末X線回折によりオリビン型結晶構造を有するLiFePOであると同定された。一方、酸化態不純物であるα−Fe、FePOなどや、それ以外の不純物の結晶回折ピークは認められなかった。
【0095】
また、元素分析から精製石炭ピッチの熱分解により生じた炭素が2.98重量%含有されていることが判ったものの、X線回折からは黒鉛結晶の回折ピークは認められなかったことから、非晶質炭素との複合体を形成していると推定された。また、結晶子サイズは、167nmであった。
【0096】
この正極材料を用い、実施例1と同様の条件で正極ペレットおよびコイン型リチウム2次電池を作製した。
【0097】
以上のようにして得た正極材料を組み込んだ2次電池に対して、正極ペレットの見かけ面積当たりの電流密度0.5mA/cmおよび1.6mA/cmにて、3.0V〜4.0Vの作動電圧範囲で充放電を繰り返したところ、1〜20サイクルの平均初期放電容量は表1に示すとおりであった(初期放電容量は、生成物中の正極活物質量で規格化した)。
【0098】
比較例2
実施例2に対し、軟化温度200℃の精製石炭ピッチを仮焼成前の原料に加えて仮焼成および本焼成を行った以外は、実施例2と同様の合成方法によって正極材料オリビン型LiFePOを得た。
すなわち、実施例2と同量のFe(PO・8HO(添川理化学株式会社製)、およびLiPO(和光純薬工業株式会社製)に0.1940gの軟化温度200℃の精製石炭ピッチを加え、遊星ボールミルを用いて粉砕・混合、および乾燥後、アルミナ製るつぼ中で同一雰囲気にて400℃で5時間仮焼成し、粉砕後、さらに同雰囲気で725℃にて10時間本焼成した。得られた正極材料は、X線回折では実施例2とほとんど差異が見られず、また結晶子サイズは162nmであり、実施例2とほとんど差がなかった。また、元素分析から、精製石炭ピッチの熱分解により生じた炭素が3.13重量%含有されており、析出炭素量にも実施例2と大きな差はないことが判明した。
【0099】
この正極材料について、実施例2と同様に構成したコイン型リチウム2次電池を作製し、実施例2と同様にして充放電サイクル試験を実施した。この1〜20サイクルの平均初期放電容量も表1に示した。
【0100】
表1に示すように、比較例2の初期放電容量については、水素添加および精製石炭ピッチ添加による効果が認められるが、実施例2では初期放電容量がさらに大きくなることが判る。この理由は実施例1の場合と同様であると考えられる。
【0101】
実施例3
正極材料LiFePOを、以下の手順で合成した。
実施例2と同量、即ち5.0161gのFe(PO・8HO(添川理化学株式会社製)、および1.1579gのLiPO(和光純薬工業株式会社製)に略1.5倍体積のエタノールを加え、2mm径ジルコニアビーズおよびジルコニアポットを有する遊星ボールミルを用いて粉砕・混合後、減圧下50℃にて乾燥した。乾燥後の粉砕・混合物をアルミナ製るつぼに入れ、5体積%水素(H)/95体積%アルゴン(Ar)の混合ガスを200ml/分の流量で通気しながら、まず400℃にて5時間仮焼成した。取出した仮焼成後の原料4.4762gに、0.5358gのデキストリン(和光純薬工業株式会社製)を加え、めのう乳鉢にて粉砕後、さらに同雰囲気で725℃にて10時間本焼成を行った(混合ガスは、昇温開始前から焼成中、さらに放冷後まで流通しつづけた)。これにより合成された正極材料は、粉末X線回折によりオリビン型結晶構造を有するLiFePOであると同定された。一方、酸化態不純物であるα−Fe、FePOなどや、それ以外の不純物の結晶回折ピークは認められなかった。
【0102】
また、元素分析からデキストリンの熱分解により生じた炭素が3.43重量%含有されていることが判ったものの、X線回折からは黒鉛結晶の回折ピークは認められなかったことから、非晶質炭素との複合体を形成していると推定された。また、結晶子サイズは、170nmであった。
【0103】
この正極材料を用い、実施例1と同様の条件で正極ペレットおよびコイン型リチウム2次電池を作製した。
【0104】
以上のようにして得た正極材料を組み込んだ2次電池に対して、正極ペレットの見かけ面積当たりの電流密度0.5mA/cmおよび1.6mA/cmにて、3.0V〜4.0Vの作動電圧範囲で充放電を繰り返したところ、1〜20サイクルの平均初期放電容量は表1に示すとおりであった(初期放電容量は、生成物中の正極活物質量で規格化した)。
【0105】
また、このコイン型リチウム2次電池の上記条件における10サイクル目の充放電特性を図2に示した。
【0106】
比較例3
実施例3に対し、デキストリンを仮焼成前の原料に加えて仮焼成および本焼成を行った以外は、実施例3と全く同様の合成方法によって正極材料オリビン型LiFePOを得た。
すなわち、実施例3と同量のFe(PO・8HO(添川理化学株式会社製)、およびLiPO(和光純薬工業株式会社製)に0.6600gのデキストリンを加え、遊星ボールミルを用いて粉砕・混合、および乾燥後、アルミナ製るつぼ中で同一雰囲気にて400℃にて5時間仮焼成し、粉砕後、さらに同雰囲気で725℃にて10時間本焼成した。得られた正極材料は、X線回折では実施例3とほとんど差異が見られず、また結晶子サイズは165nmであり、実施例3とほとんど差がなかった。また、元素分析から、デキストリンの熱分解により生じた炭素が3.33重量%含有されており、析出炭素量も実施例3と大きな差はないことが判明した。
【0107】
この正極材料について、実施例3と同様に構成したコイン型リチウム2次電池を作製し、実施例3と同様にして充放電サイクル試験を実施した。この1〜20サイクルの平均初期放電容量も表1に示した。また、このコイン型リチウム2次電池の10サイクル目の充放電特性を図3に示した。
【0108】
表1に示すように、比較例3の初期放電容量については、水素添加およびデキストリン添加による効果が認められるが、実施例3では初期放電容量がさらに大きくなることが判る。この理由は実施例1の場合と同様であると考えられる。
【0109】
また、図2と図3とを比較すると、仮焼成後の原料にデキストリンを加えた実施例3は、仮焼成前の原料にデキストリンを添加した比較例3に比べて理論容量(170mAh/g)により近い値まで充放電電圧の平坦域を有しており、充電電圧と放電電圧との差も充分に少ないことから、充放電特性に優れていることが理解される。
【0110】
実施例4
正極材料LiFePOを、以下の手順で合成した。
5.0532gのFeC・2HO(和光純薬工業株式会社製)、3.7094gの(NHHPO(和光純薬工業株式会社製)、および1.1784gのLiOH・HO(和光純薬工業株式会社製)に0.1220gのアセチレンブラック[電気化学工業社製デンカブラック(登録商標;50%プレス品)]を加え、めのう製自動乳鉢を用いて粉砕・混合した。この粉砕・混合物をアルミナ製るつぼに入れ、5体積%水素(H)/95体積%アルゴン(Ar)の混合ガスを200ml/分の流量で通気しながら、まず400℃にて5時間仮焼成し、取出してめのう乳鉢にて粉砕後、さらに同雰囲気で775℃にて10時間本焼成を行った(混合ガスは、昇温開始前から焼成中、さらに放冷後まで流通しつづけた)。これにより合成された正極材料は、粉末X線回折によりオリビン型結晶構造を有するLiFePOであると同定された。一方、酸化態不純物であるα−Fe、FePOの結晶回折ピークは全く認められなかった。
【0111】
また、元素分析からアセチレンブラック由来の炭素が2.84重量%含有されていることが判った。また、結晶子サイズは、111nmであった。
【0112】
この正極材料を用い、実施例1と同様の条件で正極ペレットおよびコイン型リチウム2次電池を作製した。
【0113】
以上のようにして得た正極材料を組み込んだ2次電池に対して、正極ペレットの見かけ面積当たりの電流密度0.5mA/cmおよび1.6mA/cmにて、3.0V〜4.0Vの作動電圧範囲で充放電を繰り返したところ、1〜20サイクルの平均初期放電容量は表1に示すとおりであった(初期放電容量は、生成物中の正極活物質量で規格化した)。
【0114】
比較例4
実施例4に対し、同一のアセチレンブラックを仮焼成後の原料に加えて仮焼成および本焼成を行った以外は、実施例4と全く同様の合成方法によって正極材料オリビン型LiFePOを得た。
すなわち、実施例4と同量のFeC・2HO、および(NHHPO、および1.1784gのLiOH・HOをめのう製自動乳鉢を用いて粉砕・混合し、この粉砕・混合物をアルミナ製るつぼに入れ、5体積%水素(H)/95体積%アルゴン(Ar)の混合ガスを200ml/分の流量で通気しながら、まず400℃にて5時間仮焼成した。取出した仮焼成後の原料2.1856gに0.0707gのアセチレンブラック(50%プレス品)を加え、めのう製自動乳鉢にて粉砕、混合後、さらに同雰囲気で775℃にて10時間本焼成した(混合ガスは、昇温開始前から焼成中、さらに放冷後まで流通しつづけた)。これにより合成された正極材料は、粉末X線回折によりオリビン型結晶構造を有するLiFePOであると同定された。一方、酸化態不純物であるα−Fe、FePOの結晶回折ピークは認められなかった。
【0115】
また、元素分析からアセチレンブラック由来の炭素が2.76重量%含有されていることが判った。また、結晶子サイズは、122nmであった。従って、炭素含有量、結晶子サイズは実施例4と大差なかった。
【0116】
この正極材料を用い、実施例4と同様の条件で正極ペレットおよびコイン型リチウム2次電池を作製し、実施例4と同様にして充放電サイクル試験を実施した。この1〜20サイクルの平均初期放電容量も表1に示した。
【0117】
表1に示すように、実施例4の初期放電容量は比較的良好であり、導電性炭素としてのアセチレンブラックおよび水素添加による効果が認められる。また、実施例4では初期放電容量が比較例4に比べて大きくなっており、既に不融状態にあり、かつ炭化しているアセチレンブラックを添加する場合は、仮焼成前の原料に添加して本焼成を行う方が、正極性能が高くなることがわかる。
【0118】
【表1】

Figure 2004063386
【0119】
実施例5
正極材料LiFePOを、以下の手順で合成した。
5.0532gのFeC・2HO(和光純薬工業株式会社製)、3.7094gの(NHHPO(和光純薬工業株式会社製)、および1.1784gのLiOH・HO(和光純薬工業株式会社製)に0.0610gのアセチレンブラック[電気化学工業株式会社製デンカブラック(登録商標;50%プレス品)]を加え、めのう製自動乳鉢を用いて粉砕・混合した。この粉砕・混合物をアルミナ製るつぼに入れ、5体積%水素(H)/95体積%アルゴン(Ar)の混合ガスを200ml/分の流量で通気しながら、まず400℃にて5時間仮焼成した。取出した仮焼成後の原料2.2430gに0.0576gの軟化温度200℃精製石炭ピッチを加え、めのう乳鉢にて粉砕・混合後、さらに同雰囲気で775℃にて10時間本焼成を行った(混合ガスは、昇温開始前から焼成中、さらに放冷後まで流通しつづけた)。これにより合成された正極材料は、粉末X線回折によりオリビン型結晶構造を有するLiFePOであると同定された。一方、酸化態不純物であるα−Fe、FePOの結晶回折ピークは全く認められなかった。
【0120】
また、元素分析から、精製石炭ピッチの熱分解により生じた炭素、およびアセチレンブラック由来の炭素が合計3.27重量%含有されていることが判った。また、結晶子サイズは、74nmであった。
【0121】
この正極材料を用い、実施例1と同様の条件で正極ペレットおよびコイン型リチウム2次電池を作製した。
以上のようにして得た正極材料を組み込んだ2次電池に対して、正極ペレットの見かけ面積当たりの電流密度0.5mA/cmおよび1.6mA/cmにて、3.0V〜4.0Vの作動電圧範囲で充放電を繰り返したところ、1〜20サイクルの平均初期放電容量は表2に示すとおりであった(初期放電容量は、生成物中の正極活物質量で規格化した)。このように仮焼成前に導電性炭素としてのアセチレンブラックを添加するとともに、仮焼成後に導電性炭素前駆物質としての精製石炭ピッチを添加することによって得られる正極材料は、2次電池の放電容量を大きくし、正極性能を向上させることが示された。
【0122】
【表2】
Figure 2004063386
【0123】
実施例6
正極材料LiFePOを、以下の手順で合成した。
5.0161gのFe(PO・8HO(添川理化学株式会社製)、1.1579gのLiPO(和光純薬工業株式会社製)に略1.5倍体積のエタノールを加え、2mm径ジルコニアビーズおよびジルコニアポットを有する遊星ボールミルを用いて粉砕・混合後、減圧下50℃にて乾燥した。乾燥後の粉砕・混合物をアルミナ製るつぼに入れ、100体積%アルゴン(Ar)ガスを200ml/分の流量で通気しながら、まず400℃にて5時間仮焼成した。取出した仮焼成後の原料4.1248gに、0.1904gの軟化温度200℃の精製石炭ピッチ[アドケムコ株式会社製MCP−200(商品名)]を加え、めのう乳鉢にて粉砕後、さらに同雰囲気で700℃にて10時間本焼成を行った(ガスは、昇温開始前から焼成中、さらに放冷後まで流通しつづけた)。これにより合成された正極材料は、粉末X線回折によりオリビン型結晶構造を有するLiFePOであると同定された。一方、酸化態不純物であるα−Fe、FePOなどや、それ以外の不純物の結晶回折ピークは認められなかった。
【0124】
また、元素分析から精製石炭ピッチの熱分解により生じた炭素が3.16重量%含有されていることが判ったものの、X線回折からは黒鉛結晶の回折ピークは認められなかったことから、非晶質炭素との複合体を形成していると推定された。また、結晶子サイズは、194nmであった。
【0125】
この正極材料を用い、実施例1と同様の条件で正極ペレットおよびコイン型リチウム2次電池を作製した。
【0126】
以上のようにして得た正極材料を組み込んだ2次電池に対して、正極ペレットの見かけ面積当たりの電流密度0.5mA/cmおよび1.6mA/cmにて、3.0V〜4.0Vの作動電圧範囲で充放電を繰り返したところ、1〜20サイクルの平均初期放電容量は表3に示すとおりであった(初期放電容量は、生成物中の正極活物質量で規格化した)。
【0127】
また、このコイン型リチウム2次電池の上記条件における10サイクル目の充放電特性を図4に示した。
【0128】
比較例5
実施例6に対し、軟化温度200℃の精製石炭ピッチを仮焼成前の原料に加えて仮焼成および本焼成を行った以外は、実施例6と同様の合成方法によって正極材料オリビン型LiFePOを得た。
すなわち、実施例6と同量のFe(PO・8HO(添川理化学株式会社製)、およびLiPO(和光純薬工業株式会社製)に0.1940gの軟化温度200℃の精製石炭ピッチを加え、遊星ボールミルを用いて粉砕・混合、および乾燥後、アルミナ製るつぼ中で同一のアルゴン雰囲気にて400℃で5時間仮焼成し、粉砕後、さらに同雰囲気で700℃にて10時間本焼成した。得られた正極材料は、X線回折では実施例6とほとんど差異が見られず、また結晶子サイズは189nmであり、実施例6とほとんど差がなかった。また、元素分析から、精製石炭ピッチの熱分解により生じた炭素が3.04重量%含有されており、析出炭素量にも実施例6と大きな差はないことが判明した。
【0129】
この正極材料について、実施例6と同様に構成したコイン型リチウム2次電池を作製し、実施例6と同様にして充放電サイクル試験を実施した。この1〜20サイクルの平均初期放電容量も表3に示した。
【0130】
また、このコイン型リチウム2次電池の上記条件における10サイクル目の充放電特性を図5に示した。
【0131】
表3に示すように、仮焼成前の原料に精製石炭ピッチを添加した比較例5についても、比較的大きな初期放電容量を示し、精製石炭ピッチ添加による効果が認められるが、仮焼成後の原料に精製石炭ピッチを添加した実施例6では初期放電容量がさらに大きくなることが判る。
【0132】
また、図4と図5を比較すると、仮焼成後に石炭ピッチを加えた実施例6は、仮焼成前に石炭ピッチを加えた比較例5に比べて、より大きな容量値まで充放電電圧の平坦域を有しており、充電電圧と放電電圧の差も少ないことから、充放電特性に優れていることが理解される。
【0133】
従って、水素を含まない100%アルゴンの焼成雰囲気の場合においても、仮焼成後の原料に石炭ピッチを添加することで、より高い正極性能が得られることが判った。
【0134】
なお、実施例6のように、デキストリンに比べて溶融時の粘性が比較的低い精製石炭ピッチを用いた場合は、必ずしも水素を焼成雰囲気に添加させなくとも、得られる正極材料が比較的大きな放電容量を示す場合がある。
【0135】
【表3】
Figure 2004063386
【0136】
【発明の効果】
本発明方法によれば、正極材料の1次粒子の結晶成長を抑制して、得られる正極材料の結晶粒子を細粒化することができる。すなわち、導電性炭素前駆物質および/または導電性炭素を所定のタイミングで添加して、好ましくは水素および/または水分(水または水蒸気)を供給しながら正極材料の原料を焼成することにより、生じる正極材料の1次粒子を効率的に細粒化させ、さらに導電性炭素が均一かつ安定に正極材料中に存在した状態を作り出すことが可能になり、より高い正極性能を得ることができる。
【0137】
また、本発明方法によれば、原料の焼成が不十分で最終製品にまで化学変化しなかったり、中間生成物が残留したりする恐れはなく、焼成によって目的の正極材料を原料から確実に合成できる。
【0138】
また、水素および/または水分は、強い結晶成長抑制作用および加熱により導電性炭素を析出する物質の正極材料への付着状態を改善する強い作用を持つとともに、取り扱いが容易であり、しかも安価であるため、効率的である。
【0139】
また、上記方法によって製造された正極材料を用いた本発明の2次電池は、正極材料の結晶粒子が細粒化されているので、正極材料と電解質との界面においてリチウムイオンを初めとするアルカリ金属イオンの脱ドープ/ドープを伴う電気化学的酸化/還元を該正極材料が受ける際の表面積が大きく、正極材料の粒子内部と電解質との界面でアルカリ金属イオンが容易に出入りできるため、電極反応分極が抑制される。さらに、正極材料に通例混合されるカーボンブラック等の導電性付与材と正極材料との接触が著しく向上するため、導電性が改善されており、正極材料の活物質としての利用率が高く、セル抵抗の小さい、電圧効率と有効電池放電容量が著しく向上した2次電池である。
【図面の簡単な説明】
【図1】2次電池の充放電挙動の説明に供する模式図。
【図2】実施例3で得たコイン型2次電池の充放電特性を示すグラフ図面。
【図3】比較例3で得たコイン型2次電池の充放電特性を示すグラフ図面。
【図4】実施例6で得たコイン型2次電池の充放電特性を示すグラフ図面。
【図5】比較例5で得たコイン型2次電池の充放電特性を示すグラフ図面。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a positive electrode material for a secondary battery and a secondary battery having the positive electrode material. More specifically, for example, a metal lithium battery using an alkali metal such as lithium and sodium or a compound thereof as an active material The present invention relates to a method for manufacturing a positive electrode material used for a secondary battery typified by a lithium ion battery, a lithium polymer battery, and the like, and a secondary battery having the positive electrode material manufactured by the method.
[0002]
[Prior art]
Metal oxides used for secondary batteries such as metal lithium batteries, lithium ion batteries and lithium polymer batteries, and oxides in which metal atoms are partially substituted, and LiFePO44, LiCoPO4Phosphates such as Fe2(SO4)3In a positive electrode material such as a sulfate, etc., an electrode oxidation-reduction reaction proceeds in a process of discharging or charging with doping / dedoping of an alkali metal ion such as lithium. In recent years, such secondary batteries have been spotlighted as large capacity batteries. However, in the positive electrodes of these batteries, the speed of the alkali metal ions moving inside the electrode material due to solid-phase diffusion limits the electrode reaction speed. It is difficult to charge and discharge at a high density. When the polarization is particularly large, charging and discharging do not proceed sufficiently under normal voltage and current density conditions, and only a capacity much smaller than the theoretical capacity can be used. In addition, metal oxides, phosphates, sulfates, metal oxoacid salts, and the like, which are often used for these positive electrode materials, generally have low electrical conductivity, and this also causes an increase in the polarization of the electrode reaction.
[0003]
In order to solve the above problems, it is effective to make the crystal particles of the positive electrode material finer so that alkali metal ions can easily enter and exit inside the particles. In addition, when the crystal grains are refined, the contact area between the conductivity-imparting material such as carbon black, which is usually mixed with the cathode material, and the cathode material is increased, so that the conductivity is improved. The voltage efficiency and the effective battery capacity can be improved while the polarization is reduced.
[0004]
For this purpose, when synthesizing the positive electrode material by firing, in recent years, the firing temperature has been reduced by using a highly reactive raw material, and further, the firing time has been restricted to suppress the crystal growth of the positive electrode material, and the positive electrode material having a small particle size has been suppressed. Attempts to obtain have been reported. For example, LiFePO, which is a positive electrode material for a lithium secondary battery,4Of LiOH.H2By using O, the firing temperature is lowered to 675 ° C., which is lower than the conventional value (usually about 800 to 900 ° C.), and firing is performed in argon for a relatively short time (about 24 hours), thereby sintering (particles) the positive electrode material powder. (40th {Battery Symposium} Announcement 3C14 (Preliminary Proceedings, p349, 1999); The Institute of Electrical Chemistry of Japan (Japan)) has been reported.
[0005]
Although this is not a method of suppressing the crystal growth of the electrode material, JP-A-2001-15111 discloses a chemical formula AaMmZzOoNnFf(Where A is an alkali metal, M is Fe, Mn, V, Ti, Mo, Nb, W and other transition metals, Z is S, Se, P, As, Si, Ge, B, Sn and other nonmetals )), By depositing carbon on the surface of the particles of the complex oxides (including oxo acid salts such as sulfates, phosphates, silicates, etc.) to increase the surface conductivity, these composites can be used in batteries and the like. Discloses a method of improving the efficiency by homogenizing and stabilizing the electric field around the interface of the composite oxide particles, the current collecting (conductivity-imparting) material and the electrolyte in the course of the electrode oxidation-reduction reaction. Have been. There, as a method of depositing carbon on the surface of the composite oxide particles, an organic substance (polymer, monomer, low molecule, etc.) that deposits carbon by thermal decomposition is used, or carbon monoxide is added thereto. A method of thermally decomposing (these can coexist in the raw material of the composite oxide and thermally react at a time under reducing conditions to obtain a composite of the composite oxide and surface carbon, And it is). By these means, Japanese Patent Application Laid-Open No. 2001-15111 realizes an improvement in the electrical conductivity of the surface of the composite oxide particles as described above.4For example, when a composite is prepared by depositing carbon on the surface of positive electrode material particles to form a Li polymer battery, high electrode performance such as a large discharge capacity is obtained.
[0006]
Further, according to JP-A-2002-110163, according to the general formula LixFePO4(However, a raw material of the compound represented by 0 <x ≦ 1) is mixed, milled, and calcined at any point of time, and a carbon material is added at any time, and the oxygen concentration in the calcining atmosphere is 1012 ppm ( A method for producing a positive electrode active material having a volume (volume) or less has been proposed. In the method described in this publication, LiFePO synthesized by firing is used.4Fe in the carbon composite is oxidized by oxygen in the firing atmosphere, and the trivalent Fe compound (Fe2O3) Is generated, and LiFePO4It has also been suggested to add an inert gas or a reducing gas such as hydrogen for the purpose of suppressing the oxygen concentration to the above-mentioned 1012 ppm (volume) in order to prevent the single-phase synthesis from being hindered.
[0007]
[Problems to be solved by the invention]
In the synthesis of the positive electrode material by sintering, the method of lowering the temperature or shortening the sintering time, as in the method of the 40th Battery Symposium Announcement 3C14 (P349, 1999), is insufficient in sintering. As a result, there is a possibility that no chemical change occurs in the final product or an intermediate product remains, so that there is a limit as a method of grain refinement.
[0008]
Although the method disclosed in Japanese Patent Application Laid-Open No. 2001-15111 is effective for improving the surface conductivity of an electrode material, there is no description about suppression of crystal growth during synthesis of the electrode material. There is also no description of a method for more appropriately controlling the deposition of carbon on a material in terms of electrode performance.
[0009]
In the method described in Japanese Patent Application Laid-Open No. 2002-110163, a non-oxygen atmosphere has no other meaning than to prevent oxidation of Fe in the firing process as described above. Further, the carbon material added by the method described in this publication is an amorphous carbon material such as acetylene black, and can be added to the raw material after firing.4The carbon composite is replaced by “LiFePO4The carbon material added is attached between the positive electrode active material particles to improve electron conductivity, as defined by the definition of `` a material in which a large number of carbon material particles adhere to the surface of the particles. '' Stop it. For this reason, in JP-A-2002-110163, there is no technical idea that, for example, conductive carbon is uniformly deposited on the positive electrode active material. In addition, there is no study on the conditions for allowing the carbon material to exist in a more desirable form in terms of electrode performance, and the firing conditions simply employ a simple heating process.
[0010]
An object of the present invention is to reliably synthesize a desired positive electrode material from raw materials by firing, and to suppress the crystal growth of primary particles of the positive electrode material to make it finer and to impart excellent conductivity. To provide a novel method for producing a positive electrode material for a secondary battery, and furthermore, by reducing the size of the positive electrode material and optimizing the provision of conductivity, lithium is initially interposed between the inside of the positive electrode material particles and the electrolyte. Promotes entry and exit of alkali metal ions, suppresses electrode reaction polarization, increases the contact area between the cathode material and the conductivity-imparting material, improves conductivity, improves voltage efficiency and effective battery capacity. An object of the present invention is to provide a high performance secondary battery.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the invention of a method for manufacturing a positive electrode material for a secondary battery according to claim 1 is a method for manufacturing a positive electrode material for a secondary battery, in which a raw material is fired to manufacture a positive electrode material. And a second stage from room temperature to a firing completion temperature, wherein a substance capable of generating conductive carbon by thermal decomposition is added to the raw material after the first stage firing. After that, the second stage baking is performed.
[0012]
According to the invention of this method for producing a positive electrode material for a secondary battery, a substance capable of producing conductive carbon by thermal decomposition is added to the raw material after the first firing step, and the second firing step is performed. A substance that can generate conductive carbon by decomposition can be prevented from being foamed by a gas generated by decomposition of the raw material during firing. As a result, the substance in the molten state spreads more uniformly on the surface of the positive electrode material in the molten state, and the pyrolytic carbon can be more uniformly deposited. For this reason, the surface conductivity of the obtained positive electrode material is further improved, and the contact is firmly stabilized.
[0013]
According to a second aspect of the present invention, there is provided a method for manufacturing a positive electrode material for a secondary battery, in which a raw material is fired to manufacture a positive electrode material. ° C, and a second stage from room temperature to a firing completion temperature. Conductive carbon is added to the raw material before firing in the first stage, and firing is performed. The method is characterized in that a substance capable of forming carbon is added to the raw material after the first-stage firing, and then the second-stage firing is performed.
[0014]
According to the invention of this method for producing a positive electrode material for a secondary battery, in addition to the same function and effect as in claim 1, by further adding conductive carbon to the raw material before firing in the first stage and firing it, The contact time between the raw material to be heated and the conductive carbon and the conductive carbon can be made longer, and during that time, the diffusion of the constituent elements of the positive electrode material caused by the reaction causes the positive electrode material to enter grain boundaries of the carbon, resulting in a more uniform material. A stable carbon-cathode material composite can be formed, and sintering of the cathode material particles can be effectively prevented.
[0015]
According to a third aspect of the present invention, there is provided a method for manufacturing a positive electrode material for a secondary battery in which a raw material is fired to manufacture a positive electrode material. C. and a second stage from a room temperature to a sintering completion temperature, wherein the sintering is performed by adding conductive carbon to the raw material before the sintering in the first stage.
[0016]
According to the invention of the method for manufacturing a positive electrode material for a secondary battery, it is possible to suppress the crystal growth of primary particles of the positive electrode material and to reduce the crystal particles of the obtained positive electrode material. That is, by adding conductive carbon to the raw material before firing in the first stage and performing firing, the contact time between the raw material to be heated and reacted and the conductive carbon can be increased, and the positive electrode generated by the reaction during that time Due to the diffusion of the constituent elements of the material, the cathode material enters the grain boundaries of the conductive carbon, and a more uniform and stable carbon-cathode material composite can be formed.
[0017]
In a fourth aspect of the present invention, the substance capable of producing conductive carbon by thermal decomposition is bitumen. Bitumens can impart conductivity to the positive electrode material by generating conductive carbon by thermal decomposition.
[0018]
Further, in the invention of the method for manufacturing a positive electrode material for a secondary battery according to claim 5, in claim 4, the bitumen has a softening temperature in the range of 80 ° C to 350 ° C, and a temperature at which weight loss due to thermal decomposition starts. The coal pitch is in the range of 350 ° C. to 450 ° C. and is capable of depositing conductive carbon by thermal decomposition and firing at 500 ° C. to 800 ° C.
[0019]
Coal pitch having such properties is very inexpensive, and melts during firing and spreads uniformly on the surface of the raw material particles during firing, and after thermal decomposition, becomes carbon deposits that exhibit high conductivity. It is a substance having excellent properties as a substance that can generate conductive carbon.
[0020]
According to a sixth aspect of the present invention, there is provided a method of manufacturing a positive electrode material for a secondary battery according to the first or second aspect, wherein the substance capable of generating conductive carbon by thermal decomposition is a saccharide. . By using a saccharide, a more excellent crystal growth suppressing effect and a conductivity imparting effect can be simultaneously obtained. The saccharides not only give rise to conductive carbon by thermal decomposition and give conductivity to the cathode material, but also suppress the crystal growth by the strong interaction of many hydroxyl groups contained in the saccharide with the raw material and the surface of the produced cathode material particles. This is because it is presumed that they also have an effect.
[0021]
Further, in the invention of the method for manufacturing a positive electrode material for a secondary battery according to claim 7, in claim 6, the saccharide decomposes in a temperature range of 250 ° C. or more and less than 500 ° C. and from 150 ° C. to decomposition. It is a saccharide that at least partially attains a molten state at least once in the temperature-raising process, and further generates conductive carbon by thermal decomposition from 500 ° C to 800 ° C. The saccharide having such specific properties is suitably coated on the surfaces of the positive electrode material particles undergoing the heating reaction by melting, and satisfactorily precipitates conductive carbon on the surfaces of the positive electrode material particles generated after thermal decomposition. In this process, the crystal growth is suppressed as described above. For this reason, the saccharides having the above specific properties exhibit particularly excellent crystal growth suppressing effects and conductivity imparting effects.
[0022]
Further, the invention of a method for manufacturing a cathode material for a secondary battery according to claim 8 is the method according to any one of claims 1 to 7, wherein one or two kinds selected from the group consisting of hydrogen, water and water vapor are provided. It is characterized in that the above is added at least at a temperature of 500 ° C. or more in the second stage firing. According to this feature, the crystal growth of the primary particles of the positive electrode material can be suppressed, and the crystal particles of the obtained positive electrode material can be made finer.
[0023]
That is, at the time of baking including the first stage from room temperature to 300 ° C. to 450 ° C. and the second stage from room temperature to the baking completion temperature, conductive carbon is generated by thermal decomposition of the raw material after the first baking. After the addition of the substance to be obtained, the second stage baking is performed, and when hydrogen and / or moisture (water or steam) is added at least at a temperature of 500 ° C. or more, the effect described in claim 1 is added. In addition, the primary particles of the resulting positive electrode material can be efficiently refined, and conductive carbon can be more uniformly and stably deposited on the positive electrode material particles, whereby higher positive electrode performance can be obtained. In this process, when hydrogen (including hydrogen generated from moisture) comes into contact with the conductive carbon precursor that melts and thermally decomposes by heating, the melt viscosity of the substance is reduced, possibly due to a hydrogen addition reaction, so Carbon deposition state can be realized.
[0024]
Further, at the time of firing including the first stage from room temperature to 300 ° C. to 450 ° C. and the second stage from room temperature to the firing completion temperature, conductive carbon is added to the raw material before the first stage firing. While performing the firing, a substance capable of generating conductive carbon by thermal decomposition is added to the raw material after the first firing, and then the second firing is performed, and at least in the temperature range of 500 ° C. or higher, hydrogen and Also in the case of adding water (water or steam), in addition to the effect described in claim 2, the primary particles of the generated positive electrode material are efficiently finely divided, and the conductive carbon is more uniformly and stably formed. It can be deposited on the cathode material particles to obtain higher cathode performance.
[0025]
Further, at the time of firing including the first stage from room temperature to 300 ° C. to 450 ° C. and the second stage from room temperature to the firing completion temperature, conductive carbon is added to the raw material before the first stage firing. When hydrogen and / or moisture (water or steam) are added at least in a temperature range of 500 ° C. or more in the second stage of firing, the firing of the positive electrode material is performed in addition to the effect described in claim 3. The primary particles can be efficiently refined.
[0026]
Further, according to the method of the present invention, there is no possibility that the raw material is insufficiently calcined to cause a chemical change to the final product or an intermediate product remains, and the desired positive electrode material is reliably synthesized from the raw material by the calcining. it can.
[0027]
Hydrogen and / or water have a strong crystal growth suppressing effect and a strong effect of improving the state of attachment of a substance that precipitates conductive carbon by thermal decomposition to the cathode material, and are easy to handle and inexpensive. Therefore, it is efficient.
[0028]
Further, the substance capable of producing conductive carbon by the thermal decomposition is a bitumen, among which, especially, the softening temperature is in the range of 80 ° C to 350 ° C, and the temperature at which weight loss due to thermal decomposition is started is in the range of 350 ° C to 450 ° C. In the case where there is a coal pitch capable of producing conductive carbon by thermal decomposition and firing at 500 ° C. to 800 ° C., in the process of melting and thermally decomposing such coal pitch by heating during the second stage firing, In a temperature range of at least 500 ° C. or more, the conductive material comes into contact with hydrogen and / or moisture (water or water vapor). The condition is improved.
[0029]
Further, the substance capable of producing conductive carbon by the thermal decomposition may cause decomposition of saccharides, particularly, in a temperature range of 250 ° C. or more and less than 500 ° C., and at least partially at least once in a temperature rising process from 150 ° C. to decomposition. In the case of a saccharide (for example, dextrin or the like) that can generate conductive carbon by being thermally decomposed and fired at a temperature of 500 ° C. or more and 800 ° C. or less, such a saccharide remains In the process of melting and pyrolyzing by heating, it comes into contact with hydrogen and / or moisture (water or steam) at least in a temperature range of 500 ° C. or more, so that conductive carbon deposited on the obtained cathode material particles is deposited. The state is improved to a better state in terms of positive electrode performance.
[0030]
In a ninth aspect of the present invention, there is provided a method of manufacturing a positive electrode material for a secondary battery according to any one of the first to eighth aspects, wherein the positive electrode material contains an alkali metal, a transition metal and oxygen, A compound that can be synthesized by baking the raw material in the absence of gas (hereinafter, may be referred to as “transition metal compound”).
[0031]
When the positive electrode material is such a transition metal compound, when the raw material is added with conductive carbon and / or a substance capable of generating conductive carbon by heating and then fired, firing can be performed in the absence of oxygen gas. In addition, the conductive carbon can be satisfactorily deposited on the surface of the obtained transition metal compound positive electrode material without being burned out. Further, in the case where one or more kinds selected from the group consisting of hydrogen, water and water vapor are added in the absence of oxygen gas and the raw material is fired, the crystal particles of the obtained positive electrode material are finer. In particular, the deposition state of a substance that can generate conductive carbon by thermal decomposition can be favorably controlled in terms of positive electrode performance. In addition, since hydrogen also has a reducing property, it is generated by oxidation due to unavoidable residual oxygen even in firing in the absence of oxygen gas, or oxidized impurities originally present in the raw material (for example, the positive electrode material LiFe2+PO4Deficient oxidized impurity Fe in the atmosphere3+PO4Or oxidized oxide Fe2O3Etc .; the mixture of these generally causes a decrease in the discharge capacity of the battery), which is reduced by the action of hydrogen having a reducing property and changes into the desired cathode material, so that the oxidized impurities are mixed into the cathode material. It can also be prevented. When water or water vapor (hereinafter, referred to as “moisture”) is added, conductive carbon or a substance capable of generating conductive carbon by heating reacts with moisture to generate hydrogen, so that a so-called water gas is used. It produces the same effect as the reaction.
[0032]
Further, depending on the method of selecting the raw material, the transition metal element in the raw material has a higher valence than the transition metal element in the positive electrode material. In some cases, the transition metal element in the positive electrode material may not have the same valence. Even in such a case, it is possible to reduce the necessary and sufficient amount of the generated positive electrode material by adding hydrogen (or hydrogen generated secondarily from moisture) having a necessary and sufficient reducing property to the raw material. Thus, a desired positive electrode material can be obtained. Furthermore, the transition metal element in the raw material has a higher valence than the transition metal element in the positive electrode material, and the same as the transition metal element in the target positive electrode material only by firing in the absence of oxygen gas. Even in the case where it does not have a valency, firing may be performed in the presence of hydrogen to reduce the necessary and sufficient amount to obtain a desired cathode material.
[0033]
Further, according to the invention of the method for producing a cathode material for a secondary battery according to claim 10, the method according to claim 9, wherein the cathode material is M( 1 ) AM( 2 ) XAyOz[Where M( 1 )Represents Li or Na;( 2 )Represents Fe (II), Co (II), Mn (II), Ni (II), V (II) or Cu (II), A represents P or S, and a represents a number selected from 0 to 3. , X represents a number selected from 1 to 2, y represents a number selected from 1 to 3, and z represents a number selected from 4 to 12, respectively] or a complex thereof. It is characterized.
[0034]
Further, the invention of the method for producing a cathode material for a secondary battery according to claim 11 is the method according to claim 9, wherein the cathode material is LiqFePO4, LiqCoPO4Or LiqMnPO4(Where q represents a number selected from 0 to 1) or a complex thereof.
[0035]
For the positive electrode material according to the tenth and eleventh aspects, a compound having a transition element having the same valence as that of the target positive electrode material can be used as a raw material. It is possible to synthesize the desired cathode material by firing in gas). Therefore, even if conductive carbon or a substance capable of generating conductive carbon by thermal decomposition and hydrogen gas having a reducing property are added during firing, it can be prevented from being burned and consumed, Further, the firing can be stably controlled without causing a significant rise in local temperature. In addition, particularly in the case of these positive electrode material systems, when hydrogen or the like is added and calcined, the valence of the central metal element [Fe, Co, Mn, Ni, V, Cu, etc.] is further increased by the reducing power. It is also unlikely that the positive electrode material lowers to produce impurities (for example, a metal state) in the positive electrode material.
[0036]
The invention of a secondary battery according to a twelfth aspect has, as a constituent element, a positive electrode material produced by the method according to any one of the first to eleventh aspects. In the secondary battery using the cathode material manufactured by the method of the present invention, since the crystal particles of the cathode material are finely divided, removal of alkali metal ions such as lithium ions at the interface between the cathode material and the electrolyte is performed. The positive electrode material has a large surface area when subjected to electrochemical oxidation / reduction involving doping / doping, and alkali metal ions can easily enter and exit at the interface between the inside of the particles of the positive electrode material and the electrolyte, so that electrode reaction polarization is suppressed. You. Furthermore, since the contact between the conductivity-imparting material such as carbon black, which is usually mixed with the cathode material, and the cathode material is remarkably improved, the conductivity is improved, the utilization rate of the cathode material as an active material is high, and the cell This is a secondary battery having a small resistance and having significantly improved voltage efficiency and effective battery discharge capacity.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for manufacturing a positive electrode material for a secondary battery according to the present invention is a method for manufacturing a positive electrode material for a secondary battery, in which a raw material is fired to manufacture a positive electrode material. , A second step from normal temperature to a firing completion temperature, and (1) a substance capable of generating conductive carbon by thermal decomposition (hereinafter, referred to as a “conductive carbon precursor”) after the first step of firing. After the addition to the raw material of the first step, or (2) the conductive carbon is added to the raw material before the first step of the firing, and the firing is performed. It is implemented by doing both. In a further particularly preferred embodiment, in addition to the above (1) and / or (2), one or more kinds selected from the group consisting of hydrogen, water and steam are used at least at 500 ° C. or more in the second stage firing. It is better carried out by adding at temperature.
[0038]
In the present invention, “adding” gaseous hydrogen or water vapor includes firing the raw material in the presence of a gas such as hydrogen (that is, in a hydrogen atmosphere or the like).
[0039]
<Positive electrode material>
As the positive electrode material in the present invention, for example, a compound containing an alkali metal, a transition metal, and oxygen, which can be synthesized by firing the raw material in the absence of oxygen gas is preferable. More specifically, as the positive electrode material, for example, M( 1 ) AM( 2 ) XAyOz[Where M( 1 )Represents Li or Na;( 2 )Represents Fe (II), Co (II), Mn (II), Ni (II), V (II) or Cu (II), A represents P or S, and a represents a number selected from 0 to 3. , X represents a number selected from 1 to 2, y represents a number selected from 1 to 3, and z represents a number selected from 4 to 12.], or a complex thereof. Can be. Here, (II), (III), etc. are transition metal elements M(2)And x, y, and z take values that satisfy the stoichiometric (electrical) neutral condition of the material. Also, M(2)Includes a plurality of combinations of the same valence among the transition metal elements exemplified above [for example, M(2)Is Fe (II) Co (II) or Fe (II) Mn (II). At this time, the total content mole number of Fe (II) and Co (II) or Fe (II) and Mn (II) has a ratio of x mole to Li 1 mole (M(1)= Li and a = 1)]].
[0040]
These substances can be generally synthesized from the raw materials by calcination in the absence of oxygen gas (ie, in an atmosphere of an inert gas such as argon, nitrogen, helium, etc.), and have a crystal skeleton structure (spinel type, olivine type). , Nasicon type, etc.) are hardly changed by electrochemical oxidation-reduction, and can be used as a positive electrode material for an alkali metal secondary battery that can be repeatedly charged and discharged. As a positive electrode material, the state of these substances as they are corresponds to the discharge state, and the electrochemical oxidation at the interface with the electrolyte causes the alkali metal M( 1 )Central metal element M(2)Is oxidized and becomes charged. When subjected to electrochemical reduction from the charged state, alkali metal M(1)Central metal element M with re-doping of(2)Is reduced and returns to the original discharge state.
[0041]
Preferred cathode materials include LiqFePO4, LiqCoPO4Or LiqMnPO4(Where q represents a number selected from 0 to 1) or a complex thereof, and in particular, LiqFePO4(Where q has the same meaning as described above) is preferred. These substances can be synthesized from the raw materials by firing at a temperature of about 900 ° C. or less in the absence of oxygen gas. For example, the positive electrodes of lithium-based secondary batteries such as lithium batteries, lithium-ion batteries, and lithium polymer batteries It can be suitably used as a material.
[0042]
<Raw materials>
As the raw material of the positive electrode material, for example, an alkali metal, a compound containing at least the transition metal and oxygen (transition metal compound), or a combination of a plurality of compounds can be used. Usually, the transition metal element in the raw material originally has the same valence as the transition metal element in the positive electrode material, or is fired in the absence of oxygen gas at a predetermined firing temperature and firing time. It is reduced to have the same valence as the transition metal element in the positive electrode material. At this time, when the raw material is fired by adding hydrogen or the like, the crystal particles of the obtained positive electrode material are further refined.
[0043]
More specifically, as a raw material of the positive electrode material, for example, as a raw material for introducing an alkali metal, a hydroxide such as LiOH, NaOH,2CO3, Na2CO3, NaHCO3And chlorides such as LiCl and NaCl, LiNO and the like.3, NaNO3In addition, a decomposition volatile compound (for example, an organic acid salt or the like) in which only an alkali metal remains in the intended positive electrode material, such as a nitrate, etc., is used. When the target cathode material is phosphate, Li3PO4, Li2HPO4, LiH2PO4, Na3PO4, Na2HPO4, NaH2PO4And the like, and when the target cathode material is a sulfate, Li2SO4, LiHSO4, Na2SO4, NaHSO4And the like, such as sulfates and hydrogen sulfates.
[0044]
Examples of raw materials for introducing transition metals such as Fe, Co, Mn, and V include hydroxides, carbonates, bicarbonates, halides such as chlorides, nitrates, and the like. Decomposition volatile compounds that remain in the positive electrode material (for example, organic acid salts such as oxalates and acetates, acetylacetone complexes, and organic complexes such as metallocene complexes) are used. When the target cathode material is phosphate, phosphate or hydrogen phosphate, and when the target cathode material is sulfate, sulfate or hydrogen sulfate, or a transition metal oxo acid salt and ammonium salt, And the like can also be used.
[0045]
When the intended cathode material is a phosphate, phosphoric anhydride P2O5, Phosphoric acid H3PO4, And decomposed volatile phosphates or hydrogen phosphates (for example, (NH4)2HPO4, NH4H2PO4, (NH4)3PO4Ammonium salt, etc.), and when the intended cathode material is a sulfate, sulfuric acid H2SO4, And decomposition volatile volatile sulfate or hydrogen sulfate (for example, NH 4) such that only sulfate ions remain in the target cathode material.4HSO4, (NH4)2SO4Etc.) can also be used.
[0046]
If these raw materials contain undesired elements or substances when remaining in the target positive electrode material, it is necessary that these be decomposed and volatilized during firing. Further, when the target product is, for example, a phosphate, it is needless to say that a non-volatile oxo acid salt other than the phosphate ion should not be used as a raw material. In these cases, the hydrate may be used (for example, LiOH.H2O, Fe3(PO4)2・ 8H2O, etc.), and in the above description, hydrates are all omitted.
[0047]
The raw material of the positive electrode material can be subjected to a process of pulverizing or mixing and kneading the raw materials (including the conductive carbon optionally added) before firing in the first step, if necessary. . When a conductive carbon precursor (a substance that can generate conductive carbon by thermal decomposition) is added after the first-stage firing, treatments such as pulverization, mixing, and kneading can be performed at that time.
[0048]
When sintering the above raw materials in the presence of hydrogen, water, steam, etc., there is usually no particular problem, but the two react rapidly in the early stage of sintering to obtain the desired cathode material. Care must be taken in the selection and combination of the two so that they are not lost or impurities do not occur.
[0049]
<Conductive carbon>
Examples of the conductive carbon used in the present invention include graphitic carbon and amorphous carbon. Here, the graphitic carbon and the amorphous carbon include so-called soot and carbon black.
<Conductive carbon precursor (a substance that can generate conductive carbon by thermal decomposition)>
Examples of the conductive carbon precursor include bitumens (so-called asphalt; including pitches obtained from coal and petroleum sludge), sugars, styrene-divinylbenzene copolymer, ABS resin, phenol resin, and other aromatic materials. And a crosslinked polymer having a group. Among them, bitumens (especially, refined, so-called coal pitch) and sugars are preferred. These bitumens and saccharides generate conductive carbon by thermal decomposition and impart conductivity to the positive electrode material. In particular, refined coal pitch is very inexpensive, melts during firing, spreads uniformly on the surface of the raw material particles during firing, and has a relatively low temperature (650 ° C. to 800 ° C.) through a pyrolysis process. After firing in, carbon deposits exhibiting high conductivity are obtained. In the case of saccharides, since many hydroxyl groups contained in the saccharide strongly interact with the raw material and the surface of the generated positive electrode material particles, they also have a crystal growth suppressing effect. This is because a suppression effect and a conductivity-imparting effect can be obtained.
[0050]
Here, as the refined coal pitch, the softening temperature is in the range of 80 ° C to 350 ° C, the temperature at which weight loss due to thermal decomposition starts is in the range of 350 ° C to 450 ° C, and heating to 500 ° C or more and 800 ° C or less. Those that generate conductive carbon by decomposition and firing are preferably used. In order to further enhance the positive electrode performance, a refined coal pitch having a softening temperature in the range of 200 ° C to 300 ° C is more preferable. It is needless to say that the impurities contained in the refined coal pitch do not adversely affect the positive electrode performance, but it is particularly preferable that the ash content is 5000 ppm or less.
[0051]
Further, the saccharides are decomposed in a temperature range of 250 ° C. or more and less than 500 ° C., and at least partially at least once in a melted state in a temperature rising process from 150 ° C. to the temperature range, and further have a temperature of 500 ° C. to 800 ° C. Saccharides that generate conductive carbon by heating and decomposing and firing at a temperature of not more than ° C are particularly preferred. The saccharide having such a specific property is suitably coated on the surface of the positive electrode material particles undergoing the heating reaction by melting, and the conductive carbon is favorably deposited on the surface of the positive electrode material particles generated after the thermal decomposition. This is because crystal growth is suppressed as described above. Here, in order to generate good conductivity, the thermal decomposition temperature can be set to preferably 570 ° C to 850 ° C, more preferably 650 ° C to 800 ° C, although it depends on the type of the positive electrode material. The saccharide is preferably one that can generate at least 15% by weight or more, preferably 20% by weight or more, of conductive carbon based on the dry weight of the saccharide before calcination by thermal decomposition. This is for facilitating quantitative management of the generated conductive carbon. Examples of the saccharides having the above-mentioned properties include oligosaccharides such as dextrin, and high-molecular polysaccharides such as soluble starch and low-crosslinking starch that is easily melted by heating (for example, starch containing 50% or more amylose). Can be
[0052]
<Addition and firing of conductive carbon precursor etc.>
The conductive carbon, the conductive carbon precursor typified by the refined coal pitch, and the saccharide are mixed and added to the raw material (including the intermediate product) at an appropriate timing. At the time of addition, an operation for sufficiently mixing with the raw materials, for example, pulverization or kneading can be performed as necessary.
[0053]
The conductive carbon or the conductive carbon precursor has a weight concentration of the conductive carbon of 0.1% or more and 10% or less, preferably 0.5% or more and 7% or less, more preferably 1% or more in the resulting positive electrode material. It can be added so as to be 5% or less.
[0054]
The baking can be carried out by selecting an appropriate temperature range and time in a baking process of 300 to 900 ° C., which is generally adopted, depending on a target cathode material. The firing is preferably performed in the absence of oxygen gas to prevent generation of oxidized impurities and promote reduction of remaining oxidized impurities.
[0055]
In the method of the present invention, the calcination is not carried out by a single series of heating and a subsequent temperature holding step, but a calcination step in the first stage at a lower temperature range (usually from room temperature to 300 to 450 ° C.). Temperature range; hereinafter, sometimes referred to as “temporary firing”), and a firing process in the second stage in a higher temperature range [usually from normal temperature to firing completion temperature (about 500 ° C. to 800 ° C.); May be described as two steps]. In this case, the performance of the obtained positive electrode material can be further improved by mixing the conductive carbon and the conductive carbon precursor at the following timing.
[0056]
In the calcination, the raw material of the positive electrode material reacts by heating to an intermediate state leading to the final positive electrode material, and at this time, gas generation is often accompanied by thermal decomposition. The pre-firing end temperature is a temperature at which most of the evolved gas has been released and the reaction to the final product cathode material does not proceed completely (that is, during the second-stage main firing at a higher temperature range). (A temperature that leaves room for re-diffusion and homogenization of the constituent elements in the positive electrode material).
[0057]
In the main firing following the preliminary firing, re-diffusion and homogenization of the constituent elements occur, the reaction to the positive electrode material is completed, and the temperature is raised and the temperature is maintained to a temperature range that minimizes crystal growth due to sintering and the like. Done.
[0058]
When using a conductive carbon precursor, particularly coal pitch or saccharides that melts by heating, it can be added to the raw material before calcination (in this case, a corresponding positive electrode performance improving effect is obtained). In order to obtain a high-performance positive electrode material, it is more preferable to add it to the raw material after the preliminary firing (the state in which most of the gas generation from the raw material has already been completed and become an intermediate product) and then perform the main firing. That is, a step of adding the conductive carbon precursor to the raw material is provided between the preliminary firing and the main firing in the firing process.
[0059]
This prevents substances such as coal pitch and sugars that are melted and thermally decomposed by heating from foaming by the gas generated from the raw material, spreads more uniformly on the surface of the positive electrode material in a molten state, and more uniformly spreads pyrolytic carbon. Can be precipitated.
[0060]
This is for the following reason.
That is, most of the gas generated by the decomposition of the raw material in the preliminary firing is released, so that almost no gas is generated in the final firing, and by adding the conductive carbon precursor at the timing after the preliminary firing, uniformity is obtained. It becomes possible to deposit conductive carbon. For this reason, the surface conductivity of the obtained positive electrode material is further improved, and the contact is firmly stabilized. On the other hand, when the conductive carbon precursor is added to the raw material before calcination, the gas generated vigorously from the raw material during calcination causes the conductive carbon precursor that has not yet been completely thermally decomposed in a molten state. It foams and prevents uniform precipitation.
[0061]
In addition, carbon (conductive carbon; for example, graphitic carbon such as soot and carbon black, amorphous carbon, etc.), which is already conductive and hardly causes weight loss, morphological change or gas generation by heating, is added. In this case, it is preferable that a predetermined amount of these materials be mixed with the raw material before the preliminary firing, and a series of firing processes be started from the preliminary firing. This makes it possible to increase the contact time between the raw material to be heated and reacted and the conductive carbon, and during the diffusion of the constituent elements of the positive electrode material generated by the reaction, the positive electrode material enters the grain boundaries of the conductive carbon. This is because a uniform and stable carbon-cathode material composite can be formed, and sintering of the cathode material particles can be effectively prevented.
[0062]
Also, adding both a conductive carbon precursor, for example, a substance such as coal pitch or saccharides that melts and thermally decomposes upon heating, and conductive carbon is effective in obtaining a positive electrode material having high positive electrode performance. is there. In this case, it is preferable that the conductive carbon be added to the raw material before calcining, and that substances such as coal pitch and saccharides that are melted and thermally decomposed by heating be added to the raw material after calcining.
[0063]
<Supply of hydrogen etc.>
In a further preferred method of the present invention, the raw material is fired while continuously supplying a predetermined amount of hydrogen or moisture (water, steam, etc.) together with an inert gas into the furnace. For example, over the entire time of the firing process, or especially at a temperature from 500 ° C or lower to the completion of firing, preferably at a temperature of 400 ° C or lower to the completion of firing, more preferably at a firing temperature of 300 ° C or lower to the completion of firing, Hydrogen or moisture can be added.
[0064]
In the case of using gaseous hydrogen, depending on the target cathode material, a necessary and sufficient amount of hydrogen is selected by selecting an appropriate temperature range and time in a firing process generally employed at 300 to 900 ° C. It can be supplied, and can effectively cause addition and deoxygenation to oxygen atoms on the surface of the positive electrode material, reduction of the positive electrode material, and the like.
[0065]
In the method of the present invention, hydrogen can be added in a temperature range of at least 500 ° C. or more during the firing in the second stage. For example, during the second stage firing, preferably over a temperature range from 500 ° C. or lower to the firing completion temperature, more preferably from 400 ° C. or lower to the firing completion temperature, preferably from 300 ° C. or lower to the firing completion temperature (for example, It can be added over almost the entire firing period). In this range, suppression of crystal growth occurs effectively, probably for the reason described later. Note that hydrogen can be added during the first stage firing.
[0066]
The volume concentration of hydrogen in the atmosphere in the above temperature range can be about 0.1% to 20%, and preferably 1% to 10%. Thereby, the crystal growth of the positive electrode material composed of the transition metal compound is suitably suppressed.
[0067]
In a study by the present inventors, when a raw material of a positive electrode material is calcined in the absence of oxygen gas while supplying hydrogen and / or moisture, a slight disorder occurs in the crystallinity of particles of the positive electrode material, and the generated 1 The secondary particles were found to be more refined. That is, it was proved that hydrogen and moisture are effective crystal growth inhibitors. Although the mechanism is not yet clear, hydrogen bonds to surface oxygen atoms to form hydroxyl groups on the growth surface of crystal particles of the cathode material that is synthesized and grown during firing, and water molecules generated from the hydroxyl groups. It is considered that, due to elimination of or the like, as a result of disorder or mismatch in the crystal surface structure, grain growth is suppressed.
[0068]
Water has a crystal growth suppressing effect similarly to hydrogen. Although the reason is not clear yet, it is presumed that hydroxyl groups are generated on the surfaces of the raw material and the positive electrode active material as in the case of adding hydrogen gas, and this may be to delay crystal growth. In addition, water vapor generates hydrogen and carbon monoxide by a so-called water gas reaction when it comes into contact with conductive carbon or a substance capable of generating conductive carbon by thermal decomposition at a high temperature (about 500 ° C. or higher). A crystal growth suppressing effect and a reducing effect can be obtained. In other words, when the water is continuously supplied, more hydrogen can be surely and continuously generated by the water gas reaction even in a high temperature range of 500 ° C. or more, and the crystal growth can be suppressed. The action and the reducing action can be maximized.
[0069]
As a method for supplying the water, the water is sprayed into the furnace or preferably pre-vaporized and supplied in the form of steam. The supply temperature range and the supply amount can be the same as in the case of hydrogen. That is, it is preferable that the water is added in a temperature range of at least 500 ° C. or higher and at which the firing is completed during the firing in the second stage. For example, preferably, the temperature ranges from 500 ° C. or lower to the firing completion temperature during the firing in the second stage, more preferably from 400 ° C. or lower to the firing completion temperature, and more preferably from about 300 ° C. to the firing completion temperature (for example, Over substantially the entire firing period). In this range, it is supposed that the addition of hydrogen to the surface oxygen atom of the transition metal compound and the formation of a hydroxyl group are likely to occur satisfactorily, so that the crystal growth is effectively suppressed. Note that hydrogen can be added during the first stage firing.
[0070]
The volume concentration of water vapor in the atmosphere in the above temperature range can be about 0.1% to 20%, and preferably 1% to 10%. Thereby, the crystal growth of the positive electrode material is suitably suppressed.
[0071]
In addition, in the case of firing by adding hydrogen during the main firing, when the added hydrogen (including hydrogen generated from moisture) comes into contact with a conductive carbon precursor such as coal pitch or saccharide which is melted and thermally decomposed by heating. Perhaps, in order to reduce the melt viscosity of the substance, a better condition can be realized in the above-mentioned carbon deposition method. For example, as the conductive carbon precursor, the softening temperature is in the range of 80 ° C. to 350 ° C., the temperature at which the weight loss due to thermal decomposition starts is in the range of 350 ° C. to 450 ° C., and heating to 500 ° C. or more and 800 ° C. or less. When using refined coal pitch that generates conductive carbon by decomposition, when hydrogen (including hydrogen generated from moisture) acts on the coal pitch that has become molten during the firing process, its viscosity decreases and its fluidity improves. A very uniform and thin coating thickness can be realized in the positive electrode material obtained as described above.
[0072]
Therefore, hydrogen (including hydrogen generated from moisture) is at least between 500 ° C. or lower and the firing completion temperature during the main firing, preferably from 400 ° C. or lower to the firing completion temperature, or over the entire area during the main firing. It is good to add. Further, when hydrogen is added even during the pre-baking, effects such as prevention of oxidation of the positive electrode material due to its reducibility can be expected.
[0073]
An example of the outline of the method for producing a positive electrode material according to the present invention is as follows.
First, when the conductive carbon precursor is added after the preliminary calcination in the first stage of the calcination performed in two stages, a step of performing pulverization, mixing, kneading, and the like of the raw materials as necessary, Stage baking step], [addition of conductive carbon precursor (pulverization, mixing, kneading and the like can be performed if necessary)], and [second stage main baking step].
[0074]
In addition, when the conductive carbon is added before the preliminary firing in the first stage of the firing performed in two stages, and when the conductive carbon precursor is added after the temporary firing in the first stage, [ Addition step (pulverization, mixing, kneading, etc. can be performed together with the raw material if necessary)], [First-stage calcination step], [Addition of conductive carbon precursor (if necessary, raw material (Pulverization, mixing, kneading, and the like can be performed together with the (intermediate).)] And [Second-stage main firing step].
[0075]
Further, in the case where conductive carbon is added before the preliminary firing in the first stage of the firing performed in two stages, the step of adding conductive carbon (pulverizing, mixing, kneading, etc. together with the raw material as necessary) Can be performed)], [the first-stage calcination step], [the step of performing the pulverization, mixing, kneading, etc. of the raw material (intermediate) as necessary], and [the second-stage main calcination step] It is performed in order.
[0076]
In the above, when hydrogen or moisture is added, at least a part of the main firing step of the second step, desirably in the entire area of the main firing step of the second step, more preferably, in addition to the temporary firing step of the first step, It is also added in at least a part of the firing step.
[0077]
<Secondary battery>
Examples of the secondary battery using the positive electrode material of the present invention obtained as described above include a metal lithium battery, a lithium ion battery, and a lithium polymer battery.
[0078]
Hereinafter, the basic configuration of an alkaline ion battery will be described using an example in which the alkali metal is lithium. Lithium-ion batteries are commonly referred to as rocking-chair type or shuttlecock (badminton blade) type.+A secondary battery is characterized in that ions reciprocate (see FIG. 1). At the time of charging, Li is placed inside the negative electrode (the current system uses carbon such as graphite).+The ions are inserted to form an intercalation compound (at this time, the anode carbon is reduced and Li+During discharge, the positive electrode (currently the mainstream is a cobalt oxide type, but in FIG. 1, an iron (II) / (III) redox system such as lithium iron phosphate is taken as an example. Li) inside+The ions are inserted to form an iron compound-lithium complex (at this time, iron of the positive electrode is reduced and Li+The oxidized negative electrode returns to graphite or the like). Li+Ions reciprocate through the electrolyte during charge and discharge, and simultaneously carry charge. Examples of the electrolyte include a mixed solution of a cyclic organic solvent such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, and a chain organic solvent such as dimethyl carbonate and ethyl methyl carbonate.6, LiCF3SO3, LiClO4For example, a liquid electrolyte in which electrolyte salts such as those described above are dissolved, a gel electrolyte in which these liquid electrolytes are impregnated in a polymer gel substance, and a solid polymer electrolyte in which partially cross-linked polyethylene oxide is impregnated with the above electrolytes are used. When a liquid electrolyte is used, a porous diaphragm (separator) made of polyolefin or the like is interposed between them so that the positive electrode and the negative electrode are not short-circuited in the battery. For the positive electrode and the negative electrode, a predetermined amount of a conductivity-imparting agent such as carbon black is added to each of the positive electrode material and the negative electrode material. For example, synthetic resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororesin; A binder is formed by adding a binder such as rubber and, if necessary, a polar organic solvent and kneading the mixture to form a thin film. On the other hand, when metal lithium is used for the negative electrode, Li (O) / Li+Change occurs with charging and discharging, and a battery is formed.
[0079]
[Action]
In general, M( 1 ) AM( 2 ) XAyOz[Where M( 1 ), M( 2 ), A, a, x, y, and z have the same meanings as described above), however, when a positive electrode material is synthesized from the raw material by firing, a decomposition gas is generated during the synthesis reaction in the heating and heating process. In most cases, more than 80% of the gas is generated in the temperature range from room temperature to 350 ° C. to 450 ° C. In one embodiment of the present invention, after a conductive carbon precursor (a substance capable of generating conductive carbon by thermal decomposition) is added to the raw material of the positive electrode material after the first stage of firing from room temperature to 350 ° C. to 450 ° C. By performing the second-stage baking, the thermal decomposition of the raw material positive electrode material has already progressed halfway, and since most of the gas generation has already ended, the molten conductive carbon precursor is less likely to foam and is uniform. And is thermally decomposed and fired to deposit carbon in a good condition.
[0080]
In addition, in the study by the present inventors, when the raw material of the positive electrode material is calcined in the absence of oxygen gas while supplying hydrogen and / or moisture, the crystallinity of the resulting positive electrode material particles is slightly disturbed, and It has been found that the primary particles are further refined. That is, it was proved that hydrogen and moisture are effective crystal growth inhibitors. Although the mechanism is not clear yet, on the growth surface of the crystal particles of the cathode material synthesized and grown from the raw material during firing, hydrogen bonds to surface oxygen atoms, or water molecules form a bond between metal and oxygen on the surface. Hydroxyl groups are generated by phenomena such as cutting and addition, and water molecules generated from the hydroxyl groups are desorbed again, resulting in disorder and inconsistency in the crystal surface structure, thereby suppressing the growth of particles. Conceivable.
[0081]
In the case where the conductive carbon precursor is added to the pre-baked raw material and firing is performed, hydrogen (including hydrogen generated by a reaction between water and a conductive carbon precursor such as coal pitch or sugar) is added. As a result, it was found that carbon deposition of the obtained cathode material was uniform, and higher cathode performance was obtained. The mechanism is not yet clear, but by adding the conductive carbon precursor to the calcined raw material, hydrogen is added to the molten conductive carbon precursor to lower its viscosity, This is presumed to be due to the effect of uniformly depositing conductive carbon on the material particles.
[0082]
On the other hand, by adding conductive carbon to the raw material before firing in the first stage and performing firing, the contact time between the raw material to be heated and the conductive carbon can be lengthened, and the positive electrode generated by the reaction during that time Due to the diffusion of the constituent elements of the material, the cathode material enters the grain boundaries of the conductive carbon, and a more uniform and stable carbon-cathode material composite can be formed.
[0083]
By sintering while supplying hydrogen and / or moisture (water or steam) at least at a temperature of 500 ° C. or more in the sintering of the second stage, the primary particles of the positive electrode material generated are efficiently refined, Sintering of the positive electrode material particles can be effectively prevented.
[0084]
【Example】
Next, the present invention will be described in more detail with reference to Examples and the like, but the present invention is not limited by these.
Example 1
(1) Preparation of positive electrode material:
Cathode material LiFePO4Was synthesized by the following procedure.
5.0532 g FeC2O4・ 2H2O (manufactured by Wako Pure Chemical Industries, Ltd.), 3.7094 g of (NH4)2HPO4(Manufactured by Wako Pure Chemical Industries, Ltd.), 1.1784 g of LiOH.H2O (manufactured by Wako Pure Chemical Industries, Ltd.) was added with approximately 1.5 times the volume of ethanol, and the mixture was ground and mixed using a planetary ball mill having 2 mm zirconia beads and a zirconia pot, and then dried at 50 ° C. under reduced pressure. The dried crushed mixture is placed in an alumina crucible, and 5% by volume hydrogen (H2) / 95% by volume argon (Ar) gas was first calcined at 400 ° C. for 5 hours while passing the gas at a flow rate of 200 ml / min. 0.12.17 g of a purified coal pitch having a softening temperature of 200 ° C. [MCP-200 (trade name) manufactured by Adchemco Co., Ltd.] was added to 2.1364 g of the raw material after calcining taken out, pulverized in an agate mortar, and then the same atmosphere. At 775 ° C. for 10 hours (the mixed gas continued to flow from before the start of the temperature increase to during the firing, and further after being allowed to cool). The positive electrode material synthesized in this manner has LiFePO 4 having an olivine type crystal structure by powder X-ray diffraction.4Was identified. On the other hand, the oxidation impurities α-Fe2O3, FePO4And no crystal diffraction peaks of other impurities were observed at all.
[0085]
Although elemental analysis revealed that 3.08% by weight of carbon produced by the thermal decomposition of the refined coal pitch was contained, the diffraction peak of graphite crystals was not recognized by X-ray diffraction. It was presumed that a complex with crystalline carbon was formed. The crystallite size was 64 nm.
[0086]
(2) Preparation of secondary battery:
This positive electrode material, acetylene black [Denka Black (registered trademark); 50% pressed product manufactured by Denki Kagaku Kogyo Co., Ltd.] as a conductivity-imparting material, and unfired PTFE (polytetrafluoroethylene) powder as a binder Are mixed and kneaded so that the weight ratio becomes 70.6 / 24.4 / 5, and the resultant is rolled into a sheet having a thickness of 0.7 mm. did.
[0087]
Thereafter, a metal titanium net and a metal nickel net are spot-welded to a stainless steel coin battery case (model number CR2032) as positive and negative electrode current collectors, and the positive electrode and the metal lithium foil negative electrode are assembled via a porous polyethylene diaphragm, and electrolytically separated. 1M LiPF as liquid6Was filled and sealed with a 1/1 mixed solution of dimethyl carbonate / ethylene carbonate in which was dissolved to prepare a coin-type lithium secondary battery. A series of battery assembly including the positive and negative electrodes, the diaphragm, and the electrolyte was performed in a glove box replaced with argon.
[0088]
For the secondary battery incorporating the cathode material obtained as described above, the current density per apparent area of the cathode pellet was 0.5 mA / cm.2And 1.6 mA / cm2When charge and discharge were repeated in the operating voltage range of 3.0 V to 4.0 V, the average initial discharge capacity of 1 to 20 cycles was as shown in Table 1 (the initial discharge capacity was determined by It was standardized by the amount of the positive electrode active material).
[0089]
Comparative Example 1
Positive electrode material olivine type LiFePO 4 was prepared by the same synthesis method as in Example 1 except that purified coal pitch having a softening temperature of 200 ° C. was added to the raw material before pre-firing and pre-firing and main firing were performed.4Got.
That is, the same amount of FeC as in Example 1 was used.2O4・ 2H2O, (NH4)2HPO4, And LiOH.H2After adding 0.1940 g of refined coal pitch having a softening temperature of 200 ° C. to O, pulverizing / mixing and drying using a planetary ball mill, calcining at 400 ° C. for 5 hours in the same atmosphere in an alumina crucible, and pulverizing Then, main firing was performed at 775 ° C. for 10 hours in the same atmosphere. The obtained positive electrode material showed almost no difference from Example 1 in X-ray diffraction, and had a crystallite size of 64 nm, which was not different from Example 1. From elemental analysis, it was found that 3.04% by weight of carbon produced by the thermal decomposition of the refined coal pitch was contained, and the amount of precipitated carbon was not significantly different from that of Example 1.
[0090]
Using this positive electrode material, a coin-type lithium secondary battery configured in the same manner as in Example 1 was manufactured, and a charge / discharge cycle test was performed in the same manner as in Example 1. Table 1 also shows the average initial discharge capacity for the 1 to 20 cycles.
[0091]
As shown in Table 1, with respect to the initial discharge capacity of Comparative Example 1, the effects of the addition of hydrogen and the addition of the refined coal pitch were recognized, and the initial discharge capacity was considerably large. It turns out to be.
[0092]
From the above, as shown in Example 1, when pre-firing and main-firing the raw material while adding hydrogen, by adding a coal pitch having a softening temperature of 200 ° C to the raw material after the pre-firing, and performing main firing, Cathode material LiFePO4It can be seen that the initial discharge capacity of the secondary battery using the Pb further increased, and the performance was improved.
[0093]
At this time, the precipitated carbon content in the positive electrode materials of Example 1 and Comparative Example 1 was almost the same, and there was no difference in crystallite size. Precipitation of carbon from the coal pitch on the surface of the positive electrode material particles occurred in a better state than in Comparative Example 1, resulting in higher positive electrode performance. This is presumed to be due to the following reasons.
First, while the refined coal pitch having a softening temperature of 200 ° C. is well melted during the heating in the main firing, most of the gas generated by decomposition of the raw materials is released in the pre-firing process, and Since only a small amount of gas from the raw material is generated inside, the melt of the refined coal pitch does not foam. Second, since the added hydrogen reduces the viscosity of the melt of coal pitch, it spreads more evenly on the surface of the generated positive electrode material particles, and is thermally decomposed in that state, so that the conductive carbon becomes very uniform. Precipitates. From the above, it is considered that extremely high positive electrode performance was obtained.
[0094]
Example 2
Cathode material LiFePO4Was synthesized by the following procedure.
5.0161 g of Fe3(PO4)2・ 8H2O (manufactured by Soegawa Riken Co., Ltd.), 1.1579 g of Li3PO4After adding approximately 1.5 times the volume of ethanol to Wako Pure Chemical Industries, Ltd., the mixture was ground and mixed using a planetary ball mill having 2 mm zirconia beads and a zirconia pot, and dried at 50 ° C. under reduced pressure. The dried crushed mixture is placed in an alumina crucible, and 5% by volume hydrogen (H2) / 95% by volume argon (Ar) gas was first calcined at 400 ° C. for 5 hours while passing the gas at a flow rate of 200 ml / min. 0.1879 g of refined coal pitch having a softening temperature of 200 ° C. [MCP-200 (trade name) manufactured by Adchemco Co., Ltd.] was added to 4.0712 g of the taken out calcined raw material, and the mixture was pulverized in an agate mortar and then the same atmosphere. At 725 ° C. for 10 hours (the mixed gas continued to flow from before the start of the temperature increase to during the firing and further after being allowed to cool). The positive electrode material synthesized in this way has LiFePO 4 having an olivine type crystal structure by powder X-ray diffraction4Was identified. On the other hand, the oxidation impurities α-Fe2O3, FePO4And no crystal diffraction peaks of other impurities were observed.
[0095]
Although elemental analysis revealed that carbon produced by the thermal decomposition of the refined coal pitch was contained at 2.98% by weight, no diffraction peak of graphite crystal was observed from X-ray diffraction. It was presumed that a complex with crystalline carbon was formed. The crystallite size was 167 nm.
[0096]
Using this positive electrode material, a positive electrode pellet and a coin-type lithium secondary battery were produced under the same conditions as in Example 1.
[0097]
For the secondary battery incorporating the cathode material obtained as described above, the current density per apparent area of the cathode pellet was 0.5 mA / cm.2And 1.6 mA / cm2When charge and discharge were repeated in the operating voltage range of 3.0 V to 4.0 V, the average initial discharge capacity of 1 to 20 cycles was as shown in Table 1 (the initial discharge capacity was determined by It was standardized by the amount of the positive electrode active material).
[0098]
Comparative Example 2
A positive electrode material olivine type LiFePO 4 was prepared by the same synthesis method as in Example 2, except that purified coal pitch having a softening temperature of 200 ° C. was added to the raw material before pre-firing and pre-firing and main firing were performed.4Got.
That is, the same amount of Fe as in Example 23(PO4)2・ 8H2O (manufactured by Soekawa Riken Co., Ltd.) and Li3PO40.1940 g of refined coal pitch having a softening temperature of 200 ° C. was added to (Wako Pure Chemical Industries, Ltd.), pulverized and mixed using a planetary ball mill, and dried, and then dried at 400 ° C. in the same atmosphere in an alumina crucible. After calcination for 5 hours and pulverization, calcination was further performed at 725 ° C. for 10 hours in the same atmosphere. The obtained positive electrode material showed almost no difference from Example 2 in X-ray diffraction, and had a crystallite size of 162 nm, which was almost no difference from Example 2. Further, from elemental analysis, it was found that carbon produced by thermal decomposition of the refined coal pitch was contained at 3.13% by weight, and the amount of precipitated carbon was not significantly different from that of Example 2.
[0099]
Using this positive electrode material, a coin-type lithium secondary battery configured in the same manner as in Example 2 was manufactured, and a charge / discharge cycle test was performed in the same manner as in Example 2. Table 1 also shows the average initial discharge capacity for the 1 to 20 cycles.
[0100]
As shown in Table 1, with respect to the initial discharge capacity of Comparative Example 2, the effects of hydrogenation and the addition of refined coal pitch are recognized, but in Example 2, the initial discharge capacity is further increased. The reason is considered to be the same as in the first embodiment.
[0101]
Example 3
Cathode material LiFePO4Was synthesized by the following procedure.
The same amount as in Example 2, that is, 5.0161 g of Fe3(PO4)2・ 8H2O (manufactured by Soekawa Rikagaku Co., Ltd.) and 1.1579 g of Li3PO4After adding approximately 1.5 times the volume of ethanol to Wako Pure Chemical Industries, Ltd., the mixture was ground and mixed using a planetary ball mill having 2 mm zirconia beads and a zirconia pot, and dried at 50 ° C. under reduced pressure. The dried crushed mixture is placed in an alumina crucible, and 5% by volume hydrogen (H2) / 95% by volume argon (Ar) gas was first calcined at 400 ° C. for 5 hours while passing the gas at a flow rate of 200 ml / min. 0.5358 g of dextrin (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 4.4762 g of the raw material that had been taken out and calcined, and the mixture was pulverized in an agate mortar, followed by main firing at 725 ° C. for 10 hours in the same atmosphere. (The mixed gas continued to flow from before the start of the temperature increase to during the firing and further after the cooling.). The positive electrode material synthesized in this way has LiFePO 4 having an olivine type crystal structure by powder X-ray diffraction4Was identified. On the other hand, the oxidation impurities α-Fe2O3, FePO4And no crystal diffraction peaks of other impurities were observed.
[0102]
In addition, although elemental analysis revealed that 3.43% by weight of carbon generated by the thermal decomposition of dextrin was contained, no diffraction peak of graphite crystal was observed from X-ray diffraction. It was presumed to form a complex with carbon. The crystallite size was 170 nm.
[0103]
Using this positive electrode material, a positive electrode pellet and a coin-type lithium secondary battery were produced under the same conditions as in Example 1.
[0104]
For the secondary battery incorporating the cathode material obtained as described above, the current density per apparent area of the cathode pellet was 0.5 mA / cm.2And 1.6 mA / cm2When charge and discharge were repeated in the operating voltage range of 3.0 V to 4.0 V, the average initial discharge capacity of 1 to 20 cycles was as shown in Table 1 (the initial discharge capacity was determined by It was standardized by the amount of the positive electrode active material).
[0105]
FIG. 2 shows the charge / discharge characteristics of the coin-type lithium secondary battery at the tenth cycle under the above conditions.
[0106]
Comparative Example 3
A positive electrode material olivine type LiFePO 4 was prepared by the same synthesis method as in Example 3 except that dextrin was added to the raw material before pre-calcination and pre-firing and main firing were performed.4Got.
That is, the same amount of Fe as in Example 33(PO4)2・ 8H2O (manufactured by Soekawa Riken Co., Ltd.) and Li3PO40.6600 g of dextrin was added to the product (manufactured by Wako Pure Chemical Industries, Ltd.), crushed and mixed using a planetary ball mill, dried, and calcined at 400 ° C. for 5 hours in the same atmosphere in an alumina crucible. After the pulverization, firing was further performed in the same atmosphere at 725 ° C. for 10 hours. The obtained positive electrode material showed almost no difference from Example 3 in X-ray diffraction, and had a crystallite size of 165 nm, which was almost no difference from Example 3. From elemental analysis, it was found that carbon produced by thermal decomposition of dextrin was contained at 3.33% by weight, and the amount of deposited carbon was not much different from that of Example 3.
[0107]
Using this positive electrode material, a coin-type lithium secondary battery configured in the same manner as in Example 3 was produced, and a charge / discharge cycle test was performed in the same manner as in Example 3. Table 1 also shows the average initial discharge capacity for the 1 to 20 cycles. FIG. 3 shows the charge / discharge characteristics at the 10th cycle of the coin-type lithium secondary battery.
[0108]
As shown in Table 1, with respect to the initial discharge capacity of Comparative Example 3, the effects of hydrogenation and dextrin addition are recognized, but it is found that in Example 3, the initial discharge capacity is further increased. The reason is considered to be the same as in the first embodiment.
[0109]
Further, comparing FIG. 2 and FIG. 3, the theoretical capacity (170 mAh / g) of Example 3 in which dextrin was added to the raw material after calcination was higher than that of Comparative Example 3 in which dextrin was added to the raw material before calcination. It has a flat region of the charge / discharge voltage up to a value closer to the above, and the difference between the charge voltage and the discharge voltage is sufficiently small, so it is understood that the charge / discharge characteristics are excellent.
[0110]
Example 4
Cathode material LiFePO4Was synthesized by the following procedure.
5.0532 g FeC2O4・ 2H2O (manufactured by Wako Pure Chemical Industries, Ltd.), 3.7094 g of (NH4)2HPO4(Manufactured by Wako Pure Chemical Industries, Ltd.) and 1.1784 g of LiOH.H2To O (manufactured by Wako Pure Chemical Industries, Ltd.), 0.1220 g of acetylene black [Denka Black (registered trademark; 50% pressed product) manufactured by Denki Kagaku Kogyo Co., Ltd.] was added, and ground and mixed using an automatic mortar made of agate. This crushed mixture is placed in an alumina crucible, and 5% by volume hydrogen (H2) / 95% by volume argon (Ar) gas was passed through at a flow rate of 200 ml / min, temporarily calcined at 400 ° C. for 5 hours, taken out and ground in an agate mortar, and further heated to 775 ° C. in the same atmosphere. For 10 hours (the mixed gas continued to flow from before the start of the temperature increase to during the firing and further after being allowed to cool). The positive electrode material synthesized in this way has LiFePO 4 having an olivine type crystal structure by powder X-ray diffraction4Was identified. On the other hand, the oxidation impurities α-Fe2O3, FePO4No crystal diffraction peak was observed.
[0111]
In addition, elemental analysis revealed that carbon derived from acetylene black was contained at 2.84% by weight. The crystallite size was 111 nm.
[0112]
Using this positive electrode material, a positive electrode pellet and a coin-type lithium secondary battery were produced under the same conditions as in Example 1.
[0113]
For the secondary battery incorporating the cathode material obtained as described above, the current density per apparent area of the cathode pellet was 0.5 mA / cm.2And 1.6 mA / cm2When charge and discharge were repeated in the operating voltage range of 3.0 V to 4.0 V, the average initial discharge capacity of 1 to 20 cycles was as shown in Table 1 (the initial discharge capacity was determined by It was standardized by the amount of the positive electrode active material).
[0114]
Comparative Example 4
A positive electrode material olivine type LiFePO 4 was prepared in the same manner as in Example 4 except that the same acetylene black was added to the raw material after the preliminary firing and the preliminary firing and the final firing were performed.4Got.
That is, the same amount of FeC as in Example 4.2O4・ 2H2O, and (NH4)2HPO4, And 1.1784 g of LiOH.H2O is crushed and mixed using an agate mortar, and the crushed and mixed mixture is placed in an alumina crucible and 5% by volume hydrogen (H2) / 95% by volume argon (Ar) gas was first calcined at 400 ° C. for 5 hours while passing the gas at a flow rate of 200 ml / min. 0.0707 g of acetylene black (50% pressed product) was added to 2.1856 g of the pre-baked raw material thus taken out, pulverized and mixed in an automatic mortar made of agate, and further baked at 775 ° C. for 10 hours in the same atmosphere. (The mixed gas continued to flow from before the start of the temperature rise to during the baking and further after being allowed to cool). The positive electrode material synthesized in this way has LiFePO 4 having an olivine type crystal structure by powder X-ray diffraction4Was identified. On the other hand, the oxidation impurities α-Fe2O3, FePO4No crystal diffraction peak was observed.
[0115]
In addition, elemental analysis revealed that carbon derived from acetylene black was contained at 2.76% by weight. The crystallite size was 122 nm. Therefore, the carbon content and the crystallite size were not much different from those in Example 4.
[0116]
Using this positive electrode material, a positive electrode pellet and a coin-type lithium secondary battery were produced under the same conditions as in Example 4, and a charge / discharge cycle test was performed in the same manner as in Example 4. Table 1 also shows the average initial discharge capacity for the 1 to 20 cycles.
[0117]
As shown in Table 1, the initial discharge capacity of Example 4 was relatively good, and the effects of acetylene black as conductive carbon and hydrogenation were observed. Further, in Example 4, the initial discharge capacity was larger than that in Comparative Example 4, and when acetylene black which was already in an infusible state and was carbonized was added, it was added to the raw material before calcining. It can be seen that the performance of the positive electrode is higher when the firing is performed.
[0118]
[Table 1]
Figure 2004063386
[0119]
Example 5
Cathode material LiFePO4Was synthesized by the following procedure.
5.0532 g FeC2O4・ 2H2O (manufactured by Wako Pure Chemical Industries, Ltd.), 3.7094 g of (NH4)2HPO4(Manufactured by Wako Pure Chemical Industries, Ltd.) and 1.1784 g of LiOH.H2O (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed with 0.0610 g of acetylene black [DENKA BLACK (registered trademark; 50% pressed product manufactured by Denki Kagaku Kogyo Co., Ltd.)] and ground and mixed using an automatic mortar made of agate. . This crushed mixture is placed in an alumina crucible, and 5% by volume hydrogen (H2) / 95% by volume argon (Ar) gas was first calcined at 400 ° C. for 5 hours while passing the gas at a flow rate of 200 ml / min. To 2.2430 g of the raw material that had been taken out and calcined, 0.0576 g of a refined coal pitch having a softening temperature of 200 ° C. was added, pulverized and mixed in an agate mortar, and further subjected to main firing at 775 ° C. for 10 hours in the same atmosphere ( The mixed gas continued to flow from before the start of the temperature increase to during the firing and further after the cooling. The positive electrode material synthesized in this way has LiFePO 4 having an olivine type crystal structure by powder X-ray diffraction4Was identified. On the other hand, the oxidation impurities α-Fe2O3, FePO4No crystal diffraction peak was observed.
[0120]
In addition, elemental analysis revealed that carbon generated by thermal decomposition of the refined coal pitch and carbon derived from acetylene black were contained in a total amount of 3.27% by weight. The crystallite size was 74 nm.
[0121]
Using this positive electrode material, a positive electrode pellet and a coin-type lithium secondary battery were produced under the same conditions as in Example 1.
For the secondary battery incorporating the cathode material obtained as described above, the current density per apparent area of the cathode pellet was 0.5 mA / cm.2And 1.6 mA / cm2When charge and discharge were repeated in an operating voltage range of 3.0 V to 4.0 V, the average initial discharge capacity of 1 to 20 cycles was as shown in Table 2 (the initial discharge capacity was determined by It was standardized by the amount of the positive electrode active material). Thus, the positive electrode material obtained by adding acetylene black as conductive carbon before calcination and adding purified coal pitch as a conductive carbon precursor after calcination can reduce the discharge capacity of the secondary battery. It was shown to increase the size and improve the positive electrode performance.
[0122]
[Table 2]
Figure 2004063386
[0123]
Example 6
Cathode material LiFePO4Was synthesized by the following procedure.
5.0161 g of Fe3(PO4)2・ 8H2O (manufactured by Soegawa Riken Co., Ltd.), 1.1579 g of Li3PO4After adding approximately 1.5 times the volume of ethanol to Wako Pure Chemical Industries, Ltd., the mixture was ground and mixed using a planetary ball mill having 2 mm zirconia beads and a zirconia pot, and dried at 50 ° C. under reduced pressure. The dried and ground mixture was placed in an alumina crucible and calcined at 400 ° C. for 5 hours while passing 100% by volume argon (Ar) gas at a flow rate of 200 ml / min. To 4.1248 g of the taken out raw material after calcining, 0.1904 g of a refined coal pitch [MCP-200 (trade name) manufactured by Adchemco Co., Ltd.] having a softening temperature of 200 ° C. was added, followed by pulverization in an agate mortar, followed by the same atmosphere. At 700 ° C. for 10 hours (the gas continued to flow from before the start of the temperature increase, during the firing, and after cooling). The positive electrode material synthesized in this way has LiFePO 4 having an olivine type crystal structure by powder X-ray diffraction4Was identified. On the other hand, the oxidation impurities α-Fe2O3, FePO4And no crystal diffraction peaks of other impurities were observed.
[0124]
In addition, although elemental analysis revealed that 3.16% by weight of carbon produced by the thermal decomposition of the refined coal pitch was contained, the diffraction peak of graphite crystals was not recognized by X-ray diffraction. It was presumed to form a complex with crystalline carbon. The crystallite size was 194 nm.
[0125]
Using this positive electrode material, a positive electrode pellet and a coin-type lithium secondary battery were produced under the same conditions as in Example 1.
[0126]
For the secondary battery incorporating the cathode material obtained as described above, the current density per apparent area of the cathode pellet was 0.5 mA / cm.2And 1.6 mA / cm2When charge and discharge were repeated in the operating voltage range of 3.0 V to 4.0 V, the average initial discharge capacity of 1 to 20 cycles was as shown in Table 3 (the initial discharge capacity was determined by It was standardized by the amount of the positive electrode active material).
[0127]
FIG. 4 shows the charge / discharge characteristics of the coin-type lithium secondary battery at the tenth cycle under the above conditions.
[0128]
Comparative Example 5
A positive electrode material olivine type LiFePO 4 was prepared in the same manner as in Example 6 except that purified coal pitch having a softening temperature of 200 ° C. was added to the raw material before pre-firing and pre-firing and main firing were performed.4Got.
That is, the same amount of Fe as in Example 63(PO4)2・ 8H2O (manufactured by Soekawa Riken Co., Ltd.) and Li3PO40.1940 g of refined coal pitch having a softening temperature of 200 ° C. was added to (Wako Pure Chemical Industries, Ltd.), pulverized and mixed using a planetary ball mill, and dried, and then dried in an alumina crucible under the same argon atmosphere. Temporarily baked at 5 ° C. for 5 hours, crushed, and further baked at 700 ° C. for 10 hours in the same atmosphere. The obtained positive electrode material showed almost no difference from Example 6 in X-ray diffraction, and had a crystallite size of 189 nm, which was almost no difference from Example 6. Further, elemental analysis revealed that carbon produced by the thermal decomposition of the refined coal pitch was contained at 3.04% by weight, and the amount of precipitated carbon was not significantly different from that of Example 6.
[0129]
Using this positive electrode material, a coin-type lithium secondary battery configured in the same manner as in Example 6 was manufactured, and a charge / discharge cycle test was performed in the same manner as in Example 6. Table 3 also shows the average initial discharge capacity for the 1 to 20 cycles.
[0130]
FIG. 5 shows charge / discharge characteristics of the coin-type lithium secondary battery at the 10th cycle under the above conditions.
[0131]
As shown in Table 3, Comparative Example 5 in which refined coal pitch was added to the raw material before calcining also exhibited a relatively large initial discharge capacity, and the effect of adding refined coal pitch was recognized. It can be seen that in Example 6 in which refined coal pitch was added, the initial discharge capacity was further increased.
[0132]
In addition, comparing FIG. 4 with FIG. 5, Example 6 in which the coal pitch was added after the preliminary firing had a flat charge-discharge voltage up to a larger capacity value than Comparative Example 5 in which the coal pitch was added before the preliminary firing. Since it has a range and the difference between the charging voltage and the discharging voltage is small, it is understood that the charging and discharging characteristics are excellent.
[0133]
Therefore, even in a firing atmosphere of 100% argon containing no hydrogen, it was found that higher positive electrode performance can be obtained by adding coal pitch to the raw material after the preliminary firing.
[0134]
When a purified coal pitch having a relatively low viscosity at the time of melting as compared with dextrin is used as in Example 6, even if hydrogen is not necessarily added to the firing atmosphere, the obtained positive electrode material has a relatively large discharge. May indicate capacity.
[0135]
[Table 3]
Figure 2004063386
[0136]
【The invention's effect】
According to the method of the present invention, the crystal growth of primary particles of the positive electrode material can be suppressed, and the crystal particles of the obtained positive electrode material can be made finer. That is, a positive electrode produced by adding a conductive carbon precursor and / or conductive carbon at a predetermined timing and firing the raw material of the positive electrode material while preferably supplying hydrogen and / or moisture (water or steam) is provided. Primary particles of the material can be efficiently refined, and a state in which conductive carbon is uniformly and stably present in the positive electrode material can be created, so that higher positive electrode performance can be obtained.
[0137]
Further, according to the method of the present invention, there is no possibility that the raw material is insufficiently calcined to cause a chemical change to the final product or an intermediate product remains, and the desired positive electrode material is reliably synthesized from the raw material by the calcining. it can.
[0138]
In addition, hydrogen and / or moisture have a strong crystal growth suppressing action and a strong action of improving the state of adhesion of a substance that precipitates conductive carbon by heating to a positive electrode material, and are easy to handle and inexpensive. Therefore, it is efficient.
[0139]
Further, in the secondary battery of the present invention using the positive electrode material manufactured by the above method, since the crystal particles of the positive electrode material are finely divided, the lithium ion and other alkalis are present at the interface between the positive electrode material and the electrolyte. The positive electrode material has a large surface area when subjected to electrochemical oxidation / reduction accompanied by undoping / doping of metal ions, and alkali metal ions can easily enter and exit at the interface between the inside of the particles of the positive electrode material and the electrolyte, so that the electrode reaction Polarization is suppressed. Furthermore, since the contact between the conductivity-imparting material such as carbon black, which is usually mixed with the cathode material, and the cathode material is remarkably improved, the conductivity is improved, the utilization rate of the cathode material as an active material is high, and the cell This is a secondary battery having a small resistance and having significantly improved voltage efficiency and effective battery discharge capacity.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining the charge and discharge behavior of a secondary battery.
FIG. 2 is a graph showing charge / discharge characteristics of a coin-type secondary battery obtained in Example 3.
FIG. 3 is a graph showing charge / discharge characteristics of a coin-type secondary battery obtained in Comparative Example 3.
FIG. 4 is a graph showing charge / discharge characteristics of a coin-type secondary battery obtained in Example 6.
FIG. 5 is a graph showing charge / discharge characteristics of a coin-type secondary battery obtained in Comparative Example 5.

Claims (12)

原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、
焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、
加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行うことを特徴とする、2次電池正極材料の製造方法。
In a method for producing a positive electrode material for a secondary battery in which a raw material is fired to produce a positive electrode material,
The firing process includes a first stage from room temperature to 300 ° C. to 450 ° C., and a second stage from room temperature to a firing completion temperature.
A method for producing a positive electrode material for a secondary battery, comprising: adding a substance capable of generating conductive carbon by thermal decomposition to a raw material after a first-stage firing, and then performing a second-stage firing.
原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、
焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、
導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うとともに、
加熱分解により導電性炭素を生じ得る物質を、第一段階の焼成後の原料に添加した後、第二段階の焼成を行うことを特徴とする、2次電池正極材料の製造方法。
In a method for producing a positive electrode material for a secondary battery in which a raw material is fired to produce a positive electrode material,
The firing process includes a first stage from room temperature to 300 ° C. to 450 ° C., and a second stage from room temperature to a firing completion temperature.
Conductive carbon is added to the raw material before firing in the first stage and firing is performed,
A method for producing a positive electrode material for a secondary battery, comprising: adding a substance capable of generating conductive carbon by thermal decomposition to a raw material after a first-stage firing, and then performing a second-stage firing.
原料を焼成して正極材料を製造する2次電池正極材料の製造方法において、
焼成過程は、常温から300℃ないし450℃に至る第一段階と、常温から焼成完了温度に至る第二段階と、を含み、
導電性炭素を、第一段階の焼成前の原料に添加して焼成を行うことを特徴とする、2次電池正極材料の製造方法。
In a method for producing a positive electrode material for a secondary battery in which a raw material is fired to produce a positive electrode material,
The firing process includes a first stage from room temperature to 300 ° C. to 450 ° C., and a second stage from room temperature to a firing completion temperature.
A method for producing a positive electrode material for a secondary battery, characterized in that conductive carbon is added to a raw material before firing in the first stage and firing is performed.
請求項1または請求項2において、前記加熱分解により導電性炭素を生じ得る物質が、ビチューメン類であることを特徴とする、2次電池正極材料の製造方法。3. The method according to claim 1, wherein the substance capable of generating conductive carbon by thermal decomposition is bitumen. 請求項4において、前記ビチューメン類が、軟化温度80℃から350℃の範囲にあり、加熱分解による減量開始温度が350℃から450℃の範囲にあり、かつ、500℃から800℃の加熱分解・焼成により導電性炭素を析出し得る石炭ピッチであることを特徴とする、2次電池正極材料の製造方法。The bitumen according to claim 4, wherein the bitumen has a softening temperature of 80 ° C to 350 ° C, a weight loss onset temperature by thermal decomposition of 350 ° C to 450 ° C, and a thermal decomposition temperature of 500 ° C to 800 ° C. A method for producing a positive electrode material for a secondary battery, comprising a coal pitch capable of depositing conductive carbon by firing. 請求項1または請求項2において、前記加熱分解により導電性炭素を生じ得る物質が、糖類であることを特徴とする、2次電池正極材料の製造方法。3. The method according to claim 1, wherein the substance capable of generating conductive carbon by thermal decomposition is a saccharide. 請求項6において、前記糖類が、250℃以上500℃未満の温度域において分解を起こし、かつ150℃から分解までの昇温過程において一度は少なくとも部分的に融液状態をとり、さらに500℃以上800℃以下までの加熱分解・焼成によって導電性炭素を生成する糖類であることを特徴とする、2次電池正極材料の製造方法。7. The method according to claim 6, wherein the saccharide decomposes in a temperature range of 250 ° C. or more and less than 500 ° C., and at least partially at least once in a molten state in a temperature rising process from 150 ° C. to 500 ° C. A method for producing a positive electrode material for a secondary battery, wherein the saccharide is a saccharide that generates conductive carbon by heating and decomposing and firing to 800 ° C. or lower. 請求項1から請求項7のいずれか1項において、水素、水および水蒸気よりなる群から選ばれる1種または2種以上を、少なくとも前記第二段階の焼成における500℃以上の温度において添加することを特徴とする、2次電池正極材料の製造方法。The method according to any one of claims 1 to 7, wherein one or more kinds selected from the group consisting of hydrogen, water, and steam are added at least at a temperature of 500 ° C or more in the firing in the second stage. A method for producing a positive electrode material for a secondary battery. 請求項1から請求項8のいずれか1項において、前記正極材料が、アルカリ金属、遷移金属及び酸素を含み、酸素ガス不存在下において前記原料を焼成して合成し得る化合物であることを特徴とする、2次電池正極材料の製造方法。9. The positive electrode material according to claim 1, wherein the positive electrode material is a compound containing an alkali metal, a transition metal, and oxygen and capable of being synthesized by firing the raw material in the absence of oxygen gas. A method for producing a positive electrode material for a secondary battery. 請求項9において、前記正極材料が、M )a )x[ここで、M はLiまたはNaを示し、M はFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)またはCu(II)を示し、AはPまたはSを示し、aは0〜3から選ばれる数、xは1〜2から選ばれる数、yは1〜3から選ばれる数、zは4〜12から選ばれる数、をそれぞれ示す]の一般式で示される物質またはこれらの複合体であることを特徴とする、2次電池正極材料の製造方法。According to claim 9, wherein the positive electrode material, M (1) a M ( 2) x A y O z [ wherein, M (1) represents the Li or Na, M (2) is Fe (II), Co (II), Mn (II), Ni (II), V (II) or Cu (II), A represents P or S, a is a number selected from 0 to 3, x is from 1 to 2 A selected number, y represents a number selected from 1 to 3, and z represents a number selected from 4 to 12], or a complex thereof. A method for producing a battery positive electrode material. 請求項9において、前記正極材料が、LiFePO、LiCoPOまたはLiMnPO(ここで、qは0〜1から選ばれる数を示す)の一般式で示される物質またはこれらの複合体であることを特徴とする、2次電池正極材料の製造方法。According to claim 9, wherein the positive electrode material, Li q FePO 4, Li q CoPO 4 or Li q MnPO 4 (here, q is a number selected from 0 to 1) material or of the general formula of A method for producing a positive electrode material for a secondary battery, which is a composite. 請求項1から請求項11のいずれか1項に記載の方法により製造された正極材料を構成要素に持つことを特徴とする2次電池。A secondary battery comprising, as a constituent element, a positive electrode material produced by the method according to claim 1.
JP2002222870A 2002-07-31 2002-07-31 Method for producing secondary battery positive electrode material and secondary battery Expired - Fee Related JP4297406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222870A JP4297406B2 (en) 2002-07-31 2002-07-31 Method for producing secondary battery positive electrode material and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222870A JP4297406B2 (en) 2002-07-31 2002-07-31 Method for producing secondary battery positive electrode material and secondary battery

Publications (2)

Publication Number Publication Date
JP2004063386A true JP2004063386A (en) 2004-02-26
JP4297406B2 JP4297406B2 (en) 2009-07-15

Family

ID=31942789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222870A Expired - Fee Related JP4297406B2 (en) 2002-07-31 2002-07-31 Method for producing secondary battery positive electrode material and secondary battery

Country Status (1)

Country Link
JP (1) JP4297406B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method
JPWO2003012899A1 (en) * 2001-07-31 2004-11-25 三井造船株式会社 Method for producing positive electrode material for secondary battery and secondary battery
WO2005041327A1 (en) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP2006032241A (en) * 2004-07-21 2006-02-02 Mitsui Mining Co Ltd Positive electrode material for lithium ion secondary cell, its manufacturing method, and lithium ion secondary cell
KR100615859B1 (en) * 2004-10-07 2006-08-25 한국전기연구원 Transition Metal Phosphate Anode Active Material for Lithium Secondary Battery and Manufacturing Method Thereof
JP2006278239A (en) * 2005-03-30 2006-10-12 Sharp Corp Lithium secondary battery, cathode plate for lithium secondary battery, and manufacturing method of those
KR100701248B1 (en) * 2004-11-16 2007-04-06 한국전기연구원 Method for manufacturing lithium transition metal phosphate positive electrode active material for lithium secondary battery coated with carbon
KR100701244B1 (en) * 2004-11-16 2007-04-06 한국전기연구원 Manufacturing method of lithium transition metal phosphate positive electrode active material coated with carbon for lithium secondary battery
US20100028777A1 (en) * 2008-08-04 2010-02-04 Hitachi, Ltd. Nonaqueous Electrolyte Secondary Batteries
WO2010073634A1 (en) * 2008-12-26 2010-07-01 戸田工業株式会社 Polyanionic positive electrode active material for non-aqueous electrolyte secondary battery, process for producing same, and non-aqueous electrolyte secondary battery
WO2011027682A1 (en) * 2009-09-03 2011-03-10 株式会社 村田製作所 Method for producing electrode active material for secondary cell and precursor of electrode active material for secondary cell
JP2011515813A (en) * 2008-03-28 2011-05-19 ビーワイディー カンパニー リミテッド Method for preparing lithium iron phosphate cathode material for lithium secondary battery
WO2011062019A1 (en) 2009-11-18 2011-05-26 電気化学工業株式会社 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
JP2011210376A (en) * 2010-03-28 2011-10-20 Niigata Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li ION BATTERY, AND ITS MANUFACTURING METHOD
JP2011216477A (en) * 2010-03-19 2011-10-27 Semiconductor Energy Lab Co Ltd Power storage device and manufacturing method thereof
WO2012133566A1 (en) 2011-03-28 2012-10-04 兵庫県 Electrode material for secondary battery, method for producing electrode material for secondary battery, and secondary battery
WO2012137572A1 (en) 2011-04-01 2012-10-11 三井造船株式会社 Lithium iron phosphate positive electrode material, and method for producing same
JP2013503101A (en) * 2009-08-28 2013-01-31 プリメット プレシジョン マテリアルズ, インコーポレイテッド Composition and method for producing the same
JP2013514606A (en) * 2009-12-17 2013-04-25 フォステック リチウム インコーポレイテッド Method for improving electrochemical performance of alkali metal oxyanion electrode material, and alkali metal oxyanion electrode material obtained thereby
WO2013073561A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
WO2013073562A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
WO2014073652A1 (en) 2012-11-12 2014-05-15 三井造船株式会社 Electrode material and process for manufacturing electrode material
JP2014118343A (en) * 2012-12-19 2014-06-30 Nichia Chem Ind Ltd Production method of olivine-type lithium transition metal complex oxide
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
US8932762B2 (en) 2008-09-30 2015-01-13 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
JP2016035934A (en) * 2009-05-11 2016-03-17 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲーSued−Chemie Ip Gmbh & Co. Kg Composite material containing lithium-metal mixed oxide
JP2016146302A (en) * 2015-02-09 2016-08-12 三井造船株式会社 Manufacturing method of positive electrode material for lithium secondary battery
US9865876B2 (en) 2013-10-30 2018-01-09 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode, and lithium ion battery
JP2018008877A (en) * 2010-10-08 2018-01-18 株式会社半導体エネルギー研究所 Method for producing lithium iron phosphate
WO2025059891A1 (en) * 2023-09-20 2025-03-27 广东邦普循环科技有限公司 Coated modified positive electrode material and preparation method therefor

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003012899A1 (en) * 2001-07-31 2004-11-25 三井造船株式会社 Method for producing positive electrode material for secondary battery and secondary battery
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method
WO2005041327A1 (en) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP2006032241A (en) * 2004-07-21 2006-02-02 Mitsui Mining Co Ltd Positive electrode material for lithium ion secondary cell, its manufacturing method, and lithium ion secondary cell
KR100615859B1 (en) * 2004-10-07 2006-08-25 한국전기연구원 Transition Metal Phosphate Anode Active Material for Lithium Secondary Battery and Manufacturing Method Thereof
KR100701248B1 (en) * 2004-11-16 2007-04-06 한국전기연구원 Method for manufacturing lithium transition metal phosphate positive electrode active material for lithium secondary battery coated with carbon
KR100701244B1 (en) * 2004-11-16 2007-04-06 한국전기연구원 Manufacturing method of lithium transition metal phosphate positive electrode active material coated with carbon for lithium secondary battery
JP2006278239A (en) * 2005-03-30 2006-10-12 Sharp Corp Lithium secondary battery, cathode plate for lithium secondary battery, and manufacturing method of those
JP2011515813A (en) * 2008-03-28 2011-05-19 ビーワイディー カンパニー リミテッド Method for preparing lithium iron phosphate cathode material for lithium secondary battery
US20100028777A1 (en) * 2008-08-04 2010-02-04 Hitachi, Ltd. Nonaqueous Electrolyte Secondary Batteries
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
US8936871B2 (en) 2008-09-30 2015-01-20 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
US8932762B2 (en) 2008-09-30 2015-01-13 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
JP2010157405A (en) * 2008-12-26 2010-07-15 Toda Kogyo Corp Polyanionic positive electrode active material for nonaqueous electrolyte secondary battery, producing process thereof, and nonaqueous electrolyte secondary battery
WO2010073634A1 (en) * 2008-12-26 2010-07-01 戸田工業株式会社 Polyanionic positive electrode active material for non-aqueous electrolyte secondary battery, process for producing same, and non-aqueous electrolyte secondary battery
JP2016035934A (en) * 2009-05-11 2016-03-17 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲーSued−Chemie Ip Gmbh & Co. Kg Composite material containing lithium-metal mixed oxide
JP2013503101A (en) * 2009-08-28 2013-01-31 プリメット プレシジョン マテリアルズ, インコーポレイテッド Composition and method for producing the same
WO2011027682A1 (en) * 2009-09-03 2011-03-10 株式会社 村田製作所 Method for producing electrode active material for secondary cell and precursor of electrode active material for secondary cell
WO2011062019A1 (en) 2009-11-18 2011-05-26 電気化学工業株式会社 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
KR20120093874A (en) 2009-11-18 2012-08-23 덴키 가가쿠 고교 가부시기가이샤 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
US8597835B2 (en) 2009-11-18 2013-12-03 Denki Kagaku Kogyo Kabushiki Kaisha Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
JP2013514606A (en) * 2009-12-17 2013-04-25 フォステック リチウム インコーポレイテッド Method for improving electrochemical performance of alkali metal oxyanion electrode material, and alkali metal oxyanion electrode material obtained thereby
JP2011216477A (en) * 2010-03-19 2011-10-27 Semiconductor Energy Lab Co Ltd Power storage device and manufacturing method thereof
JP2011210376A (en) * 2010-03-28 2011-10-20 Niigata Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li ION BATTERY, AND ITS MANUFACTURING METHOD
JP2018008877A (en) * 2010-10-08 2018-01-18 株式会社半導体エネルギー研究所 Method for producing lithium iron phosphate
US10135069B2 (en) 2010-10-08 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for manufacturing power storage device
JP2019094259A (en) * 2010-10-08 2019-06-20 株式会社半導体エネルギー研究所 Method for preparing manganese lithium phosphate
WO2012133566A1 (en) 2011-03-28 2012-10-04 兵庫県 Electrode material for secondary battery, method for producing electrode material for secondary battery, and secondary battery
WO2012137572A1 (en) 2011-04-01 2012-10-11 三井造船株式会社 Lithium iron phosphate positive electrode material, and method for producing same
KR20140103117A (en) 2011-11-15 2014-08-25 덴키 가가쿠 고교 가부시기가이샤 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
KR20140096120A (en) 2011-11-15 2014-08-04 덴키 가가쿠 고교 가부시기가이샤 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
WO2013073562A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
WO2013073561A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
US10873073B2 (en) 2011-11-15 2020-12-22 Denka Company Limited Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
WO2014073652A1 (en) 2012-11-12 2014-05-15 三井造船株式会社 Electrode material and process for manufacturing electrode material
JP2014118343A (en) * 2012-12-19 2014-06-30 Nichia Chem Ind Ltd Production method of olivine-type lithium transition metal complex oxide
US9865876B2 (en) 2013-10-30 2018-01-09 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode, and lithium ion battery
JP2016146302A (en) * 2015-02-09 2016-08-12 三井造船株式会社 Manufacturing method of positive electrode material for lithium secondary battery
WO2025059891A1 (en) * 2023-09-20 2025-03-27 广东邦普循环科技有限公司 Coated modified positive electrode material and preparation method therefor

Also Published As

Publication number Publication date
JP4297406B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4297406B2 (en) Method for producing secondary battery positive electrode material and secondary battery
JP4297429B2 (en) Method for producing secondary battery positive electrode material and secondary battery
JP4448976B2 (en) Method for producing positive electrode material for secondary battery, and secondary battery
CN100340018C (en) Lithium transition-metal phosphate powder for rechargeable batteries
KR101169082B1 (en) Positive electrode material for secondary battery, process for producing the same and secondary battery
KR101084076B1 (en) Cathode active material for lithium secondary battery and lithium secondary battery comprising same
WO2005041327A1 (en) Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
KR102182358B1 (en) Positive electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR101622352B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4475882B2 (en) Method for producing positive electrode material for secondary battery, and secondary battery
CN111668462B (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4120860B2 (en) Method for producing positive electrode material for secondary battery, and secondary battery
JP5324731B2 (en) Method for producing secondary battery positive electrode material and secondary battery
JP3616253B2 (en) Method for producing negative electrode material for non-aqueous secondary battery
EP4589686A1 (en) Cathode active material, cathode for lithium secondary battery, and lithium secondary battery
JP2017095326A (en) M-CONTAINING SILICON MATERIAL, WHERE M IS AT LEAST ONE ELEMENT SELECTED FROM Sn, Pb, Sb, Bi, In, Zn OR Au, AND MANUFACTURING METHOD THEREFOR
HK1075329B (en) Method of producing secondary battery anode material, and secondary battery
HK1080610B (en) Method for producing cathode material for secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

R150 Certificate of patent or registration of utility model

Ref document number: 4297406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees