JP2004063343A - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- JP2004063343A JP2004063343A JP2002221878A JP2002221878A JP2004063343A JP 2004063343 A JP2004063343 A JP 2004063343A JP 2002221878 A JP2002221878 A JP 2002221878A JP 2002221878 A JP2002221878 A JP 2002221878A JP 2004063343 A JP2004063343 A JP 2004063343A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- powder
- active material
- ion secondary
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 34
- 238000004804 winding Methods 0.000 claims abstract description 44
- 239000011149 active material Substances 0.000 claims abstract description 40
- 239000000843 powder Substances 0.000 claims abstract description 39
- 239000011230 binding agent Substances 0.000 claims abstract description 30
- 229920005989 resin Polymers 0.000 claims abstract description 29
- 239000011347 resin Substances 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 abstract description 23
- 239000011248 coating agent Substances 0.000 abstract description 22
- 230000003405 preventing effect Effects 0.000 abstract description 5
- 239000011888 foil Substances 0.000 description 15
- -1 polyethylene Polymers 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- 230000020169 heat generation Effects 0.000 description 9
- 239000011255 nonaqueous electrolyte Substances 0.000 description 9
- 206010052428 Wound Diseases 0.000 description 8
- 208000027418 Wounds and injury Diseases 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 239000006255 coating slurry Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 208000012266 Needlestick injury Diseases 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 1
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Inorganic materials [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical class [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- VKJKOXNPYVUXNC-UHFFFAOYSA-K trilithium;trioxido(oxo)-$l^{5}-arsane Chemical compound [Li+].[Li+].[Li+].[O-][As]([O-])([O-])=O VKJKOXNPYVUXNC-UHFFFAOYSA-K 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池は、炭素材料のようなリチウムイオンをドープ且つ脱ドープが可能な物質を負極として使用し、正極にリチウムコバルト複合酸化物のようなリチウム複合酸化物を使用し、電池電圧が高く、高エネルギー密度を有し、さらに優れたサイクル特性を有する。
【0003】
前記リチウムイオン二次電池、例えば角形リチウムイオン二次電池は、帯状の正極集電体の両面に活物質層を形成した正極と、帯状の負極集電体の両面に活物質層を形成した負極とを、ポリエチレンフィルムのようなセパレータを介して捲回して電極群とし、この電極群の上下に絶縁体を載置した状態で容器に収納した構造を有する。なお、充電時にリチウムが析出して内部で短絡を生じるのを防止するために、正極にセパレータを介在して対向する負極の幅および長さを大きくするのが一般的である。
【0004】
このようなリチウムイオン二次電池では、前記電極群の捲き始め端部および捲き終わり端部の少なくとも一方に位置する正極の集電体の露出面と負極の活物質層とがセパレータを介して対向する部分において、極めてまれなケースであるが、それら正負極がセパレータを貫通して短絡を生じ、高温の発熱に至る問題があった。
【0005】
本発明者らは、前記発熱に至った二次電池を解体し、その発熱部分を調べた結果、何らかの原因で薄いセパレータに傷が発生し、正極の集電体の露出面と負極の活物質層との間で小さな内部短絡が起き、そのジュール発熱によりセパレータがさらに損傷して大きな電流が流れて、発熱に至ったものと推定するに至った。このような発熱は、正極の集電体材料であるアルミニウムをも溶解するほどの高温に達する場合があり、電池使用者に火傷を負わせる危険性がある。
【0006】
リチウムイオン二次電池において、発熱に至る事故が極めて稀であってもユーザにとっては重大で未然に回避することが切望されている。
【0007】
ところで、特開平7−130389号公報には帯状の金属箔の表裏両面に正極に対向する負極の長さが該正極より大きくなるように電極合剤が塗布された正極及び負極をセパレータを介して対向させて捲回してなる巻回電極体を有し、捲回電極体の捲き始め及び/又は捲き終わりに位置する負極又は正極の非対向部分の少なくとも一部に電解液に不溶の絶縁性樹脂を被覆することによって、前記被覆部分を外部との接触が絶たれた状態に維持できるため、電池の充電時において電解液中のリチウムイオンとの反応に殆ど関与しない状態で保持して前記被覆部分へのリチウムイオンの拡散を防止したリチウムイオン二次電池のような非水電解液二次電池が開示されている。
【0008】
このような非水電解液二次電池において、捲回電極体の捲き始め及び/又は捲き終わりに位置する負極と正極との間で例えば比較的大きな電極片のような異物によるセパレータおよび絶縁性樹脂被膜の突き抜け等により短絡を生じる場合がある。このとき、前記被膜は絶縁性樹脂により作られているため、前記短絡に伴うジュール発熱により溶融してその絶縁機能が喪失され、同時にセパレータをも損傷し、大きな電流が流れて前述したような発熱事故に至る問題があった。
【0009】
一方、特開平10−241655号公報には正極、負極およびこれらの間に介在されるセパレータを備えた電池において、前記正極の活物質層および前記負極の活物質層の少なくともいずれか一方に特定の比表面積を持つ絶縁性物質粒子とこの粒子同士を結合するバインダからなる絶縁性物質粒子集合体層を固定してセパレータを形成した電池が記載されている。
【0010】
【発明が解決しようとする課題】
本発明は、電極群の捲き始め端部および捲き終わり端部の少なくとも一方に位置する正極および負極の間で短絡が生じても高温の発熱に至る事故を未然に防止することが可能なリチウムイオン二次電池を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明に係るリチウムイオン二次電池は、集電体に活物質層を形成した正極および集電体に活物質層を形成した負極をそれらの間にセパレータを介在して捲回した電極群を備え、
前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における他方の極に対向する露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定したことを特徴とするものである。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0013】
本発明のリチウムイオン二次電池は、集電体に活物質層を形成した正極および集電体に活物質層を形成した負極をそれらの間にセパレータを介在して捲回した電極群を備える。この電極群は、例えば金属製外装缶のような外装部材に非水電解液とともに収納されている。
【0014】
前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定している。ここで、露出面の一部とは他方の極に対向する領域を少なくとも含むことを意味する。
【0015】
次に、前記正極、負極、セパレータ、非水系電解液および絶縁性被膜を説明する。
【0016】
1)正極
この正極は、集電体の例えば両面に活物質および結着剤を含む活物質層を形成した構造を有する。なお、正極は集電体の片面に正極活物質層を担持させた構造であってもよい。
【0017】
前記集電体としては、例えばアルミニウム箔、アルミニウムメッシュ等を挙げることができる。
【0018】
前記活物質としては、エネルギー密度の高いリチウム複合酸化物が好ましい。具体的には、LiCoO2、LiNiO2、LixNiyCo1−yO2(ただし、xは、電池の充電状態で異なり、通常は0<x<1、0.7<y<1.0である。)、LixCoySnzO2(ただし、x、y、zは各々0.05≦x≦1.10、0.85≦y≦1.00、0.001≦z≦0.10の数を表す。)が挙げられる。リチウム複合酸化物は、リチウムの炭酸塩、硝酸塩、酸化物あるいは水酸化物と、コバルト、マンガンあるいはニッケル等の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所定の組成で混合粉砕し、酸素雰囲気下で600〜1000℃の温度で焼成することにより得ることができる。
【0019】
前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0020】
前記正極活物質層には、例えばアセチレンブラック、カーボンブラック、黒鉛等の導電剤を含有することを許容する。
【0021】
2)負極
この負極は、集電体の例えば両面に活物質および結着剤を含む活物質層を形成した構造を有する。なお、負極は集電体の片面に負極活物質層を担持させた構造であってもよい。
【0022】
前記集電体としては、例えば銅、ニッケルの箔またはメッシュ等を挙げることができる。
【0023】
前記活物質は、リチウムをドープ・脱ドープできるものであればよく、例えばグラファイト類、コークス類(石油コークス、ピッチコークス、ニードルコークス等)、熱分解炭素類、有機高分子化合物の焼成体(フェノール樹脂等を適切な温度で焼成し、炭化したもの)あるいはポリアセチレン、ポリピロール等があげられる。
【0024】
前記結着剤としては、例えばポリテトラフルオロエチレン、ポリビニリデンフルオロライド、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエンゴム、カルボキシメチルセルロース等の結着剤を含有することが好ましい。
【0025】
3)セパレータ
このセパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
【0026】
4)非水系電解液
この非水電解液は、電解質を非水溶媒で溶解した組成を有する。
【0027】
電解質としては、例えば過塩素酸リチウム(LiClO4)、四フッ化硼酸リチウム(LiBF4)、六フッ化燐酸リチウム(LiPF6)、六フッ化砒素酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、LiN(CF3SO2)2、リチウムビス[5−フルオロ−2オラト−1−ベンゼン−スルホナト(2−)]ボレート等を用いることができる。
【0028】
非水溶媒としては、例えばγ−ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル等を用いることができ、2種類以上混合して使用してもよい。
【0029】
前記非水溶媒中の前記電解質の濃度は、0.5モル/L以上にすることが好ましい。
【0030】
5)絶縁性被膜
この絶縁性被膜は、500℃以上の耐熱性を有する粉体がバインダ樹脂で結着した構造を有する。
【0031】
前記粉体としては、例えばアルミナ、シリカ、ゼオライトおよび酸化チタンから選ばれる少なくとも1つの無機物粉体を挙げることができる。
【0032】
前記粉体は、平均粒径が30μm以下、より好ましくは0.005〜5μmであることが望ましい。前記粉体の平均粒径が30μmを超えると、塗布工程での絶縁性被膜の形成が困難になるばかりか、電極群を作製する際に適した比較的薄い絶縁性被膜の形成が困難になる虞がある。
【0033】
前記粉体として球状のものを用いる場合には、塗工スラリの流動性の向上や塗布装置の磨耗防止を図ることが可能になる。この球状粉体としては、アルミナやシリカなどが市販されている。
【0034】
前記バインダ樹脂としては、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0035】
前記絶縁性被膜を構成する前記粉体と前記バインダ樹脂の混合比率は、重量割合で前記粉体100に対して前記バインダ樹脂が5〜35であることが好ましい。前記バインダ樹脂の混合比率を5未満にすると、前記絶縁性被膜を塗布手段で形成する際の塗布性が低下したり、前記絶縁性被膜の強度が低下したり、前記集電体の露出面への前記絶縁性被膜の固定性が低下する虞がある。一方、前記バインダ樹脂の混合比率が35を超えると、前記絶縁性被膜に占めるバインダ樹脂量が多くなりすぎて正負極化での短絡に伴うジュール発熱による絶縁性被膜の溶融、損傷を防ぐことが困難になる虞がある。
【0036】
前記絶縁性被膜は、5μm以上、前記活物質層の厚さ以下の厚さを有することが好ましい。前記絶縁性被膜の厚さを5μm未満にすると、塗布ばらつきにより正負極間での短絡に伴うジュール発熱による絶縁性被膜の溶融、損傷を防ぐことが困難になる虞がある。一方、前記絶縁性被膜の厚さが活物質層の厚さを超えると、電極群を作製するための捲回操作に支障をきたしたり、それら活物質層の電極群に占める割合が低下する虞がある。最も好ましい前記絶縁性被膜の厚さは、20〜60μmである。
【0037】
前記絶縁性被膜は、例えば次のような方法により形成される。
【0038】
前記粉体と前記バインダ樹脂を適切な溶媒、例えばN−メチルピロリドンに添加し、撹拌して前記バインダ樹脂を溶解すると共に前記粉体をバインダ樹脂溶解液に分散させて塗工スラリを調製する。つづいて、塗工スラリを前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分の少なくとも一方の集電体における露出面の一部または全部にスプレーするか、刷毛塗りした後、乾燥して絶縁性被膜を形成し固定する。
【0039】
なお、製造工程数の削減を図るために前記正極または負極の作製に際し、集電体に活物質および結着剤を含む塗工スラリを塗布する工程に引き続いて前記粉体およびバインダ樹脂を含む塗工スラリを集電体の露出面にスプレー法により塗布し、その後これらの塗工膜を乾燥して活物質層および絶縁性被膜を形成することが好ましい。
【0040】
次に、本発明に係るリチウムイオン二次電池、例えば角形リチウムイオン二次電池を図1および図2を参照して説明する。
【0041】
金属からなる有底矩形筒状をなし、例えばアルミニウムから作られる外装缶1は、例えば正極端子を兼ね、底部内面に絶縁フィルム2が配置されている。電極群3は、前記外装缶1内に収納されている。この電極群3は、図1および図2に示すように例えば銅箔のような集電体4の両面に活物質層5を形成した構造の負極6とセパレータ7と例えばアルミニウム箔のような集電体8の両面に活物質層9を形成した構造の正極10とを前記正極10が最外周に位置するように渦巻状に捲回した後、扁平状にプレス成形することにより作製したものである。なお、前記負極6は捲き始め端部付近において前記集電体4の外面のみに活物質層5が形成されている。また、前記正極10は捲き終わり端部付近において前記集電体8の内面のみに活物質層9が形成され、この箇所の集電体8外面部分で前記外装缶1の内面と直接接触している。
【0042】
前記電極群3の捲き始め端部および捲き終わり端部に位置する前記負極6および正極10の集電体4,8はいずれも活物質層5,9が形成されずに露出されている。500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜11a,11b,11c,11dは例えば前記正極10の集電体8における露出面8a,8b,8c,8dの一部にそれぞれ固定されている。なお、前記絶縁性被膜は前記露出面の全部を覆うように固定してもよい。
【0043】
中心付近にリード取出穴を有する例えば合成樹脂からなるスペーサ12は、前記外装缶1内の前記電極群3上に配置されている。アルミニウムのような金属からなる蓋体13は、前記外装缶1の上端開口部に例えばレーザ溶接により気密に接合されている。前記蓋体13の中心付近には、負極端子の取出し穴が開口されている。負極端子14は、前記蓋体13の穴9にガラス製または樹脂製の絶縁材(図示せず)を介してハーメティックシールされている。前記負極端子14下端面には、リード15が接続され、かつこのリード15の他端は前記電極群3の負極6に接続されている。
【0044】
なお、本発明に係るリチウムイオン二次電池は前述した角形リチウムイオン二次電池に限らず、円筒形リチウムイオン二次電池、ラミネートフィルムを外装部材として用いる薄形リチウムイオン二次電池にも同様に適用できる。
【0045】
以上説明したように本発明によれば、電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定しているため、前記電極群の捲き始め端部および捲き終わり端部の例えば正極の集電体の露出面と負極の活物質層とがセパレータを介して対向する部分でセパレータを貫通して微小短絡を生じても、高温の発熱に至る事故を防ぐことができる。
【0046】
すなわち、極めて稀なケースであるが、前記電極群の捲き始め端部および捲き終わり端部の例えば正極の集電体の露出面と負極の活物質層とがセパレータを介して対向する部分でセパレータを貫通して微小な内部短絡を生じる。このとき、前記露出面の一部または全部に固定された絶縁性被膜は500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された構造を有するため、前記短絡に伴うジュール発熱による前記絶縁性被膜の溶融を前記粉体で食い止め、溶融に起因する絶縁性被膜の孔開きの拡大を防ぐことができる。その結果、正極の集電体と負極の活物質層との間の短絡パスとして作用する正極の集電体の表出面積を初期の微小短絡の状態にほぼ維持できるため、正負極間で大きな電流が流れるのを防止できる。したがって、前述したよう全体が発熱に至る事故を未然に防止で、信頼性の高いリチウムイオン二次電池を実現できる。
【0047】
特に、前記絶縁被膜を構成する粉体として、平均粒径が30μm以下のものを用いれば、その粉体がより均一に分散された絶縁性被膜を前記集電体の露出面に固定できるため、塗布加工性が良好で前述した短絡に伴うジュール発熱による前記絶縁性被膜の溶融を前記粉体で効果的に食い止め、溶融に起因する絶縁性被膜の孔開きの拡大をより確実に防ぐことができる。
【0048】
また、前記絶縁性被膜を構成する前記粉体と前記バインダ樹脂の混合比率を重量割合で前記粉体100に対して前記バインダ樹脂が5〜35になるように設定すれば、前記粉体が高密度で分散された絶縁性被膜を前記集電体の露出面に強固に固定できるため、前述した短絡に伴うジュール発熱による前記絶縁性被膜の溶融を前記粉体で一層効果的に食い止め、溶融に起因する絶縁性被膜の孔開きの拡大をさらに確実に防ぐことができる。
【0049】
【実施例】
以下、本発明の実施例を前述した図1に示すような角型非水電解液二次電池を参照して詳細に説明する。
【0050】
(実施例1)
<正極の作製>
まず、活物質としての平均粒径5μmのLiCoO2粉末89重量部、導電フィラーとしてのグラファイト粉末(ロンザ社製商品名;KS6)8重量部および結着剤としてのポリフッ化ビニリデン樹脂(呉羽化学社製商品名;#1100)3重量部をN−メチルピロリドン50重量部にデイゾルバーおよびビーズミルを用いて攪拌、混合して活物質含有ペーストを調製した。
【0051】
また、平均粒径0.5μmのアルミナ粉体100重量部およびポリフッ化ビニリデン(PVdF)15重量部をN−メチルピロリドン235重量部にデイゾルバーおよびビーズミルを用いて攪拌、混合して絶縁性被膜用ペーストを調製した。
【0052】
次いで、前記集電体であるAl箔の両端を除く両面に前記活物質含有ペーストをそれぞれ塗工した。なお、電極群としたときの捲き終わり端部付近ではAl箔の片面のみ塗工した。つづいて、電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する前記Al箔の露出面に前記絶縁性被膜用ペーストをそれぞれ塗工した。この後、乾燥させて前記Al箔に片面厚さが80μmの活物質層および厚さ5μmの絶縁性被膜を形成し、さらにプレス、スリット加工を施してリール状正極を作製した。
【0053】
<負極の作製>
まず、グラファイト(ロンザ社製商品名;KS15)100重量部にスチレン/ブタジエンラテックス(旭化成社製商品名;L1571、固形分48重量%)4.2重量部、カルボキシメチルセルロース(第一製薬社製商品名;BSH12)の水溶液(固形分1重量%)130重量部および水20重量部を添加し、混合してペーストを調製した。つづいて、このペーストを集電体であるCu箔に塗工し、乾燥して片面厚さが90μmの活物質層を形成した後、プレス、スリット加工を施してリール状負極を作製した。
【0054】
次いで、前記正負極の間にポリエチレン製微多孔膜を挟んだ後、捲回機により渦巻き状に捲回し、つづいて、この円筒状物を10kg/cm2の圧力で圧縮して偏平状電極群を作製した。ひきつづき、有底矩形筒状をなすアルミニウム製外装缶内に前記偏平状電極群を挿入し、前記外装缶の開口部にアルミニウム製蓋体をレーザ溶接し、さらに非水電解液を前記アルミニウム製蓋体に開口した注入口を通して注入し、封止することにより前述した図1および図2に示す構造の角型リチウムイオン二次電池を組立てた。なお、前記非水電解液としてはエチレンカーボネートとメチルエチルカーボネートを1:2の体積比で混合した混合溶媒に六フッ化燐酸リチウム(LiPF6)を1モル/L溶解した組成のものを用いた。
【0055】
(実施例2〜16)
電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する前記Al箔の露出面に下記表1に示す組成、形態の絶縁性被膜を形成、固定した以外、実施例1と同様で、前述した図1および図2に示す構造の15種の角型リチウムイオン二次電池を組立てた。
【0056】
なお、粉体としてゼオライト、酸化チタンを用いた実施例13〜16ではAl箔に予め活物質層を形成した後、絶縁性被膜用ペーストの塗工を刷毛塗りを採用して行なった。
【0057】
(比較例1)
電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する正極の集電体であるAl箔の露出面に絶縁性被膜を形成しない以外、実施例1と同様で、前述した図1に示す構造の角型リチウムイオン二次電池を組立てた。
【0058】
(比較例2)
電極群としたときの捲き始め端部および捲き終わり端部で負極と対向する正極の集電体であるAl箔の露出面に下記表1に示す組成、形態の絶縁性被膜を形成、固定した以外、実施例1と同様で、前述した図1に示す構造の角型リチウムイオン二次電池を組立てた。このとき、絶縁性被膜を形成するための塗工は、刷毛塗りを採用した。
【0059】
得られた実施例1〜16および比較例1,2の二次電池について、外部から針を外装缶を貫通して電極群の捲き終わり端部に位置する正極の集電体の露出部と負極の活物質層とに亘って差し込み強制的に短絡を起こさせた。このとき、正極の集電体であるAl箔に溶融が認められる場合を発熱防止効果がなし、正極の集電体(Al箔)に溶融が認められない場合を発熱防止効果が有り、として評価した。この結果を下記表1に併記する。
【0060】
【表1】
【0061】
前記表1から明らかなように絶縁性被膜として500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された構造のものを用いた実施例1〜16の二次電池は、針刺しによる強制短絡を起こさせても集電体であるAl箔が溶融せず、優れた信頼性、安全性を有することがわかる。
【0062】
これに対し、正極の集電体の露出面に絶縁性被膜を形成しない比較例1の二次電池は勿論、正極の集電体の露出面に絶縁性被膜を固定した場合でも、その絶縁性被膜がポリフッ化ビニリデン(PVdF)のみの電解液に不溶の絶縁性樹脂から作られる比較例2では針刺しによる強制短絡を起こさせると、集電体であるAl箔が溶融し、信頼性、安全性が劣ることがわかる。
【0063】
なお、本発明に用いる絶縁性被膜は正極、セパレータ、負極を交互に積み重ねる構造のリチウムイオン二次電池にも適用することが可能である。
【0064】
【発明の効果】
以上詳述したように、本発明によれば電極群の捲き始め端部および捲き終わり端部の少なくとも一方に位置する正極および負極の間で短絡が生じても高温の発熱に至る事故を未然に防止することが可能な信頼性、安全性の高いリチウムイオン二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る角形リチウムイオン二次電池を示す部分切欠斜視図。
【図2】図1の二次電池に組み込まれる電極群の横断面図。
【符号の説明】
1…外装缶、
3…電極群、
4,8…集電体、
5,9…活物質層、
6…負極、
7…セパレータ、
8a,8b,8c,8d…正極集電体の露出面、
10…正極、
11a,11b,11c,11d…絶縁性被膜、
13…蓋体、
14…負極端子。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium ion secondary battery.
[0002]
[Prior art]
A lithium ion secondary battery uses a lithium ion-doped and undoped substance such as a carbon material as a negative electrode, uses a lithium composite oxide such as a lithium-cobalt composite oxide for a positive electrode, and increases the battery voltage. High, high energy density, and excellent cycle characteristics.
[0003]
The lithium ion secondary battery, for example, a prismatic lithium ion secondary battery, a positive electrode in which an active material layer is formed on both sides of a belt-shaped positive electrode current collector, and a negative electrode in which an active material layer is formed on both sides of a band-shaped negative electrode current collector Are wound through a separator such as a polyethylene film to form an electrode group, and are housed in a container with insulators placed above and below the electrode group. In order to prevent lithium from depositing during charging and causing a short circuit inside, it is common to increase the width and length of the negative electrode facing the positive electrode with a separator interposed therebetween.
[0004]
In such a lithium ion secondary battery, the exposed surface of the positive electrode current collector located at at least one of the winding start end and the winding end end of the electrode group faces the negative electrode active material layer via a separator. However, in a very rare case, the positive and negative electrodes penetrate the separator to cause a short circuit, which causes a problem of high-temperature heat generation.
[0005]
The present inventors disassemble the secondary battery which has generated the heat, and as a result of examining the heat generation portion, a thin separator is scratched for some reason, and the exposed surface of the positive electrode current collector and the negative electrode active material A small internal short circuit occurred between the layers, and the Joule heat generated further damaged the separator, causing a large current to flow, which led to the presumption of heat generation. Such heat generation may reach a temperature high enough to dissolve aluminum, which is a current collector material of the positive electrode, and may cause burns to battery users.
[0006]
In a lithium ion secondary battery, even if an accident that causes heat generation is extremely rare, it is urgently required for a user to avoid it seriously.
[0007]
Japanese Patent Application Laid-Open No. Hei 7-130389 discloses that a positive electrode and a negative electrode coated with an electrode mixture such that the length of a negative electrode facing the positive electrode is larger than the positive electrode on both front and back surfaces of a strip-shaped metal foil via a separator. An insulative resin insoluble in the electrolyte at least at a part of the non-opposite portion of the negative electrode or the positive electrode located at the beginning and / or end of winding of the wound electrode body, the wound electrode body being wound opposite to the wound electrode body; By coating, the coated portion can be maintained in a state where the contact with the outside is cut off, so that when the battery is charged, the coated portion is held in a state where it hardly participates in the reaction with lithium ions in the electrolytic solution. A non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that prevents diffusion of lithium ions into the battery is disclosed.
[0008]
In such a non-aqueous electrolyte secondary battery, the separator and insulating resin between the negative electrode and the positive electrode located at the beginning and / or end of winding of the wound electrode body, for example, due to foreign substances such as relatively large electrode pieces. A short circuit may occur due to penetration of the coating. At this time, since the coating is made of an insulating resin, it melts due to Joule heat generated by the short circuit, and its insulation function is lost.At the same time, the separator is also damaged, and a large current flows to generate heat as described above. There was a problem that led to an accident.
[0009]
On the other hand, Japanese Patent Application Laid-Open No. 10-241655 discloses a battery provided with a positive electrode, a negative electrode and a separator interposed therebetween, wherein at least one of the positive electrode active material layer and the negative electrode active material layer has a specific shape. A battery is described in which a separator is formed by fixing an insulating material particle aggregate layer made of insulating material particles having a specific surface area and a binder that binds the particles.
[0010]
[Problems to be solved by the invention]
The present invention provides a lithium ion capable of preventing an accident leading to high-temperature heat generation even if a short circuit occurs between a positive electrode and a negative electrode located at at least one of a winding start end and a winding end end of an electrode group. It is intended to provide a secondary battery.
[0011]
[Means for Solving the Problems]
The lithium ion secondary battery according to the present invention includes an electrode group formed by winding a positive electrode having an active material layer formed on a current collector and a negative electrode having an active material layer formed on a current collector with a separator interposed therebetween. Prepare
In the positive and negative electrode portions located at the winding start end and the winding end end of the electrode group, a part or all of the exposed surface of at least one current collector facing the other pole has a heat resistance of 500 ° C. or more. The powder having the insulating film fixed with an insulating film bound by a binder resin.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0013]
The lithium ion secondary battery of the present invention includes an electrode group in which a positive electrode having an active material layer formed on a current collector and a negative electrode having an active material layer formed on a current collector are wound with a separator interposed therebetween. . The electrode group is housed together with a non-aqueous electrolyte in an exterior member such as a metal exterior can.
[0014]
In the positive and negative electrode portions located at the winding start end and winding end end of the electrode group, at least a part or all of the exposed surface of the current collector has a powder having a heat resistance of 500 ° C. or more as a binder resin. The insulating coating bound by is fixed. Here, a part of the exposed surface means that it includes at least a region facing the other pole.
[0015]
Next, the positive electrode, the negative electrode, the separator, the non-aqueous electrolyte, and the insulating film will be described.
[0016]
1) Positive electrode This positive electrode has a structure in which, for example, an active material layer containing an active material and a binder is formed on both surfaces of a current collector. Note that the positive electrode may have a structure in which a positive electrode active material layer is supported on one surface of a current collector.
[0017]
Examples of the current collector include an aluminum foil and an aluminum mesh.
[0018]
As the active material, a lithium composite oxide having a high energy density is preferable. Specifically, LiCoO 2 , LiNiO 2 , Li x Ni y Co 1-y O 2 (where x varies depending on the state of charge of the battery and is usually 0 <x <1, 0.7 <y <1. 0), Li x Co y Sn z O 2 (where x, y, and z are respectively 0.05 ≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00, 0.001 ≦ z ≦ 0.10). Lithium composite oxide is obtained by mixing and grinding lithium carbonate, nitrate, oxide or hydroxide and carbonate, nitrate, oxide or hydroxide such as cobalt, manganese or nickel with a predetermined composition, It can be obtained by firing at a temperature of 600 to 1000 ° C. in an atmosphere.
[0019]
As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR) and the like can be used.
[0020]
The positive electrode active material layer is allowed to contain a conductive agent such as acetylene black, carbon black, and graphite.
[0021]
2) Negative electrode This negative electrode has a structure in which an active material layer containing an active material and a binder is formed on, for example, both surfaces of a current collector. Note that the negative electrode may have a structure in which a negative electrode active material layer is supported on one surface of a current collector.
[0022]
Examples of the current collector include a copper or nickel foil or a mesh.
[0023]
The active material may be any material capable of doping / dedoping lithium. Examples of the active material include graphites, cokes (petroleum coke, pitch coke, needle coke, etc.), pyrolytic carbons, and fired products of organic polymer compounds (phenols). Resin or the like is fired at an appropriate temperature and carbonized) or polyacetylene, polypyrrole, or the like.
[0024]
The binder preferably contains, for example, a binder such as polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene copolymer, styrene-butadiene rubber, and carboxymethyl cellulose.
[0025]
3) Separator As the separator, for example, a porous polyethylene film or a porous polypropylene film having a thickness of 20 to 30 μm can be used.
[0026]
4) Non-aqueous electrolyte This non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.
[0027]
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium arsenate hexafluoride (LiAsF 6 ), and lithium trifluoromethanesulfonate. (LiCF 3 SO 3 ), LiN (CF 3 SO 2 ) 2 , lithium bis [5-fluoro-2-olato-1-benzene-sulfonato (2-)] borate and the like can be used.
[0028]
Examples of the non-aqueous solvent include γ-butyrolactone, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxolan, methylsulfolane, Acetonitrile, propyl nitrile, anisole, acetate, propionate and the like can be used, and two or more kinds may be used in combination.
[0029]
It is preferable that the concentration of the electrolyte in the non-aqueous solvent is 0.5 mol / L or more.
[0030]
5) Insulating film This insulating film has a structure in which powder having heat resistance of 500 ° C. or more is bound with a binder resin.
[0031]
Examples of the powder include at least one inorganic powder selected from alumina, silica, zeolite, and titanium oxide.
[0032]
The powder preferably has an average particle size of 30 μm or less, more preferably 0.005 to 5 μm. When the average particle size of the powder exceeds 30 μm, it becomes difficult not only to form an insulating film in the coating step but also to form a relatively thin insulating film suitable for producing an electrode group. There is a fear.
[0033]
When a spherical powder is used as the powder, it is possible to improve the fluidity of the coating slurry and prevent wear of the coating device. As the spherical powder, alumina, silica and the like are commercially available.
[0034]
Examples of the binder resin include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR).
[0035]
It is preferable that the mixing ratio of the powder and the binder resin constituting the insulating film is 5 to 35 with respect to the powder 100 in a weight ratio. When the mixing ratio of the binder resin is less than 5, the applicability in forming the insulating film by a coating unit is reduced, the strength of the insulating film is reduced, or the exposed surface of the current collector is reduced. There is a concern that the fixability of the insulating coating may be reduced. On the other hand, if the mixing ratio of the binder resin exceeds 35, the amount of the binder resin occupying the insulating film becomes too large, and the melting and damage of the insulating film due to Joule heat accompanying a short circuit in positive and negative electrodes can be prevented. This may be difficult.
[0036]
The insulating film preferably has a thickness of 5 μm or more and a thickness of the active material layer or less. If the thickness of the insulating film is less than 5 μm, it may be difficult to prevent melting and damage of the insulating film due to Joule heat due to short circuit between the positive and negative electrodes due to coating variation. On the other hand, when the thickness of the insulating film exceeds the thickness of the active material layer, it may hinder the winding operation for forming the electrode group, or the ratio of the active material layer to the electrode group may decrease. There is. The most preferable thickness of the insulating film is 20 to 60 μm.
[0037]
The insulating film is formed, for example, by the following method.
[0038]
The coating powder is prepared by adding the powder and the binder resin to an appropriate solvent, for example, N-methylpyrrolidone, and stirring to dissolve the binder resin and disperse the powder in a binder resin solution. Subsequently, the coating slurry was sprayed or brush-coated on at least one of the exposed surfaces of the current collector of at least one of the positive and negative electrode portions located at the winding start end and the winding end end of the electrode group. After that, it is dried to form an insulating film and fixed.
[0039]
In order to reduce the number of manufacturing steps, in preparing the positive electrode or the negative electrode, following the step of applying the coating slurry containing the active material and the binder to the current collector, the coating containing the powder and the binder resin is performed. It is preferable to apply a working slurry to the exposed surface of the current collector by a spray method, and then dry these coated films to form an active material layer and an insulating film.
[0040]
Next, a lithium ion secondary battery according to the present invention, for example, a prismatic lithium ion secondary battery will be described with reference to FIGS.
[0041]
An
[0042]
The
[0043]
A
[0044]
In addition, the lithium ion secondary battery according to the present invention is not limited to the above-described square lithium ion secondary battery, but similarly applies to a cylindrical lithium ion secondary battery and a thin lithium ion secondary battery using a laminate film as an exterior member. Applicable.
[0045]
As described above, according to the present invention, in the positive and negative electrode portions located at the winding start end and the winding end end of the electrode group, at least a part or all of the exposed surface of the current collector has a temperature of 500 ° C. or higher. Since the heat-resistant powder fixes the insulating film bound by the binder resin, the exposed surface of the current collector of the positive electrode and the negative electrode at the winding start end and the winding end end of the electrode group, for example. Even if a small short circuit occurs through the separator at the portion where the active material layer and the active material layer face each other with the separator interposed therebetween, an accident leading to high-temperature heat generation can be prevented.
[0046]
That is, in a very rare case, the separator is formed at a portion where the exposed surface of the current collector of the positive electrode and the active material layer of the negative electrode at the winding start end and the winding end end of the electrode group face each other with the separator interposed therebetween. To cause a small internal short circuit. At this time, since the insulating coating fixed to part or all of the exposed surface has a structure in which powder having heat resistance of 500 ° C. or more is bound with a binder resin, The melting of the insulating film is prevented by the powder, and the expansion of the opening of the insulating film due to the melting can be prevented. As a result, the exposed area of the current collector of the positive electrode, which acts as a short-circuit path between the current collector of the positive electrode and the active material layer of the negative electrode, can be almost maintained in the initial minute short-circuit state. Current can be prevented from flowing. Therefore, as described above, it is possible to realize a highly reliable lithium ion secondary battery by preventing an accident that causes the entire device to generate heat.
[0047]
In particular, when the powder constituting the insulating coating has an average particle size of 30 μm or less, the insulating coating in which the powder is more uniformly dispersed can be fixed to the exposed surface of the current collector, The coating processability is good, and the melting of the insulating film due to the Joule heat caused by the short circuit described above is effectively stopped by the powder, and the expansion of the pores of the insulating film due to the melting can be more reliably prevented. .
[0048]
Further, if the mixing ratio of the powder and the binder resin constituting the insulating coating is set in a weight ratio so that the binder resin is 5 to 35 with respect to the powder 100, the powder is high. Since the insulating film dispersed at a high density can be firmly fixed to the exposed surface of the current collector, the melting of the insulating film due to the Joule heat caused by the short circuit is more effectively stopped by the powder, and the melting is performed. It is possible to more reliably prevent the resulting increase in the number of holes in the insulating film.
[0049]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the above-described square nonaqueous electrolyte secondary battery as shown in FIG.
[0050]
(Example 1)
<Preparation of positive electrode>
First, 89 parts by weight of LiCoO 2 powder having an average particle size of 5 μm as an active material, 8 parts by weight of graphite powder (trade name, KS6, manufactured by Lonza) as a conductive filler, and polyvinylidene fluoride resin (Kureha Chemical Co., Ltd.) as a binder (Trade name; # 1100) 3 parts by weight was stirred and mixed with 50 parts by weight of N-methylpyrrolidone using a dissolver and a bead mill to prepare an active material-containing paste.
[0051]
Also, 100 parts by weight of alumina powder having an average particle size of 0.5 μm and 15 parts by weight of polyvinylidene fluoride (PVdF) were stirred and mixed with 235 parts by weight of N-methylpyrrolidone using a dissolver and a bead mill to form a paste for insulating coating. Was prepared.
[0052]
Next, the active material-containing paste was applied to both sides of the Al foil as the current collector except for both ends. In the vicinity of the end of winding when the electrode group was formed, only one surface of the Al foil was coated. Subsequently, the paste for the insulating film was applied to the exposed surface of the Al foil facing the negative electrode at the winding start end and the winding end end of the electrode group. Thereafter, the resultant was dried to form an active material layer having a thickness of 80 μm on one side and an insulating film having a thickness of 5 μm on the Al foil, followed by pressing and slitting to produce a reel-shaped positive electrode.
[0053]
<Preparation of negative electrode>
First, 4.2 parts by weight of styrene / butadiene latex (trade name: L1571, solid content 48% by weight), 100 parts by weight of graphite (trade name, manufactured by Lonza; KS15), and carboxymethyl cellulose (trade name, manufactured by Daiichi Pharmaceutical Co., Ltd.) Name: BSH12) (130 parts by weight of an aqueous solution (solid content: 1% by weight) and water (20 parts by weight) were added and mixed to prepare a paste. Subsequently, this paste was applied to a Cu foil as a current collector, dried to form an active material layer having a thickness of 90 μm on one side, and then subjected to pressing and slitting to produce a reel-shaped negative electrode.
[0054]
Next, after sandwiching a polyethylene microporous membrane between the positive and negative electrodes, the resultant is wound spirally with a winding machine, and then the cylindrical material is compressed at a pressure of 10 kg / cm 2 to form a flat electrode group. Was prepared. Subsequently, the flat electrode group was inserted into an aluminum outer can having a bottomed rectangular cylindrical shape, an aluminum lid was laser-welded to the opening of the outer can, and a non-aqueous electrolyte was further applied to the aluminum lid. The rectangular lithium ion secondary battery having the above-described structure shown in FIGS. 1 and 2 was assembled by injecting and sealing through an injection port opened in the body. The non-aqueous electrolyte used had a composition in which lithium hexafluorophosphate (LiPF 6 ) was dissolved at 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 2. .
[0055]
(Examples 2 to 16)
Example 1 was the same as Example 1 except that an insulating film having the composition and form shown in Table 1 below was formed and fixed on the exposed surface of the Al foil facing the negative electrode at the winding start end and winding end when the electrode group was formed. Similarly, 15 types of prismatic lithium ion secondary batteries having the structure shown in FIGS. 1 and 2 were assembled.
[0056]
In Examples 13 to 16 using zeolite and titanium oxide as the powder, the active material layer was previously formed on the Al foil, and then the paste for the insulating film was applied by brush coating.
[0057]
(Comparative Example 1)
The same as in Example 1 except that an insulating film was not formed on the exposed surface of the Al foil which was the current collector of the positive electrode facing the negative electrode at the winding start end and the winding end when forming the electrode group, and was described above. A prismatic lithium ion secondary battery having the structure shown in FIG. 1 was assembled.
[0058]
(Comparative Example 2)
An insulating film having the composition and form shown in Table 1 below was formed and fixed on the exposed surface of the Al foil which was the current collector of the positive electrode facing the negative electrode at the winding start end and the winding end end when the electrode group was formed. A rectangular lithium ion secondary battery having the structure shown in FIG. 1 described above was assembled in the same manner as in Example 1 except for the above. At this time, a brush coating was adopted as a coating for forming the insulating film.
[0059]
Regarding the obtained secondary batteries of Examples 1 to 16 and Comparative Examples 1 and 2, the exposed portion of the current collector of the positive electrode and the negative electrode located at the end of winding of the electrode group by passing a needle from the outside through the outer can and the negative electrode And the active material layer was forcibly short-circuited. At this time, the case where melting was recognized in the Al foil as the current collector of the positive electrode was evaluated as having no heat generation preventing effect, and the case where no melting was recognized in the current collector of the positive electrode (Al foil) was evaluated as having the heat generating preventing effect. did. The results are shown in Table 1 below.
[0060]
[Table 1]
[0061]
As is apparent from Table 1, the secondary batteries of Examples 1 to 16 using the structure in which the powder having the heat resistance of 500 ° C. or more was bound with the binder resin as the insulating film were forced by needle stick. It can be seen that even if a short circuit occurs, the Al foil as the current collector does not melt, and has excellent reliability and safety.
[0062]
On the other hand, not only the secondary battery of Comparative Example 1 in which the insulating film is not formed on the exposed surface of the current collector of the positive electrode, but also the insulating property even when the insulating film is fixed on the exposed surface of the current collector of the positive electrode. In Comparative Example 2 in which the coating is made of an insulating resin insoluble in only an electrolyte solution of polyvinylidene fluoride (PVdF), when a forced short circuit is caused by needle stick, the Al foil serving as the current collector is melted, resulting in reliability and safety. Is inferior.
[0063]
The insulating film used in the present invention can be applied to a lithium ion secondary battery having a structure in which a positive electrode, a separator, and a negative electrode are alternately stacked.
[0064]
【The invention's effect】
As described above in detail, according to the present invention, even if a short circuit occurs between the positive electrode and the negative electrode located at least one of the winding start end and the winding end end of the electrode group, an accident leading to high-temperature heat generation can be prevented. A highly reliable and safe lithium ion secondary battery that can be prevented can be provided.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a prismatic lithium ion secondary battery according to the present invention.
FIG. 2 is a cross-sectional view of an electrode group incorporated in the secondary battery of FIG.
[Explanation of symbols]
1 ... Outer can,
3 ... electrode group,
4,8 ... current collector,
5, 9 ... active material layer,
6 ... negative electrode,
7 ... separator,
8a, 8b, 8c, 8d ... exposed surface of the positive electrode current collector,
10 ... positive electrode,
11a, 11b, 11c, 11d ... insulating film,
13 ... lid,
14 ... Negative electrode terminal.
Claims (6)
前記電極群の捲き始め端部および捲き終わり端部に位置する前記正負極部分において、少なくとも一方の集電体における露出面の一部または全部に500℃以上の耐熱性を有する粉体がバインダ樹脂で結着された絶縁性被膜を固定したことを特徴とするリチウムイオン二次電池。A positive electrode having an active material layer formed on the current collector and a negative electrode having an active material layer formed on the current collector are provided with an electrode group wound with a separator interposed therebetween.
In the positive and negative electrode portions located at the winding start end and winding end end of the electrode group, at least a part or all of the exposed surface of the current collector has a powder having a heat resistance of 500 ° C. or more as a binder resin. A lithium ion secondary battery, wherein the insulating film bound by the method is fixed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221878A JP4177612B2 (en) | 2002-07-30 | 2002-07-30 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221878A JP4177612B2 (en) | 2002-07-30 | 2002-07-30 | Lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004063343A true JP2004063343A (en) | 2004-02-26 |
JP4177612B2 JP4177612B2 (en) | 2008-11-05 |
Family
ID=31942069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002221878A Expired - Lifetime JP4177612B2 (en) | 2002-07-30 | 2002-07-30 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4177612B2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005302634A (en) * | 2004-04-15 | 2005-10-27 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
JP2005310619A (en) * | 2004-04-23 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
JP2006120604A (en) * | 2004-09-03 | 2006-05-11 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
JP2006210209A (en) * | 2005-01-31 | 2006-08-10 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
JP2007257848A (en) * | 2006-03-20 | 2007-10-04 | Hitachi Maxell Ltd | Nonaqueous electrolyte secondary battery |
US20080026293A1 (en) * | 2006-07-26 | 2008-01-31 | Eveready Battery Company, Inc. | Lithium-iron disulfide cylindrical cell with modified positive electrode |
CN100367559C (en) * | 2004-09-03 | 2008-02-06 | 松下电器产业株式会社 | Lithium-ion secondary battery |
JP2008226785A (en) * | 2007-03-15 | 2008-09-25 | Hitachi Maxell Ltd | Non-aqueous electrolyte battery |
CN100433417C (en) * | 2005-01-12 | 2008-11-12 | 松下电器产业株式会社 | Lithium secondary battery and method for producing the same |
JP2008277207A (en) * | 2007-05-07 | 2008-11-13 | Sony Corp | Wound nonaqueous electrolyte secondary battery |
CN100466363C (en) * | 2004-11-08 | 2009-03-04 | 索尼株式会社 | Secondary battery |
US7638230B2 (en) | 2004-09-03 | 2009-12-29 | Panasonic Corporation | Lithium ion secondary battery |
JP2011146252A (en) * | 2010-01-14 | 2011-07-28 | Hitachi Maxell Ltd | Nonaqueous electrolyte battery and method of manufacturing the same |
US8088517B2 (en) * | 2003-12-12 | 2012-01-03 | Panasonic Corporation | Lithium ion secondary battery and production method thereof |
KR101222405B1 (en) * | 2006-03-28 | 2013-01-17 | 삼성에스디아이 주식회사 | rechargeable battery having jelly roll type electrode assembly |
WO2013089428A1 (en) * | 2011-12-14 | 2013-06-20 | 주식회사 엘지화학 | Electrode for an electrochemical device, and electrochemical device having same |
JP2013528913A (en) * | 2010-06-17 | 2013-07-11 | リンダ, フェイ ナザール, | Multi-component electrode for rechargeable batteries |
US8986891B2 (en) | 2010-11-05 | 2015-03-24 | Gs Yuasa International Ltd. | Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device |
WO2015076574A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Separator and secondary battery using same |
WO2015076573A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Secondary battery |
WO2015076575A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Separator and secondary battery using same |
WO2015093852A1 (en) * | 2013-12-17 | 2015-06-25 | 주식회사 엘지화학 | Separation membrane for electrochemical device |
WO2015105335A1 (en) * | 2014-01-13 | 2015-07-16 | 주식회사 엘지화학 | Battery module assembly comprising unit modules |
US9099757B2 (en) | 2010-09-03 | 2015-08-04 | Gs Yuasa International Ltd. | Battery |
JP2017135110A (en) * | 2017-02-07 | 2017-08-03 | エルジー ケム. エルティーディ. | Electrode assembly and electrochemical device including the same |
US10020481B2 (en) | 2013-11-21 | 2018-07-10 | Samsung Sdi Co., Ltd. | Separator and secondary battery using same |
CN111554982A (en) * | 2020-05-11 | 2020-08-18 | 珠海冠宇电池股份有限公司 | Winding battery cell, preparation method thereof, battery and electronic product |
CN111725552A (en) * | 2020-08-05 | 2020-09-29 | 广州鹏辉能源科技股份有限公司 | Button cell and manufacturing method thereof |
JP2020173943A (en) * | 2019-04-09 | 2020-10-22 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP2020173941A (en) * | 2019-04-09 | 2020-10-22 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
CN112713363A (en) * | 2019-10-25 | 2021-04-27 | 尼吉康株式会社 | Wound secondary battery and method for manufacturing same |
CN112864546A (en) * | 2019-11-26 | 2021-05-28 | 丰田自动车株式会社 | Nonaqueous electrolyte secondary battery |
CN112886066A (en) * | 2021-01-13 | 2021-06-01 | 上海瑞浦青创新能源有限公司 | Lithium ion battery and protection method for improving safety performance of lithium ion battery |
WO2025142517A1 (en) * | 2023-12-26 | 2025-07-03 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683735B (en) | 2011-03-16 | 2017-03-01 | 株式会社杰士汤浅国际 | Charge storage element |
EP4567936A2 (en) | 2017-03-06 | 2025-06-11 | Ricoh Company, Ltd. | Film electrode, resin layer forming ink and electrode printing method |
JP7279298B2 (en) | 2017-03-06 | 2023-05-23 | 株式会社リコー | electrode |
-
2002
- 2002-07-30 JP JP2002221878A patent/JP4177612B2/en not_active Expired - Lifetime
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8088517B2 (en) * | 2003-12-12 | 2012-01-03 | Panasonic Corporation | Lithium ion secondary battery and production method thereof |
JP2005302634A (en) * | 2004-04-15 | 2005-10-27 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
JP2005310619A (en) * | 2004-04-23 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
JP2006120604A (en) * | 2004-09-03 | 2006-05-11 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
US7638230B2 (en) | 2004-09-03 | 2009-12-29 | Panasonic Corporation | Lithium ion secondary battery |
CN100367559C (en) * | 2004-09-03 | 2008-02-06 | 松下电器产业株式会社 | Lithium-ion secondary battery |
CN100466363C (en) * | 2004-11-08 | 2009-03-04 | 索尼株式会社 | Secondary battery |
US7811696B2 (en) | 2005-01-12 | 2010-10-12 | Panasonic Corporation | Lithium secondary battery and method for producing the same |
CN100433417C (en) * | 2005-01-12 | 2008-11-12 | 松下电器产业株式会社 | Lithium secondary battery and method for producing the same |
JP2006210209A (en) * | 2005-01-31 | 2006-08-10 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
JP2007257848A (en) * | 2006-03-20 | 2007-10-04 | Hitachi Maxell Ltd | Nonaqueous electrolyte secondary battery |
KR101222405B1 (en) * | 2006-03-28 | 2013-01-17 | 삼성에스디아이 주식회사 | rechargeable battery having jelly roll type electrode assembly |
US20080026293A1 (en) * | 2006-07-26 | 2008-01-31 | Eveready Battery Company, Inc. | Lithium-iron disulfide cylindrical cell with modified positive electrode |
JP2008226785A (en) * | 2007-03-15 | 2008-09-25 | Hitachi Maxell Ltd | Non-aqueous electrolyte battery |
US8815427B2 (en) | 2007-05-07 | 2014-08-26 | Sony Corporation | Spirally wound non-aqueous electrolyte secondary battery having insulating members |
US8137832B2 (en) | 2007-05-07 | 2012-03-20 | Sony Corporation | Spirally wound non-aqueous electrolyte secondary battery having insulating members |
US10116006B2 (en) | 2007-05-07 | 2018-10-30 | Murata Manufacturing Co., Ltd. | Spirally would non-aqueous electrolyte secondary battery having insulating members |
JP2008277207A (en) * | 2007-05-07 | 2008-11-13 | Sony Corp | Wound nonaqueous electrolyte secondary battery |
JP2011146252A (en) * | 2010-01-14 | 2011-07-28 | Hitachi Maxell Ltd | Nonaqueous electrolyte battery and method of manufacturing the same |
JP2013528913A (en) * | 2010-06-17 | 2013-07-11 | リンダ, フェイ ナザール, | Multi-component electrode for rechargeable batteries |
US9099757B2 (en) | 2010-09-03 | 2015-08-04 | Gs Yuasa International Ltd. | Battery |
US8986891B2 (en) | 2010-11-05 | 2015-03-24 | Gs Yuasa International Ltd. | Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device |
US9450236B2 (en) | 2010-11-05 | 2016-09-20 | Gs Yuasa International Ltd. | Electrode for electricity-storing device, electricity storing device employing such electrode, and method of manufacturing electrode for electricity-storing device |
WO2013089428A1 (en) * | 2011-12-14 | 2013-06-20 | 주식회사 엘지화학 | Electrode for an electrochemical device, and electrochemical device having same |
CN103988341A (en) * | 2011-12-14 | 2014-08-13 | 株式会社Lg化学 | Electrode for electrochemical device and electrochemical device comprising same |
US9741986B2 (en) | 2011-12-14 | 2017-08-22 | Lg Chem, Ltd. | Electrode for electrochemical device and electrochemical device comprising the same |
WO2015076575A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Separator and secondary battery using same |
US10658641B2 (en) | 2013-11-21 | 2020-05-19 | Samsung Sdi Co., Ltd. | Separator comprising coating layer, and battery using same |
WO2015076574A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Separator and secondary battery using same |
US10020481B2 (en) | 2013-11-21 | 2018-07-10 | Samsung Sdi Co., Ltd. | Separator and secondary battery using same |
WO2015076573A1 (en) * | 2013-11-21 | 2015-05-28 | 삼성에스디아이 주식회사 | Secondary battery |
WO2015093852A1 (en) * | 2013-12-17 | 2015-06-25 | 주식회사 엘지화학 | Separation membrane for electrochemical device |
US9905824B2 (en) | 2013-12-17 | 2018-02-27 | Lg Chem, Ltd. | Separator for electrochemical device |
WO2015105335A1 (en) * | 2014-01-13 | 2015-07-16 | 주식회사 엘지화학 | Battery module assembly comprising unit modules |
CN105917495A (en) * | 2014-01-13 | 2016-08-31 | 株式会社Lg化学 | Battery module assembly including unit modules |
JP2017135110A (en) * | 2017-02-07 | 2017-08-03 | エルジー ケム. エルティーディ. | Electrode assembly and electrochemical device including the same |
JP2020173943A (en) * | 2019-04-09 | 2020-10-22 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP2020173941A (en) * | 2019-04-09 | 2020-10-22 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP7085147B2 (en) | 2019-04-09 | 2022-06-16 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
JP7085149B2 (en) | 2019-04-09 | 2022-06-16 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery |
CN112713363B (en) * | 2019-10-25 | 2023-03-21 | 尼吉康株式会社 | Wound secondary battery and method for manufacturing same |
CN112713363A (en) * | 2019-10-25 | 2021-04-27 | 尼吉康株式会社 | Wound secondary battery and method for manufacturing same |
CN112864546A (en) * | 2019-11-26 | 2021-05-28 | 丰田自动车株式会社 | Nonaqueous electrolyte secondary battery |
CN112864546B (en) * | 2019-11-26 | 2023-04-14 | 丰田自动车株式会社 | Non-aqueous electrolyte secondary battery |
CN111554982A (en) * | 2020-05-11 | 2020-08-18 | 珠海冠宇电池股份有限公司 | Winding battery cell, preparation method thereof, battery and electronic product |
CN111725552A (en) * | 2020-08-05 | 2020-09-29 | 广州鹏辉能源科技股份有限公司 | Button cell and manufacturing method thereof |
CN112886066A (en) * | 2021-01-13 | 2021-06-01 | 上海瑞浦青创新能源有限公司 | Lithium ion battery and protection method for improving safety performance of lithium ion battery |
WO2025142517A1 (en) * | 2023-12-26 | 2025-07-03 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4177612B2 (en) | 2008-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4177612B2 (en) | Lithium ion secondary battery | |
EP2262037B1 (en) | Lithium secondary battery using ionic liquid | |
JP4915390B2 (en) | Non-aqueous electrolyte battery | |
CN100463281C (en) | Battery | |
US7659035B2 (en) | Nonaqueous electrolyte secondary battery | |
CN104205474B (en) | Nonaqueous electrolyte secondary battery | |
KR100838979B1 (en) | Safety-enhanced electrochemical device | |
WO2009150791A1 (en) | Battery | |
WO2008035707A1 (en) | Electrode, method for manufacturing the electrode, and battery | |
JP2014127242A (en) | Lithium secondary battery | |
JP2014035877A (en) | Nonaqueous electrolyte secondary battery manufacturing method | |
KR20090084712A (en) | Non-aqueous electrolyte battery and positive electrode and manufacturing method thereof | |
JP2000277146A (en) | Prismatic non-aqueous electrolyte secondary battery | |
CN101499539A (en) | Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same | |
US7425385B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2003123767A (en) | Collector, electrode, and battery | |
JP2000164206A (en) | Non-aqueous electrolyte secondary batteries for assembled batteries | |
JP2009054469A (en) | Nonaqueous secondary battery | |
JP2005347222A (en) | Electrolyte liquid and battery | |
JP2004095306A (en) | Non-aqueous electrolyte secondary battery | |
JP2000331686A (en) | Non-aqueous electrolyte secondary battery | |
JP2009295554A (en) | Battery | |
JP2002042891A (en) | Thin-type lithium secondary battery | |
JP2005209395A (en) | Non-aqueous electrolyte secondary battery | |
JP4082103B2 (en) | Method for producing non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080822 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4177612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |