[go: up one dir, main page]

JP2004061328A - Detecting element - Google Patents

Detecting element Download PDF

Info

Publication number
JP2004061328A
JP2004061328A JP2002220537A JP2002220537A JP2004061328A JP 2004061328 A JP2004061328 A JP 2004061328A JP 2002220537 A JP2002220537 A JP 2002220537A JP 2002220537 A JP2002220537 A JP 2002220537A JP 2004061328 A JP2004061328 A JP 2004061328A
Authority
JP
Japan
Prior art keywords
detection element
substance
layer
cross
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002220537A
Other languages
Japanese (ja)
Inventor
Shinichi Yagi
八木 晋一
Ariyoshi Ogami
大神 有美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002220537A priority Critical patent/JP2004061328A/en
Publication of JP2004061328A publication Critical patent/JP2004061328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detecting element which can carry a trapped substance coupled to a target substance in a sample to be examined on a sensor element without an adverse influence on a detecting accuracy. <P>SOLUTION: Crosslinked molecules of a crosslinking layer 4 coupled to a surface of a substrate 2 of the detecting element 1 via an adhesive layer 3 contain a carboxyl group converted or the like from a functional group contained in a silane or titanium coupling agent by a hydrolysis, and the trapped substance 5 can be directly carried to this carboxyl group. Thus, bonding of the target substance of macromolecules to the substance 5 can be made uniform on the surface of the element 1, and hence an accurate detection can be performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生体物質の親和性を利用した分析に関し、センサ素子上の捕捉物質が被検試料中の特定の標的物質と結合する免疫センサに関する。
【0002】
【従来の技術】
従来より、生体物質の親和性を利用した分析、特に免疫センサの領域では、被験試料中の標的物質と結合する捕捉物質(主に抗体)をセンサ素子上に担持する場合に、適当なポリマーやゲルに固定化する方法が採用されている(特開昭53−149394、特表平4−501605、Wayne R等(1986年)、Hydrogels in Medicine and Pharmacy,vol1,chapter5,page95−126など)。用いられたヒドロゲルとしては硝酸セルロース、デキストラン、ポリメタクリル酸などがあり、センサシステムとしては、FETセンサ、レゾナントミラーセンサ、表面プラズモン共鳴センサなどが用いられている。この方法は、センサ素子の単位面積あたりの捕捉物質担持量を高めるために有効であるとされてきた。実際、センサ素子表面に二次元的に捕捉物質を担持した場合よりも、検出感度が上昇するという報告もある(Ingemar Lundstrom(1994年)、Biosensors & Bioelectronics,vol9,page725−736、Bo Liedberg(1995年)、Biosensors & Bioelectronics,vol10,page1−9など)。
【0003】
このような構造のセンサ素子は、微視的には素子表面がある一定濃度のポリマーやゲルに覆われており(水溶液と接触して膨潤した場合には数%程度のヒドロゲル濃度となる場合もありうる)、被験試料溶液と接触させた場合には、これらのヒドロゲルと三次元的に共存する溶液となっている点が、二次元的に捕捉物質を担持したセンサ素子とは異なっている。このような状況で、標的物質が捕捉物質と結合する場合には、これらのヒドロゲルと共溶解した被験試料溶液中に移動していくことになる。
【0004】
【発明が解決しようとする課題】
このような場合、高分子物質の含まれる溶液中では物質移動速度が低下する。免疫分析の標的物質になることの多い蛋白質などは、それ自体も高分子であるため、センサ素子表面への接近にはセンサ素子表面のヒドロゲルの影響を受ける。特に被験試料が細胞やウィルスなどの巨大分子の場合、被験試料がセンサ素子表面への接近する際に受けるヒドロゲルの影響が無視できず、正確な検出ができなくなる場合があるという問題があった。
【0005】
本発明は、上記課題を解決するためになされたもので、本発明の目的は、被験試料中の標的物質と結合する捕捉物質を、検出精度に悪影響を及ぼすことなくセンサ素子上に担持することのできる検出素子を提供することにある。
【0006】
【課題を解決するための手段及びその作用・効果】
上記目的を達成するために請求項1は、基体の表面に接着層を付し、前記接着層に架橋分子で形成された架橋層を結合し、前記架橋層に捕捉物質を担持した検出素子において、前記架橋分子は、カルボキシル基を含んだシラン化合物もしくはチタン化合物より形成されることとした。よって、架橋層のカルボキシル基に直接捕捉物質を担持することができるので、巨大分子である標的物質と捕捉物質との結合が検出素子表面上において均一化でき、高精度な検出が可能となる。
【0007】
請求項2は、基体の表面に接着層を付し、前記接着層に架橋分子で形成された架橋層を結合し、前記架橋層に捕捉物質を担持した検出素子において、前記架橋分子は、シラン系もしくはチタン系カップリング剤に含まれる官能基の加水分解反応によって得られたカルボキシル基を含むこととした。よって、架橋層のカルボキシル基に直接捕捉物質を担持することができるので、巨大分子である標的物質と捕捉物質との結合が検出素子表面上において均一化でき、高精度な検出が可能となる。また、この構成においては、カルボキシル基を持たないカップリング剤を用いても、検出素子表面に確実にカルボキシル基を導入することができる。
【0008】
請求項3は、請求項2に記載の検出素子において、前記加水分解反応は、炭酸水素ナトリウム溶液への浸漬により行なわれることとした。この場合、高精度の検出素子が得られる。また、無機酸化物、無機炭化物、無機窒化物から構成される接着層が腐食することもない。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を、図面により詳細に説明する。
【0010】
図1は、本発明の一実施形態にかかる検出素子1の基本構造を示す図である。図1に示すように検出素子1は、基体2と、基体2の表面に接着層3を介して結合された架橋層4と、適当な方法により架橋層4に担持した捕捉物質5から形成される。基体2、接着層3、架橋層4は、種々のトランスデューサーを備えてなる検出装置に応じて適宜選択される。例えば、表面プラズモン共鳴を利用したセンサにおいては、ガラス薄板に金薄膜を蒸着した基体2の上に、接着層3として二酸化シリコン、二酸化チタン、酸化アルミニウム、酸化亜鉛が利用できる。また架橋層4としては、例えば、3―(トリエトキシシリル)プロピルコハク酸無水物を接着層3に結合した後、コハク酸部分を加水分解してカルボキシル基を露出したものが利用できる。
【0011】
本発明による検出素子は、次のように利用される。捕捉物質を担持した検出素子表面に標的物質を含んだ試料を接触させる。試料中に標的物質が存在すると、検出素子表面に担持した捕捉物質に捕捉される。この捕捉の程度は、両者の親和性と、試料中の標的物質の濃度に比例する。よって、検出素子表面に捕捉される標的物質の量は、試料中の標的物質の濃度に依存する。標的物質が検出素子表面に捕捉されると、その結合量に依存して、検出素子の屈折率、質量、キャパシタンス、およびインピーダンスが変化する。よって、標的物質について所定の濃度と、屈折率、質量、キャパシタンス、およびインピーダンスの変化との関係を示す検量線をあらかじめ作成しておくことにより、それに基づいて検出素子表面に結合する試料中の標的物質の濃度を知ることができる。
【0012】
ここで、標的物質と親和性を有する捕捉物質の具体例としては、蛋白質、ペプチド、抗生物質、色素、核酸、農薬、微生物、ホルモン、もしくはウイルス、またはそれらの構成成分の抗原;これらの抗原を認識するポリクローナル抗体、モノクローナル抗体、組み換え抗体、一本鎖抗体、もしくはこれら抗体種の改変修飾体;または活性部位を破壊し結合部位の機能のみを有する酵素、レクチン、核酸、もしくは生体内のシグナル伝達に関わるレセプターリガンドなどの生体関連物質が挙げられる。このような生体関連物質を利用することにより、本発明による検出素子は、例えば、表面抗原を認識することでサルモネラ菌や病原性大腸菌などに代表される病原性微生物の検出が可能なバイオセンサとして利用できる。
【0013】
この態様にあって、接着層に用いられる無機酸化物、無機炭化物、無機窒化物から構成される化合物の具体例としては、シリコン、チタン、タンタル、アルミニウム、亜鉛などの単体、その酸化物、炭化物、窒化物等が挙げられる。接着層の厚みは、種々のトランスデューサーを備えてなる検出装置に応じて適宜選択するものとするが、例えば、表面プラズモン共鳴を利用したセンサにおいては、好ましくは1〜10nm、より好ましくは3〜10nmである。
【0014】
また、架橋層を形成する架橋分子としては、カルボキシル基を含んだシラン化合物もしくはチタン化合物、あるいは、コハク酸基を含むシラン系もしくはチタン系カップリング剤を接着層に結合した後、コハク酸基を加水分解してカルボキシル基に変換したものが利用できる。この場合、架橋層のカルボキシル基に直接捕捉物質を担持することができるので、巨大分子である標的物質と捕捉物質との結合が検出素子表面上において均一化でき、高精度な検出が可能となる。また、加水分解を用いる場合は、カルボキシル基を持たないカップリング剤を用いても、検出素子表面に確実にカルボキシル基を導入することができる。
【0015】
本発明による検出素子の使用態様において、被検試料が検出素子と接触すると検出素子表面には標的物質が捕捉物質に捕捉されて残るが、この捕捉された標的物質は、適当な条件で解離させることができる。例えば、抗原抗体反応を利用している場合、抗原抗体複合体が解離するpHに緩衝能を有する緩衝液もしくは酸で洗浄することで、抗原と抗体を互いに引き離すことができる。このような方法によって標的物質がその表面から除かれた検出素子は、再度測定に利用することができる。
【0016】
本発明による検出素子は、好ましくは次のように製造される。まず基体を用意する。表面プラズモン共鳴を利用したセンサにおいては、ガラス薄板を洗浄後、2nmのクロム薄膜と50nmの金薄膜を蒸着して基体とする。さらに、接着層として5nmの二酸化シリコンを蒸着する。蒸着は、スパッタリング装置や真空蒸着装置を使用して行なう。接着層への架橋分子の結合は、架橋分子を溶解した水、有機溶媒、もしくは水と有機溶媒の混合液中に、接着層を結合した基体を浸漬することにより実施できる。架橋分子への標的物質に対する捕捉物質の担持は、架橋分子に含まれるカルボキシル基を活性化して、捕捉物質に含まれる官能基と共有結合を介して化学的に結合させることにより行なう。例えば、捕捉物質に含まれるアミノ基を架橋分子に結合させる場合、架橋分子のカルボキシル基をジメチルアミノプロピルカルボジイミドおよびN−ヒドロキスクシンイミドで処理した後、捕捉物質を含む酢酸緩衝液に浸漬させることにより達成される。
【0017】
【実施例】
本発明を以下の実施例によってさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0018】
(実施例1)検出素子の作製
支持体としてのガラス基板(10mm×8mm)を用意し、希硝酸、中性洗剤、および超純水の順で洗浄した。この支持体上に、マグネトロンスパッタリング法によって2nm厚のクロム接着層を付し、その後で50nm厚の金薄膜を蒸着し基体とする。さらに、接着層として5nm厚の二酸化シリコンを蒸着した。その基板をアセトン、超純水、アセトンの順で洗浄し、その後、UVクリーナーを使用してオゾン洗浄を行なった。洗浄後、基板をさらに1mol/lの炭酸ナトリウム溶液と1mol/lの硝酸で、各々30℃で30分処理した。次に、その基板を0.5(v/v)%の3−(トリエトキシシリル)プロピルコハク酸無水物溶液(溶媒:イソプロピルアルコール)に75℃で5分間浸漬して、表面に架橋層を形成した。その後、イソプロピルアルコールで洗浄した。そして、架橋層を形成した基板を1mol/lの炭酸水素ナトリウム水溶液中に30℃で20時間浸漬して、コハク酸無水物を加水分解して架橋層中にカルボキシル基を発現させた。その後、大量の水で洗浄した。
【0019】
(実施例2)アルブミン測定用検出素子の作製
実施例1で作製した基板の架橋層中のカルボキシル基を、0.2mol/lのジメチルアミノプロピルカルボジイミド(EDC)および0.05mol/lのN−ヒドロキスクシンイミド(NHS)の混合溶液で6分間活性化した後、100mg/lの抗ヒト血清アルブミン(HSA)抗体を含む0.01mol/l酢酸緩衝液(pH5.0)の溶液に10分間浸漬して、基板上に抗HSA抗体を担持した。抗HSA抗体を担持後、1mol/lのエタノールアミン水溶液(pH8.5)に8分間基板を浸漬して、基板上の活性化されたカルボキシル基を不活性化した。その後、0.1mol/lの塩酸に3分間基板を浸漬して、表面に共有結合を介さずに吸着している抗HSA抗体を解離させた。こうして得られた基板を検出素子とした。以上の操作における共振角の変化を、図2に示す。図中、活性化溶液に浸漬する前と塩酸に浸漬した後の共振角変化量が、抗HSA抗体の検出素子への固定化量に相当する。
【0020】
(実施例3)HSAの検出
実施例2で作製した抗HSA抗体を固定化した検出素子を、表面プラズモン共鳴を利用した装置に装着し、HSAの測定を行なった。ここでいう表面プラズモン共鳴を利用した装置とは、被験試料液中の標的物質の定量が可能なセンサ装置であって、基体に結合した材料種からなる担持層、もしくは架橋層に接触する物質の屈折率を観察する検出装置を備えてなる分析装置である。
【0021】
まず、燐酸緩衝液(0.066mol/l、pH7.0、0.1mol/l塩化ナトリウム含有)を検出素子表面に通液し、そのときの共振角を測定しベースラインとした。次に、HSA溶液を検出素子表面に一定時間接触させ、素子表面上の抗HSA抗体とHSAを結合させた。その後、始めに通液した燐酸緩衝液を用いて余剰のHSAを洗い流して共振角を測定した。この共振角とベースラインでの共振角の差が、検出素子表面の抗体に結合したHSA量に起因するレスポンスとなる。抗体に結合したHSAは、適当な解離液(pH3.0以下の希塩酸またはグリシン緩衝液)によって解離させ、検出表面の再使用を可能にした。以上の操作における共振角の変化を、図3に示す。図中、HSA溶液に浸漬する前後の緩衝液浸漬時の共振角変化量が、HSA溶液に対するレスポンスに相当する。
【0022】
また、HSA濃度が既知のいくつかの試料を用いてHSA濃度と共振角とを測定した。このときのHSA濃度とレスポンスの関係を、図4に示す。これを検量線として用いれば、濃度未知のHSAの濃度測定を行なうことができる。
【0023】
(比較例1)検出素子の作製
実施例1と同様の操作で、架橋層を形成した基板をイソプロピルアルコールで洗浄した。その後、1mol/lの炭酸ナトリウム水溶液中に30℃で20時間浸漬して、コハク酸無水物を加水分解して架橋層中にカルボキシル基を発現させた。その後、大量の水で洗浄した。
【0024】
(比較例2)検出素子の作製
実施例1と同様の操作で、架橋層を形成した基板をイソプロピルアルコールで洗浄した。その後、1mol/lの塩酸に30℃で20時間浸漬して、コハク酸無水物を加水分解して架橋層中にカルボキシル基を発現させた。その後、大量の水で洗浄した。
【0025】
(比較例3)アルブミン測定用検出素子の作製およびHSAの検出
比較例1および比較例2で作製した検出素子を用いて、実施例2と同様の操作を行なってアルブミン測定用検出素子を作製するとともに抗体固定化量を測定した。続いて、実施例3と同様にアルブミンの検出を行い、100mg/lのHSA溶液のレスポンスを測定した。比較例1、比較例2および実施例1で作製した検出素子をベースにそれぞれ作製したアルブミン測定用検出素子における抗体固定化量とレスポンスの値を、表1に示す。表1から、炭酸水素ナトリウム溶液で処理するのが最適であることがわかった。
【0026】
【表1】

Figure 2004061328

【図面の簡単な説明】
【図1】本発明の一実施形態にかかる検出素子1の基本構造を示す図
【図2】実施例2における共振角の変化を示す図
【図3】実施例3における共振角の変化を示す図
【図4】HSA濃度とレスポンスの関係を示す図
【符号の説明】
1…検出素子
2…基体
3…接着層
4…架橋層
5…捕捉物質[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an analysis utilizing affinity of a biological substance, and relates to an immunosensor in which a capture substance on a sensor element binds to a specific target substance in a test sample.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, analysis using the affinity of a biological substance, particularly in the area of an immunosensor, has been carried out using a polymer or a suitable polymer when a capture substance (mainly an antibody) that binds to a target substance in a test sample is carried on a sensor element. A method of immobilization on a gel has been adopted (Japanese Unexamined Patent Publication (Kokai) No. 53-149394, Tokuyohei 4-501605, Wayne R, etc. (1986), Hydrogels in Medicine and Pharmacy, vol1, chapter 5, pages 95-126, etc.). Examples of the hydrogel used include cellulose nitrate, dextran, and polymethacrylic acid. As the sensor system, an FET sensor, a resonant mirror sensor, a surface plasmon resonance sensor, and the like are used. This method has been considered to be effective for increasing the amount of captured substance carried per unit area of the sensor element. In fact, there is a report that the detection sensitivity is higher than when a capture substance is supported two-dimensionally on the sensor element surface (Ingemar Lundstrom (1994)), Biosensors & Bioelectronics, vol9, page 725-736, Bo Liedberg (1995). Year), Biosensors & Bioelectronics, vol10, page1-9, etc.).
[0003]
A sensor element having such a structure is microscopically covered with a certain concentration of polymer or gel (when the element swells in contact with an aqueous solution, the concentration of the hydrogel may be about several percent). (Possible), when it is brought into contact with a test sample solution, it is a solution coexisting three-dimensionally with these hydrogels, which is different from a sensor element two-dimensionally carrying a capture substance. In such a situation, when the target substance binds to the capture substance, the target substance moves into the test sample solution co-dissolved with these hydrogels.
[0004]
[Problems to be solved by the invention]
In such a case, the mass transfer rate is reduced in the solution containing the polymer substance. Since proteins and the like, which are often target substances for immunoassay, are themselves macromolecules, their proximity to the sensor element surface is affected by the hydrogel on the sensor element surface. In particular, when the test sample is a macromolecule such as a cell or a virus, there is a problem that the influence of the hydrogel applied when the test sample approaches the surface of the sensor element cannot be ignored, and accurate detection may not be performed.
[0005]
The present invention has been made to solve the above problems, and an object of the present invention is to support a capture substance that binds to a target substance in a test sample on a sensor element without adversely affecting detection accuracy. It is an object of the present invention to provide a detection element which can perform the following.
[0006]
[Means for Solving the Problems and Their Functions and Effects]
In order to achieve the above object, claim 1 is a detection element in which an adhesive layer is provided on a surface of a substrate, a cross-linked layer formed of cross-linking molecules is bonded to the adhesive layer, and a capturing substance is supported on the cross-linked layer. The cross-linking molecule is formed from a silane compound or a titanium compound containing a carboxyl group. Therefore, since the capturing substance can be directly supported on the carboxyl group of the cross-linking layer, the binding between the target substance, which is a macromolecule, and the capturing substance can be made uniform on the surface of the detection element, and highly accurate detection can be performed.
[0007]
Claim 2 is a detection element in which an adhesive layer is provided on the surface of the substrate, a cross-linked layer formed of cross-linked molecules is bonded to the adhesive layer, and the cross-linking layer carries a capturing substance. It contains a carboxyl group obtained by a hydrolysis reaction of a functional group contained in a series or titanium-based coupling agent. Therefore, since the capturing substance can be directly supported on the carboxyl group of the cross-linking layer, the binding between the target substance, which is a macromolecule, and the capturing substance can be made uniform on the surface of the detection element, and highly accurate detection can be performed. Further, in this configuration, even if a coupling agent having no carboxyl group is used, the carboxyl group can be surely introduced into the surface of the detection element.
[0008]
According to a third aspect, in the detection element according to the second aspect, the hydrolysis reaction is performed by immersion in a sodium hydrogen carbonate solution. In this case, a highly accurate detection element can be obtained. Further, the adhesive layer composed of an inorganic oxide, an inorganic carbide, and an inorganic nitride does not corrode.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 is a diagram showing a basic structure of a detection element 1 according to one embodiment of the present invention. As shown in FIG. 1, the detection element 1 is formed of a base 2, a crosslinked layer 4 bonded to the surface of the base 2 via an adhesive layer 3, and a capture substance 5 carried on the crosslinked layer 4 by an appropriate method. You. The base 2, the adhesive layer 3, and the cross-linking layer 4 are appropriately selected according to a detection device including various transducers. For example, in a sensor using surface plasmon resonance, silicon dioxide, titanium dioxide, aluminum oxide, and zinc oxide can be used as an adhesive layer 3 on a base 2 on which a thin gold film is deposited on a thin glass plate. As the cross-linking layer 4, for example, one in which 3- (triethoxysilyl) propyl succinic anhydride is bonded to the adhesive layer 3 and then the succinic acid portion is hydrolyzed to expose the carboxyl group can be used.
[0011]
The detection element according to the present invention is used as follows. A sample containing a target substance is brought into contact with the surface of the detection element supporting the capture substance. When the target substance is present in the sample, the target substance is captured by the capture substance carried on the detection element surface. The degree of the capture is proportional to the affinity between the two and the concentration of the target substance in the sample. Therefore, the amount of the target substance captured on the surface of the detection element depends on the concentration of the target substance in the sample. When the target substance is captured on the surface of the detection element, the refractive index, mass, capacitance, and impedance of the detection element change depending on the amount of binding. Therefore, by preparing in advance a calibration curve showing the relationship between the predetermined concentration of the target substance and changes in the refractive index, mass, capacitance, and impedance, the target in the sample that binds to the detection element surface based on the calibration curve is created. You can know the concentration of the substance.
[0012]
Here, specific examples of the capturing substance having an affinity for the target substance include proteins, peptides, antibiotics, dyes, nucleic acids, pesticides, microorganisms, hormones, or viruses, or antigens of their components; Polyclonal antibodies, monoclonal antibodies, recombinant antibodies, single-chain antibodies, or modified variants of these antibody species; or enzymes, lectins, nucleic acids, or in vivo signaling that destroy the active site and have only the function of the binding site And biologically-related substances such as receptor ligands. By using such a bio-related substance, the detection element according to the present invention can be used, for example, as a biosensor capable of detecting a pathogenic microorganism represented by Salmonella or pathogenic E. coli by recognizing a surface antigen. it can.
[0013]
In this embodiment, specific examples of the compound composed of an inorganic oxide, an inorganic carbide, and an inorganic nitride used for the adhesive layer include simple substances such as silicon, titanium, tantalum, aluminum, and zinc, and oxides and carbides thereof. , Nitrides and the like. The thickness of the adhesive layer is appropriately selected according to the detection device including various transducers. For example, in a sensor using surface plasmon resonance, preferably the thickness is 1 to 10 nm, more preferably 3 to 10 nm. 10 nm.
[0014]
In addition, as a cross-linking molecule forming a cross-linking layer, a silane compound or a titanium compound containing a carboxyl group, or a silane-based or titanium-based coupling agent containing a succinic acid group is bonded to the adhesive layer, and then a succinic acid group is formed. Those which have been converted to carboxyl groups by hydrolysis can be used. In this case, since the capturing substance can be directly supported on the carboxyl group of the cross-linking layer, the binding between the target substance and the capturing substance, which are macromolecules, can be made uniform on the surface of the detection element, and high-precision detection becomes possible. . Further, when hydrolysis is used, a carboxyl group can be surely introduced onto the surface of the detection element even if a coupling agent having no carboxyl group is used.
[0015]
In the use mode of the detection element according to the present invention, when the test sample comes into contact with the detection element, the target substance is captured and left on the detection element surface by the capture substance, and the captured target substance is dissociated under appropriate conditions. be able to. For example, when an antigen-antibody reaction is used, the antigen and the antibody can be separated from each other by washing with a buffer or an acid having a buffering capacity at a pH at which the antigen-antibody complex dissociates. The detection element from which the target substance has been removed from the surface by such a method can be used again for measurement.
[0016]
The detection element according to the present invention is preferably manufactured as follows. First, a base is prepared. In a sensor using surface plasmon resonance, a glass thin plate is washed, and then a chromium thin film of 2 nm and a gold thin film of 50 nm are deposited to form a substrate. Further, 5 nm of silicon dioxide is deposited as an adhesive layer. The vapor deposition is performed using a sputtering device or a vacuum vapor deposition device. The bonding of the cross-linking molecule to the adhesive layer can be carried out by immersing the substrate to which the adhesive layer is bonded in water in which the cross-linking molecule is dissolved, an organic solvent, or a mixture of water and an organic solvent. The capturing of the target substance on the cross-linking molecule is carried out by activating the carboxyl group contained in the cross-linking molecule and chemically bonding to a functional group contained in the capturing substance via a covalent bond. For example, when the amino group contained in the capturing substance is bonded to the cross-linking molecule, it is achieved by treating the carboxyl group of the cross-linking molecule with dimethylaminopropylcarbodiimide and N-hydroxysuccinimide and then immersing the cross-linking molecule in an acetate buffer containing the capturing substance. Is done.
[0017]
【Example】
The present invention will be described in more detail by the following examples, but the present invention is not limited to these examples.
[0018]
(Example 1) Preparation of detection element A glass substrate (10 mm x 8 mm) was prepared as a support, and washed in the order of diluted nitric acid, a neutral detergent, and ultrapure water. A chromium adhesive layer having a thickness of 2 nm is provided on the support by a magnetron sputtering method, and thereafter, a gold thin film having a thickness of 50 nm is deposited to form a substrate. Further, silicon dioxide having a thickness of 5 nm was deposited as an adhesive layer. The substrate was washed with acetone, ultrapure water, and acetone in that order, and then washed with ozone using a UV cleaner. After the washing, the substrate was further treated with a 1 mol / l sodium carbonate solution and 1 mol / l nitric acid at 30 ° C. for 30 minutes each. Next, the substrate was immersed in a 0.5 (v / v)% 3- (triethoxysilyl) propylsuccinic anhydride solution (solvent: isopropyl alcohol) at 75 ° C. for 5 minutes to form a crosslinked layer on the surface. Formed. Thereafter, the substrate was washed with isopropyl alcohol. Then, the substrate on which the crosslinked layer was formed was immersed in a 1 mol / l aqueous solution of sodium hydrogen carbonate at 30 ° C. for 20 hours to hydrolyze succinic anhydride to express a carboxyl group in the crosslinked layer. Then, it was washed with a large amount of water.
[0019]
(Example 2) Production of detection element for measuring albumin The carboxyl group in the crosslinked layer of the substrate produced in Example 1 was replaced with 0.2 mol / l of dimethylaminopropylcarbodiimide (EDC) and 0.05 mol / l of N- After activating with a mixed solution of hydroxysuccinimide (NHS) for 6 minutes, it was immersed in a solution of 0.01 mg / l acetate buffer (pH 5.0) containing 100 mg / l anti-human serum albumin (HSA) antibody for 10 minutes. Thus, an anti-HSA antibody was carried on the substrate. After carrying the anti-HSA antibody, the substrate was immersed in a 1 mol / l ethanolamine aqueous solution (pH 8.5) for 8 minutes to inactivate the activated carboxyl groups on the substrate. Thereafter, the substrate was immersed in 0.1 mol / l hydrochloric acid for 3 minutes to dissociate the anti-HSA antibody adsorbed on the surface without using a covalent bond. The substrate thus obtained was used as a detection element. FIG. 2 shows a change in the resonance angle in the above operation. In the figure, the amount of change in the resonance angle before immersion in the activation solution and after immersion in hydrochloric acid corresponds to the amount of immobilization of the anti-HSA antibody on the detection element.
[0020]
(Example 3) Detection of HSA The detection element on which the anti-HSA antibody prepared in Example 2 was immobilized was attached to an apparatus using surface plasmon resonance, and HSA was measured. The device using surface plasmon resonance as referred to herein is a sensor device capable of quantifying a target substance in a test sample solution, and is a sensor device capable of quantifying a target substance in a test sample liquid, which is in contact with a support layer made of a material type bonded to a substrate or a cross-linked layer. This is an analyzer including a detection device for observing the refractive index.
[0021]
First, a phosphate buffer solution (0.066 mol / l, pH 7.0, containing 0.1 mol / l sodium chloride) was passed through the surface of the detection element, and the resonance angle at that time was measured and used as a baseline. Next, the HSA solution was brought into contact with the surface of the detection element for a certain period of time to bind the anti-HSA antibody on the element surface with HSA. After that, the excess HSA was washed away using the phosphate buffer solution that had passed first, and the resonance angle was measured. The difference between the resonance angle and the resonance angle at the baseline becomes a response due to the amount of HSA bound to the antibody on the surface of the detection element. The HSA bound to the antibody was dissociated with a suitable dissociation solution (dilute hydrochloric acid or glycine buffer at pH 3.0 or less), allowing reuse of the detection surface. FIG. 3 shows a change in the resonance angle in the above operation. In the figure, the amount of change in the resonance angle before and after immersion in the buffer solution before and after immersion in the HSA solution corresponds to the response to the HSA solution.
[0022]
In addition, the HSA concentration and the resonance angle were measured using several samples with known HSA concentrations. FIG. 4 shows the relationship between the HSA concentration and the response at this time. If this is used as a calibration curve, the concentration of HSA whose concentration is unknown can be measured.
[0023]
(Comparative Example 1) Manufacture of detection element In the same operation as in Example 1, the substrate on which the crosslinked layer was formed was washed with isopropyl alcohol. Thereafter, the resultant was immersed in a 1 mol / l aqueous solution of sodium carbonate at 30 ° C. for 20 hours to hydrolyze succinic anhydride to develop a carboxyl group in the crosslinked layer. Then, it was washed with a large amount of water.
[0024]
(Comparative Example 2) Manufacture of detecting element In the same operation as in Example 1, the substrate on which the crosslinked layer was formed was washed with isopropyl alcohol. Thereafter, the resultant was immersed in 1 mol / l hydrochloric acid at 30 ° C. for 20 hours to hydrolyze succinic anhydride to develop a carboxyl group in the crosslinked layer. Then, it was washed with a large amount of water.
[0025]
(Comparative Example 3) Preparation of detection element for albumin measurement and detection of HSA Using the detection elements prepared in Comparative Examples 1 and 2, the same operation as in Example 2 was performed to prepare a detection element for albumin measurement. At the same time, the amount of immobilized antibody was measured. Subsequently, albumin was detected in the same manner as in Example 3, and the response of the 100 mg / l HSA solution was measured. Table 1 shows the amount of immobilized antibody and the response value in the detection element for albumin measurement prepared based on the detection elements prepared in Comparative Example 1, Comparative Example 2, and Example 1. From Table 1, it was found that treatment with a sodium hydrogen carbonate solution was optimal.
[0026]
[Table 1]
Figure 2004061328

[Brief description of the drawings]
FIG. 1 is a diagram showing a basic structure of a detection element 1 according to an embodiment of the present invention. FIG. 2 is a diagram showing a change in resonance angle in Example 2. FIG. 3 is a diagram showing a change in resonance angle in Example 3. FIG. 4 is a diagram showing the relationship between HSA concentration and response.
DESCRIPTION OF SYMBOLS 1 ... Detection element 2 ... Substrate 3 ... Adhesive layer 4 ... Crosslinked layer 5 ... Capture substance

Claims (3)

基体の表面に接着層を付し、前記接着層に架橋分子で形成された架橋層を結合し、前記架橋層に捕捉物質を担持した検出素子において、前記架橋分子は、カルボキシル基を含んだシラン化合物もしくはチタン化合物より形成されることを特徴とする検出素子。In a detection element in which an adhesive layer is attached to the surface of a substrate, a crosslinking layer formed of crosslinking molecules is bonded to the adhesive layer, and the capturing substance is supported on the crosslinking layer, the crosslinking molecule is a silane containing a carboxyl group. A detection element formed of a compound or a titanium compound. 基体の表面に接着層を付し、前記接着層に架橋分子で形成された架橋層を結合し、前記架橋層に捕捉物質を担持した検出素子において、前記架橋分子は、シラン系もしくはチタン系カップリング剤に含まれる官能基の加水分解反応によって得られたカルボキシル基を含むことを特徴とする検出素子。In a detection element in which an adhesive layer is provided on the surface of a substrate, a cross-linking layer formed of a cross-linking molecule is bonded to the adhesive layer, and the cross-linking layer carries a capturing substance, the cross-linking molecule may be a silane-based or titanium-based cup. A detection element comprising a carboxyl group obtained by a hydrolysis reaction of a functional group contained in a ring agent. 前記加水分解反応は、炭酸水素ナトリウム溶液への浸漬により行なわれることを特徴とする請求項2に記載の検出素子。The said hydrolysis reaction is performed by immersion in a sodium hydrogen carbonate solution, The detection element of Claim 2 characterized by the above-mentioned.
JP2002220537A 2002-07-30 2002-07-30 Detecting element Pending JP2004061328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220537A JP2004061328A (en) 2002-07-30 2002-07-30 Detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220537A JP2004061328A (en) 2002-07-30 2002-07-30 Detecting element

Publications (1)

Publication Number Publication Date
JP2004061328A true JP2004061328A (en) 2004-02-26

Family

ID=31941096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220537A Pending JP2004061328A (en) 2002-07-30 2002-07-30 Detecting element

Country Status (1)

Country Link
JP (1) JP2004061328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059131A (en) * 2010-11-24 2011-03-24 Hitachi Plant Technologies Ltd Proteinomics instrument of protein production plant using immunoanalytical method and cell culture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059131A (en) * 2010-11-24 2011-03-24 Hitachi Plant Technologies Ltd Proteinomics instrument of protein production plant using immunoanalytical method and cell culture

Similar Documents

Publication Publication Date Title
JP3512775B2 (en) Biochemical blocking layer for liquid crystal assays
CN1249436C (en) Patterned deposition of antibody binding proteins for optical diffraction-based biosensors
Corso et al. An investigation of antibody immobilization methods employing organosilanes on planar ZnO surfaces for biosensor applications
CN104316697A (en) Preparation method of antigen-immobilized immuno-fluorescence slide and immuno-fluoroscence slide prepared thereby
JPH01502935A (en) Polymer-coated optical structures
Tang et al. Amplification of the antigen–antibody interaction from quartz crystal microbalance immunosensors via back-filling immobilization of nanogold on biorecognition surface
JPH10504100A (en) Sensor and method for detecting a predetermined chemical sample in a solution
JPH06265553A (en) Optical biosensor
Li et al. A renewable potentiometric immunosensor based on Fe3O4 nanoparticles immobilized anti‐IgG
WO2009119355A1 (en) Method for immobilization, physiologically active substance-immobilized carrier, carrier for immobilization, carrier, and process for producing carrier
JP4435454B2 (en) Biosensor surface
CN103492879A (en) Method for affixing antibodies to self-assembled monolayer
Chen et al. Antigen–antibody interaction from quartz crystal microbalance immunosensors based on magnetic CoFe 2 O 4/SiO 2 composite nanoparticle-functionalized biomimetic interface
JPH05503148A (en) Analytical equipment and methods
Liu et al. High sensitivity detection of human serum albumin using a novel magnetoelastic immunosensor
JPH0543600A (en) Antibody-or antigen-immobilized silk fibroin membrane and sensor for measuring immune
EP0416730B1 (en) Substrate preparation for chemical-species-specific binding
JP3657790B2 (en) Metal thin film for SPR sensor, its production method, and measurement method using the same
JPS5916669B2 (en) Antigen or antibody detection method
JP2003194820A (en) Surface for biosensor
JP2007147420A (en) Biosensor
JP2004061328A (en) Detecting element
JP2002228661A (en) Measurement chip for surface plasmon resonance biosensor, and method of manufacturing the measurement chip
JP4099705B2 (en) Biochip for surface plasmon resonance measurement
JPH07225233A (en) Immunoassay using crystal vibrator