[go: up one dir, main page]

JP2004059577A - N- (1,1-dimethyl-3-oxobutyl) acrylamide - Google Patents

N- (1,1-dimethyl-3-oxobutyl) acrylamide Download PDF

Info

Publication number
JP2004059577A
JP2004059577A JP2003157421A JP2003157421A JP2004059577A JP 2004059577 A JP2004059577 A JP 2004059577A JP 2003157421 A JP2003157421 A JP 2003157421A JP 2003157421 A JP2003157421 A JP 2003157421A JP 2004059577 A JP2004059577 A JP 2004059577A
Authority
JP
Japan
Prior art keywords
daam
acrylamide
organic phase
hydrolysis
oxobutyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003157421A
Other languages
Japanese (ja)
Inventor
Katsufumi Kujira
鯨 勝文
Hiroo Miyauchi
宮内 博夫
Hiroshi Iwane
岩根 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP2003157421A priority Critical patent/JP2004059577A/en
Publication of JP2004059577A publication Critical patent/JP2004059577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】重合性単量体として充分な品質を有し、特に、ヘアスプレー用樹脂、感光性樹脂、塗料用樹脂、接着剤用樹脂、不飽和ポリエステルの架橋剤等を製造するのに有用である、N−(1,1−ジメチル−3−オキソブチル)アクリルアミドを提供する。
【解決手段】アセトン又はダイアセトンアルコールとアクリロニトリルと硫酸を反応させ、引続き加水分解及び中和して得た粗N−(1,1−ジメチル−3−オキソブチル)アクリルアミドをアルカリ性水溶液の存在下に加熱して共存しているアクリルアミドを加水分解し、加水分解反応液を水相と有機相とに分離し、この有機相を減圧蒸留することにより、高品質の目的物が得られる。
【選択図】    なし
The present invention has sufficient quality as a polymerizable monomer, and is particularly useful for producing a hair spray resin, a photosensitive resin, a coating resin, an adhesive resin, a crosslinking agent for unsaturated polyester, and the like. Certain N- (1,1-dimethyl-3-oxobutyl) acrylamides are provided.
SOLUTION: A crude N- (1,1-dimethyl-3-oxobutyl) acrylamide obtained by reacting acetone or diacetone alcohol with acrylonitrile and sulfuric acid, followed by hydrolysis and neutralization is heated in the presence of an alkaline aqueous solution. Thus, the coexisting acrylamide is hydrolyzed, the hydrolysis reaction solution is separated into an aqueous phase and an organic phase, and the organic phase is distilled under reduced pressure, whereby a high-quality target product can be obtained.
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、N−(1,1−ジメチル−3−オキソブチル)アクリルアミド(以下DAAMと略す)に関するものである。詳しくは、本発明は、アセトン又はダイアセトンアルコールとアクリロニトリルと硫酸とを反応させたのち加水分解及び中和して粗DAAMを取得し、次いでこれを精製することによって得られ、重合性単量体として充分な品質のDAAMに関するものである。本発明のDAAMは、ヘアスプレー用樹脂、感光性樹脂、塗料用樹脂、接着剤用樹脂、不飽和ポリエステルの架橋剤等を製造するのに有用である。
【0002】
【従来の技術】
アセトン又はダイアセトンアルコールとアクリロニトリルと硫酸とを反応させたのち加水分解及び中和して得られる粗DAAMは、大部分がDAAMであるが、その他に、アクリルアミド等の熱に不安定な重合性成分、ホロン、イソホロン、メシチルオキシドのような着色成分、更にはDAAMがアセトン、アクリロニトリルやその他の副生成物と反応したような重質成分が含まれている。
【0003】
DAAMは前記のような多方面にわたる用途が期待されているが、上記した不純物を取り除く工業的に採用可能な精製技術は未だ確立されていない。従来より、粗DAAMを減圧蒸留して精製することが知られている(例えば特許文献1参照)。しかし粗DAAM中には、重合性があり且つDAAMと沸点の近接しているアクリルアミドが含まれているので、蒸留精製は非常に困難である。
【0004】
また、粗DAAMを有機溶媒からの晶析により精製する方法も知られている(例えば特許文献2及び3参照)。この方法は大量の有機溶媒を必要とし、有機溶媒の回収及び作業環境の安全確保に相当の費用を要し、且つDAAMの収率も低い。更に、粗DAAMに、水抽出により水溶性に乏しい不純物を除去する操作と、アルカリ性水溶液の存在下での加水分解によりアクリルアミドを除去する操作とを施したのち、減圧蒸留して、精製されたDAAMを取得する方法も提案されている(例えば特許文献4参照)。この方法は高品質のDAAMを与えるが、収率が43%程度と相当に低い。
【0005】
【発明が解決しようとする課題】
本発明者らは、上記の提案方法におけるDAAMの収率が低い原因について検討した結果、水抽出工程で相当量のDAAMの損失が生ずることが判明した。すなわち、DAAMの抽出率を高くするには大量の水を用いなければならないが、これは得られるDAAM水溶液の濃度を低下させ、この水溶液からDAAMを回収するのを困難にする。従って抽出に用いる水量は制限せざるを得ず、DAAMが有機相に残存するのが避けられない。更にDAAM水溶液から塩析によりDAAMを回収する際にもDAAMの損失が生ずる。また、DAAMの損失以外にも、この水抽出−水溶液からのDAAMの回収工程は、操作として煩雑であり、且つ相当の費用を要する。従って、この水抽出を行なうことなく高品質のDAAMを取得できれば、極めて有利である。
【0006】
【特許文献1】
特公昭41−17968号公報
【特許文献2】
米国特許第3,542,867号明細書
【特許文献3】
第3,542,875号明細書
【特許文献4】
特公昭61−26986号公報
【0007】
【課題を解決するための手段】
本発明者らは、意外にも、水抽出を省略して、加水分解と減圧蒸留だけでも、重合性単量体として十分な品質を有するDAAMを取得し得ることを知得した。すなわち本発明によれば、アセトン又はダイアセトンアルコールとアクリロニトリルと硫酸とを反応させ、引続き加水分解及び中和して得た粗DAAMを、アルカリ性水溶液の存在下に加熱して共存しているアクリルアミドを加水分解し、加水分解反応液を水相と有機相とに分離し、この有機相を減圧蒸留することにより、高品質のDAAMを高収率で製造することができる。その結果、本発明によれば、重合性単量体として充分な品質のDAAMとして、アクリルアミド含量が0.1重量%以下であることを特徴とするDAAMが提供される。
【0008】
【発明の実施の形態】
本発明について詳細に説明すると、本発明では先ず、アセトン又はダイアセトンアルコールとアクリロニトリルと硫酸とを反応させ、引続いて加水分解及び中和して粗DAAMを製造するが、この工程は常法に従って行なえばよい。通常は、アクリロニトリルとこれに対し化学量論量ないし若干過剰量のアセトン又はダイアセトンアルコールとを混合し、これにアクリロニトリルに対し約2倍モルの濃硫酸を添加して40〜50℃で数時間反応させ、次いで反応生成物を水に加えて加水分解したのちアルカリで中和すればよい。この間、温度は40℃以下に保持するのが好ましい。
【0009】
中和反応液は静置すると水相と有機相とに分離するので、有機相を取得し、水抽出を行なうことなく次のアルカリ加水分解に供する。中和反応液にアルカリを添加してアルカリ加水分解を行なうこともできるが、多量の水が存在するので所望のアルカリ濃度にするには多量のアルカリを必要とし、不利である。アルカリ加水分解は、粗DAAM中に共存しているアクリルアミドを分解してアクリル酸にする工程であり、DAAMを分解させずにアクリルアミドのみを選択的に分解させるようにする。加水分解は通常、水酸化ナトリウム又は水酸化カリウムの5〜50重量%水溶液、好ましくは10〜30重量%水溶液を用いて行なう。アルカリ水溶液の濃度が低過ぎると加水分解に長時間を要するし、逆に濃度が高過
ぎると目的物であるDAAMが加水分解して収率が低下する危険がある。
【0010】
アルカリは粗DAAM中に共存しているアクリルアミドに対し、通常1〜10当量倍、好ましくは1.2〜6当量倍用いる。アルカリ量が少なすぎると反応の進行が遅く、しかも反応が完結し難い。逆にアルカリ量が多すぎるとDAAMの加水分解が生起して収率が低下する。アクリルアミドに対するアルカリの最適当量比は1.5〜4である。加水分解は60〜100℃、特に70〜90℃で行なうのが好ましい。温度が低過ぎると反応に長時間を要し、逆に高過ぎるとDAAMが加水分解する危険がある。
【0011】
加水分解に要する時間は通常10分〜1時間である。長時間の加水分解はDAAMの分解を招く危険性がある。加水分解が終了したならば静置して水相と有機相とに分離し、有機相を次工程の減圧蒸留に供する。有機相にはアルカリが混入しているので、予め中和しておくのが好ましい。加水分解液を相分離せずに中和するだけで減圧蒸留に供することも不可能ではないが、釜残が増加し、かつ多量の塩が含まれるので、その処理が問題となる。また、有機相を予めDAAMを溶解しない有機溶媒で洗浄しておくのも好ましい。この洗浄により有機相中の重質成分を相当量除去できる。洗浄に用いる有機溶媒としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、石油エーテル、ナフサ等の飽和炭化水素、エチルエーテル、ジイソプロピルエーテル等のエーテル、パークロロエチレン等のハロゲン化炭化水素などが挙げられる。有機溶媒による洗浄は、有機相に対して10〜200容量%、好ましくは50〜100容量%の上記有機溶媒を加え、攪拌して両者をよく接触させたのち静置して両者を成層分離すればよい。
【0012】
減圧蒸留に供される有機相中には、DAAMと沸点の近似しているアクリルアミドは殆んど含まれておらず、不純物としては極めて低沸点の成分と重質分だけなので、蒸留精製は容易である。通常は、先ず蒸発ないしは簡単な蒸留で低沸点成分を除き、次いで単蒸留ないしは数段程度の段数の蒸留塔で、減圧蒸留すればよい。塔頂圧力は通常20mmHg以下、好ましくは5mmHg以下である。また、蒸留に際してはハイドロキノンやフェノチアジン等の重合禁止剤を添加するのが好ましい。
【0013】
【実施例】
以下に本発明を実施例により更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例において、分析は高速液体クロマトグラフィー及びガスクロマトグラフィーにより行なった。
【0014】
実施例1
(粗DAAMの合成)
メカニカルスターラー、温度計、滴下ろうとを備えた内容積500mlの3つ口フラスコに、アセトン1.47モル、アクリロニトリル0.7モルを仕込んだ。攪拌しながらこれに硫酸1.47モルを滴下した。この間、温度は40℃以下に保持した。滴下終了後、45℃で2時間反応させた。反応液を140gの水に滴下し、さらに25%アンモニア水200gを添加して中和した。この間、温度は40℃以下に保持した。中和後、室温で静置して水相と有機相とに成層分離し、有機相110g(DAAM68g、アクリルアミド4.6g含有)を取得した。
【0015】
(粗DAAMの精製)
上記で得た有機相110gに、15重量%水酸化ナトリウム水溶液34g(アクリルアミドに対し2倍モル)を加え、80℃で1時間攪拌した。冷却して反応液を室温で静置し、水相と有機相とに成層分離した。有機相に10重量%硫酸水溶液を添加して中和したのち、静置して水相を除去し有機相を取得した。この有機相にシクロヘキサン100gを加えて激しく攪拌した後、静置して2層に成層分離した。上層のシクロヘキサン層は、蒸留してシクロヘキサンを回収した。下層の有機相は、フェノチアジン70mg、ハイドロキノン35mgを加え、60℃で簡単に蒸留して低沸点成分を除去した後、2.0mmHgの減圧下で簡単な蒸留を行いDAAMを得た。収量60g、純度98.6重量%(精製工程回収率86%)、不純物(高沸成分1.3重量%、アクリルアミド0.1重量%)。
【0016】
実施例2
シクロヘキサンによる洗浄を行なわなかった以外は、実施例1と全く同様にしてDAAMの精製を行なった。収量62g、純度96.6重量%(精製工程回収率88%)、不純物(高沸成分3.3重量%、アクリルアミド0.1重量%)。
【0017】
実施例3
15重量%水酸化ナトリウム水溶液の代りに15重量%水酸化カリウム水溶液48g(アクリルアミドに対し2倍モル)を用い、且つシクロヘキサンの代りに石油エーテル100gを用いた以外は、実施例1と全く同様にしてDAAMの精製を行なった。収量59g、純度98.4重量%(精製工程回収率85%)、不純物(高沸成分1.6重量%、アクリルアミド0.1重量%)。
【0018】
実施例4
有機相110gに、15重量%水酸化ナトリウム水溶液34g(アクリルアミドに対し2倍モル)を加え、80℃で1時間攪拌した。冷却して反応液を室温で静置し、水相と有機相とに成層分離した。有機相に10重量%硫酸水溶液を添加して中和したのち、静置して水相を除去し有機相を取得した。この有機層を水150gで抽出した。この抽出を更に2回行なった。得られた水相を合せて、これにシクロヘキサン20gを加え、激しく攪拌したのち静置して、水相とシクロヘキサン相とに成層分離した。水相に硫酸アンモニウム180gを溶解させて静置し、水相と有機相とに成層分離した。この有機相にフェノチアジン70mg、ハイドロキノン35mgを加え、実施例1と全く同様に60℃で簡単に蒸留して低沸点成分を除去したのち2.0mmHgの減圧下で簡単に蒸留してDAAMを得た。収量48g、純度98.2重量%(精製工程回収率69%)、不純物(高沸成分1.7重量%、アクリルアミド0.1重量%)。
【0019】
比較例1
有機相110gに、加水分解を施すことなく、フェノチアジン70mgとハイドロキノン35mgとを加え、実施例1と全く同様に60℃で簡単に蒸留して低沸点成分を除去したのち2.0mmHgの減圧下で簡単に蒸留してDAAMを得た。収量49g、純度96.0重量%(精製工程回収率69%)、不純物(高沸成分2.0重量%、アクリルアミド2.0重量%)。
【0020】
【発明の効果】
以上説明した本発明によれば、重合性単量体として充分な品質を有し、特に、、ヘアスプレー用樹脂、感光性樹脂、塗料用樹脂、接着剤用樹脂、不飽和ポリエステルの架橋剤等を製造するのに有用である、N−(1,1−ジメチル−3−オキソブチル)アクリルアミドが提供され、本発明の工業的価値は顕著である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to N- (1,1-dimethyl-3-oxobutyl) acrylamide (hereinafter abbreviated as DAAM). Specifically, the present invention is obtained by reacting acetone or diacetone alcohol with acrylonitrile and sulfuric acid, then hydrolyzing and neutralizing to obtain a crude DAAM, and then purifying the crude DAAM to obtain a polymerizable monomer. As to the quality of DAAM. The DAAM of the present invention is useful for producing a resin for hair spray, a photosensitive resin, a resin for paint, a resin for adhesive, a crosslinking agent for unsaturated polyester, and the like.
[0002]
[Prior art]
The crude DAAM obtained by reacting acetone or diacetone alcohol with acrylonitrile and sulfuric acid, and then hydrolyzing and neutralizing it, is mostly DAAM, but also other thermally unstable polymerizable components such as acrylamide. And coloring components such as phorone, isophorone and mesityl oxide, as well as heavy components such as DAAM reacted with acetone, acrylonitrile and other by-products.
[0003]
Although DAAM is expected to be used in various fields as described above, an industrially applicable purification technique for removing the above-mentioned impurities has not yet been established. Conventionally, it has been known that crude DAAM is purified by distillation under reduced pressure (for example, see Patent Document 1). However, since crude DAAM contains acrylamide which is polymerizable and has a boiling point close to that of DAAM, distillation purification is very difficult.
[0004]
A method of purifying crude DAAM by crystallization from an organic solvent is also known (for example, see Patent Documents 2 and 3). This method requires a large amount of an organic solvent, requires considerable cost for recovering the organic solvent and ensuring the safety of the working environment, and has a low DAAM yield. Further, the crude DAAM was subjected to an operation of removing impurities having poor water solubility by water extraction and an operation of removing acrylamide by hydrolysis in the presence of an alkaline aqueous solution, and then distilled under reduced pressure to obtain purified DAAM. Has also been proposed (for example, see Patent Document 4). This method gives high quality DAAM, but the yield is quite low, on the order of 43%.
[0005]
[Problems to be solved by the invention]
The present inventors have studied the cause of the low yield of DAAM in the above proposed method and found that a considerable amount of DAAM was lost in the water extraction step. That is, a large amount of water must be used to increase the extraction rate of DAAM, but this lowers the concentration of the resulting DAAM aqueous solution and makes it difficult to recover DAAM from this aqueous solution. Therefore, the amount of water used for extraction must be limited, and it is unavoidable that DAAM remains in the organic phase. Furthermore, DAAM loss occurs when DAAM is recovered from the DAAM aqueous solution by salting out. In addition to the loss of DAAM, this water extraction-recovery process of DAAM from the aqueous solution is cumbersome as an operation and requires considerable cost. Therefore, it would be extremely advantageous if high quality DAAM could be obtained without performing this water extraction.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 41-17968 [Patent Document 2]
US Patent No. 3,542,867 [Patent Document 3]
No. 3,542,875 [Patent Document 4]
Japanese Patent Publication No. 61-26986
[Means for Solving the Problems]
The present inventors have surprisingly found that DAAM having sufficient quality as a polymerizable monomer can be obtained only by hydrolysis and distillation under reduced pressure without water extraction. That is, according to the present invention, a crude DAAM obtained by reacting acetone or diacetone alcohol with acrylonitrile and sulfuric acid, and subsequently hydrolyzing and neutralizing, is heated in the presence of an alkaline aqueous solution to remove coexisting acrylamide. Hydrolysis, the hydrolysis reaction solution is separated into an aqueous phase and an organic phase, and the organic phase is distilled under reduced pressure, whereby a high-quality DAAM can be produced in a high yield. As a result, according to the present invention, there is provided DAAM having an acrylamide content of 0.1% by weight or less as DAAM of sufficient quality as a polymerizable monomer.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in detail. In the present invention, first, acetone or diacetone alcohol is reacted with acrylonitrile and sulfuric acid, followed by hydrolysis and neutralization to produce a crude DAAM. Just do it. Usually, acrylonitrile is mixed with a stoichiometric amount or a slightly excessive amount of acetone or diacetone alcohol with respect to the mixture, and about 2 moles of concentrated sulfuric acid is added to the acrylonitrile at 40 to 50 ° C for several hours. After the reaction, the reaction product is added to water, hydrolyzed, and then neutralized with an alkali. During this time, the temperature is preferably maintained at 40 ° C. or lower.
[0009]
Since the neutralization reaction solution separates into an aqueous phase and an organic phase when left to stand, the organic phase is obtained and subjected to the next alkaline hydrolysis without performing water extraction. Although alkali hydrolysis can be carried out by adding an alkali to the neutralization reaction solution, a large amount of water is present, so that a large amount of alkali is required to obtain a desired alkali concentration, which is disadvantageous. Alkaline hydrolysis is a process in which acrylamide coexisting in crude DAAM is decomposed into acrylic acid, and only acrylamide is selectively decomposed without decomposing DAAM. The hydrolysis is usually carried out using a 5 to 50% by weight aqueous solution of sodium hydroxide or potassium hydroxide, preferably a 10 to 30% by weight aqueous solution. If the concentration of the alkaline aqueous solution is too low, the hydrolysis takes a long time, and if the concentration is too high, there is a risk that the target substance, DAAM, is hydrolyzed and the yield decreases.
[0010]
The alkali is used in an amount of usually 1 to 10 equivalents, preferably 1.2 to 6 equivalents, to acrylamide coexisting in the crude DAAM. If the amount of alkali is too small, the progress of the reaction is slow, and it is difficult to complete the reaction. Conversely, if the amount of alkali is too large, hydrolysis of DAAM occurs and the yield decreases. The optimal equivalent ratio of alkali to acrylamide is 1.5-4. The hydrolysis is preferably carried out at 60 to 100 ° C, especially 70 to 90 ° C. If the temperature is too low, the reaction takes a long time, and if it is too high, there is a risk of DAAM being hydrolyzed.
[0011]
The time required for the hydrolysis is usually 10 minutes to 1 hour. Prolonged hydrolysis risks decomposing DAAM. When the hydrolysis is completed, the mixture is allowed to stand and separated into an aqueous phase and an organic phase, and the organic phase is subjected to the next step of distillation under reduced pressure. Since the organic phase contains alkali, it is preferable to neutralize the organic phase in advance. It is not impossible to subject the hydrolyzed solution to vacuum distillation only by neutralizing it without phase separation. However, since the amount of the residue increases and a large amount of salt is contained, the treatment becomes a problem. It is also preferable to wash the organic phase in advance with an organic solvent that does not dissolve DAAM. This washing can remove a considerable amount of heavy components in the organic phase. Examples of the organic solvent used for washing include pentane, hexane, heptane, cyclohexane, methylcyclohexane, petroleum ether, saturated hydrocarbons such as naphtha, ethyl ether, ethers such as diisopropyl ether, and halogenated hydrocarbons such as perchloroethylene. Can be Washing with an organic solvent is performed by adding 10 to 200% by volume, preferably 50 to 100% by volume of the above organic solvent with respect to the organic phase, stirring and bringing the two well into contact with each other, and then allowing them to stand for layer separation. Just fine.
[0012]
The organic phase subjected to vacuum distillation contains almost no acrylamide, which has a boiling point close to that of DAAM, and has only low-boiling components and heavy components as impurities, making distillation purification easy. It is. Normally, low-boiling components are first removed by evaporation or simple distillation, and then simple distillation or distillation under reduced pressure is carried out in a distillation column having several stages. The top pressure is usually 20 mmHg or less, preferably 5 mmHg or less. It is preferable to add a polymerization inhibitor such as hydroquinone or phenothiazine during the distillation.
[0013]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. In the following examples, analysis was performed by high performance liquid chromatography and gas chromatography.
[0014]
Example 1
(Synthesis of crude DAAM)
1.47 mol of acetone and 0.7 mol of acrylonitrile were charged into a 500 ml three-necked flask equipped with a mechanical stirrer, a thermometer, and a dropping funnel. While stirring, 1.47 mol of sulfuric acid was added dropwise thereto. During this time, the temperature was kept below 40 ° C. After completion of the dropwise addition, the reaction was carried out at 45 ° C. for 2 hours. The reaction solution was dropped into 140 g of water, and 200 g of 25% aqueous ammonia was further added for neutralization. During this time, the temperature was kept below 40 ° C. After the neutralization, the mixture was allowed to stand at room temperature to separate into a water phase and an organic phase, thereby obtaining 110 g of an organic phase (containing 68 g of DAAM and 4.6 g of acrylamide).
[0015]
(Purification of crude DAAM)
To 110 g of the organic phase obtained above, 34 g of a 15% by weight aqueous sodium hydroxide solution (twice the mol of acrylamide) was added, and the mixture was stirred at 80 ° C. for 1 hour. After cooling, the reaction solution was allowed to stand at room temperature, and separated into a water phase and an organic phase. The organic phase was neutralized by adding a 10% by weight aqueous sulfuric acid solution, and then allowed to stand to remove the aqueous phase to obtain an organic phase. After 100 g of cyclohexane was added to the organic phase and stirred vigorously, the mixture was allowed to stand and separated into two layers. The upper cyclohexane layer was distilled to recover cyclohexane. To the lower organic phase, 70 mg of phenothiazine and 35 mg of hydroquinone were added, and the mixture was easily distilled at 60 ° C. to remove low-boiling components, followed by simple distillation under reduced pressure of 2.0 mmHg to obtain DAAM. Yield: 60 g, purity: 98.6% by weight (purification step recovery: 86%), impurities (1.3% by weight of high boiling component, 0.1% by weight of acrylamide).
[0016]
Example 2
DAAM was purified in exactly the same manner as in Example 1 except that washing with cyclohexane was not performed. Yield 62 g, purity 96.6% by weight (purification step recovery rate 88%), impurities (high-boiling component 3.3% by weight, acrylamide 0.1% by weight).
[0017]
Example 3
Exactly the same as in Example 1 except that 48 g of a 15% by weight aqueous solution of potassium hydroxide was used instead of the 15% by weight aqueous solution of sodium hydroxide (twice the mol of acrylamide) and 100 g of petroleum ether was used instead of cyclohexane. To purify DAAM. Yield: 59 g, purity: 98.4% by weight (purification process recovery rate: 85%), impurities (high-boiling component: 1.6% by weight, acrylamide: 0.1% by weight).
[0018]
Example 4
To 110 g of the organic phase, 34 g of a 15% by weight aqueous sodium hydroxide solution (twice the mol of acrylamide) was added, and the mixture was stirred at 80 ° C. for 1 hour. After cooling, the reaction solution was allowed to stand at room temperature, and separated into a water phase and an organic phase. The organic phase was neutralized by adding a 10% by weight aqueous sulfuric acid solution, and then allowed to stand to remove the aqueous phase to obtain an organic phase. The organic layer was extracted with 150 g of water. This extraction was performed twice more. The obtained aqueous phases were combined, and 20 g of cyclohexane was added thereto. After vigorous stirring, the mixture was allowed to stand and separated into a water phase and a cyclohexane phase. 180 g of ammonium sulfate was dissolved in the aqueous phase, allowed to stand, and separated into a water phase and an organic phase. 70 mg of phenothiazine and 35 mg of hydroquinone were added to the organic phase, and the mixture was distilled at 60 ° C. in the same manner as in Example 1 to remove low-boiling components, and then distilled under reduced pressure of 2.0 mmHg to obtain DAAM. . Yield: 48 g, purity: 98.2% by weight (purification step recovery: 69%), impurities (1.7% by weight of high boiling component, 0.1% by weight of acrylamide).
[0019]
Comparative Example 1
To 110 g of the organic phase, 70 mg of phenothiazine and 35 mg of hydroquinone were added without hydrolysis, and the mixture was distilled at 60 ° C. in the same manner as in Example 1 to remove low-boiling components, and then reduced under 2.0 mmHg under reduced pressure. Distilled briefly to give DAAM. Yield: 49 g, purity: 96.0% by weight (purification step recovery: 69%), impurities (high-boiling component: 2.0% by weight, acrylamide: 2.0% by weight).
[0020]
【The invention's effect】
According to the present invention described above, it has a sufficient quality as a polymerizable monomer, and particularly, a hair spray resin, a photosensitive resin, a paint resin, an adhesive resin, an unsaturated polyester crosslinking agent, and the like. N- (1,1-dimethyl-3-oxobutyl) acrylamide is provided, which is useful for the production of the present invention, and the industrial value of the present invention is remarkable.

Claims (2)

アクリルアミド含量が0.1重量%以下であることを特徴とするN−(1,1−ジメチル−3−オキソブチル)アクリルアミド。N- (1,1-dimethyl-3-oxobutyl) acrylamide having an acrylamide content of 0.1% by weight or less. アセトン又はダイアセトンアルコールとアクリロニトリルとより得られる請求項1に記載のN−(1,1−ジメチル−3−オキソブチル)アクリルアミド。The N- (1,1-dimethyl-3-oxobutyl) acrylamide according to claim 1, which is obtained from acetone or diacetone alcohol and acrylonitrile.
JP2003157421A 2003-06-03 2003-06-03 N- (1,1-dimethyl-3-oxobutyl) acrylamide Pending JP2004059577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157421A JP2004059577A (en) 2003-06-03 2003-06-03 N- (1,1-dimethyl-3-oxobutyl) acrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157421A JP2004059577A (en) 2003-06-03 2003-06-03 N- (1,1-dimethyl-3-oxobutyl) acrylamide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16313596A Division JP3700876B2 (en) 1996-06-24 1996-06-24 Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide

Publications (1)

Publication Number Publication Date
JP2004059577A true JP2004059577A (en) 2004-02-26

Family

ID=31944673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157421A Pending JP2004059577A (en) 2003-06-03 2003-06-03 N- (1,1-dimethyl-3-oxobutyl) acrylamide

Country Status (1)

Country Link
JP (1) JP2004059577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503407A (en) * 2018-12-24 2019-03-22 潍坊科麦化工有限公司 A kind of preparation method of Diacetone Acrylamide aqueous solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503407A (en) * 2018-12-24 2019-03-22 潍坊科麦化工有限公司 A kind of preparation method of Diacetone Acrylamide aqueous solution

Similar Documents

Publication Publication Date Title
JP2846084B2 (en) Preparation method of 1-aminomethyl-1-cyclohexaneacetic acid
CN109942459B (en) Method for synthesizing 3-difluoromethyl-3-acrylonitrile compounds
JP3700876B2 (en) Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide
JP2004059577A (en) N- (1,1-dimethyl-3-oxobutyl) acrylamide
JP2009298715A (en) Method for producing high purity 2'-trifluoromethylpropiophenone
JP4086982B2 (en) Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide
JP4667593B2 (en) Process for producing 2-alkyl-2-adamantyl (meth) acrylates
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
JP2008074722A (en) Method for producing 2-amino-5-iodobenzoic acid
JP5018067B2 (en) Method for producing fluorine-containing alkane esters
JP4409057B2 (en) Method for producing benzenedimethanol compound
JP4641640B2 (en) Method for producing carbodihydrazide
JP4171879B2 (en) Method for producing adamantanediol
JP4250780B2 (en) Method for producing mercaptocarboxylic acids
JP2002114737A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE o-CHLOROMANDELIC ACID
JP2003192626A (en) Method for producing 2-adamantanone
JP3334206B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
JPH03190856A (en) Production of purified hydroperoxide
JP5730622B2 (en) Method for producing nitrophenyl alkyl sulfide
JP4024919B2 (en) Process for producing 1-amino-1-methyl-3 (4) -aminomethylcyclohexane
JPS6126986B2 (en)
JPS58953A (en) Preparation of butyric acid derivative
KR100199042B1 (en) Process for preparation of 2-aminothiazolecarboxylic acid derivative
CN113929578A (en) Method for synthesizing 2-formyl-1-cyclopropane ethyl formate
CN114292229A (en) Preparation method of 3-bromo-4-methoxypyridine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060629