[go: up one dir, main page]

JP2004059391A - Method of manufacturing substrate for information recording medium and information recording medium - Google Patents

Method of manufacturing substrate for information recording medium and information recording medium Download PDF

Info

Publication number
JP2004059391A
JP2004059391A JP2002222018A JP2002222018A JP2004059391A JP 2004059391 A JP2004059391 A JP 2004059391A JP 2002222018 A JP2002222018 A JP 2002222018A JP 2002222018 A JP2002222018 A JP 2002222018A JP 2004059391 A JP2004059391 A JP 2004059391A
Authority
JP
Japan
Prior art keywords
recording medium
information recording
acid
substrate
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002222018A
Other languages
Japanese (ja)
Inventor
Koichi Tsuda
津田 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002222018A priority Critical patent/JP2004059391A/en
Publication of JP2004059391A publication Critical patent/JP2004059391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for an inexpensive/high performance information recording medium having excellent durability, which is capable of suppressing the elution of an alkali even when a glass substrate such that the elution amount of the alkali from the glass substrate becomes large unavoidably is used in order to maintain a low forming temperature; and to provide the information recording medium. <P>SOLUTION: A method for manufacturing the substrate for the information recording medium comprises immersing the glass substrate for the information recording medium containing alkali metals into a melt of an inorganic acid of 120-350°C, and then after immersing, washing the glass substrate for the information recording medium in order to remove the melt of the inorganic acid or its solidified substance remaining on the surface of the glass substrate for the information recording medium. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は情報記録用基板の製造方法、及び情報記録媒体に関する。
【0002】
【従来の技術】
近年、磁気ディスクの高密度記録化が進み、それに伴いディジタル信号を記録する磁性層の性能向上のみならず、記録の読み出しを司る磁気ヘッド、更には基板の性能向上が要求されている。このようなニーズに応える手段として基板に関しては、従来から使用されていたアルミニウム基板に代わり、ガラス基板が注目されている。その理由は、小型・高密度化に要求される薄板化が容易であり、また磁気ヘッドの低浮上量化に伴う基板表面の平坦度の確保も容易など、アルミニウム基板に比べガラス基板が高いポテンシャルを有しているためである。
【0003】
また、ガラスを軟化温度以上で圧力を加え、成形すると容易に円板状の基板が得られる、といったガラスの特質を生かした低コスト基板を作製できる可能性を有していることもガラス基板が注目される理由である。
【0004】
このような低コストガラス基板を作製する際、成形時に使用する加圧装置や金型の寿命を考えると、成形温度はできるだけ低温が望ましく、このためにはLi,Na,Kなどのアルカリ金属をガラスに添加するのが一般的である。
【0005】
一方、情報記録媒体からみると、アルカリ金属は磁性層を腐食したり、また表面潤滑層を劣化させる、あるいは表面析出物を生成しヘッドを破壊するなどのデメリットが大きく、このためアルカリ金属の溶出量を極力抑えることが望まれている。
【0006】
基板からのLi,Na,K等のアルカリイオンの溶出を防ぐ方法として、これまでに、
1)硝酸カリウム(KNO)等の溶融液に基板を浸漬してガラス中のNaイオン等をイオン交換したのち、脱アルカリ金属イオン処理として温水処理し、さらに脱アルカリ金属イオン処理後に2価金属イオンの注入処理として硝酸亜鉛水溶液中に情報記録用ガラス基板を浸漬し、表面改質を行いアルカリ溶出を防ぐ方法(特許第2947131号公報)、
2)化学強化処理後、または化学強化処理を行わずに、硫酸水素カリウム(KHSO)や、微量の水を含んだピロ硫酸カリウム(K)等の溶融塩にアルカリ元素を含んだ情報記録用ガラス基板を浸漬し、表面改質を行いアルカリ溶出を防ぐ方法(特開2000−82211号公報等)、
3)化学強化処理後の熱濃硫酸処理をともなわずに基板を温水処理する方法(特開2002−150549号公報)等が提案されている。
【0007】
しかし、1)の方法は処理温度が95℃と低いために、アルカリ元素の置換が十分に進まず、最近の高密度磁性層に対するアルカリ溶出抑制効果は不十分であるなどの問題があり、2)の方法では300℃前後の高温での溶融塩中の処理のため、基板表面が荒れたり、また原理的には溶融塩中のHOが重要な役割をするため、高温であるが故に、HOの管理が難しいと言ったことからコストアップにつながるという問題点があった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、低成形温度を維持するためガラス基板からのアルカリ溶出量が必然的に多くなるガラス基板を用いても、アルカリ溶出を抑制でき、耐久性に優れた低価格・高性能情報記録媒体用基板、及びこれを用いた情報記録媒体の供給を目的としている。
【0009】
【課題を解決するための手段】
本発明の第1の態様は、情報記録媒体用基板の製造方法であって、アルカリ金属を含む情報記録媒体用ガラス基板を120℃から350℃の有機酸溶融液に浸漬することを特徴とする。
【0010】
本発明の第2の態様は、前記情報記録媒体用基板の製造方法であって、有機酸がカルボン酸およびフェノールカルボン酸からなる群から選択されることを特徴とする。
【0011】
本発明の第3の態様は、前記情報記録媒体用基板の製造方法であって、有機酸の沸点が120℃以上で、かつ融点が350℃以下であることを特徴とする。
【0012】
本発明の第4の態様は、前記情報記録媒体用基板の製造方法であって、情報記録媒体用ガラス基板の有機酸への浸漬工程後に、情報記録媒体用ガラス基板表面に残った有機酸溶融液またはその固化物を洗浄除去する工程を備えたことを特徴とする。
【0013】
本発明の第5の態様は、本発明の第4の態様における情報記録媒体用基板の製造方法であって、情報記録媒体用ガラス基板表面に残った有機酸溶融液またはその固化物を洗浄除去する工程が、20℃〜100℃の水または水酸化アルカリ水溶液中で該ガラス基板を処理することを特徴とする。
【0014】
本発明の第6の態様は、本発明の第5の態様における情報記録媒体用基板の製造方法であって、水酸化アルカリ水溶液が水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、および水酸化カリウム(KOH)からなる群から選択されることを特徴とする。
【0015】
本発明の第7の態様は、情報記録媒体用基板であって、前記情報記録媒体用基板の製造方法により製造されることを特徴とする。
【0016】
本発明の第8の態様は、情報記録媒体であって、前記情報記録媒体用基板の製造方法により製造される情報記録媒体用基板を用いることを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明に基づく情報記録媒体用基板およびその製造方法について詳細に説明する。
【0018】
本発明者らは種々の検討を重ねた結果、次のような知見を得た。即ち、前述した硫酸水素カリウム(KHSO)や、微量の水分を含んだピロ硫酸カリウム(K)等の溶融塩にアルカリ元素を含んだ情報記録用ガラス基板を浸漬し、表面改質を行いアルカリ溶出を防ぐ(特開2000−82211号公報等)方法や、硝酸亜鉛水溶液中にアルカリ元素を含んだ情報記録用ガラス基板を浸漬し、表面改質を行いアルカリ溶出を防ぐ(特許第2947131号公報)方法は、共に処理液に含まれている水から生成されるヒドロニウムイオン(H)とガラス基板中のアルカリ元素がイオン交換し、最終的にHOが抜けて、結果的にはガラス中のアルカリ元素とHが置換することにより、ガラス基板表面を改質し、高温・高湿状態でも、アルカリ元素が表面に析出しにくい状態を作る方法にほかならない。
【0019】
以下に、更に具体的に述べることにする。アルカリ元素としてNaを含有したNa含有ガラスのネットワーク構造の一部をNa−O−Si≡Oと表記する。第一段階では、上述した処理液中の水から生成されるHがガラスネットワーク構造中のNaと置換して、
Na−O−Si≡O  →  (HO)−O−Si≡O  (1)
となる。更に、温度によりHOが抜け、(2)式で示すように化学的に安定なシラノール基(Si−OH)が形成される。
(HO)−O−Si≡O  →  H−O−Si≡O  (2)
【0020】
したがって、アルカリ溶出を防ぐためには、上述したような硫酸水素カリウム(KHSO)や、ピロ硫酸カリウム(K)等の溶融塩などを用いることが本質ではなく、高温の水に晒すことが本質である。更にこの考えを発展させて、(1)、(2)式を経ずに、NaとHの直接置換ができれば、高温で管理が難しいHOを使うことなく、化学的に安定なH−O−Si≡Oを形成することができる。
【0021】
NaとHの直接置換の可能性がある処理液として、硫酸(HSO)、硝酸(HNO)などの無機酸が考えられる。本発明者の検討によると、例えば80℃の硫酸に浸漬するとガラス基板表面にシラノール基が形成され、この結果、アルカリ溶出は抑制されるが、その反面、反応が活性なため、基板表面が荒れ情報記録媒体用ガラス基板としては不適当であった。また逆に、表面粗さを改善しようとして処理温度を下げると、アルカリ溶出の抑制効果も低下してしまう。
【0022】
以上述べた点を更に検討し、本発明者はH供給源として、無機酸より反応がマイルドな有機酸溶融液に着目した。有機酸溶融液は、反応が緩やかなため、表面粗さの悪化を起こさず、しかもアルカリ溶出抑制効果を得るに十分な温度でも安定に使うことのできる処理液であるとの結論に達した。
【0023】
更に具体的には、有機酸溶融液は充分なアルカリ溶出抑制効果を発現できるように、沸点が120℃以上であり、かつ融点が350℃以下である、カルボン酸またはフェノールカルボン酸の溶融液を用いることが好ましい。
【0024】
カルボン酸の例としては、吉草酸C10(ペンタン酸)、カプロン酸C12(ヘキサン酸)、エナント酸C14(ヘプタン酸)、カプリル酸C16(オクタン酸)、ペラルゴン酸C18(ノナン酸)、カプリン酸C1020(デカン酸)、ウンデシル酸C1122(ウンデカン酸)、ラウリン酸C1224(ドデカン酸)、トリデシル酸C1326(トリデカン酸)、ミリスチン酸C1428(テトラデカン酸)、ペンタデシル酸C1530(ペンタデカン酸)などのモノカルボン酸のほか、琥珀酸HOOC−(CH−COOH(ブタン二酸)、グルタル酸HOOC−(CH−COOH(ペンタン二酸)、アジピン酸HOOC−(CH−COOH(ヘキサン二酸)、ピメリン酸HOOC−(CH−COOH(ヘプタン二酸)、スベリン酸HOOC−(CH−COOH(オクタン二酸)、アゼライン酸HOOC−(CH−COOH(ノナン二酸)、セバシン酸HOOC−(CH−COOH(デカン二酸)、マレイン酸C(cis−ブテン二酸)、フマル酸C(trans−ブテン二酸)等のジカルボン酸が挙げられるがこれらに限定されない。
【0025】
またフェノールカルボン酸の例としては、サリチル酸C(o−ヒドロキシ安息香酸)、オキシフェニル酢酸C、α−レゾルシル酸C等が挙げられるがこれらに限定されない。
【0026】
カプロン酸、カプリン酸、琥珀酸、アジピン酸等は温水には溶けるので、アルカリ溶出防止処理後のガラス基板洗浄では温水に浸漬することで、有機酸溶融液残渣、あるいは固化物を除去することが可能である点で特に好ましい。一方、上記有機酸に比べ更に炭素数が多いペンタデカン酸やセバシン酸、あるいはオキシフェニル酢酸は温水には溶けないが、水酸化ナトリウム(NaOH)水溶液などの水酸化アルカリ水溶液には可溶であるので、これらも基板洗浄工程で容易に除去可能である。
【0027】
1.ガラス基板の準備
Li,Na,K等のアルカリ元素を含有しているガラスカレットを溶融し、重さ約6g、厚さ約8mm、直径約23mmの円盤状のガラスを作製し、これを600℃で成形し、厚さ0.635mm、直径65mmの円板状のガラス基板を作製した。このガラス基板の中心部に内径20mmの穴を開け、更に機械的強度を増すために一般的な化学強化を実施した。化学強化はNaNOとKNOを0.4対0.6の比率で混合した融液中に、350〜400℃で1〜5時間ガラス基板を浸漬することで実施した。その後、純水中で化学強化用溶融液の除去を行い、更にスクラブ洗浄、純水洗浄、IPA(イソプロピルアルコール)洗浄を行った。
【0028】
2.アルカリ溶出防止処理およびその評価法
次いで、ガラス基板表面・端面からのアルカリ溶出防止処理を行うために、上述したような有機酸溶融液にガラス基板を浸漬させた。さらに、必要に応じてガラス基板表面に残った有機酸溶融液またはその固化物を20℃〜100℃の水、あるいは水酸化アルカリ水溶液中で洗浄除去する。有機酸処理後のガラス基板からのアルカリ溶出量の評価は、アルカリ溶出防止処理後のガラス基板を、純水を入れたテフロン(登録商標)容器に入れ、80℃の恒温槽に24時間放置後、純水に溶出したLi,Na,Kの溶出量をICP(誘導結合プラズマ)発光分析で調べた。また、表面状態の評価には原子間力顕微鏡(AFM)を用い、微小な表面凹凸を評価した。
【0029】
上記方法でアルカリ抑制効果があったことが明らかとなったので、これらについて磁性層まで成膜し、磁気記録媒体としての信頼性も確認した。
【0030】
3.磁気記録媒体
本発明の情報記録媒体の一例として磁気記録媒体について説明する。磁気記録媒体は通常、磁気ディスク用基板上に、下地層、磁性層、保護層、潤滑剤層等を順次積層することにより製造する。
【0031】
下地層は、その上に成膜する磁性層の成長に影響させて磁性特性を向上させることと、基板からの有害元素(例えばアルカリ金属)の磁性層への拡散を防ぐ目的で形成される層である。Cr、Mo、Ta、Ti、W、V、B、Al等の非磁性金属あるいはそれらを含む非磁性合金が単層あるいは多層で用いられる。
【0032】
磁性層の材料に特に制限は無いが、一般的にCoCr系、CoPr系、CoCrTa系等の2〜5元系が単層あるいは非磁性層と組み合わせた多層で使われている。この他、フェライト系や鉄系などの強磁性材料の適用が考えられる。高記憶密度化へ対応する為に、高保磁力であると共に、磁区を微細化する為に粒界に非磁性組成が偏析する様な材料設計もなされている。
【0033】
保護層は、磁気ヘッドとの接触時の摩擦摩耗や腐蝕性ガスから磁性層を保護する層である。一般的にスパッタ法やCVD法を用いてC膜、C−N膜等が用いられる。その他ジルコニア膜やシリカ膜等の硬質セラミック膜でも良く、成膜法も蒸着法の他に有機金属をアルコールで希釈塗布して焼成する所謂ゾル−ゲル法を用いても良い。
【0034】
潤滑剤層は、磁気ヘッドとの接触時の摩擦摩耗から保護層と共に摩擦抵抗を軽減する層である。一般的にはパーフルオロポリエーテルをフッ素系溶媒で希釈して、ディッピング法やスピンコート法にて、0.1〜0.5nm程度の膜厚に塗布される。
【0035】
磁気ディスクに求める機能と信頼性が達成されるならば、上記の下地層、保護層、潤滑剤層の3層は必須ではなく、また基板に磁気記録の機能があれば磁性層も必要ないが、現状では上記4層に機能分離して所定の性能を達成している。
【0036】
以上、磁気ディスクについて述べてきたが、基板がガラスである他の情報記録媒体にも本発明の基板の製造方法は有効である。
【0037】
更に具体的な実施例を、以下に説明するが、発明を限定することを意図するものでない。
【0038】
(実施例1)
SiO 60モル%、LiO 10モル%、NaO 5モル%、MgO3モル%、CaO 8モル%、Al 4モル%、B 8モル%をベースに、更に複数の微量添加物を加えた粉末を、1200〜1500℃で溶融し、ルツボからグラッシーカーボン製の型にこの溶融したガラスを流し込んで、重さ約6g、厚さ約8mm、直径約23mmの円盤状のガラスを作製した。この円盤状のガラスを十分冷えない内に、成型用の金型に導入し、ガラスの軟化温度付近に0.2〜0.6t/cmで、3分間加圧した。この操作により、直径65mm、厚さ0.635mmの円板状のガラス板を得ることができた。次いで、このガラス板の中心部に直径20mmの穴を開けた。更に、この円板の抗折強度を確保するために、化学強化を実施した。具体的な化学強化の処理条件は、重量比でNaNO:KNO=2:3の比率で混ぜた硝酸塩を、370℃で溶融させ、この融液に穴開け加工を施したガラス板を2時間浸漬するものである。
【0039】
次いで、化学強度を終えたガラス板を洗浄・乾燥後、アジピン酸((CH−(COOH))溶融液に浸漬してアルカリ溶出防止処理を行った。なお、アジピン酸の融点は153℃で、沸点は338℃であり、またアジピン酸は水に可溶である。
【0040】
次いで、上記アルカリ溶出防止処理を施したガラス基板が情報記録用媒体用基板として好ましいアルカリ溶出量かどうかを、次の手順にて確認した。
【0041】
1)容積0.5Lの蓋付テフロン(登録商標)容器に純水を10mL入れ、更に上記アジピン酸に浸漬し、アルカリ溶出防止処理をしたガラス基板を1枚入れた。
【0042】
2)この容器を80℃の恒温槽に入れ、24時間放置した。
【0043】
3)テフロン(登録商標)容器を恒温槽から取り出し、アルカリを抽出した純水中に含まれる元素をICP分析で調べた。
【0044】
また、ガラス基板の表面凹凸を評価するために原子間力顕微鏡(AFM)を用い、平均的な表面粗さ(Ra)を調べた。
【0045】
本発明の処理条件(アジピン酸溶融液温度、浸漬時間)、及び評価結果を表1に示す。表1には比較例としてアルカリ溶出防止処理をしていないガラス基板の評価結果も載せてある。
【0046】
また、表1にはガラス基板に磁性層をスパッタにより成膜し、その高温・高湿信頼性試験前後でのエラー評価も行った結果も示してある。具体的には、アルカリ溶出防止処理を施したガラス基板に、スパッタ法にて、Ni−Al下地層、Cr下地層、Co−Cr−Pt系磁性層、C保護膜を順次形成し、その後ディップコート法にてフッ素系液体潤滑剤を塗布し、磁気ディスク媒体とした。
【0047】
この磁気ディスク媒体を、80℃、80%RHの高温・高湿状態に1,000時間放置後の媒体の面当たりのエラー数を数え試験前後のエラー増加数を信頼性評価データとした。
【0048】
表1で示すアルカリ溶出量と磁気ディスク媒体の信頼性試験後のエラー増加数間には、相関があり、ガラス基板のアルカリ溶出量が少ないほど、エラー増加数も減っている。
【0049】
表1の比較例と比べると、アジピン酸の融点(153℃)直上から、沸点(338℃)直下までの広範囲にわたり浸漬時間が適切であると本発明の効果が認められる。一方、ガラス基板の表面粗さは処理温度を変えても変化しないことが表1から分かる。
【0050】
また、高温での処理は、化学強化によるガラス基板の機械的強度改善効果を低下させる恐れがあるので、処理後の抗折強度も調べたが、320℃における短時間処理では抗折強度の低下は認められなかった。
【0051】
【表1】

Figure 2004059391
【0052】
(実施例2)
実施例1におけるアジピン酸の代わりにカプリン酸C1020(デカン酸)溶融液を使い、実施例1と同様な評価を行った。カプリン酸の融点は32℃、沸点は270℃である。カプリン酸も温水に溶けるので、アルカリ溶出防止処理後の溶融液の除去には、60℃の温水を用いた。浸漬処理条件、及び評価結果を表2に示す。カプリン酸の融点が32℃であるので、処理温度を120℃まで下げて処理を行ったが、表2から分かるように、低温になるにつれて、同じアルカリ溶出防止効果を得るためには、長時間の浸漬が必要である。
【0053】
したがって、120℃より低い温度では実用的な処理条件が得られない。
【0054】
【表2】
Figure 2004059391
【0055】
(実施例3)
実施例1におけるアジピン酸の代わりにステアリン酸CH(CH16COOH溶融液を使い、実施例1と同様な評価を行った。ステアリン酸の融点は72℃、沸点は360℃である。処理条件、及び評価結果を表3に示す。
【0056】
ステアリン酸は水に溶けないため、アルカリ溶出防止処理後の溶融液の除去には、60℃の水酸化ナトリウム水溶液を使用した。浸漬処理条件、及び評価結果を表3に示す。ステアリン酸の沸点が360℃であるので、処理温度を350℃まで上げて処理を行ったが、表3から分かるように、350℃の高温でも浸漬時間が適切なら、本発明の効果が認められる。ただし、同じアルカリ溶出防止効果を得るためには、短時間の浸漬が必要である。
【0057】
このため、350℃を超える温度では時間制御が難しく、このためばらつきが大きくなり実用的な処理条件が得られない。
【0058】
【表3】
Figure 2004059391
【0059】
(実施例4)
実施例1におけるアジピン酸の代わりに表4に示すカルボン酸溶融液を使い、実施例1と同様な評価を行った。具体的には、吉草酸C10(ペンタン酸)、カプロン酸C12(ヘキサン酸)、エナント酸C14(ヘプタン酸)、カプリル酸C16(オクタン酸)、ペラルゴン酸C18(ノナン酸)、ウンデシル酸C1122(ウンデカン酸)、ラウリン酸C1224(ドデカン酸)、トリデシル酸C1326(トリデカン酸)、ミリスチン酸C1428(テトラデカン酸)、ペンタデシル酸C1530(ペンタデカン酸)、琥珀酸(CH−(COOH)、グルタル酸(CH−(COOH)(プロパンジカルボン酸)、ピメリン酸(CH−(COOH)、スベリン酸(CH−(COOH)(コルク酸)、アゼライン酸(CH−(COOH)、セバシン酸(CH−(COOH)、アレイン酸(CH)−(COOH)の溶融液である。表4には各々のカルボン酸の融点と沸点(出典:化学大辞典・共立出版)も記載している。処理温度の沸点の70から90%の間とし、浸漬時間は実施例1〜3を参考にして決めた。表4から、浸漬温度と時間が適切であれば、いずれの有機酸溶融液でも本発明の効果が認められる。なお、表4で示した有機酸の多くは水に溶けないが、これらは水酸化ナトリウム、水酸化リチウム、水酸化カリウムなどの水酸化アルカリ水溶液に溶けるので、アルカリ溶出防止処理後の溶融液の除去は、水酸化アルカリ水溶液へ浸漬することにより可能である。
【0060】
【表4】
Figure 2004059391
【0061】
(実施例5)
実施例1におけるアジピン酸の代わりに表5に示すフェノールカルボン酸溶融液を使い、実施例1と同様な評価を行った。具体的には、オキシフェニル酢酸C、α−レゾルシル酸C、サリチル酸(o−ヒドロキシ安息香酸)Cの溶融液である。表5には各々のフェノールカルボン酸の融点と沸点(出典:化学大辞典・共立出版)も記載している。処理温度は沸点の70から90%の間とし、浸漬時間は実施例1〜3を参考にして決めた。オキシフェニル酢酸は水には溶けないが、実施例4で示したのと同様、水酸化アルカリ水溶液には溶けるので、溶融液の除去は可能である。表5からフェノールカルボン酸溶融液でも本発明の効果が認められることが分かる。
【0062】
【表5】
Figure 2004059391
【0063】
【発明の効果】
本発明によれば、120℃以上で350℃以下の有機酸溶融液に、低温成形を可能とするアルカリイオンを含んだ情報記録媒体用ガラス基板を浸漬することにより、アルカリ溶出が少ないガラス基板を供給することができる。更に、このガラス基板を用いて作製した情報記録用媒体は、80℃、80%RHに1,000時間放置するような過酷な耐候性試験でも、磁気ディスク媒体のエラー増加数は未処理基板に比べ、非常に少なく抑えられる。この結果、低温成形と耐候性の相反する特性を満足する安価な情報記録媒体用ガラス基板、及び安価な情報記録媒体を供給することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an information recording substrate and an information recording medium.
[0002]
[Prior art]
In recent years, the recording density of a magnetic disk has been increased, and accordingly, not only the performance of a magnetic layer for recording a digital signal but also the performance of a magnetic head for controlling recording and reading and the performance of a substrate have been required. As a means for meeting such needs, a glass substrate has been attracting attention instead of an aluminum substrate which has been conventionally used. The reason is that the glass substrate has a higher potential than the aluminum substrate because it is easy to reduce the thickness required for miniaturization and high density, and it is also easy to secure the flatness of the substrate surface due to the low flying height of the magnetic head. It is because it has.
[0003]
In addition, a glass substrate has the possibility of producing a low-cost substrate utilizing the characteristics of glass, such as applying a pressure to the glass at a temperature equal to or higher than the softening temperature and easily forming a disk-shaped substrate. That's why it is noticed.
[0004]
When manufacturing such a low-cost glass substrate, the molding temperature is desirably as low as possible in consideration of the life of a pressing device and a mold used during molding. For this purpose, an alkali metal such as Li, Na, or K is used. It is generally added to glass.
[0005]
On the other hand, from the viewpoint of information recording media, alkali metals have major disadvantages such as corrosion of the magnetic layer, deterioration of the surface lubricating layer, and formation of surface precipitates and destruction of the head. It is desired to minimize the amount.
[0006]
As a method of preventing the elution of alkali ions such as Li, Na, and K from the substrate,
1) The substrate is immersed in a molten liquid such as potassium nitrate (KNO 3 ) to ion-exchange Na + ions and the like in the glass, and then subjected to hot water treatment as alkali metal ion treatment, and further to divalent metal after alkali metal ion treatment. A method of immersing a glass substrate for information recording in an aqueous zinc nitrate solution as an ion implantation treatment to modify the surface to prevent alkali elution (Japanese Patent No. 2947131);
2) After or without performing the chemical strengthening treatment, an alkali element is added to a molten salt such as potassium hydrogen sulfate (KHSO 4 ) or potassium pyrosulfate (K 2 S 2 O 7 ) containing a small amount of water. A method of immersing a glass substrate for information recording containing the same and modifying the surface to prevent alkali elution (JP-A-2000-82211, etc.);
3) A method of treating a substrate with hot water without a hot concentrated sulfuric acid treatment after the chemical strengthening treatment (Japanese Patent Application Laid-Open No. 2002-150549) has been proposed.
[0007]
However, the method 1) has a problem that the treatment temperature is as low as 95 ° C., so that the substitution of the alkali element does not proceed sufficiently, and the effect of suppressing the alkali elution to the recent high-density magnetic layer is insufficient. In the method of (1), the surface of the substrate is roughened due to the treatment in the molten salt at a high temperature of about 300 ° C., and in principle, H 2 O in the molten salt plays an important role. However, there is a problem that the cost is increased because it is difficult to manage H 2 O.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a low-cost, high-performance information that can suppress alkali elution even when using a glass substrate in which the amount of alkali elution from the glass substrate is inevitably increased to maintain a low molding temperature. It is intended to supply a recording medium substrate and an information recording medium using the same.
[0009]
[Means for Solving the Problems]
A first aspect of the present invention is a method for manufacturing a substrate for an information recording medium, wherein the glass substrate for an information recording medium containing an alkali metal is immersed in an organic acid melt at 120 ° C. to 350 ° C. .
[0010]
A second aspect of the present invention is the method for manufacturing a substrate for an information recording medium, wherein the organic acid is selected from the group consisting of carboxylic acids and phenol carboxylic acids.
[0011]
A third aspect of the present invention is the method for producing a substrate for an information recording medium, wherein the organic acid has a boiling point of 120 ° C. or higher and a melting point of 350 ° C. or lower.
[0012]
A fourth aspect of the present invention is the method for manufacturing a substrate for an information recording medium, wherein the step of immersing the glass substrate for an information recording medium in an organic acid melts the organic acid remaining on the surface of the glass substrate for an information recording medium. A step of washing and removing the liquid or a solidified product thereof.
[0013]
A fifth aspect of the present invention is the method for producing a substrate for an information recording medium according to the fourth aspect of the present invention, wherein the organic acid melt or the solidified product thereof remaining on the surface of the glass substrate for the information recording medium is removed by washing. The step of treating the glass substrate in water or an aqueous alkali hydroxide solution at 20 ° C. to 100 ° C.
[0014]
A sixth aspect of the present invention is the method for manufacturing a substrate for an information recording medium according to the fifth aspect of the present invention, wherein the aqueous alkali hydroxide solution is lithium hydroxide (LiOH), sodium hydroxide (NaOH), and water. It is selected from the group consisting of potassium oxide (KOH).
[0015]
A seventh aspect of the present invention is a substrate for an information recording medium, which is manufactured by the method for manufacturing a substrate for an information recording medium.
[0016]
An eighth aspect of the present invention is an information recording medium, characterized by using an information recording medium substrate manufactured by the method for manufacturing an information recording medium substrate.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the information recording medium substrate and the method for manufacturing the same according to the present invention will be described in detail.
[0018]
The present inventors have made various studies and obtained the following findings. That is, a glass substrate for information recording containing an alkali element is immersed in a molten salt such as the above-mentioned potassium hydrogen sulfate (KHSO 4 ) or potassium pyrosulfate (K 2 S 2 O 7 ) containing a small amount of water, and the surface is immersed. A method of preventing alkali elution by modifying (for example, JP-A-2000-82211) or a method of immersing an information recording glass substrate containing an alkali element in an aqueous zinc nitrate solution to modify the surface to prevent alkali elution ( Patent No. 2947131 discloses) method, both alkaline elements of the processing liquid including hydronium ions produced from the water (H 3 O +) and in the glass substrate is ion-exchange, and finally H 2 O is Through the process, the alkali element in the glass is eventually replaced by H, thereby modifying the surface of the glass substrate to create a state in which the alkali element is unlikely to precipitate on the surface even in a high-temperature, high-humidity state. None other than the law.
[0019]
The following is a more specific description. A part of the network structure of the Na-containing glass containing Na as an alkali element is expressed as Na—O—Si≡O 3 . In the first stage, H 3 O + generated from water in the processing solution described above replaces Na in the glass network structure,
Na-O-Si≡O 3 → (H 3 O) -O-Si≡O 3 (1)
It becomes. Further, H 2 O is released depending on the temperature, and a chemically stable silanol group (Si—OH) is formed as shown by the formula (2).
(H 3 O) -O-Si≡O 3 → H-O-Si 3 ≡O 3 (2)
[0020]
Therefore, in order to prevent alkali elution, it is not essential to use a molten salt such as potassium hydrogen sulfate (KHSO 4 ) or potassium pyrosulfate (K 2 S 2 O 7 ) as described above. Exposing is essential. If this idea is further developed and Na and H can be directly substituted without going through equations (1) and (2), chemically stable H-O can be used without using H 2 O which is difficult to control at high temperatures. O-Si≡O 3 can be formed.
[0021]
Inorganic acids such as sulfuric acid (H 2 SO 4 ) and nitric acid (HNO 3 ) can be considered as a processing solution in which Na and H can be directly substituted. According to the study of the present inventors, for example, when immersed in sulfuric acid at 80 ° C., silanol groups are formed on the surface of the glass substrate, and as a result, alkali elution is suppressed, but on the other hand, the reaction is active, and the substrate surface becomes rough. It was unsuitable as a glass substrate for an information recording medium. Conversely, if the processing temperature is lowered in order to improve the surface roughness, the effect of suppressing alkali elution will be reduced.
[0022]
After further studying the points described above, the present inventor focused on an organic acid melt having a milder reaction than an inorganic acid as a H supply source. It has been concluded that the organic acid melt is a treatment liquid which does not cause deterioration of the surface roughness due to a mild reaction and can be used stably even at a temperature sufficient to obtain an alkali elution suppressing effect.
[0023]
More specifically, the organic acid melt is a carboxylic acid or phenol carboxylic acid melt having a boiling point of 120 ° C. or higher and a melting point of 350 ° C. or lower so that a sufficient alkali elution suppressing effect can be exhibited. Preferably, it is used.
[0024]
Examples of carboxylic acids include valeric acid C 5 H 10 O 2 (pentanoic acid), caproic acid C 6 H 12 O 2 (hexanoic acid), enanthic acid C 7 H 14 O 2 (heptanoic acid), caprylic acid C 8 H 16 O 2 (octanoic acid), pelargonic acid C 9 H 18 O 2 (nonanoic acid), capric acid C 10 H 20 O 2 (decanoic acid), undecylic acid C 11 H 22 O 2 (undecanoic acid), lauric acid C 12 H 24 O 2 (dodecanoic acid), tridecylic acid C 13 H 26 O 2 (tridecanoic acid), myristic acid C 14 H 28 O 2 (tetradecanoic acid), pentadecylic acid C 15 H 30 O 2 (pentadecanoic acid), etc. in addition to monocarboxylic acids, HOOC- succinic acid (CH 2) 2 -COOH (butanedioic acid), HOOC- glutaric acid (CH 2) 3 -COOH ( Pentane diacid), HOOC- adipate (CH 2) 4 -COOH (hexanedioic acid), pimelic acid HOOC- (CH 2) 5 -COOH (heptanedioic acid), HOOC- suberic acid (CH 2) 6 -COOH (octanedioic acid), HOOC- azelaic acid (CH 2) 7 -COOH (nonanoic acid), HOOC- sebacate (CH 2) 8 -COOH (decanoic acid), maleic acid C 4 H 4 O 4 (cis - butenedioic), there may be mentioned dicarboxylic acids such as fumaric acid C 4 H 4 O 4 (trans- butenedioic acid) without limitation.
[0025]
Examples of phenol carboxylic acids include salicylic acid C 7 H 6 O 3 (o-hydroxybenzoic acid), oxyphenylacetic acid C 8 H 8 O 3 , α-resorcylic acid C 7 H 6 O 4, and the like. It is not limited to.
[0026]
Caproic acid, capric acid, succinic acid, adipic acid, etc. are soluble in warm water.So, when washing the glass substrate after alkali elution prevention treatment, immersion in warm water can remove the organic acid melt residue or solidified product. It is particularly preferred in that it is possible. On the other hand, pentadecanoic acid, sebacic acid, and oxyphenylacetic acid, which have more carbon atoms than the above organic acids, are insoluble in warm water, but are soluble in aqueous alkali hydroxide such as aqueous sodium hydroxide (NaOH). These can be easily removed in the substrate cleaning step.
[0027]
1. Preparation of Glass Substrate A glass cullet containing an alkali element such as Li, Na, or K is melted to produce a disc-shaped glass having a weight of about 6 g, a thickness of about 8 mm, and a diameter of about 23 mm, which is heated to 600 ° C. To produce a disc-shaped glass substrate having a thickness of 0.635 mm and a diameter of 65 mm. A hole having an inner diameter of 20 mm was formed in the center of the glass substrate, and general chemical strengthening was performed to further increase the mechanical strength. Chemical strengthening was performed by immersing the glass substrate in a melt in which NaNO 3 and KNO 3 were mixed at a ratio of 0.4 to 0.6 at 350 to 400 ° C. for 1 to 5 hours. Thereafter, the melt for chemical strengthening was removed in pure water, followed by scrub cleaning, pure water cleaning, and IPA (isopropyl alcohol) cleaning.
[0028]
2. Alkali Elution Prevention Treatment and Its Evaluation Method Next, in order to perform an alkali elution prevention treatment from the glass substrate surface / end surface, the glass substrate was immersed in the above-mentioned organic acid melt. Further, if necessary, the organic acid melt or the solidified product remaining on the surface of the glass substrate is washed and removed in water at 20 ° C to 100 ° C or an aqueous alkali hydroxide solution. Evaluation of the amount of alkali elution from the glass substrate after the organic acid treatment was performed by placing the glass substrate after the alkali elution prevention treatment in a Teflon (registered trademark) container filled with pure water and leaving it in an 80 ° C. constant temperature bath for 24 hours. The amounts of Li, Na and K eluted in pure water were examined by ICP (inductively coupled plasma) emission analysis. The surface condition was evaluated using an atomic force microscope (AFM) to evaluate minute surface irregularities.
[0029]
Since it was clarified that the above method had an alkali-suppressing effect, these were formed up to the magnetic layer, and the reliability as a magnetic recording medium was also confirmed.
[0030]
3. Magnetic Recording Medium A magnetic recording medium will be described as an example of the information recording medium of the present invention. A magnetic recording medium is usually manufactured by sequentially laminating an underlayer, a magnetic layer, a protective layer, a lubricant layer, and the like on a magnetic disk substrate.
[0031]
The underlayer is a layer formed for the purpose of improving the magnetic properties by affecting the growth of the magnetic layer formed thereon and preventing diffusion of harmful elements (eg, alkali metals) from the substrate to the magnetic layer. It is. A non-magnetic metal such as Cr, Mo, Ta, Ti, W, V, B, Al or a non-magnetic alloy containing them is used in a single layer or a multilayer.
[0032]
There is no particular limitation on the material of the magnetic layer, but generally a 2- to 5-element system such as a CoCr system, a CoPr system, or a CoCrTa system is used as a single layer or a multilayer in combination with a nonmagnetic layer. In addition, application of ferromagnetic materials such as ferrite and iron is conceivable. In order to cope with the increase in storage density, a material design has been made such that it has a high coercive force and segregates a nonmagnetic composition at grain boundaries in order to make magnetic domains fine.
[0033]
The protective layer is a layer that protects the magnetic layer from frictional wear and corrosive gas at the time of contact with the magnetic head. Generally, a C film, a C-N film, or the like is used by a sputtering method or a CVD method. In addition, a hard ceramic film such as a zirconia film or a silica film may be used, and a so-called sol-gel method in which an organic metal is diluted and coated with alcohol and fired may be used instead of the vapor deposition method.
[0034]
The lubricant layer is a layer that reduces frictional resistance together with the protective layer from frictional wear at the time of contact with the magnetic head. Generally, perfluoropolyether is diluted with a fluorine-based solvent and applied to a thickness of about 0.1 to 0.5 nm by dipping or spin coating.
[0035]
If the functions and reliability required for a magnetic disk are achieved, the above three layers of the underlayer, the protective layer, and the lubricant layer are not essential, and if the substrate has a magnetic recording function, no magnetic layer is required. At present, a predetermined performance is achieved by separating the functions into the above four layers.
[0036]
Although the magnetic disk has been described above, the method for manufacturing a substrate of the present invention is also effective for other information recording media whose substrate is glass.
[0037]
More specific examples are described below, but are not intended to limit the invention.
[0038]
(Example 1)
SiO 2 60 mol%, Li 2 O 10 mole%, Na 2 O 5 mole%, MgO3 mol%, CaO 8 mol%, Al 2 O 3 4 mol%, based on the 2 O 3 8 mol% B, further more Is melted at 1200 to 1500 ° C., and the molten glass is poured from a crucible into a glassy carbon mold to form a disc having a weight of about 6 g, a thickness of about 8 mm, and a diameter of about 23 mm. Was prepared. The disc-shaped glass was not sufficiently cooled, but was introduced into a molding die, and was pressed at about 0.2 to 0.6 t / cm 2 for about 3 minutes near the softening temperature of the glass. By this operation, a disk-shaped glass plate having a diameter of 65 mm and a thickness of 0.635 mm was obtained. Next, a hole having a diameter of 20 mm was formed in the center of the glass plate. Further, in order to secure the bending strength of the disk, chemical strengthening was performed. Specific treatment conditions for chemical strengthening are as follows: a nitrate mixed at a weight ratio of NaNO 3 : KNO 3 = 2: 3 is melted at 370 ° C .; It is immersed for a time.
[0039]
Then, after washing and drying the glass plate having been subjected to the chemical strength, adipic acid ((CH 2) 4 - ( COOH) 2) was subjected to alkaline elution prevention treatment by dipping into the melt. The melting point of adipic acid is 153 ° C., the boiling point is 338 ° C., and adipic acid is soluble in water.
[0040]
Next, the following procedure was used to confirm whether the glass substrate subjected to the alkali elution prevention treatment had a preferable alkali elution amount as a substrate for an information recording medium.
[0041]
1) Pure water (10 mL) was placed in a Teflon (registered trademark) container with a capacity of 0.5 L and further immersed in the above-mentioned adipic acid, and one glass substrate subjected to alkali elution prevention treatment was placed therein.
[0042]
2) This container was placed in a constant temperature bath at 80 ° C. and left for 24 hours.
[0043]
3) The Teflon (registered trademark) container was taken out of the thermostat, and the elements contained in the pure water from which the alkali was extracted were examined by ICP analysis.
[0044]
Further, an average surface roughness (Ra) was examined using an atomic force microscope (AFM) to evaluate the surface irregularities of the glass substrate.
[0045]
Table 1 shows the processing conditions (adipic acid melt temperature, immersion time) and the evaluation results of the present invention. Table 1 also shows, as a comparative example, the evaluation results of a glass substrate not subjected to the alkali elution prevention treatment.
[0046]
Table 1 also shows the results obtained by forming a magnetic layer on a glass substrate by sputtering and performing error evaluation before and after a high-temperature / high-humidity reliability test. Specifically, a Ni—Al underlayer, a Cr underlayer, a Co—Cr—Pt-based magnetic layer, and a C protective film are sequentially formed on a glass substrate that has been subjected to an alkali elution prevention process by a sputtering method, and then a dip is formed. A fluorine-based liquid lubricant was applied by a coating method to obtain a magnetic disk medium.
[0047]
The number of errors per surface of the magnetic disk medium after leaving the magnetic disk medium in a high-temperature and high-humidity state of 80 ° C. and 80% RH for 1,000 hours was counted, and the number of increased errors before and after the test was used as reliability evaluation data.
[0048]
There is a correlation between the alkali elution amount shown in Table 1 and the number of error increases after the reliability test of the magnetic disk medium. The smaller the alkali elution amount of the glass substrate is, the smaller the error increase number is.
[0049]
Compared with the comparative example in Table 1, the effect of the present invention is recognized when the immersion time is appropriate over a wide range from just above the melting point (153 ° C.) of adipic acid to just below the boiling point (338 ° C.). On the other hand, Table 1 shows that the surface roughness of the glass substrate does not change even when the processing temperature is changed.
[0050]
In addition, since the treatment at high temperature may decrease the effect of improving the mechanical strength of the glass substrate by chemical strengthening, the bending strength after the treatment was also examined. Was not found.
[0051]
[Table 1]
Figure 2004059391
[0052]
(Example 2)
The same evaluation as in Example 1 was performed using capric acid C 10 H 20 O 2 (decanoic acid) melt instead of adipic acid in Example 1. Capric acid has a melting point of 32 ° C and a boiling point of 270 ° C. Since capric acid is also soluble in warm water, 60 ° C. warm water was used to remove the melt after the alkali elution prevention treatment. Table 2 shows the immersion treatment conditions and the evaluation results. Since the melting point of capric acid is 32 ° C., the treatment was performed by lowering the treatment temperature to 120 ° C. As can be seen from Table 2, as the temperature becomes lower, the same alkali elution preventing effect is required for a long time. Immersion is required.
[0053]
Therefore, at a temperature lower than 120 ° C., practical processing conditions cannot be obtained.
[0054]
[Table 2]
Figure 2004059391
[0055]
(Example 3)
The same evaluation as in Example 1 was performed using a stearic acid CH 3 (CH 2 ) 16 COOH melt instead of adipic acid in Example 1. Stearic acid has a melting point of 72 ° C and a boiling point of 360 ° C. Table 3 shows the processing conditions and the evaluation results.
[0056]
Since stearic acid is insoluble in water, an aqueous solution of sodium hydroxide at 60 ° C. was used to remove the melt after the alkali elution prevention treatment. Table 3 shows immersion treatment conditions and evaluation results. Since the boiling point of stearic acid is 360 ° C., the treatment was performed by raising the treatment temperature to 350 ° C. As can be seen from Table 3, if the immersion time is appropriate even at a high temperature of 350 ° C., the effect of the present invention is recognized. . However, in order to obtain the same effect of preventing alkali elution, immersion for a short time is necessary.
[0057]
Therefore, when the temperature exceeds 350 ° C., it is difficult to control the time, and as a result, the variation becomes large and practical processing conditions cannot be obtained.
[0058]
[Table 3]
Figure 2004059391
[0059]
(Example 4)
The same evaluation as in Example 1 was performed using a carboxylic acid melt shown in Table 4 instead of adipic acid in Example 1. Specifically, valeric acid C 5 H 10 O 2 (pentanoic acid), caproic acid C 6 H 12 O 2 (hexanoic acid), enanthic acid C 7 H 14 O 2 (heptanoic acid), caprylic acid C 8 H 16 O 2 (octanoic acid), pelargonic acid C 9 H 18 O 2 (nonanoic acid), undecylic acid C 11 H 22 O 2 (undecanoic acid), lauric acid C 12 H 24 O 2 (dodecanoic acid), tridecylic acid C 13 H 26 O 2 (tridecanoic acid), myristic acid C 14 H 28 O 2 (tetradecanoic acid), pentadecylic acid C 15 H 30 O 2 (pentadecanoic acid), succinic acid (CH 2) 2 - (COOH ) 2, glutaric acid (CH 2) 3 - (COOH ) 2 ( propane dicarboxylic acid), pimelic acid (CH 2) 5 - (COOH ) 2, suberic acid (CH 2) 6 - (COO H) 2 (suberic), azelaic acid (CH 2) 7 - (COOH ) 2, sebacic acid (CH 2) 8 - (COOH ) 2, Alain acid (CH) 2 - is (COOH) 2 in the melt . Table 4 also shows the melting point and boiling point of each carboxylic acid (Source: Dictionary of Chemistry, Kyoritsu Shuppan). The immersion time was determined with reference to Examples 1 to 3, which was between 70 and 90% of the boiling point of the treatment temperature. Table 4 shows that the effects of the present invention can be obtained with any organic acid melt if the immersion temperature and time are appropriate. Although many of the organic acids shown in Table 4 are insoluble in water, they are soluble in aqueous alkali hydroxide solutions such as sodium hydroxide, lithium hydroxide, and potassium hydroxide. Removal is possible by immersion in an aqueous alkali hydroxide solution.
[0060]
[Table 4]
Figure 2004059391
[0061]
(Example 5)
The same evaluation as in Example 1 was performed using a phenol carboxylic acid melt shown in Table 5 instead of adipic acid in Example 1. Specifically, it is a melt of oxyphenylacetic acid C 8 H 8 O 3 , α-resorcylic acid C 7 H 6 O 4 , and salicylic acid (o-hydroxybenzoic acid) C 7 H 6 O 3 . Table 5 also shows the melting point and boiling point of each phenol carboxylic acid (Source: Dictionary of Chemistry, Kyoritsu Shuppan). The treatment temperature was between 70 and 90% of the boiling point, and the immersion time was determined with reference to Examples 1-3. Although oxyphenylacetic acid is insoluble in water, it can be dissolved in an aqueous alkali hydroxide solution as in Example 4, so that the melt can be removed. From Table 5, it can be seen that the effects of the present invention can be recognized even with a phenol carboxylic acid melt.
[0062]
[Table 5]
Figure 2004059391
[0063]
【The invention's effect】
According to the present invention, by immersing a glass substrate for an information recording medium containing alkali ions enabling low-temperature molding in an organic acid melt at 120 ° C. or higher and 350 ° C. or lower, a glass substrate with less alkali elution can be obtained. Can be supplied. Further, even in a severe weather resistance test in which an information recording medium manufactured using this glass substrate is left at 80 ° C. and 80% RH for 1,000 hours, the number of errors of the magnetic disk medium increases with the unprocessed substrate. In comparison, it is very small. As a result, it is possible to supply an inexpensive glass substrate for an information recording medium and an inexpensive information recording medium satisfying the contradictory characteristics of low-temperature molding and weather resistance.

Claims (8)

アルカリ金属を含む情報記録媒体用ガラス基板を120℃から350℃の有機酸溶融液に浸漬することを特徴とする情報記録媒体用基板の製造方法。A method for producing a substrate for an information recording medium, comprising: immersing a glass substrate for an information recording medium containing an alkali metal in an organic acid melt at 120 ° C. to 350 ° C. 有機酸がカルボン酸およびフェノールカルボン酸からなる群から選択されることを特徴とする請求項1に記載の情報記録媒体用基板の製造方法。The method for producing a substrate for an information recording medium according to claim 1, wherein the organic acid is selected from the group consisting of carboxylic acid and phenol carboxylic acid. 有機酸の沸点が120℃以上で、かつ融点が350℃以下であることを特徴とする請求項1または2に記載の情報記録媒体用基板の製造方法。3. The method according to claim 1, wherein the organic acid has a boiling point of 120 ° C. or higher and a melting point of 350 ° C. or lower. 情報記録媒体用ガラス基板の有機酸への浸漬工程後に、情報記録媒体用ガラス基板表面に残った有機酸溶融液またはその固化物を洗浄除去する工程を備えたことを特徴とする請求項1から3のいずれか一項に記載の情報記録媒体用基板の製造方法。2. The method according to claim 1, further comprising, after the step of immersing the glass substrate for an information recording medium in an organic acid, a step of washing and removing an organic acid melt or a solidified product thereof remaining on the surface of the glass substrate for an information recording medium. 4. The method for producing a substrate for an information recording medium according to any one of the above items 3. 情報記録媒体用ガラス基板表面に残った有機酸溶融液またはその固化物を洗浄除去する工程が、20℃〜100℃の水または水酸化アルカリ水溶液中で該ガラス基板を処理することを特徴とする請求項4に記載の情報記録媒体用基板の製造方法。The step of washing and removing the organic acid melt or the solidified product remaining on the surface of the glass substrate for an information recording medium is characterized by treating the glass substrate in water or an aqueous alkali hydroxide solution at 20 ° C to 100 ° C. A method for manufacturing the information recording medium substrate according to claim 4. 水酸化アルカリ水溶液が水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、および水酸化カリウム(KOH)からなる群から選択されることを特徴とする請求項5に記載の情報記録媒体用基板の製造方法。The information recording medium substrate according to claim 5, wherein the aqueous alkali hydroxide solution is selected from the group consisting of lithium hydroxide (LiOH), sodium hydroxide (NaOH), and potassium hydroxide (KOH). Production method. 請求項1から6のいずれか一項に記載の製造方法により製造されることを特徴とする情報記録媒体用基板。An information recording medium substrate manufactured by the manufacturing method according to claim 1. 請求項1から6のいずれか一項に記載の製造方法により製造される情報記録媒体用基板を用いたことを特徴とする情報記録媒体。An information recording medium using an information recording medium substrate manufactured by the manufacturing method according to claim 1.
JP2002222018A 2002-07-30 2002-07-30 Method of manufacturing substrate for information recording medium and information recording medium Pending JP2004059391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222018A JP2004059391A (en) 2002-07-30 2002-07-30 Method of manufacturing substrate for information recording medium and information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222018A JP2004059391A (en) 2002-07-30 2002-07-30 Method of manufacturing substrate for information recording medium and information recording medium

Publications (1)

Publication Number Publication Date
JP2004059391A true JP2004059391A (en) 2004-02-26

Family

ID=31942174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222018A Pending JP2004059391A (en) 2002-07-30 2002-07-30 Method of manufacturing substrate for information recording medium and information recording medium

Country Status (1)

Country Link
JP (1) JP2004059391A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226311A (en) * 2007-03-09 2008-09-25 Fuji Electric Device Technology Co Ltd GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, ITS MANUFACTURING METHOD, AND INFORMATION RECORDING MEDIUM
US7937967B2 (en) 2007-09-06 2011-05-10 Fuji Electric Device Technology Co., Ltd. Method of manufacturing a glass substrate, glass substrate manufactured by the method, and magnetic recording medium using the glass substrate
WO2016117479A1 (en) * 2015-01-20 2016-07-28 旭硝子株式会社 Glass substrate production method
CN114477791A (en) * 2022-02-21 2022-05-13 湖南工学院 Method for improving light transmittance of alkali metal ion embedded reconstruction photovoltaic glass surface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226311A (en) * 2007-03-09 2008-09-25 Fuji Electric Device Technology Co Ltd GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, ITS MANUFACTURING METHOD, AND INFORMATION RECORDING MEDIUM
US7937967B2 (en) 2007-09-06 2011-05-10 Fuji Electric Device Technology Co., Ltd. Method of manufacturing a glass substrate, glass substrate manufactured by the method, and magnetic recording medium using the glass substrate
WO2016117479A1 (en) * 2015-01-20 2016-07-28 旭硝子株式会社 Glass substrate production method
CN107207335A (en) * 2015-01-20 2017-09-26 旭硝子株式会社 The manufacture method of glass baseplate
JPWO2016117479A1 (en) * 2015-01-20 2017-10-26 旭硝子株式会社 Manufacturing method of glass substrate
CN114477791A (en) * 2022-02-21 2022-05-13 湖南工学院 Method for improving light transmittance of alkali metal ion embedded reconstruction photovoltaic glass surface

Similar Documents

Publication Publication Date Title
JP6220411B2 (en) Glass for use in information recording medium substrate, information recording medium substrate, information recording medium, and methods for producing the same
US8883330B2 (en) Glass for chemical strengthening, substrate for information recording media and information recording media
JP5421443B2 (en) Manufacturing method of glass substrate for magnetic disk and magnetic disk
CN100482606C (en) Substrate for information recording medium, information reocrding medium and method for manufacturing same
JP5046103B2 (en) Manufacturing method of glass substrate
JP4285653B2 (en) PH adjustment of melt for microetching of glass substrate
JP2004059391A (en) Method of manufacturing substrate for information recording medium and information recording medium
JP4930838B2 (en) Glass substrate for information recording medium and information recording medium
JPH02285508A (en) Magnetic recording medium
JP3078281B2 (en) Method of manufacturing substrate for information recording medium and information recording medium
JP4619115B2 (en) Glass substrate for information recording medium and information recording medium
WO1999032414A1 (en) Process for producing glass substrate for information recording medium and information recording medium containing glass substrate produced by the process
JP2002123929A (en) Glass substrate for magnetic disk, method of manufacturing the same, and magnetic disk
JP3793003B2 (en) Crystallized glass substrate for information recording media
JP2001126234A (en) Board for magnetic recording medium
JP2003030828A (en) Method for manufacturing information recording medium substrate, information recording medium substrate, and information recording medium
JP2008226311A (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, ITS MANUFACTURING METHOD, AND INFORMATION RECORDING MEDIUM
JP2002150549A (en) Glass substrate for magnetic disk and method of manufacturing the same
JP3492908B2 (en) Magnetic recording / reproducing method
JP2003048757A (en) Glass substrate for information recording medium, method for manufacturing glass substrate for information recording medium, and information recording medium
JPH02292716A (en) Magnetic recording medium and method for magnetic recording/reproduction