JP2004057917A - Water treatment equipment - Google Patents
Water treatment equipment Download PDFInfo
- Publication number
- JP2004057917A JP2004057917A JP2002219140A JP2002219140A JP2004057917A JP 2004057917 A JP2004057917 A JP 2004057917A JP 2002219140 A JP2002219140 A JP 2002219140A JP 2002219140 A JP2002219140 A JP 2002219140A JP 2004057917 A JP2004057917 A JP 2004057917A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- water
- treated
- water treatment
- ultrasonic irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 230000010355 oscillation Effects 0.000 claims abstract description 9
- 239000003814 drug Substances 0.000 claims description 11
- 230000005855 radiation Effects 0.000 claims description 7
- 239000000126 substance Substances 0.000 abstract description 6
- 230000002195 synergetic effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 229940079593 drug Drugs 0.000 description 4
- 238000009210 therapy by ultrasound Methods 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Physical Water Treatments (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、水処理装置、特に、単純な構成で大量の被処理水を高能率で処理することが可能な、超音波を利用した水処理装置に関するものである。
【0002】
【従来の技術】
飲料水、下水、排水などの水処理手段として、酸化剤等を用いる酸化処理、紫外線による処理、活性炭等の吸着剤による吸着処理、超音波による水処理等があり、それぞれ目的に応じて使い分けられている。
【0003】
この内、超音波による水処理は、水に超音波を照射することにより生じるキャビテーションおよび振動加速度による攪拌作用を利用するものであり、キャビテーションの発生によるキャビティ内での有機物質の熱分解、OHラジカル生成による酸化殺菌、キャビティ崩壊時の衝撃波による微生物細胞の破壊、振動加速度による攪拌効果等の作用によって水処理を行うものである。
【0004】
上述した超音波処理法は、水に超音波を照射するのみで処理が可能であるので、装置構成を比較的単純にでき、しかも、殺菌と有機物質の分解等の複合処理が可能な手法である。さらに、超音波処理法は、従来行われている酸化処理、紫外線処理等の方法と併合することにより、処理能力がさらに向上することも確認されており、処理時間、処理コストの大幅な低減効果が期待できる。
【0005】
特開2000−117247に、超音波を利用した水処理装置が開示されている。この水処理装置は、図4に示すように、被処理水21に照射される超音波22の放射方向と超音波発振器23の分極方向とが略同一になるように超音波発振器23が被処理水の流通経路を有する容器24の底部に配置され、超音波発振器23の振動モードが横効果であると共に、超音波22の放射方向と略平行な面に水が直接接触しない構造とした水処理装置が開示されている。入口25から容器24内に流入した被処理水は、容器24内において超音波発振器23から放射される超音波により処理された後、出口26から容器24外に流出する。
【0006】
この水処理装置によれば、被処理水21に照射される超音波22の放射方向が超音波発振器23の分極方向と同一になるように超音波発振器23が配置され、超音波発振器23の振動モードが横効果であると共に、超音波22の放射方向と略平行な面に水が直接付着しない構造であるので、その基本振動方向の面には水が付着しない。従って、汚れ物質の付着や被処理水21中の浮遊汚れ物質等の反射の影響がなく、また基本振動方向の面は、容器24に密着させる必要もないため、容器24の厚さを加えた新たな振動モードが存在せず、常に安定した超音波22の発振状態を実現することができる。
【0007】
【発明が解決しようとする課題】
上述のように、超音波処理法は、多くのメリットを有するが、処理装置の大型化が大きな課題となっている。すなわち、超音波処理法を下水処理場等の大量処理を必要とする場所に適用する場合には、処理槽の体積を大きくするか、または、処理装置を複数基連結することが考えられる。
【0008】
しかしながら、1つの発振子による超音波照射の効果は、水中での超音波の減衰等の影響から、照射体積が増加すると、その効果が減少することが知られている。従って、処理槽を大きくするには限界がある。また、複数基の処理装置を連結する場合、1000m3/日規模の下水処理場で考えると、約700リットル/分の処理能力が必要であり、処理時間が1分と仮定した場合でも、700リットル分の容積を確保するために大量の処理装置が必要になり、装置が複雑になるばかりか、維持管理にも手間がかかる。
【0009】
従って、この発明の目的は、超音波により被処理水を処理するに際して、単純な構成で大量の被処理水を高能率で処理することが可能な水処理装置を提供することにある。
【0010】
【課題を解決するための手段】
請求項1記載の発明は、被処理水が流出入する容器内に、1個以上の超音波発振子を備えた複数個の超音波照射装置が設けられ、前記超音波照射装置の各々は、超音波放射方向に離間して積層配置されていることに特徴を有するものである。
【0011】
請求項2記載の発明は、前記超音波照射装置の各々は、定在波が形成され得る間隔をあけて積層配置されていることに特徴を有するものである。
【0012】
請求項3記載の発明は、前記超音波照射装置の各々の間隔および発振周波数の内の少なくとも1つを制御する制御手段を備えたことに特徴を有するものである。
【0013】
請求項4記載の発明は、前記被処理水に薬剤を添加する薬剤添加手段を備えたことに特徴を有するものである。
【0014】
【発明の実施の形態】
この発明の水処理装置の一実施態様を、図面を参照しながら説明する。
【0015】
図1は、この発明の水処理装置を示す概略断面図、図2は、超音波照射装置を示す概略断面図、図3は、定在波の発生状況を示す図である。
【0016】
図1において、1は、被処理水2が流入する容器としての処理槽、3は、被処理水2の入口、4は、被処理水2の出口、5は、処理槽1内に設けられた複数個の超音波照射装置である。超音波照射装置5の各々は、図2に示すように、筐体6B内に1個以上(この例では6個)の超音波発振子6を筐体6Bの長手方向に間隔をあけて設けたものからなっていて、超音波発振子6は、振動面6Aに固定されている。超音波照射装置5の各々は、処理槽1内にフレーム7を介して超音波発振方向(上下方向)に離間して互いに平行に積層配置されている。超音波照射装置5間の間隔は、定在波が形成される間隔である。定在波については後述する。8は、超音波駆動用電源、9は、電源8の制御装置、10は、薬剤供給装置、11は、薬剤供給ノズル、そして、12は、最上段の超音波照射装置5の上方に設けられた反射板である。最上段の超音波照射装置5と反射板12との間隔は、下段の超音波照射装置5の間隔と同じである。反射板12の作用については後述する。
【0017】
このように構成されている、この発明の水処理装置によれば、以下のようにして、被処理水が処理される。
【0018】
入口3から処理槽1内に流入した被処理水2は、超音波照射装置5間を通過して、出口4から処理槽1外に流出する。被処理水2が超音波照射装置5間を通過する過程で次のような処理がなされる。すなわち、制御装置9からの指令により電源8から超音波照射装置5に高周波電流が供給されると、交流電流の振幅に応じた変位が各超音波発振子6に生じて、振動面6Aが振動し、これにより生じた超音波13が被処理水2に向けて放射される。
【0019】
超音波照射装置5から放射された超音波13は、被処理水2中を伝播し、上段の超音波照射装置5に到達し、そこで反射し、再び下段の超音波照射装置5の振動面6Aに戻る。このとき、振動面6Aから発生する波と反射した波とが互いに干渉する結果、超音波照射装置5間で合成波が形成される。この合成波は、超音波照射装置5間の間隔を適正に維持すると共振状態となる。このとき、図3に示すように、定在波と呼ばれる波が形成されて、波が互いに強め合う状態になり、超音波の上述した効果を最大限に活用することができる。最上段の超音波照射装置5からの超音波は、反射板12によって反射し、最上段の超音波照射装置5と反射板12との間で定在波が形成される。
【0020】
なお、定在波の形成は、被処理水2の温度等の条件により変化する。このために、条件が変化しても常時、定在波が安定的に形成されるように、制御装置9によって超音波発振子6の発振周波数を制御する。発振周波数を制御する他、超音波照射装置5の間隔を定在波が形成される間隔に調整する別の制御装置を設けても良い。発振周波数および超音波照射装置5の間隔の両方を制御しても良い。
【0021】
定在波が形成されている部分の被処理水は、上述した超音波の効果により効果的に浄化される。なお、超音波の照射と同時に、薬剤供給装置10から薬剤供給ノズル11を介して薬剤を供給すれば、超音波照射との相乗効果によって一層、効率的に被処理水の浄化が行われる。
【0022】
以上の例は、超音波照射装置5を処理槽1内に上下方向に積層したものであるが、水平方向に積層しても良い。また、積層した超音波照射装置5を複数個設けても良い。
【0023】
【発明の効果】
以上説明したように、この発明によれば、被処理水が流出入する容器内に、1個以上の超音波発振子を備えた複数個の超音波照射装置を設け、前記波照射装置の各々を、超音波放射方向に離間して積層配置し、特に、前記波照射装置間で定在波を発生させることによって、単純な構成で大量の被処理水を高能率で処理することができる。また、制御装置によって超音波の発振条件あるいは前記波照射装置の間隔を制御して定在波を常時安定的に発生させることによって、より効率的に水処理が行える。さらに、薬剤供給装置を設けることにより、薬剤と超音波照射との相乗効果によってさらに効果的な水処理が行えるといった有用な効果がもたらされる。
【図面の簡単な説明】
【図1】この発明の水処理装置を示す概略断面図である。
【図2】超音波照射装置を示す概略断面図である。
【図3】定在波の発生状況を示す図である。
【図4】従来の、超音波を利用した水処理装置を示す概略断面図である。
【符号の説明】
1:処理槽
2:被処理水
3:入口
4:出口
5:超音波照射装置
6:超音波発振子
6A:振動面
7:フレーム
8:電源
9:制御装置
10:薬剤供給装置
11:薬剤供給ノズル
12:反射板
13:超音波
21:処理槽
22:超音波
23:超音波発振器
24:容器
25:入口
26:出口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water treatment apparatus, and more particularly to a water treatment apparatus using an ultrasonic wave capable of treating a large amount of water to be treated with a simple configuration at high efficiency.
[0002]
[Prior art]
Examples of water treatment means for drinking water, sewage, wastewater, etc. include oxidizing treatment using an oxidizing agent, etc., treatment with ultraviolet light, adsorption treatment with an adsorbent such as activated carbon, water treatment with ultrasonic waves, etc. ing.
[0003]
Of these, water treatment using ultrasonic waves utilizes cavitation caused by irradiating ultrasonic waves to water and a stirring action due to vibration acceleration. Thermal decomposition of organic substances in a cavity due to cavitation, OH radicals Water treatment is performed by the action of oxidation sterilization by generation, destruction of microbial cells by shock waves at the time of cavity collapse, stirring effect by vibration acceleration, and the like.
[0004]
The above-described ultrasonic treatment method is a method capable of performing treatment only by irradiating ultrasonic waves to water, so that the apparatus configuration can be relatively simplified, and furthermore, a method capable of performing a combined treatment such as sterilization and decomposition of organic substances. is there. In addition, it has been confirmed that the ultrasonic treatment method can further improve the processing capacity by being combined with the conventional methods such as oxidation treatment and ultraviolet treatment, thereby significantly reducing the processing time and processing cost. Can be expected.
[0005]
JP-A-2000-117247 discloses a water treatment apparatus using ultrasonic waves. In this water treatment apparatus, as shown in FIG. 4, the
[0006]
According to this water treatment apparatus, the
[0007]
[Problems to be solved by the invention]
As described above, the ultrasonic treatment method has many merits, but an increase in the size of the treatment apparatus is a major problem. That is, when the ultrasonic treatment method is applied to a place requiring a large amount of treatment such as a sewage treatment plant, it is conceivable to increase the volume of the treatment tank or to connect a plurality of treatment devices.
[0008]
However, it is known that the effect of ultrasonic irradiation by one oscillator decreases as the irradiation volume increases due to the effects of ultrasonic attenuation in water and the like. Therefore, there is a limit in increasing the size of the processing tank. In addition, when a plurality of treatment apparatuses are connected, a treatment capacity of about 700 liters / minute is necessary in a sewage treatment plant of a scale of 1000 m 3 / day. In order to secure a volume of liter, a large amount of processing equipment is required, which not only complicates the equipment but also requires time and labor for maintenance.
[0009]
Therefore, an object of the present invention is to provide a water treatment apparatus capable of treating a large amount of water to be treated with a simple configuration at a high efficiency when treating the water to be treated by ultrasonic waves.
[0010]
[Means for Solving the Problems]
In the invention according to claim 1, a plurality of ultrasonic irradiation devices provided with one or more ultrasonic oscillators are provided in a container into which water to be treated flows in and out, and each of the ultrasonic irradiation devices is It is characterized in that it is stacked and arranged apart from each other in the ultrasonic radiation direction.
[0011]
The invention according to claim 2 is characterized in that each of the ultrasonic irradiation devices is stacked and arranged with an interval at which a standing wave can be formed.
[0012]
According to a third aspect of the present invention, there is provided a control device for controlling at least one of an interval and an oscillation frequency of each of the ultrasonic irradiation devices.
[0013]
The invention according to claim 4 is characterized in that a chemical adding means for adding a chemical to the water to be treated is provided.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the water treatment apparatus of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a schematic sectional view showing a water treatment apparatus of the present invention, FIG. 2 is a schematic sectional view showing an ultrasonic irradiation apparatus, and FIG. 3 is a view showing a state of generation of standing waves.
[0016]
In FIG. 1, reference numeral 1 denotes a treatment tank as a vessel into which the water 2 flows, 3 denotes an inlet of the water 2, 4 denotes an outlet of the water 2, and 5 denotes an inside of the treatment tank 1. A plurality of ultrasonic irradiation devices. As shown in FIG. 2, each of the ultrasonic irradiation devices 5 includes one or more (six in this example) ultrasonic oscillators 6 provided in a housing 6B at intervals in the longitudinal direction of the housing 6B. The ultrasonic oscillator 6 is fixed to the vibration surface 6A. Each of the ultrasonic irradiation devices 5 is stacked in parallel in the processing tank 1 with a frame 7 interposed therebetween in the ultrasonic oscillation direction (vertical direction). The interval between the ultrasonic irradiation devices 5 is an interval at which a standing wave is formed. The standing wave will be described later. 8 is an ultrasonic driving power supply, 9 is a control device of the power supply 8, 10 is a medicine supply device, 11 is a medicine supply nozzle, and 12 is provided above the uppermost ultrasonic irradiation device 5. Reflector. The interval between the uppermost ultrasonic irradiation device 5 and the reflection plate 12 is the same as the interval between the lower ultrasonic irradiation devices 5. The operation of the reflector 12 will be described later.
[0017]
According to the water treatment apparatus of the present invention configured as described above, the water to be treated is treated as follows.
[0018]
The to-be-processed water 2 flowing into the processing tank 1 from the inlet 3 passes between the ultrasonic irradiation devices 5 and flows out of the processing tank 1 from the outlet 4. The following processing is performed in the process in which the to-be-processed water 2 passes between the ultrasonic irradiation devices 5. That is, when a high-frequency current is supplied from the power supply 8 to the ultrasonic irradiation device 5 according to a command from the control device 9, a displacement corresponding to the amplitude of the alternating current occurs in each ultrasonic oscillator 6, and the vibration surface 6A vibrates. Then, the generated ultrasonic waves 13 are radiated toward the water 2 to be treated.
[0019]
The ultrasonic waves 13 emitted from the ultrasonic irradiation device 5 propagate in the water to be treated 2, reach the upper ultrasonic irradiation device 5, are reflected there, and are again vibrated by the vibration surface 6 </ b> A of the lower ultrasonic irradiation device 5. Return to At this time, the wave generated from the vibration surface 6A and the reflected wave interfere with each other, so that a combined wave is formed between the ultrasonic irradiation devices 5. When the distance between the ultrasonic irradiation devices 5 is properly maintained, the synthesized wave is in a resonance state. At this time, as shown in FIG. 3, a wave called a standing wave is formed, and the waves are in a state of strengthening each other, and the above-described effect of the ultrasonic wave can be utilized to the maximum. Ultrasonic waves from the uppermost ultrasonic irradiation device 5 are reflected by the reflection plate 12, and a standing wave is formed between the uppermost ultrasonic irradiation device 5 and the reflection plate 12.
[0020]
The formation of the standing wave changes depending on conditions such as the temperature of the water 2 to be treated. For this purpose, the control device 9 controls the oscillation frequency of the ultrasonic oscillator 6 so that the standing wave is always formed stably even if the conditions change. In addition to controlling the oscillation frequency, another control device that adjusts the interval between the ultrasonic irradiation devices 5 to an interval at which a standing wave is formed may be provided. Both the oscillation frequency and the interval between the ultrasonic irradiation devices 5 may be controlled.
[0021]
The water to be treated in the portion where the standing wave is formed is effectively purified by the above-described effect of the ultrasonic wave. If the medicine is supplied from the medicine supply device 10 via the medicine supply nozzle 11 simultaneously with the irradiation of the ultrasonic waves, the water to be treated is more efficiently purified by the synergistic effect with the ultrasonic irradiation.
[0022]
In the above example, the ultrasonic irradiation devices 5 are vertically stacked in the processing tank 1, but they may be horizontally stacked. Further, a plurality of laminated ultrasonic irradiation devices 5 may be provided.
[0023]
【The invention's effect】
As described above, according to the present invention, a plurality of ultrasonic irradiation devices provided with one or more ultrasonic oscillators are provided in a container into which water to be treated flows in and out, and each of the wave irradiation devices is provided. Are arranged in layers separated from each other in the ultrasonic radiation direction, and in particular, by generating a standing wave between the wave irradiation devices, a large amount of water to be treated can be treated with high efficiency with a simple configuration. In addition, by controlling the oscillation conditions of the ultrasonic wave or the interval between the wave irradiation devices by the control device to constantly and stably generate the standing wave, the water treatment can be performed more efficiently. Further, by providing the drug supply device, a useful effect such that more effective water treatment can be performed by a synergistic effect between the drug and ultrasonic irradiation is provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a water treatment apparatus of the present invention.
FIG. 2 is a schematic sectional view showing an ultrasonic irradiation device.
FIG. 3 is a diagram illustrating a state of occurrence of a standing wave.
FIG. 4 is a schematic sectional view showing a conventional water treatment apparatus using ultrasonic waves.
[Explanation of symbols]
1: Treatment tank 2: Water to be treated 3: Inlet 4: Outlet 5: Ultrasonic irradiation device 6: Ultrasonic oscillator 6A: Vibration surface 7: Frame 8: Power supply 9: Control device 10: Drug supply device 11: Drug supply Nozzle 12: Reflector 13: Ultrasonic 21: Processing tank 22: Ultrasonic 23: Ultrasonic oscillator 24: Container 25: Inlet 26: Outlet
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002219140A JP2004057917A (en) | 2002-07-29 | 2002-07-29 | Water treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002219140A JP2004057917A (en) | 2002-07-29 | 2002-07-29 | Water treatment equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004057917A true JP2004057917A (en) | 2004-02-26 |
Family
ID=31940114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002219140A Pending JP2004057917A (en) | 2002-07-29 | 2002-07-29 | Water treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004057917A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110627159A (en) * | 2019-09-18 | 2019-12-31 | 东莞道汇环保科技股份有限公司 | Device and method for separating mixed liquid |
JP2022046394A (en) * | 2020-09-10 | 2022-03-23 | 正晃 岡崎 | Water or fuel oil reformer |
-
2002
- 2002-07-29 JP JP2002219140A patent/JP2004057917A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110627159A (en) * | 2019-09-18 | 2019-12-31 | 东莞道汇环保科技股份有限公司 | Device and method for separating mixed liquid |
JP2022046394A (en) * | 2020-09-10 | 2022-03-23 | 正晃 岡崎 | Water or fuel oil reformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5229423B1 (en) | Purification device | |
US20040173541A1 (en) | Water treatment method and water treatment device | |
EP1321198B1 (en) | Ultrasonic cleaner and wet treatment nozzle comprising the same | |
JP2010158679A (en) | Device and process for treating liquid medium | |
KR20130107287A (en) | Improved ultrasonic cleaning method and apparatus | |
JP2002172389A (en) | Ultrasonic treatment apparatus for organic waste liquid | |
JP2008173521A (en) | Submerged plasma processing apparatus and submerged plasma processing method | |
JP2008264739A (en) | Filtering and sterilizing device | |
WO2017104194A1 (en) | Washing device and washing method as well as membrane separation bioreactor | |
KR101594997B1 (en) | Water treatment apparatus using plasma | |
KR101217167B1 (en) | Apparatus for mixing chemicals using ultrasonic waves | |
JP2007253120A (en) | Ultrasonic cleaning method | |
JP2004202322A (en) | Ultrasonic treatment method and apparatus | |
JP2004057917A (en) | Water treatment equipment | |
KR200339736Y1 (en) | Apparatus for activating energy and water treatment using ultrasonic vibration | |
JP3840843B2 (en) | Water treatment method and apparatus | |
KR20140081086A (en) | Apparatus for treating water using ultrasonic wave and pulse UV | |
JP2007209914A (en) | Cleaning system for volatile organic compound-contaminated soil and its cleaning method | |
JP2004202321A (en) | Water treatment equipment | |
JP2008279423A (en) | Method for treating wastewater by high-frequency vibration radiation | |
JP4357316B2 (en) | Wastewater treatment equipment | |
JP3856558B2 (en) | Ultrapure water sterilization method and sterilization ultrapure water supply system | |
JP2000117247A (en) | Water purification/sterilization device | |
US20130313105A1 (en) | Method and Device for Treating Opaque Fluids with UV Radiation | |
KR20140006207U (en) | Apparatus for treating water using ultrasonic wave and pulse UV |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060328 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060718 |