JP2004055193A - Method for producing electrode material for solid oxide fuel cell - Google Patents
Method for producing electrode material for solid oxide fuel cell Download PDFInfo
- Publication number
- JP2004055193A JP2004055193A JP2002208065A JP2002208065A JP2004055193A JP 2004055193 A JP2004055193 A JP 2004055193A JP 2002208065 A JP2002208065 A JP 2002208065A JP 2002208065 A JP2002208065 A JP 2002208065A JP 2004055193 A JP2004055193 A JP 2004055193A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- powder
- fuel cell
- solid oxide
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、固体酸化物形燃料電池の電極材料の製造方法に関するものである。
【0002】
【従来の技術】
酸化物イオン伝導体からなる固体電解質層を空気極層(酸化剤極層)と燃料極層との間に挟んだ積層構造を持つ固体電解質形燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。固体電解質形燃料電池では、空気極側に酸素(空気)が、燃料極側には燃料ガス(H2 、CO等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。
【0003】
空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で、空気極から電子を受け取って酸化物イオン(O2−)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。
【0004】
燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O2 + 2e− → O2−
燃料極: H2 + O2− → H2 O+2e−
全体 : H2 + 1/2 O2 → H2 O
【0005】
上記電極反応、例えば、空気極側で起こる酸素分子から酸化物イオンへのイオン化反応 (1/2O2 +2e− →O2−) は、酸素分子と電子と酸化物イオンの三者が関与することから、酸化物イオンを運ぶ固体電解質と、電子を運ぶ空気極と、酸素分子を供給する気相 (空気) 、の三相の界面でしか起こらないと言われている。燃料極側でも同様に、固体電解質と、燃料極と、気相の燃料ガスとの三相界面で電極反応が起こる。従って、この三相界面を増大させることが電極反応の円滑な進行に有利であると考えられている。
【0006】
ここで、固体電解質層は、酸化物イオンの移動媒体であると同時に、燃料ガスと空気を直接接触させないための隔壁としても機能するので、ガス不透過性の緻密な構造となっている。この固体電解質層は、酸化物イオン伝導性が高く、空気極側の酸化性雰囲気から燃料極側の還元性雰囲気までの条件下で化学的に安定で、熱衝撃に強い材料から構成する必要があり、かかる要件を満たす材料としてイットリアを添加した安定化ジルコニア(YSZ)が一般的に使用されている。
【0007】
一方、電極である空気極(カソード)層と燃料極(アノード)層はいずれも電子伝導性の高い材料から構成する必要がある。空気極材料は、700℃前後の高温の酸化性雰囲気中で化学的に安定でなければならないため、金属は不適当であり、電子伝導性を持つペロブスカイト型酸化物材料、具体的にはLaMnO3 もしくはLaCoO3 、または、これらのLaの一部をSr、Ca等に置換した固溶体が一般に使用されている。また、燃料極材料は、Ni、Coなどの金属、或いはNi−YSZ、Co−YSZなどのサーメットが一般的である。
【0008】
図1は、固体酸化物形燃料電池における発電セル1の内部構造を示しており、図中、符号2は空気極層、符号3は固体電解質層、符号4は燃料極層である。
【0009】
【発明が解決しようとする課題】
従来、上記した燃料電池用の電極材料を作製するには、各電極の構成材料の粉末をボールミル、遊星ボールミル、サンドミル等の粉砕効果を有する攪拌混合装置を用いて混合することにより、複合粒子粉体を得ていた。各々電極は、この複合粒子粉体に有機物結着剤を配合し攪拌してペースト状とすると共に、ブレード法やスクリーン印刷等により固体電解質層面に塗布し、乾燥、プレス成形、焼成といった各工程を経て形成される。
【0010】
ところで、上記したボールミルや遊星ボールミル等による攪拌混合装置では、ボール同士の衝突・接触によって粉砕が行われ、且つ、ボールが容器内を隈無く運動することによって全体的な攪拌運動も併せて行われるものであり、このような造粒法は様々な分野で広く使用されているものであるが、力学的運動を利用した当該攪拌混合の場合、(1)混合粉の比重の差により均一分散した混合体が得られにくい。(2)粒径の差により均一に分散した混合体が得られにくい。(3)攪拌混合に多くの時間を要する。
等の欠点を有していた。
【0011】
固体酸化物形燃料電池の電極材料としては、電極構成材料粉末が均一に分散した複合粒子粉体を用いることが重要であり、混合体を形成する各粒子がむらになって存在していると、三相界面における電極のガス拡散性、電子伝導性が悪化し、発電性能が低下することになる。
【0012】
本発明は、上記問題に鑑みて成されたもので、電極構成材料粉末が均一に分散した高活性の複合粒子粉体が得られる固体酸化物形燃料電池の電極用材料の製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
すなわち、本発明は、水溶液で合成した電極構成材料の複合粉末をスプレードライ法により乾燥して複合粒子粉体を得るようにした固体酸化物形燃料電池の電極用材料の製造方法である。
【0014】
上記スプレードライ法とは、液体を微細な霧状にし、これを容器内で熱風中に噴出させて瞬間的に粉状の乾燥物を得る方法である。
本発明では、2種類以上の電極構成材料粉末を液中に溶解・分散し、このスプレードライ法により乾燥することにより、電極構成材料粉末が均一に分散した微細で高活性な複合粒子粉体を得ることができ、これを固体酸化物形燃料電池の電極材料に用いることにより発電性能を向上することができる。
また、乾燥中の粒子は滞留時間がほんの数秒間であるため、電極材料の作製(造粒)に多くの時間を要さないことから、スプレードライ法は連続生産性、大量生産性に優れる好適な製造方法と言え
電極材料のコストダウンを可能とする。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を説明する。本発明は、水溶液で合成した電極構成材料の複合粉末をスプレードライ法により乾燥して電極構成粉末が均一に分散した複合粒子粉体を得る固体酸化物形燃料電池の電極用材料の製造方法である。
【0016】
本実施形態では、スプレードライ法による燃料極材料の製造方法を説明する。
先ず、燃料極材料の硝酸塩であるCe(NO3 )3 ・6H2 O、Sm(NO3 )3 ・6H2 O、Ni(NO3 )2 ・6H2 Oを所定量蒸留水に加えて溶解させる。
次に、この溶解液にNaOHをpH13になるよう少しづづ滴下し、電極構成材料となる水酸化物Ce(OH)3 、Sm(OH)3 、Ni(OH)2 を沈殿させる。
次に、この沈殿物を遠心分離によって溶液の上澄み液と濃縮された沈殿物とを分離した後、蒸留水を加えて攪拌し、再度遠心分離を5〜6回繰り返して洗浄する。
最後に、蒸留水中に均一に分散した水酸化物の複合体を上記スプレードライ法を用いて乾燥させ、CeO2 、Sm2 O3 、NiOが均一に分散した微細で高活性な球状複合粉体を得る。
【0017】
尚、スプレードライ法は、乾燥中の粒子の滞留時間がほんの数秒間であり、電極材料の作製(造粒)に多くの時間を要さないことから、連続生産性、大量生産性に優れており、よって、電極材料のコストダウンが可能である。
【0018】
また、この複合粒子粉体を用いて固体電解質層の表面に電極を形成する場合は、複合粒子粉体に有機物結着剤を配合し攪拌してペースト状とし、ブレード法やスクリーン印刷等により塗布し、乾燥、プレス成形、焼成といった従来公知の電極形成方法を採用することができる。このように、電極構成材料粉末が均一に分散した微細で高活性な複合粒子粉体を燃料極に用いることにより、固体酸化物形燃料電池の発電性能が向上する。
【0019】
既述したように、固体酸化物形燃料電池において、各電極 (空気極層と燃料極層) は、多孔質で、且つ三相界面長さが大きい(電極反応場が大きい)ことが求められている。本発明が用いたスプレードライ法では、気化温度、ガス流速、液の供給量等の条件を変えることで、造粒される粒子径を制御することが可能であることから、各電極層の電解質層に接する部分に細粒が存在し、電解質層から離れるに従って粗粒が存在するようにスプレードライの条件を変えて造粒される粒径を調整することにより、三相界面長さを大きくして電池性能の向上を図ることも可能である。
【0020】
【発明の効果】
以上説明したように、本発明によれば、水溶液から合成した複合粉末をスプレードライ法により乾燥するようにしたので、電極構成材料粉末が均一に分散した微細で高活性な電極粉末を造粒することができる。この複合粒子粉体を固体酸化物形燃料電池の電極材料に用いることにより、固体酸化物形燃料電池の発電性能を向上することができる。
また、スプレードライ法は、連続生産性、大量生産性に優れることから、電極材料のコストダウンを図ることができる。
【図面の簡単な説明】
【図1】固体酸化物形燃料電池における発電セルの内部構造を示す図。
【符号の説明】
1 発電セル
2 空気極層
3 固体電解質層
4 燃料極層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electrode material for a solid oxide fuel cell.
[0002]
[Prior art]
A solid electrolyte fuel cell with a laminated structure in which a solid electrolyte layer composed of an oxide ion conductor is sandwiched between an air electrode layer (oxidant electrode layer) and a fuel electrode layer is a third-generation fuel cell for power generation. Development is in progress. In a solid oxide fuel cell, oxygen (air) is supplied to the air electrode side, and fuel gas (H 2 , CO, etc.) is supplied to the fuel electrode side. Both the air electrode and the fuel electrode are porous so that the gas can reach the interface with the solid electrolyte.
[0003]
Oxygen supplied to the air electrode side passes through pores in the air electrode layer and reaches near the interface with the solid electrolyte layer, where electrons are received from the air electrode and converted into oxide ions (O 2− ). Ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. The oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate a reaction product (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode.
[0004]
The electrode reaction when hydrogen is used as the fuel is as follows.
Air electrode: 1/2 O 2 + 2e − → O 2−
The fuel electrode: H 2 + O 2- → H 2 O + 2e -
Whole: H 2 + 1 / 2O 2 → H 2 O
[0005]
The above-mentioned electrode reaction, for example, an ionization reaction (1 / 2O 2 + 2e − → O 2- ) from an oxygen molecule to an oxide ion that occurs on the air electrode side involves the involvement of oxygen molecules, electrons, and oxide ions. It is said that this occurs only at the three-phase interface of a solid electrolyte that carries oxide ions, an air electrode that carries electrons, and a gas phase (air) that supplies oxygen molecules. Similarly, on the fuel electrode side, an electrode reaction occurs at a three-phase interface between the solid electrolyte, the fuel electrode, and the gaseous fuel gas. Therefore, it is considered that increasing this three-phase interface is advantageous for the smooth progress of the electrode reaction.
[0006]
Here, the solid electrolyte layer serves as a moving medium for oxide ions and also functions as a partition wall for preventing direct contact between the fuel gas and air, and thus has a gas impermeable dense structure. This solid electrolyte layer must be composed of a material that has high oxide ion conductivity, is chemically stable under the conditions from the oxidizing atmosphere on the air electrode side to the reducing atmosphere on the fuel electrode side, and is resistant to thermal shock. As a material satisfying such requirements, stabilized zirconia (YSZ) to which yttria is added is generally used.
[0007]
On the other hand, both the air electrode (cathode) layer and the fuel electrode (anode) layer, which are electrodes, need to be made of a material having high electron conductivity. Since the air electrode material must be chemically stable in a high-temperature oxidizing atmosphere of about 700 ° C., a metal is inappropriate, and a perovskite-type oxide material having electron conductivity, specifically LaMnO 3 Alternatively, LaCoO 3 or a solid solution in which part of La is replaced with Sr, Ca, or the like is generally used. The fuel electrode material is generally a metal such as Ni or Co, or a cermet such as Ni-YSZ or Co-YSZ.
[0008]
FIG. 1 shows an internal structure of a power generation cell 1 in a solid oxide fuel cell. In the figure,
[0009]
[Problems to be solved by the invention]
Conventionally, in order to produce the above-described electrode material for a fuel cell, the powder of the constituent material of each electrode is mixed using a stirring and mixing device having a pulverizing effect such as a ball mill, a planetary ball mill, and a sand mill to obtain a composite particle powder. Had gained body. Each electrode is prepared by mixing an organic binder into the composite particle powder and stirring to form a paste. The paste is applied to the surface of the solid electrolyte layer by a blade method, screen printing, or the like, followed by drying, press molding, and firing. Formed through
[0010]
By the way, in the stirring and mixing device such as the ball mill and the planetary ball mill described above, the ball is crushed by collision and contact between the balls, and the ball is moved all over the container, so that the entire stirring motion is also performed. Although such a granulation method is widely used in various fields, in the case of the stirring and mixing using mechanical motion, (1) uniform dispersion is caused by a difference in specific gravity of the mixed powder. It is difficult to obtain a mixture. (2) It is difficult to obtain a uniformly dispersed mixture due to the difference in particle size. (3) A lot of time is required for stirring and mixing.
And the like.
[0011]
As an electrode material of a solid oxide fuel cell, it is important to use a composite particle powder in which an electrode constituent material powder is uniformly dispersed, and it is considered that each particle forming a mixture is uneven. In addition, the gas diffusivity and electron conductivity of the electrode at the three-phase interface deteriorate, and the power generation performance decreases.
[0012]
The present invention has been made in view of the above problems, and provides a method for producing an electrode material for a solid oxide fuel cell, which can provide highly active composite particle powder in which electrode constituent material powders are uniformly dispersed. It is aimed at.
[0013]
[Means for Solving the Problems]
That is, the present invention is a method for producing an electrode material for a solid oxide fuel cell in which a composite powder of an electrode constituent material synthesized with an aqueous solution is dried by a spray drying method to obtain a composite particle powder.
[0014]
The spray drying method is a method in which a liquid is made into a fine mist, and this is ejected into hot air in a container to instantaneously obtain a powdery dried product.
In the present invention, two or more kinds of electrode constituent material powders are dissolved and dispersed in a liquid, and dried by this spray drying method, whereby fine and highly active composite particle powders in which the electrode constituent material powders are uniformly dispersed are obtained. It can be used as an electrode material of a solid oxide fuel cell to improve power generation performance.
In addition, since the residence time of the particles during drying is only a few seconds, a large amount of time is not required for producing (granulating) the electrode material, so that the spray drying method is excellent in continuous productivity and mass productivity. It can be said that the production cost is reduced.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described. The present invention relates to a method for producing an electrode material for a solid oxide fuel cell, in which a composite powder of an electrode constituent material synthesized with an aqueous solution is dried by a spray drying method to obtain a composite particle powder in which the electrode constituent powder is uniformly dispersed. is there.
[0016]
In the present embodiment, a method for producing an anode material by a spray drying method will be described.
First, Ce (NO 3) nitrates of the fuel electrode material dissolved 3 · 6H 2 O, Sm ( NO 3) 3 · 6H 2 O, Ni (NO 3) was added to 2 · 6H 2 O to a predetermined amount of distilled water Let it.
Next, NaOH is gradually added dropwise to this solution so as to have a pH of 13, and hydroxides Ce (OH) 3 , Sm (OH) 3 , and Ni (OH) 2 serving as electrode constituent materials are precipitated.
Next, the supernatant is separated from the concentrated precipitate by centrifugation of the precipitate, distilled water is added and the mixture is stirred, and centrifugation is repeated 5 to 6 times to wash the precipitate.
Finally, the hydroxide composite uniformly dispersed in distilled water is dried using the above-mentioned spray drying method, and fine and highly active spherical composite powder in which CeO 2 , Sm 2 O 3 , and NiO are uniformly dispersed. Get.
[0017]
The spray drying method is excellent in continuous productivity and mass productivity because the residence time of particles during drying is only a few seconds and a lot of time is not required for producing (granulating) the electrode material. Therefore, the cost of the electrode material can be reduced.
[0018]
When an electrode is formed on the surface of the solid electrolyte layer using the composite particle powder, an organic binder is mixed with the composite particle powder, stirred to form a paste, and applied by a blade method, screen printing, or the like. Then, conventionally known electrode forming methods such as drying, press molding, and firing can be employed. As described above, the power generation performance of the solid oxide fuel cell is improved by using the fine and highly active composite particle powder in which the electrode constituent material powder is uniformly dispersed as the fuel electrode.
[0019]
As described above, in a solid oxide fuel cell, each electrode (air electrode layer and fuel electrode layer) is required to be porous and have a large three-phase interface length (a large electrode reaction field). ing. In the spray drying method used in the present invention, the particle diameter to be granulated can be controlled by changing conditions such as a vaporization temperature, a gas flow rate, and a liquid supply amount. The length of the three-phase interface is increased by changing the spray-drying conditions and adjusting the particle size to be granulated so that fine particles are present at the part in contact with the layer and coarse particles are present away from the electrolyte layer. It is also possible to improve battery performance.
[0020]
【The invention's effect】
As described above, according to the present invention, since the composite powder synthesized from the aqueous solution is dried by the spray drying method, the fine and highly active electrode powder in which the electrode constituent material powder is uniformly dispersed is granulated. be able to. By using this composite particle powder as an electrode material for a solid oxide fuel cell, the power generation performance of the solid oxide fuel cell can be improved.
Further, the spray drying method is excellent in continuous productivity and mass productivity, so that the cost of the electrode material can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing the internal structure of a power generation cell in a solid oxide fuel cell.
[Explanation of symbols]
Reference Signs List 1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002208065A JP2004055193A (en) | 2002-07-17 | 2002-07-17 | Method for producing electrode material for solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002208065A JP2004055193A (en) | 2002-07-17 | 2002-07-17 | Method for producing electrode material for solid oxide fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004055193A true JP2004055193A (en) | 2004-02-19 |
Family
ID=31932312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002208065A Pending JP2004055193A (en) | 2002-07-17 | 2002-07-17 | Method for producing electrode material for solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004055193A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007115536A (en) * | 2005-10-20 | 2007-05-10 | Tokyo Electric Power Co Inc:The | Method for producing electrode for porous solid oxide fuel cell |
JP2008226531A (en) * | 2007-03-09 | 2008-09-25 | Kansai Electric Power Co Inc:The | Method for producing composite fine particles for fuel cell electrode, fuel electrode for fuel cell and fuel cell |
JP2012138256A (en) * | 2010-12-27 | 2012-07-19 | Agc Seimi Chemical Co Ltd | Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same |
WO2013133023A1 (en) * | 2012-03-09 | 2013-09-12 | Agcセイミケミカル株式会社 | Air-electrode material powder for solid oxide fuel cell and manufacturing process therefor |
WO2014021028A1 (en) * | 2012-07-31 | 2014-02-06 | Agcセイミケミカル株式会社 | Method for producing fuel electrode material for solid oxide fuel cell |
US9472810B2 (en) | 2012-11-19 | 2016-10-18 | Toyota Jidosha Kabushiki Kaisha | Production method of porous layer material and production method of membrane electrode and gas diffusion layer assembly including porous layer material |
-
2002
- 2002-07-17 JP JP2002208065A patent/JP2004055193A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007115536A (en) * | 2005-10-20 | 2007-05-10 | Tokyo Electric Power Co Inc:The | Method for producing electrode for porous solid oxide fuel cell |
JP2008226531A (en) * | 2007-03-09 | 2008-09-25 | Kansai Electric Power Co Inc:The | Method for producing composite fine particles for fuel cell electrode, fuel electrode for fuel cell and fuel cell |
JP2012138256A (en) * | 2010-12-27 | 2012-07-19 | Agc Seimi Chemical Co Ltd | Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same |
WO2013133023A1 (en) * | 2012-03-09 | 2013-09-12 | Agcセイミケミカル株式会社 | Air-electrode material powder for solid oxide fuel cell and manufacturing process therefor |
JPWO2013133023A1 (en) * | 2012-03-09 | 2015-07-30 | Agcセイミケミカル株式会社 | Air electrode material powder for solid oxide fuel cell and method for producing the same |
US9379391B2 (en) | 2012-03-09 | 2016-06-28 | Agc Seimi Chemical Co., Ltd. | Air electrode material powder for solid oxide fuel cell and its production process |
WO2014021028A1 (en) * | 2012-07-31 | 2014-02-06 | Agcセイミケミカル株式会社 | Method for producing fuel electrode material for solid oxide fuel cell |
JPWO2014021028A1 (en) * | 2012-07-31 | 2016-07-21 | Agcセイミケミカル株式会社 | Method for producing fuel electrode material for solid oxide fuel cell |
US9570754B2 (en) | 2012-07-31 | 2017-02-14 | Agc Seimi Chemical Co., Ltd. | Process for producing anode material for solid oxide fuel cell |
US9472810B2 (en) | 2012-11-19 | 2016-10-18 | Toyota Jidosha Kabushiki Kaisha | Production method of porous layer material and production method of membrane electrode and gas diffusion layer assembly including porous layer material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100503030B1 (en) | Polymer electrolyte fuel cell, method for manufacturing electrode thereof, and manufacturing apparatus | |
JP3193294B2 (en) | Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same | |
Maric et al. | High‐performance Ni‐SDC cermet anode for solid oxide fuel cells at medium operating temperature | |
JP3502012B2 (en) | Solid oxide fuel cell and method of manufacturing the same | |
Takahashi et al. | Improvement of cell performance in low-Pt-loading PEFC cathode catalyst layers prepared by the electrospray method | |
CN100495778C (en) | Diffusion electrodes for fuel cells | |
CN102104155B (en) | Low-platinum cathode catalyst layer used for fuel cell and application thereof | |
JP2009140730A (en) | Fuel electrode material for solid oxide fuel cell, and its manufacturing method | |
JP4211254B2 (en) | Solid oxide fuel cell | |
Fukui et al. | Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis | |
Yashiro et al. | Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs | |
US8211587B2 (en) | Plasma sprayed ceramic-metal fuel electrode | |
JP4534188B2 (en) | Fuel cell electrode material and solid oxide fuel cell using the same | |
JP2004055194A (en) | Electrodes for solid oxide fuel cells | |
JP2004055193A (en) | Method for producing electrode material for solid oxide fuel cell | |
JPH08115726A (en) | Method for producing electrode for polymer solid electrolyte type electrochemical cell | |
US9985295B2 (en) | Solid oxide fuel cell structures, and related compositions and processes | |
CN1947282A (en) | Cathode for fuel cell and process of the same | |
JP2003007318A (en) | Solid electrolyte fuel cell | |
CN102412408B (en) | A kind of preparation method and product of SOFC electrolyte surface micro-convex structure | |
JP2001160399A (en) | Electrode for solid polymer fuel cell and manufacturing method therefore | |
JP2004200125A (en) | Electrode material, fuel electrode for solid oxide fuel cell, and solid oxide fuel cell | |
US6984467B2 (en) | Plasma sprayed ceria-containing interlayer | |
CN101343082A (en) | Method for preparing nano perovskite cathode powder for solid oxide fuel cell | |
Kwon et al. | Comparison of solid oxide fuel cell anode coatings prepared from different feedstock powders by atmospheric plasma spray method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080729 |