【0001】
【発明の属する技術分野】
本発明は、焼却炉の安定燃焼方法に係り、特に、都市ごみや産業廃棄物等の廃棄物を燃焼する流動床式焼却炉の安定燃焼技術に関する。
【0002】
【従来の技術】
廃棄物の効率的な燃焼を行なうために、廃棄物を流動床式焼却炉に投入し、流動媒体(例えば砂)とともに流動空気によって流動させて燃焼する方法が知られている。流動床式焼却炉は燃焼速度が速いという特長があり、しかも不燃性の固形物を流動媒体と共に分別できるという良さがある(例えば、特開平10−169946号公報参照)。
【0003】
一方、廃棄物を熱分解して熱分解ガスと熱分解固形物を生成し、熱分解ガスは熱源として利用し、熱分解固形物は燃焼溶融してスラグ化することにより、大量の廃棄物を減容し、安定化させて建材などに利用するガス化溶融技術がある。しかし、ガス化溶融炉は流動床式焼却炉に比較して処理時間が長くかかるだけでなく、規模も大きくなりごみ処理コストもはるかに高い。
【0004】
【発明が解決しようとする課題】
従来の焼却施設においては、流動床式焼却炉へ廃棄物を直接投入しているため、都市ごみや産業廃棄物等の廃棄物の発熱量の変動を受けやすく、いかに完全燃焼させるかが大きな課題であった。すなわち、これらの廃棄物は、いわゆる生ごみや、廃プラスチック、電子機器類、化成品等、嵩や発熱量などの性状は千差万別であり、これらが混在した状態で投入される。
【0005】
これに対して流動床式焼却炉は燃焼速度が速く、発熱量の瞬時による変動に対して完全な対応ができず、例えば、高カロリーのごみの後に低カロリーのごみが投入されると、不完全燃焼などの結果としてダイオキシン類等の発生が懸念され、その対策として専用の除去装置などが別途必要であった。
【0006】
本発明の課題は、流動床式焼却炉に送給される廃棄物の発熱量の変動を抑制し、低空気比による安定した完全燃焼状態を維持して、廃棄物の安全で迅速な燃焼処理を実施することである。
【0007】
【課題を解決するための手段】
上記課題は、廃棄物を任意の大きさに破砕した後、ロータリーキルン型の熱分解炉(熱分解キルンともいう)へ投入し、無酸素状態下で間接的に加熱することにより、熱分解ガスと熱分解固形物とに分解し、該熱分解固形物を後段の流動床式焼却炉に送給して燃焼させることを特徴とする廃棄物用流動床式焼却炉の安定燃焼方法によって解決される。
【0008】
本発明によれば、廃棄物を熱分解キルンでゆっくりと熱分解することにより、発熱量の異なる種々の廃棄物は、熱分解ガスと熱分解固形物というカロリーの均質化した燃料に改質される。これらの発熱量の変動が少ない安定した燃料が送給されるため、後段の流動床式焼却炉では、低空気比による安定した完全燃焼状態の維持が可能になる。
【0009】
また、カロリー変動の少ない熱分解固形物を流動床式焼却炉の一次燃焼部へ送給することにより、一次燃焼を完全燃焼にすることが可能であるが、同様にカロリー変動の少ない燃料に改質された熱分解ガスを二次燃焼部へ送給することによって、二次燃焼部で完全燃焼を実現できるので、燃焼排ガスに有害物質などを含まないクリーンな燃焼排ガスを放出できる。
【0010】
【発明の実施の形態】
本発明の実施形態の概要は、廃棄物を流動床式焼却炉で安定燃焼させるために、流動床式焼却炉の前段に熱分解キルンを配置し、熱分解キルンで廃棄物を低酸素雰囲気で間接的にゆっくりと加熱することで、熱分解ガスと熱分解固形物という発熱量の均質化した材料に分解し、これを後段の流動床式焼却炉に送給するようにしたものである。
【0011】
以下、本発明の一実施形態について図1を参照して説明する。廃棄物を破砕機1で任意の大きさ(例えば、50〜150mm)に破砕した後、熱分解キルン2へ投入する。
【0012】
熱分解キルン2(ロータリーキルン式熱分解炉ともいう)は、例えば、直径2m、長さ15mの横型回転式で、加熱装置3で加熱した高温空気(例えば450〜600℃)によって、内部に投入された廃棄物を間接加熱する。
【0013】
一例として、熱分解キルン2内の廃棄物の滞留時間約60〜90分、酸素濃度1%未満の無酸素雰囲気で、通常約450℃で間接加熱して、廃棄物をゆっくりと熱分解すると、廃棄物中の水分が蒸発した水蒸気を含む熱分解ガス4と熱分解固形物5とが生成する。
【0014】
この熱分解固形物の組成は廃棄物の種類により種々異なるが、日本国内では、本発明者らの知見によれば、
大部分が比較的細粒の可燃分 10〜60%
比較的細粒の灰分 5〜40%
粗粒金属成分 7〜50%
粗粒瓦礫、陶器、コンクリート等 10〜60%
より構成されていることが判明している。
【0015】
これらの熱分解固形物5は、熱分解キルンでゆっくりといわゆる蒸し焼きにすることによって、種々雑多な廃棄物の発熱量が均等化し、カロリーの安定した熱分解固形物となる。
【0016】
この熱分解固形物5と熱分解ガス4とを、流動床式焼却炉6へ送給する。流動床式焼却炉6では、熱分解固形物5を流動媒体である砂とともに流動用空気7によって炉内で躍るように流動させることにより、流動部の燃焼温度を一定に維持したり、不燃物を砂と共に下方へ搬出したりする。流動用空気7は一次燃焼させるための一次空気でもある。
【0017】
通常の流動床式焼却炉では、投入された被燃焼物は流動部である一次燃焼部で、例えば600〜700℃に加熱された流動砂(流動媒体)によって短時間のうちに乾燥して燃焼し、一次燃焼部による不完全燃焼は、流動部上方に二次空気を供給し、例えば850〜950℃で完全燃焼させるようになっている。
【0018】
しかし、被燃焼物が発熱量の変動が激しいごみなどの廃棄物の場合は、一次燃焼部で発生した不完全燃焼が、二次燃焼部においても完全燃焼しきれないまま、結果として排ガス中に有害物質が残されるという懸念がある。
【0019】
本実施形態によれば、流動床式焼却炉6の一次燃焼部6aに送給される廃棄物が、従来とは相違して、熱分解キルン2で熱分解された熱分解固形物5である。この熱分解固形物5は、発熱量の異なるごみが間接加熱により熱分解して混ざり合い、変動の少ない安定した発熱量になっているので、従来生じていたカロリーの変動にともなう不完全燃焼を防止できる。
【0020】
さらに、本実施形態では、熱分解キルン2で廃棄物を熱分解して生成した熱分解ガス4を流動床式焼却炉6の二次燃焼部6bへ送給するようにした。熱分解固形物5と同様に、変動の少ない安定した発熱量の燃料になっているので、従来生じていたカロリー変動にともなう不完全燃焼を防止できる。
【0021】
流動床式焼却炉6から流動砂と共に排出された不燃性固形物8は、分別設備9で流動砂10と、鉄11などの磁性金属、ガレキなどの不燃物12、アルミニウム13などとに分別され、それぞれ有価物として回収されたり、あるいは有効利用される。分別設備9から取出した流動砂10は循環路14により再び流動床式焼却炉6へ戻す。
【0022】
また、流動床式焼却炉6から排出される高温の燃焼排ガス15は、熱源として有効であり、さらに、燃焼排ガス15中に含まれる飛灰はセメントの原料として好適に利用される。
【0023】
上述のとおり、本発明の実施形態によれば、廃棄物の発熱量の瞬間的な変動は、熱分解キルンでのゆっくりとした熱分解によって吸収され、廃棄物は熱分解ガスと熱分解固形物というカロリーの均質化した燃料に改質される。これらの発熱量の変動が少ない安定した燃料が送給されるため、後段の流動床式焼却炉では、低空気比による安定した完全燃焼状態の維持が可能になる。
【0024】
昨今、ガス化溶融施設については、まず、廃棄物を熱分解することによって、安定した燃焼溶融が可能となっているが、本発明により、熱分解固形物の溶融スラグ化が必要でない施設においても、低空気比による完全燃焼が可能となった。
【0025】
【発明の効果】
本発明によれば、廃棄物の発熱量の変動を熱分解によって安定化させ、カロリーの変動の少ない廃棄物熱分解固形物を後段の流動床式焼却炉に送給できるので、流動床式焼却炉では低空気比による安定した完全燃焼状態を維持でき、簡易な排ガス処理設備で廃棄物の安全な処理を実施できる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す構成図。
【符号の説明】
1 破砕機
2 熱分解キルン
3 加熱装置
4 熱分解ガス
5 熱分解固形物
6 流動床式焼却炉
6a 一次燃焼部
6b 二次燃焼部
7 流動用空気
8 不燃性固形物
9 分別設備
10 流動砂
11 鉄
12 不燃物
13 アルミニウム
14 循環路
15 燃焼排ガス15[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stable combustion method for an incinerator, and more particularly to a stable combustion technique for a fluidized bed incinerator that burns waste such as municipal solid waste and industrial waste.
[0002]
[Prior art]
In order to perform efficient combustion of waste, there is known a method in which waste is put into a fluidized bed incinerator and fluidized by fluidized air together with a fluidized medium (eg, sand) for combustion. Fluidized bed incinerators have the advantage of a high combustion rate, and have the advantage that non-combustible solids can be separated together with a fluidized medium (see, for example, JP-A-10-169946).
[0003]
On the other hand, pyrolysis of waste produces pyrolysis gas and pyrolysis solids.The pyrolysis gas is used as a heat source, and the pyrolysis solids are burnt and melted to form slag, thereby producing large amounts of waste. There is a gasification and melting technology that reduces and stabilizes the volume and uses it for building materials. However, the gasification and melting furnace not only requires a longer processing time than a fluidized bed incinerator, but also has a larger scale and a much higher waste disposal cost.
[0004]
[Problems to be solved by the invention]
In conventional incineration facilities, waste is directly injected into a fluidized-bed incinerator, so it is susceptible to fluctuations in the calorific value of waste such as municipal solid waste and industrial waste. Met. That is, these wastes vary in properties such as bulk and heat generation, such as so-called garbage, waste plastics, electronic devices, and chemical products, and are put in a state where these are mixed.
[0005]
In contrast, fluidized bed incinerators have a high combustion rate and cannot completely respond to instantaneous fluctuations in the calorific value.For example, if low-calorie waste is introduced after high-calorie waste, There is concern that dioxins and the like may be generated as a result of complete combustion and the like, and as a countermeasure, a dedicated removal device and the like were separately required.
[0006]
An object of the present invention is to suppress fluctuations in the calorific value of waste fed to a fluidized bed incinerator, maintain a stable complete combustion state with a low air ratio, and safely and quickly burn waste. It is to carry out.
[0007]
[Means for Solving the Problems]
The above-mentioned problem is that waste is crushed to an arbitrary size, then put into a rotary kiln-type pyrolysis furnace (also called a pyrolysis kiln), and heated indirectly under anoxic condition to produce pyrolysis gas. The problem is solved by a stable combustion method for a fluidized-bed incinerator for waste, which is decomposed into pyrolyzed solids, and the pyrolyzed solids are fed to a downstream fluidized-bed incinerator and burned. .
[0008]
According to the present invention, by slowly pyrolyzing wastes in a pyrolysis kiln, various wastes having different calorific values are reformed into calorie-homogenized fuels of pyrolysis gas and pyrolysis solids. You. Since stable fuel is supplied with little change in the calorific value, the fluidized bed incinerator at the subsequent stage can maintain a stable complete combustion state with a low air ratio.
[0009]
In addition, it is possible to make the primary combustion complete by sending the pyrolysis solids with small calorie fluctuations to the primary combustion section of the fluidized bed incinerator. By feeding the purified pyrolysis gas to the secondary combustion section, complete combustion can be realized in the secondary combustion section, so that clean combustion exhaust gas containing no harmful substances or the like in the combustion exhaust gas can be emitted.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The outline of the embodiment of the present invention is to arrange a pyrolysis kiln in front of a fluidized bed incinerator in order to stably burn the waste in a fluidized bed incinerator, and to reduce the waste in a low oxygen atmosphere by the pyrolysis kiln. By indirectly heating slowly, the material is decomposed into a homogenized material having a calorific value of a pyrolysis gas and a pyrolysis solid, and this is sent to a fluidized bed incinerator at a later stage.
[0011]
Hereinafter, an embodiment of the present invention will be described with reference to FIG. After the waste is crushed to an arbitrary size (for example, 50 to 150 mm) by the crusher 1, the waste is charged into the pyrolysis kiln 2.
[0012]
The pyrolysis kiln 2 (also referred to as a rotary kiln type pyrolysis furnace) is, for example, a horizontal rotary type having a diameter of 2 m and a length of 15 m, and is charged into the inside by high-temperature air (for example, 450 to 600 ° C.) heated by the heating device 3. Indirect heating of waste.
[0013]
As an example, when the waste is thermally decomposed slowly by indirect heating, usually at about 450 ° C., in an oxygen-free atmosphere having an oxygen concentration of less than 1%, for a residence time of the waste in the pyrolysis kiln 2 of about 60 to 90 minutes, A pyrolysis gas 4 containing water vapor from which water in the waste evaporates and a pyrolysis solid 5 are generated.
[0014]
Although the composition of this pyrolysis solid varies depending on the type of waste, in Japan, according to the findings of the present inventors,
Most of the combustibles are relatively fine granules 10-60%
Relatively fine ash 5-40%
Coarse metal component 7-50%
Coarse rubble, pottery, concrete, etc. 10-60%
Has been found to be composed of
[0015]
These pyrolysis solids 5 are gradually steamed in a pyrolysis kiln so as to equalize the calorific value of various miscellaneous wastes and become pyrolysis solids having stable calories.
[0016]
The pyrolysis solid 5 and the pyrolysis gas 4 are fed to a fluidized bed incinerator 6. In the fluidized bed incinerator 6, the pyrolysis solids 5 are made to flow in the furnace together with the sand as a fluidizing medium by the fluidizing air 7 so that the combustion temperature of the fluidized portion is kept constant, Out with sand. The flowing air 7 is also primary air for primary combustion.
[0017]
In an ordinary fluidized bed incinerator, the burned material is dried and burned in a primary combustion section, which is a fluidized section, in a short time by fluidized sand (fluidized medium) heated to, for example, 600 to 700 ° C. In the incomplete combustion by the primary combustion section, secondary air is supplied above the flowing section, and complete combustion is performed at, for example, 850 to 950 ° C.
[0018]
However, when the burnable material is waste such as garbage, whose calorific value fluctuates drastically, the incomplete combustion generated in the primary combustion section cannot be completely burned even in the secondary combustion section, resulting in exhaust gas There is concern that harmful substances may be left.
[0019]
According to the present embodiment, the waste sent to the primary combustion section 6a of the fluidized bed incinerator 6 is the pyrolysis solid 5 pyrolyzed in the pyrolysis kiln 2 unlike the conventional one. . This pyrolysis solid 5 has a stable calorific value with less fluctuation because the garbage with different calorific value is thermally decomposed and mixed by indirect heating, so that the incomplete combustion due to the caloric fluctuation which has conventionally occurred is reduced. Can be prevented.
[0020]
Further, in the present embodiment, the pyrolysis gas 4 generated by pyrolyzing the waste in the pyrolysis kiln 2 is supplied to the secondary combustion section 6b of the fluidized bed incinerator 6. Like the pyrolysis solid 5, the fuel is a fuel having a stable calorific value with little fluctuation, so that incomplete combustion due to caloric fluctuation which has conventionally occurred can be prevented.
[0021]
The non-combustible solids 8 discharged together with the fluidized sand from the fluidized bed incinerator 6 are separated into a fluidized sand 10, a magnetic metal such as iron 11, a non-combustible material 12 such as rubble, an aluminum 13, and the like in a separation facility 9. , Respectively, are collected as valuable resources or are effectively used. The fluidized sand 10 taken out of the separation equipment 9 is returned to the fluidized bed incinerator 6 again by the circulation path 14.
[0022]
The high-temperature flue gas 15 discharged from the fluidized bed incinerator 6 is effective as a heat source, and fly ash contained in the flue gas 15 is suitably used as a raw material for cement.
[0023]
As described above, according to embodiments of the present invention, instantaneous fluctuations in the calorific value of the waste are absorbed by slow pyrolysis in the pyrolysis kiln, and the waste is decomposed by pyrolysis gas and pyrolysis solids. It is reformed into a calorie-homogenized fuel. Since stable fuel is supplied with little change in the calorific value, the fluidized bed incinerator at the subsequent stage can maintain a stable complete combustion state with a low air ratio.
[0024]
In recent years, for gasification and melting facilities, first, pyrolysis of waste has enabled stable combustion and melting. Thus, complete combustion at a low air ratio became possible.
[0025]
【The invention's effect】
According to the present invention, fluctuations in the calorific value of waste are stabilized by pyrolysis, and waste pyrolysis solids with less fluctuation in calories can be sent to a fluidized bed incinerator at the subsequent stage. The furnace can maintain a stable complete combustion state with a low air ratio, and can safely process waste with simple exhaust gas treatment equipment.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crusher 2 Pyrolysis kiln 3 Heating device 4 Pyrolysis gas 5 Pyrolysis solids 6 Fluid bed incinerator 6a Primary combustion part 6b Secondary combustion part 7 Air for flowing 8 Non-combustible solids 9 Separation equipment 10 Fluid sand 11 Iron 12 Incombustibles 13 Aluminum 14 Circulation path 15 Combustion exhaust gas 15