[go: up one dir, main page]

JP2004043255A - Composite structure - Google Patents

Composite structure Download PDF

Info

Publication number
JP2004043255A
JP2004043255A JP2002204685A JP2002204685A JP2004043255A JP 2004043255 A JP2004043255 A JP 2004043255A JP 2002204685 A JP2002204685 A JP 2002204685A JP 2002204685 A JP2002204685 A JP 2002204685A JP 2004043255 A JP2004043255 A JP 2004043255A
Authority
JP
Japan
Prior art keywords
weight
core material
composite structure
skin member
whisker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204685A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Nakaoka
中岡 達行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002204685A priority Critical patent/JP2004043255A/en
Publication of JP2004043255A publication Critical patent/JP2004043255A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

【課題】高硬度と高靭性とを両立できる複合構造体を提供する。
【解決手段】長尺状の芯材4の外周を、この芯材4とは組成の異なる表皮部材8で被覆してなる複合構造体であって、上記芯材4および/または表皮部材8がAlマトリックス中に、TiCウイスカ、TiNウイスカおよびSiCウイスカのうちの1種以上を分散した。
【選択図】 図1
The present invention provides a composite structure that can achieve both high hardness and high toughness.
A composite structure is formed by covering the outer periphery of a long core material with a skin member having a different composition from the core material. One or more of TiC whiskers, TiN whiskers, and SiC whiskers were dispersed in an Al 2 O 3 matrix.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、長尺状の芯材の外周を表皮部材で被覆してなる複合構造体に関する。
【0002】
【従来の技術】
従来より、Al系の複合セラミックスは高硬度および高強度を有する材料として知られ、構造材として広く用いられている。例えば、特開平2−229757号公報では、Alに対して微粒のTiCを分散せしめた複合セラミックスがクラックの進展を抑制する効果を有すると記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来のAlとTiCの複合セラミックスでは、クラック進展の抑制効果が低く、例えば切削工具等として使用すると耐欠損性が劣るという問題があった。また、TiCウイスカは製造上作製が難しく、コスト高になるという問題もあった。
【0004】
本発明は上記課題を解決するためになされたもので、その目的は、高硬度と高靭性とを兼ね備えた複合構造体を提供することにある。
【0005】
【課題を解決するための手段】
本発明者は上記課題について検討した結果、長尺状の芯材の外周を芯材とは異なる組成の表皮部材で被覆してなる複合構造体において、前記芯材および/または表皮部材をAlマトリックス中に、TiCウイスカ、TiNウイスカおよびSiCウイスカのうちの1種以上が分散してなる組成で構成することにより、芯材と表皮部材との特性差に起因してクラック進展の方向を偏向することができ部材の靭性を向上するとともに、ウイスカ分散によりクラック進展の偏向、部材の靭性が向上することから、複合構造体全体の靭性をより効率よく向上させることができ、高硬度と高靭性を兼ね備えた複合構造体となることを知見した。
【0006】
本発明の複合構造体は、長尺状の芯材の外周を、該芯材とは組成の異なる表皮部材で被覆してなるものであって、前記芯材および/または表皮部材がAlマトリックス中に、TiCウイスカ、TiNウイスカおよびSiCウイスカのうちの1種以上が分散してなることを特徴とするものである。
【0007】
ここで、前記ウイスカの少なくとも一部が、金属ウイスカまたは酸化物ウイスカ原料を炭化または窒化したものであること、前記芯材および/または表皮部材中に分散されるTiCウイスカまたはTiNウイスカの含有量が1〜50体積%であることが望ましい。
【0008】
また、前記芯材がAlを90〜55重量%と、前記ウイスカ成分を10〜45重量%との割合で含有するとともに、前記表皮部材が前記芯材とは組成が異なるAlを10〜60重量%と、TiCおよび/またはTiNを90〜40重量%との割合で含有すること、前記芯材がAlを95〜55重量%と、前記ウイスカ成分を5〜45重量%との割合で含有するとともに、前記表皮部材が金属Co、金属Ni、超硬合金およびサーメットのうちのいずれかからなることが望ましい。
【0009】
【発明の実施の形態】
本発明の複合構造体について、その一実施例である図1の概略斜視図を基に説明する。
【0010】
図1によれば、複合構造体1は長尺状の芯材4の外周を表皮部材8で被覆した構造からなる。
【0011】
本発明によれば、芯材4および/または表皮部材8をAlマトリックス中に、TiCウイスカ、TiNウイスカおよびSiCウイスカのうちの1種以上が分散してなる組成で構成することが大きな特徴であり、これにより、芯材と表皮部材との特性差、ウイスカによるクラック進展の偏向、ブリッジング、ディボンディング、プルアウトの効果がより顕著となり部材の硬度を低下させることなく構造体の靭性を高めることができ、高硬度と高靭性を兼ね備えた複合構造体となる。
【0012】
なお、本発明におけるウイスカとは、構造体の縦断面(芯材、表皮部材の長手方向に沿った断面)のSEM写真において観察できる粒子の長径/短径の比の平均値が2以上のものを指し、さらに、特に靭性向上の点で、ウイスカ粒子の長径は2μm以上、特に3μm以上、さらに5μm以上であることが望ましい。
【0013】
また、本発明によれば、上記ウイスカの少なくとも一部が、金属ウイスカまたは酸化物ウイスカ原料を炭化または窒化したものであることが望ましく、これによって、原料である金属ウイスカや酸化物ウイスカが焼成中に構造体中に多量に含まれる有機バインダ成分と反応して焼結体中に残存する残留炭素成分を効率よく低減できるとともに、特にTiCウイスカやTiNウイスカのように工業的に作製が難しくコスト高の原因となる高価な原料を使用することなくTiOウイスカのように安価な原料を使用して高硬度、高靭性の構造体を作製することができる。
【0014】
さらに、芯材および/または表皮部材の靭性を向上させる目的では、Alマトリックス中に分散させるウイスカは1〜50体積%、特に10〜35体積%の割合で含有することが望ましい。
【0015】
また、本発明によれば、硬度、耐酸化性を向上させることによって優れた耐摩耗性を発現させ、また靭性を向上させ耐欠損性を向上させるという点で、芯材4がAlを90〜55重量%、特に85〜60重量%と、TiCを10〜45重量%、特に15〜40重量%との割合で含有するとともに、表皮部材8がAlを10〜60重量%、特に20〜50重量%と、TiCを90〜40重量%、特に80〜30重量%との割合で含有することが望ましい。また、芯材と表皮部材との界面においてクラックの偏向、ディボンディング、ブリッジングを発生させやすくする観点で、芯材のAlの含有量は、表皮部材のAlの含有量よりも30重量%以上多いことが望ましい。
【0016】
さらに、本発明の他の態様によれば、表皮部材に金属成分を用いて複合体の強度と破壊靭性値を向上させるためには、芯材4がAlを95〜55重量%、特に90〜60重量%と、ウイスカ成分を5〜45重量%、特に15〜40重量%との割合で含有するとともに、表皮部材8が金属Co、金属Ni、超硬合金およびサーメットのいずれか、特に超硬合金またはサーメットからなることが望ましい。
【0017】
なお、Alマトリックス中には、助剤成分として、希土類酸化物、4a、5a、6aの酸化物、酸化コバルト、酸化ニッケル、酸化イットリウム、酸化マグネシウム、酸化シリコンを0.1〜10重量%の割合で含有することが部材の焼結性を高めて高硬度、高靭性を達成する上で望ましい。
【0018】
また、複合構造体1のクラック進展の抑制のためには、例えば、芯材4の平均直径は5〜500μm以下、特に5〜300μm、表皮部材8の平均厚みは500μm以下、特に0.1〜200μm、さらに0.1〜30μmからなり、複合構造体1の直径が0.01〜5mmであることが望ましいが、高硬度と高靭性の両立のためには、芯材4の平均直径Dと表皮部材の平均厚みDとの比D/Dが0.01〜0.5、特に0.02〜0.2であることが望ましい。
【0019】
さらに、図1では芯材4が1本、すなわち単体の周囲に表皮部材8が被覆された場合について示したが、本発明はこれに限定されるものではなく、図3に示すように、図1の構造体1を例えば4本以上の複数本収束したマルチフィラメント構造であってもよい。
【0020】
また、複合構造体1は、図2に示すように、長尺状のものを所定長さとして並列に配列することによってシート状とすることもでき、さらに、このシートを(a)長尺状の複合構造体1が各層とも同じ方向を向くように積層する方法、(b)長尺状の複合構造体1が各層間で直交する(交差角90°)ように積層する方法、(c)長尺状の複合構造体1が各層間で例えば45°等の所定角度となるように交差して積層する方法等によって整列された構造体を作製することができ、用途に応じて異方性の度合いの異なる構造体とすることができる。
【0021】
他方、複合構造体1を、例えば0.01〜10mmの所定長さとして、これをランダムにお互いが絡み合った組織とすることもでき、かかる構造体によれば硬度や靭性等の特性の異方性が生じることなく均一な特性を有する構造体となる。
【0022】
次に、本発明の複合構造体1を製造する方法の一例について図4の模式図をもとに説明する。
【0023】
まず、例えば、平均粒径0.1〜3μmのAl粉末90〜55重量%と、平均粒径0.5〜5μmのTiC粉末10〜20重量%と、平均直径0.3〜0.8μm、平均長さ10〜30μmのTiOウイスカ10〜45重量%と、所望により平均粒径2μmのカーボン粉末と、さらに所望により、上述した助剤成分粉末の総量0.1〜10重量%とを添加、混合して、これにパラフィンワックス、ポリスチレン、ポリエチレン、エチレン−エチルアクリレート、エチレン−ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等の有機バインダを添加、混錬した後、プレス成形、押出成形または鋳込成形等の成形方法により芯材用に円柱形状の成形体12を作製する(工程(a))。
【0024】
一方、平均粒径0.1〜3μmのAl粉末10〜60重量%と、平均直径0.3〜0.8μm、平均長さ5〜30μmのTiOウイスカ90〜10重量%、特に20〜40重量%と、所望により平均粒径0.5〜5μmのTiC粉末80〜40重量%と、平均粒径2μmのカーボン粉末と、さらに所望により、上述した助剤成分粉末の総量0.1〜45重量%とを添加、混合して、これに前述のバインダ等を添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により半割円筒形状の2本の表皮部材用成形体13を作製し、この表皮部材用成形体13を芯材用成形体12の外周を覆うように配置した複合成形体を作製する(工程(a))。
【0025】
そして、上記複合成形体を共押出成形することにより芯材12の周囲に表皮部材13が被覆された細い径に伸延された複合成形体15を作製する(工程(b))。また、マルチフィラメント構造の構造体を作製するには、上記共押出した長尺状の成形体15を複数本収束して再度共押出し成形すればよい(工程(c))。
【0026】
さらに、伸延された長尺状の成形体15を所望により円柱や三角柱、四角柱、六角柱等の多角形に成形することもできる。また、長尺状の成形体15を整列させてシートとなし、このシート同士が平行、直交または45°等の所定の角度をなすように積層させた積層体とすることもできる。また、公知のラピッドプロトダイビング法等の成形方法によって任意の形状に成形することも可能である。さらには、上記整列したシートまたは該シートを断面方向にスライスした複合構造体シートを従来の超硬合金等の硬質合金焼結体(塊状体)の表面に貼り合わせ、または接合することも可能である。
【0027】
なお、本発明によれば、上記方法以外にも繊維状の芯材用成形体を先に作製し、これを表皮部材用のスラリー中にディッピング(浸漬して引き上げ)することによって上述したような複合構造成形体を作製することも可能である。
【0028】
その後、上記成形体を脱バインダ処理した後、真空または窒素ガス雰囲気で1000〜1400℃、特に1100〜1400℃で2時間熱処理しウイスカをTiCウイスカまたはTiNウイスカに変換させた後、真空または不活性ガス雰囲気例えばArガス中、1400〜2000℃、特に1400〜1800℃で焼成することにより本発明の複合構造体1を作製することができる。また、焼成に際しては、所望により、1000〜1900℃、特に1300〜1700℃でHIP焼成してもよい。
【0029】
さらに、得られた構造体1に対して、CVD法やPVD法等の薄膜形成法により構造体の表面に周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物等の皮膜を形成することも可能である。
【0030】
【実施例】
(実施例1)
平均粒径0.3μmのAl粉末80重量%と、平均直径0.5μm、平均長さ15μmのTiOウイスカをTiN換算で19重量%と、平均粒径1μmのY粉末1重量%とを秤量し、これに有機バインダおよび溶媒を添加、混練した混練物を押出成形機に充填して直径500μmの繊維状に押出し成形して芯材用の成形体とした。
【0031】
一方、平均粒径1μmのAl粉末20重量%と、平均粒径1μmのTiC粉末58重量%と、平均直径0.5μm、平均長さ15μmのSiCウイスカ20重量%と、平均粒径1μmのY粉末2重量%とを秤量し、これに有機バインダおよび溶媒を添加、混合してスラリー状とし、上記繊維状の芯材用成形体をスラリー内に浸漬、引き上げして芯材用成形体の外周に厚さ15μmの表皮部材をコーティングし、空気中で24時間乾燥して複合構造体を作製した。
【0032】
その後、複合構造体を50mm毎にカットし並列に整列させたシートを複数枚作製し、各シート間の複合構造体同士が45°となるように積層した積層体を作製し、所定形状にカットした。そして、この積層体を600℃で5時間脱バインダ処理し、1300℃で2時間、1気圧の窒素雰囲気中で熱処理しTiOウィスカをTiNウィスカに変化させた後、1600℃で30MPaの圧力を付与してホットプレスを行った。得られた複合構造体は、芯材の平均直径が400μm、表皮部材の厚みが10μmであった。
【0033】
さらに、上記焼結体をSNGN120420の切削工具形状に切り出し、以下の条件で8000m切削した後の切刃状態を顕微鏡で観察した結果、ノーズ摩耗0.14mmで欠損は発生しなかった。
(切削条件)
被削材  FCD450
切削速度 400m/min
送り   0.4mm/rev.
切り込み 2mm
乾式切削
(実施例2)
平均粒径2μmのAl粉末90重量%とTiC粉末8重量%に対し、平均粒径2μmのCo粉末を2重量%添加し、これに有機バインダ、滑剤を添加、混錬した後、プレス成形により直径20mmの芯材用成形体を作製した。また、平均粒径2μmのAl粉末40重量%とTiC粉末25重量%、平均直径0.5μm、平均長さ15μmのTiCウイスカを30重量%に対し、平均粒径2μmのCoO粉末を2重量%、Y粉末を2重量%、MgOを1重量%添加し、これにバインダ、滑剤を添加、混錬した後、プレス成形により肉厚1mmで半割円筒状の表皮部材用成形体を2本作製して上記芯材用成形体の周囲に被覆した複合成形体を作製した。
【0034】
そして、前記複合成形体を共押出して伸延した後、この伸延された成形体100本を収束して再度共押出し成形し、マルチフィラメントタイプの成形体を作製した。その後、この成形体に対して脱バインダ処理を行い、続いて超高圧装置内にセットして、アルゴン雰囲気中、圧力5GPaで、1700℃で焼成して複合構造体を作製した。構造体の断面を顕微鏡で観察したところ、平均で芯材の直径140〜160μm、表皮部材の平均厚み8〜12μmであった。
【0035】
得られた複合構造体に対して、実施例1と同様にヴィッカース硬度(JISR1601に準じる)およびIF法で試料の靭性を測定した結果、硬度20GPa、破壊靭性9MPa√mであり、実施例と同じ条件で切削特性を評価した結果、ノーズ摩耗0.14mmで欠損は発生しなかった。
【0036】
(比較例)
実施例2の複合構造体に対して、表皮部材用成形体を実施例2と同じ組成でウイスカを用いないで芯材用成形体と同じ混練物を用い、すなわち芯材用成形体と表皮部材用成形体とを同じ組成でウイスカを用いない混練物で作製する以外は実施例2と同様にして複合構造体を作製し、同様に評価した結果、硬度18GPa、破壊靭性4MPa√m、ノーズ摩耗0.25mmで微小欠損が発生した。
【0037】
(実施例3)
平均粒径0.3μmのAl粉末60重量%と、平均直径3μm、平均厚さ1μmの円板状Alを10重量%、平均粒径1μmのTiC粉末21重量%と、平均粒径1μmのZrO粉末5重量%と、平均粒径1μmのY粉末1重量%と、平均直径0.5μm、平均長さ15μmのTiOウイスカをTiN換算で2重量%と、平均粒径0.5μmのMgOHをMgO換算で1重量%を秤量し、これに有機バインダおよび溶媒を添加、混練した混練物を押出成形機に充填して直径500μmの繊維状に押出し成形し芯材用の成形体とした。
【0038】
一方、平均粒径1μmのNi粉末100重量%を秤量し、これに有機バインダおよび溶媒を添加、混合してスラリー状とし、上記繊維状の芯材用成形体をスラリー内に浸漬、引き上げして芯材用成形体の外周に厚さ5μmの表皮部材をコーティングし、空気中で24時間乾燥して複合構造体を作製した。
【0039】
その後、複合構造体を50mm毎にカットし並列に整列させたシートを複数枚作製し、各シート間の複合構造体同士が45°となるように積層した積層体を作製し、所定形状にカットした。そして、この積層体を600℃で5時間脱バインダ処理し、1気圧の窒素雰囲気中の1250℃で1時間熱処理し、TiOウィスカをTiNウィスカに変化させた後、1250℃で1時間30MPaでホットプレス焼成し、その後さらに1500℃で圧力を付与しないで焼成を行った。
【0040】
得られた複合構造体は、芯材の平均直径が200μm、表皮部材の厚みが3μmであった。
【0041】
さらに、上記焼結体をSNGN120420の切削工具形状に切り出し、実施例1と同じ条件で(以下の条件で10km)切削した結果、ノーズ摩耗0.14mmで欠損は発生しなかった。
【0042】
(実施例4)
平均粒径0.3μmのAl粉末90重量%と、平均粒径1μmのTiC粉末5重量%と、平均粒径1μmのZrO粉末2重量%と、平均粒径1μmのY粉末0.5重量%と、平均粒径1μmのTiO粉末を2重量%と、平均粒径0.5μmのMgOHをMgO換算で0.5重量%を秤量し、これに有機バインダおよび溶媒を添加、混練した混練物をプレス成形により直径20mmの芯材用成形体を作製した。また、平均粒径1μmのWCを90.8重量%、平均粒径1μmのCoを6重量%、平均粒径1μmのTiC粉末1.2重量%、平均直径0.5μm、平均長さ15μmのTiOウイスカをTiN換算で2重量%を秤量し、これにバインダ、滑剤を添加、混錬した後、プレス成形により肉厚1mmで半割円筒状の表皮部材用成形体を2本作製し、上記芯材用成形体の周囲に被覆した複合成形体を作製した。
【0043】
そして、この複合成形体を共押出して伸延した後、さらに100本を収束して再度共押出し成形し、マルチフィラメントタイプの成形体を作製した。その後、この成形体に対して脱バインダ処理を行い、1300℃で2時間、窒素雰囲気中で熱処理してTiOウィスカをTiNウィスカに変化させた後、1700℃で無加圧焼成して複合構造体を作製した。構造体の断面を顕微鏡で観察したところ、平均で芯材の直径15〜20μm、表皮部材の平均厚み1〜2μmであった。
【0044】
得られた複合構造体に対して、実施例1と同様にヴィッカース硬度(JISR1601に準じる)およびIF法で試料の靭性を測定した結果、硬度19GPa、破壊靭性10MPa√mであり、実施例1と同じ条件で切削特性を評価した結果、ノーズ摩耗0.14mmで欠損は発生しなかった。
【0045】
【発明の効果】
以上詳述したとおり、本発明の複合構造体によれば、芯材および/または表皮部材をAlマトリックス中に、TiCウイスカ、TiNウイスカおよびSiCウイスカのうちの1種以上が分散してなる組成で構成することにより、芯材と表皮部材との特性差に起因してクラック進展の方向を偏向することができ、部材の靭性が向上するとともに、ウイスカ分散によるクラック進展の偏向と部材の靭性の向上により、高硬度と高靭性を兼ね備えた複合構造体となる。
【図面の簡単な説明】
【図1】本発明の複合構造体の一例を示す概略斜視図である。
【図2】図1の複合構造体の平板状に組み合わせた例を示す図である。
【図3】本発明の複合構造体のマルチフィラメント状に組み合わせた例を示す図である。
【図4】本発明の複合構造体の製造方法を説明するための概念図である。
【符号の説明】
1   複合構造体
4   芯材
8   表皮部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite structure in which an outer periphery of a long core material is covered with a skin member.
[0002]
[Prior art]
Conventionally, Al 2 O 3 composite ceramics are known as materials having high hardness and high strength, and are widely used as structural materials. For example, Japanese Patent Application Laid-Open No. Hei 2-229775 describes that a composite ceramic in which fine TiC particles are dispersed in Al 2 O 3 has an effect of suppressing crack propagation.
[0003]
[Problems to be solved by the invention]
However, the conventional composite ceramics of Al 2 O 3 and TiC have a problem in that the effect of suppressing crack propagation is low and, for example, when used as a cutting tool or the like, the fracture resistance is poor. In addition, TiC whiskers are difficult to manufacture due to their production, and there is a problem that the cost is high.
[0004]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a composite structure having both high hardness and high toughness.
[0005]
[Means for Solving the Problems]
As a result of studying the above problem, the present inventor has found that, in a composite structure in which the outer periphery of a long core material is covered with a skin member having a composition different from that of the core material, the core material and / or the skin member are made of Al 2. By forming a composition in which at least one of TiC whisker, TiN whisker and SiC whisker is dispersed in an O 3 matrix, the direction of crack propagation due to the difference in properties between the core material and the skin member can be reduced. It is possible to deflect and improve the toughness of the member, and because of the whisker dispersion, the crack is deflected and the toughness of the member is improved, so that the toughness of the entire composite structure can be more efficiently improved, and high hardness and high hardness can be achieved. It has been found that the composite structure has toughness.
[0006]
The composite structure of the present invention is obtained by covering the outer periphery of a long core material with a skin member having a different composition from that of the core material, wherein the core material and / or the skin member are made of Al 2 O. 3 , wherein one or more of TiC whiskers, TiN whiskers and SiC whiskers are dispersed in a matrix.
[0007]
Here, at least a part of the whisker is obtained by carbonizing or nitriding a metal whisker or an oxide whisker raw material, and the content of the TiC whisker or the TiN whisker dispersed in the core material and / or the skin member is reduced. Desirably, it is 1 to 50% by volume.
[0008]
Further, the and the 90-55 wt% core material Al 2 O 3, wherein the whisker component with a proportion of 10 to 45 wt%, the Al 2 O compositionally different from the skin member is the core 3 and 10 to 60 wt%, by containing TiC and / or TiN at a rate of 90 to 40 wt%, and a 95 to 55% by weight said core material Al 2 O 3, the whisker component 5 It is preferable that the skin member be contained at a ratio of 45% by weight, and the skin member be made of any one of metal Co, metal Ni, cemented carbide and cermet.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The composite structure of the present invention will be described based on a schematic perspective view of FIG. 1 which is an embodiment thereof.
[0010]
According to FIG. 1, the composite structure 1 has a structure in which the outer periphery of a long core material 4 is covered with a skin member 8.
[0011]
According to the present invention, it is significant that the core material 4 and / or the skin member 8 have a composition in which at least one of TiC whiskers, TiN whiskers, and SiC whiskers are dispersed in an Al 2 O 3 matrix. Due to this, the difference in properties between the core material and the skin member, the effect of crack propagation due to whiskers, bridging, debonding, and pull-out effects become more pronounced, reducing the toughness of the structure without lowering the hardness of the member. A composite structure having high hardness and high toughness can be obtained.
[0012]
The whisker in the present invention is a whisker having an average ratio of the major axis / minor axis of the particles that can be observed in a SEM photograph of a longitudinal section (a section along the longitudinal direction of the core member and the skin member) of the structure is 2 or more. In addition, from the viewpoint of improving toughness, the major axis of the whisker particles is preferably 2 μm or more, particularly 3 μm or more, and more preferably 5 μm or more.
[0013]
Further, according to the present invention, it is desirable that at least a part of the whisker is obtained by carbonizing or nitriding a metal whisker or oxide whisker raw material. In addition, it is possible to efficiently reduce the residual carbon component remaining in the sintered body by reacting with the organic binder component contained in the structure in a large amount, and it is difficult to manufacture industrially like the TiC whisker and the TiN whisker, and the cost is high. The structure having high hardness and high toughness can be produced by using an inexpensive raw material such as TiO 2 whisker without using an expensive raw material causing the above.
[0014]
Furthermore, for the purpose of improving the toughness of the core material and / or the skin member, it is desirable that the whiskers dispersed in the Al 2 O 3 matrix be contained at a ratio of 1 to 50% by volume, particularly 10 to 35% by volume.
[0015]
In addition, according to the present invention, the core material 4 is made of Al 2 O 3 in that excellent wear resistance is exhibited by improving hardness and oxidation resistance, and that toughness is improved and fracture resistance is improved. the 90-55% by weight, in particular with 85 to 60 wt%, the TiC 10 to 45% by weight, in particular with a proportion of 15 to 40 wt%, 10 to 60 wt skin member 8 of Al 2 O 3 %, Particularly 20 to 50% by weight, and 90 to 40% by weight, particularly 80 to 30% by weight of TiC. From the viewpoint of easily causing crack deflection, debonding, and bridging at the interface between the core member and the skin member, the content of Al 2 O 3 in the core member is determined by the content of Al 2 O 3 in the skin member. More than 30% by weight.
[0016]
Further, according to another aspect of the present invention, in order to improve the strength and the fracture toughness value of the composite by using a metal component for the skin member, the core material 4 contains 95 to 55% by weight of Al 2 O 3 , In particular, 90 to 60% by weight and a whisker component are contained at a ratio of 5 to 45% by weight, particularly 15 to 40% by weight, and the skin member 8 is made of any one of metal Co, metal Ni, cemented carbide and cermet, In particular, it is desirable to be made of cemented carbide or cermet.
[0017]
In the Al 2 O 3 matrix, as auxiliary components, rare earth oxides, oxides of 4a, 5a, and 6a, cobalt oxide, nickel oxide, yttrium oxide, magnesium oxide, and silicon oxide were 0.1 to 10% by weight. % Is desirable for enhancing the sinterability of the member and achieving high hardness and high toughness.
[0018]
Further, in order to suppress the crack propagation of the composite structure 1, for example, the average diameter of the core material 4 is 5 to 500 μm or less, particularly 5 to 300 μm, and the average thickness of the skin member 8 is 500 μm or less, particularly 0.1 to 500 μm. It is desirable that the composite structure 1 has a diameter of 0.01 to 5 mm. However, in order to achieve both high hardness and high toughness, the average diameter D 1 of the core material 4 is preferable. the ratio D 2 / D 1 between the average thickness D 2 of the skin member is 0.01 to 0.5, and is preferably 0.02 to 0.2.
[0019]
Further, FIG. 1 shows a case in which one core member 4, that is, a single body is covered with a skin member 8. However, the present invention is not limited to this, and as shown in FIG. For example, a multifilament structure in which one or more structures 1 are converged into a plurality of four or more may be used.
[0020]
Further, as shown in FIG. 2, the composite structure 1 can be formed into a sheet by arranging long ones in a predetermined length and arranging them in parallel. (B) a method of laminating the composite structures 1 so that the respective layers face in the same direction, (b) a method of laminating the elongated composite structures 1 so as to be orthogonal (intersection angle 90 °) between the layers, and (c). It is possible to produce an aligned structure by a method in which the long composite structure 1 intersects and laminates at a predetermined angle, for example, 45 °, between the layers, and anisotropic depending on the application. Of different degrees.
[0021]
On the other hand, the composite structure 1 may have a predetermined length of, for example, 0.01 to 10 mm, and may have a structure in which the structures are entangled with each other at random. According to such a structure, anisotropic properties such as hardness and toughness are obtained. A structure having uniform characteristics without generating properties.
[0022]
Next, an example of a method for manufacturing the composite structure 1 of the present invention will be described based on the schematic diagram of FIG.
[0023]
First, for example, 90 to 55% by weight of Al 2 O 3 powder having an average particle size of 0.1 to 3 μm, 10 to 20% by weight of TiC powder having an average particle size of 0.5 to 5 μm, and 0.3 to 0% 0.8 μm, 10 to 45% by weight of TiO 2 whiskers having an average length of 10 to 30 μm, carbon powder having an average particle diameter of 2 μm if desired, and optionally 0.1 to 10% by weight of the total amount of the above auxiliary component powders After mixing and kneading, an organic binder such as paraffin wax, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene glycol, dibutyl phthalate, etc. is added and kneaded, followed by press molding. Then, a columnar molded body 12 is prepared for a core material by a molding method such as extrusion molding or cast molding (step (a)).
[0024]
On the other hand, 10 to 60% by weight of Al 2 O 3 powder having an average particle diameter of 0.1 to 3 μm and 90 to 10% by weight of TiO 2 whiskers having an average diameter of 0.3 to 0.8 μm and an average length of 5 to 30 μm, particularly 20 to 40% by weight, optionally 80 to 40% by weight of TiC powder having an average particle size of 0.5 to 5 μm, carbon powder having an average particle size of 2 μm, and, if desired, a total amount of the auxiliary component powder described above. 1 to 45% by weight are added and mixed, and the above-mentioned binder and the like are added and kneaded, and two half-cylindrical skins are formed by a molding method such as press molding, extrusion molding or cast molding. A molded body 13 for a member is produced, and a composite molded body in which the molded body 13 for a skin member is arranged so as to cover the outer periphery of the molded body 12 for a core material is produced (step (a)).
[0025]
Then, the composite molded body is co-extruded to form a composite molded body 15 having a small diameter and a skin member 13 coated around the core material 12 (step (b)). Further, in order to produce a structure having a multifilament structure, a plurality of the coextruded long shaped bodies 15 may be converged and co-extruded again (step (c)).
[0026]
Further, the elongated elongated molded body 15 can be formed into a polygonal shape such as a cylinder, a triangular prism, a quadrangular prism, or a hexagonal prism, if desired. Further, the elongated molded bodies 15 may be arranged to form a sheet, and the sheets may be laminated so as to be parallel, orthogonal, or at a predetermined angle such as 45 °. Further, it is also possible to mold into an arbitrary shape by a known molding method such as a rapid proto diving method. Further, the aligned sheet or a composite structure sheet obtained by slicing the sheet in a cross-sectional direction can be bonded or bonded to the surface of a conventional hard alloy sintered body (lumps) such as a cemented carbide. is there.
[0027]
According to the present invention, in addition to the above-described method, a fibrous core material molded body is first prepared and dipped (immersed and pulled up) in a slurry for a skin member as described above. It is also possible to produce a composite structure molded body.
[0028]
Then, after the above-mentioned molded body is subjected to binder removal treatment, it is heat-treated at 1000 to 1400 ° C., particularly 1100 to 1400 ° C. for 2 hours in a vacuum or nitrogen gas atmosphere to convert the whisker into a TiC whisker or a TiN whisker. The composite structure 1 of the present invention can be manufactured by firing at 1400 to 2000 ° C., particularly 1400 to 1800 ° C. in a gas atmosphere such as Ar gas. In firing, if desired, HIP firing may be performed at 1000 to 1900 ° C, particularly 1300 to 1700 ° C.
[0029]
Further, with respect to the obtained structure 1, a carbide, nitride, carbonitride, or the like of a metal of Group 4a, 5a, or 6a of the periodic table is formed on the surface of the structure by a thin film forming method such as a CVD method or a PVD method. It is also possible to form a film.
[0030]
【Example】
(Example 1)
80% by weight of Al 2 O 3 powder having an average particle diameter of 0.3 μm, 19% by weight of TiO 2 whiskers having an average diameter of 0.5 μm and an average length of 15 μm in terms of TiN, and Y 2 O 3 powder having an average particle diameter of 1 μm 1% by weight, and an organic binder and a solvent were added thereto, and the kneaded mixture was kneaded into an extruder and extruded into a fiber having a diameter of 500 μm to obtain a molded body for a core material.
[0031]
On the other hand, 20% by weight of Al 2 O 3 powder having an average particle diameter of 1 μm, 58% by weight of TiC powder having an average particle diameter of 1 μm, 20% by weight of SiC whiskers having an average diameter of 0.5 μm and an average length of 15 μm, 1 μm of Y 2 O 3 powder (2% by weight) is weighed, and an organic binder and a solvent are added thereto and mixed to form a slurry. The fibrous core material compact is immersed in the slurry and pulled up to obtain a core. A 15 μm-thick skin member was coated on the outer periphery of the material molding, and dried in air for 24 hours to produce a composite structure.
[0032]
After that, the composite structure was cut at intervals of 50 mm, a plurality of sheets were arranged in parallel, a plurality of sheets were prepared, and a laminate was formed so that the composite structures between the sheets became 45 °, and cut into a predetermined shape. did. Then, the laminate is subjected to a binder removal treatment at 600 ° C. for 5 hours, and heat-treated at 1300 ° C. for 2 hours in a nitrogen atmosphere at 1 atm to change TiO 2 whiskers to TiN whiskers. It was applied and hot pressed. In the obtained composite structure, the average diameter of the core material was 400 μm, and the thickness of the skin member was 10 μm.
[0033]
Further, the sintered body was cut into a cutting tool shape of SNGN120420, and the state of the cutting edge after cutting 8000 m under the following conditions was observed with a microscope. As a result, no chipping occurred due to nose wear of 0.14 mm.
(Cutting conditions)
Work material FCD450
Cutting speed 400m / min
Feeding 0.4 mm / rev.
Cut 2mm
Dry cutting (Example 2)
Added to the average particle Al 2 O 3 powder 90 wt% of the diameter 2 [mu] m and TiC powder 8% by weight, was added to Co 3 O 4 powder having an average particle size of 2 [mu] m 2 wt%, this organic binder, a lubricant, kneaded After that, a molded body for a core material having a diameter of 20 mm was produced by press molding. In addition, 40 wt% of Al 2 O 3 powder having an average particle size of 2 μm, 25 wt% of TiC powder, 30 wt% of TiC whiskers having an average diameter of 0.5 μm and an average length of 15 μm, and a CoO powder having an average particle size of 2 μm were used. After adding 2 % by weight, 2% by weight of Y 2 O 3 powder and 1% by weight of MgO, and adding and kneading a binder and a lubricant to the mixture, press molding is performed to form a 1 mm-thick half cylindrical cylindrical skin member. Two molded bodies were produced, and a composite molded body in which the periphery of the core molded body was covered was produced.
[0034]
Then, after the composite molded article was co-extruded and elongated, 100 elongated molded articles were converged and co-extruded again to produce a multi-filament type molded article. Thereafter, the molded body was subjected to a binder removal treatment, and then set in an ultra-high pressure device and fired at 1700 ° C. in an argon atmosphere at a pressure of 5 GPa to produce a composite structure. When the cross section of the structure was observed with a microscope, the diameter of the core material was 140 to 160 μm on average, and the average thickness of the skin member was 8 to 12 μm.
[0035]
The Vickers hardness (according to JISR1601) and the toughness of the sample were measured by the IF method for the obtained composite structure in the same manner as in Example 1. As a result, the hardness was 20 GPa and the fracture toughness was 9 MPa√m. As a result of evaluating the cutting characteristics under the conditions, no chipping occurred with a nose wear of 0.14 mm.
[0036]
(Comparative example)
With respect to the composite structure of Example 2, the molded body for the skin member was the same composition as in Example 2 and the same kneaded material as the molded body for the core material was used without using whiskers. A composite structure was produced in the same manner as in Example 2 except that the molded body was made of a kneaded product having the same composition and not using whiskers, and evaluated in the same manner. As a result, the hardness was 18 GPa, the fracture toughness was 4 MPa√m, A minute defect occurred at 0.25 mm.
[0037]
(Example 3)
60% by weight of Al 2 O 3 powder having an average particle diameter of 0.3 μm, 10% by weight of disk-shaped Al 2 O 3 having an average diameter of 3 μm and an average thickness of 1 μm, and 21% by weight of TiC powder having an average particle diameter of 1 μm; 5 wt% of ZrO 2 powder having an average particle diameter of 1 μm, 1 wt% of Y 2 O 3 powder having an average particle diameter of 1 μm, and 2 wt% of TiO 2 whiskers having an average diameter of 0.5 μm and an average length of 15 μm in terms of TiN. 1% by weight of MgOH having an average particle diameter of 0.5 μm in terms of MgO was weighed, an organic binder and a solvent were added thereto, and the kneaded mixture was filled into an extruder and extruded into a fiber having a diameter of 500 μm. A molded product for a core material was obtained.
[0038]
On the other hand, 100% by weight of Ni powder having an average particle diameter of 1 μm is weighed, an organic binder and a solvent are added and mixed to form a slurry, and the fibrous core material compact is immersed in the slurry and pulled up. A 5 μm-thick skin member was coated on the outer periphery of the molded body for core material, and dried in air for 24 hours to produce a composite structure.
[0039]
After that, the composite structure was cut at intervals of 50 mm, a plurality of sheets were arranged in parallel, a plurality of sheets were prepared, and a laminate was formed so that the composite structures between the sheets became 45 °, and cut into a predetermined shape. did. Then, the laminate is subjected to a binder removal treatment at 600 ° C. for 5 hours, a heat treatment is performed at 1250 ° C. for 1 hour in a nitrogen atmosphere at 1 atm, and the TiO 2 whisker is changed to a TiN whisker. Hot press firing was performed, and then firing was performed at 1500 ° C. without applying pressure.
[0040]
In the obtained composite structure, the average diameter of the core material was 200 μm, and the thickness of the skin member was 3 μm.
[0041]
Further, the sintered body was cut into a cutting tool shape of SNGN120420, and cut under the same conditions as in Example 1 (10 km under the following conditions). As a result, no chipping occurred due to nose wear of 0.14 mm.
[0042]
(Example 4)
90% by weight of Al 2 O 3 powder having an average particle diameter of 0.3 μm, 5% by weight of TiC powder having an average particle diameter of 1 μm, 2% by weight of ZrO 2 powder having an average particle diameter of 1 μm, and Y 2 O having an average particle diameter of 1 μm 3 0.5% by weight of powder, 2% by weight of TiO 2 powder having an average particle diameter of 1 μm, and 0.5% by weight of MgOH having an average particle diameter of 0.5 μm in terms of MgO, and the organic binder and solvent were weighed. Was added and kneaded to obtain a core material having a diameter of 20 mm by press molding. Further, 90.8% by weight of WC having an average particle diameter of 1 μm, 6% by weight of Co having an average particle diameter of 1 μm, 1.2% by weight of TiC powder having an average particle diameter of 1 μm, an average diameter of 0.5 μm, and an average length of 15 μm. After weighing 2% by weight of TiO 2 whisker in terms of TiN, adding a binder and a lubricant thereto, and kneading the mixture, two molded bodies for a half-cylindrical skin member having a thickness of 1 mm were formed by press molding. A composite molded body covering the core molded body was produced.
[0043]
Then, after the composite molded article was co-extruded and elongated, 100 pieces were converged and co-extruded again to produce a multi-filament type molded article. Thereafter, the molded body is subjected to a binder removal treatment, heat-treated at 1300 ° C. for 2 hours in a nitrogen atmosphere to change the TiO 2 whisker into a TiN whisker, and then fired without pressure at 1700 ° C. to form a composite structure. The body was made. When the cross section of the structure was observed with a microscope, the diameter of the core material was 15 to 20 μm on average, and the average thickness of the skin member was 1 to 2 μm.
[0044]
The resulting composite structure was measured for Vickers hardness (according to JISR1601) and toughness of the sample by the IF method in the same manner as in Example 1. As a result, the hardness was 19 GPa and the fracture toughness was 10 MPa√m. As a result of evaluating the cutting characteristics under the same conditions, no chipping occurred with a nose wear of 0.14 mm.
[0045]
【The invention's effect】
As described above in detail, according to the composite structure of the present invention, one or more of TiC whiskers, TiN whiskers, and SiC whiskers are dispersed in an Al 2 O 3 matrix in a core material and / or a skin member. By configuring with the composition of, the direction of crack propagation can be deflected due to the characteristic difference between the core material and the skin member, and the toughness of the member is improved, and the deflection of crack propagation due to whisker dispersion and the member By improving the toughness, a composite structure having both high hardness and high toughness is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an example of a composite structure of the present invention.
FIG. 2 is a diagram showing an example in which the composite structures of FIG. 1 are combined in a flat plate shape.
FIG. 3 is a view showing an example in which the composite structure of the present invention is combined in a multifilament form.
FIG. 4 is a conceptual diagram for explaining a method of manufacturing a composite structure according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Composite structure 4 Core material 8 Skin member

Claims (5)

長尺状の芯材の外周を、該芯材とは組成の異なる表皮部材で被覆してなる複合構造体であって、前記芯材および/または表皮部材がAlマトリックス中に、TiCウイスカ、TiNウイスカおよびSiCウイスカのうちの1種以上が分散してなることを特徴とする複合構造体。A composite structure in which the outer periphery of a long core material is covered with a skin member having a composition different from that of the core material, wherein the core material and / or the skin member are made of TiC in an Al 2 O 3 matrix. A composite structure comprising at least one of whiskers, TiN whiskers and SiC whiskers dispersed therein. 前記ウイスカの少なくとも一部が、金属ウイスカまたは酸化物ウイスカ原料を炭化または窒化したものであることを特徴とする請求項1記載の複合構造体。The composite structure according to claim 1, wherein at least a part of the whisker is obtained by carbonizing or nitriding a metal whisker or an oxide whisker raw material. 前記芯材および/または表皮部材中に分散されるTiCウイスカまたはTiNウイスカの含有量が1〜50体積%であることを特徴とする請求項1記載の複合構造体。The composite structure according to claim 1, wherein the content of TiC whiskers or TiN whiskers dispersed in the core material and / or the skin member is 1 to 50% by volume. 前記芯材がAlを90〜55重量%と、前記ウイスカ成分を10〜45重量%との割合で含有するとともに、前記表皮部材が前記芯材とは組成が異なるAlを10〜60重量%と、TiCおよび/またはTiNを90〜40重量%との割合で含有することを特徴とする請求項1記載の複合構造体。The core material contains 90 to 55% by weight of Al 2 O 3 and the whisker component in a ratio of 10 to 45% by weight, and the skin member contains Al 2 O 3 having a different composition from the core material. 2. The composite structure according to claim 1, comprising 10 to 60% by weight and 90 to 40% by weight of TiC and / or TiN. 3. 前記芯材がAlを95〜55重量%と、前記ウイスカ成分を5〜45重量%との割合で含有するとともに、前記表皮部材が金属Co、金属Ni、超硬合金およびサーメットのうちのいずれかからなることを特徴とする請求項1記載の複合構造体。The core material contains 95 to 55% by weight of Al 2 O 3 and the whisker component at a rate of 5 to 45% by weight, and the skin member is made of metal Co, metal Ni, cemented carbide and cermet. 2. The composite structure according to claim 1, comprising:
JP2002204685A 2002-07-12 2002-07-12 Composite structure Pending JP2004043255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204685A JP2004043255A (en) 2002-07-12 2002-07-12 Composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204685A JP2004043255A (en) 2002-07-12 2002-07-12 Composite structure

Publications (1)

Publication Number Publication Date
JP2004043255A true JP2004043255A (en) 2004-02-12

Family

ID=31710221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204685A Pending JP2004043255A (en) 2002-07-12 2002-07-12 Composite structure

Country Status (1)

Country Link
JP (1) JP2004043255A (en)

Similar Documents

Publication Publication Date Title
US6878434B2 (en) Composite construction and manufacturing method thereof
US20020140139A1 (en) Consolidation and densification methods for fibrous monolith processing
US6777074B2 (en) Composite construction
KR100683105B1 (en) Ultrahard Particle-Containing Composites
JP2004043255A (en) Composite structure
JP4183162B2 (en) Composite structure
JP2004043254A (en) Composite structure
JP4109471B2 (en) Method for producing composite structure
JP3825347B2 (en) Composite structure
JPH06340481A (en) Surface-coated tungsten carbide-alumina sintered body
JP4084583B2 (en) Cutting tools
JP4095286B2 (en) Multi-core composite structure
JP4109507B2 (en) Method for producing composite structure
JP4328118B2 (en) Method for producing composite structure
JP4061222B2 (en) Cutting tools
JP4889226B2 (en) Composite sintered body and cutting tool
JP5241123B2 (en) Throwaway tip
JP4336111B2 (en) Composite parts, cutting tools
JP4351470B2 (en) Hard composite sintered body, hard composite structure, and manufacturing method
JP4400850B2 (en) Composite member and cutting tool using the same
JP4309777B2 (en) Cutting tools
JP2003160389A (en) Composite structure
JP2004232001A (en) Composite hard sintered body, composite member and cutting tool using the same
JP2008121119A (en) Composite structure
JP2004256851A (en) Composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113