[go: up one dir, main page]

JP2004031335A - Light-emitting device and method of fabricating the same - Google Patents

Light-emitting device and method of fabricating the same Download PDF

Info

Publication number
JP2004031335A
JP2004031335A JP2003120650A JP2003120650A JP2004031335A JP 2004031335 A JP2004031335 A JP 2004031335A JP 2003120650 A JP2003120650 A JP 2003120650A JP 2003120650 A JP2003120650 A JP 2003120650A JP 2004031335 A JP2004031335 A JP 2004031335A
Authority
JP
Japan
Prior art keywords
electrode
light
layer
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003120650A
Other languages
Japanese (ja)
Other versions
JP2004031335A5 (en
JP4342827B2 (en
Inventor
Yasuyuki Arai
荒井 康行
Tomoyuki Iwabuchi
岩淵 友幸
Shunpei Yamazaki
山崎 舜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2003120650A priority Critical patent/JP4342827B2/en
Publication of JP2004031335A publication Critical patent/JP2004031335A/en
Publication of JP2004031335A5 publication Critical patent/JP2004031335A5/ja
Application granted granted Critical
Publication of JP4342827B2 publication Critical patent/JP4342827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize brightness and prevent deterioration in use of an active matrix driving type display device in which TFTs are arranged in a matrix form, by completely repairing a defective portion through application of a reverse-direction voltage and by repairing a short circuit or a leakage portion of a light-emitting element. <P>SOLUTION: In a light-emitting device having an active matrix driving type pixel structure in which a TFT is provided for each pixel, there is provided a feature that a reverse-direction voltage is applied to the light-emitting element without intervention of the TFT. This invention provides a pixel configuration which makes it possible, and a method of fabricating the same. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一対の電極間に一つの層又は複数の層の積層体に発光体を含む発光素子を有する発光装置及びその作製方法に係り、特に発光素子の作製工程で発生するショートやリーク箇所を、簡便な方法で修復することのできる技術に関する。
【0002】
【従来の技術】
有機エレクトロルミネセンス材料と呼ばれる発光媒体を用いて形成される発光素子は、例えば、一対の電極間に有機アミン系のホール輸送層、電子導電性を示すと共に発光性を示すトリス−8−キノリノラトアルミニウム錯体(Alq)等の有機化合物を含む層を積層した構成が有り、6〜8Vの直流電圧の印加により数百cd/cmの輝度を得ることが可能である。
【0003】
発光素子において、直接的又は間接的に発光に寄与する層を機能的に表現すれば、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等と区別することもできる。これらの機能的表現は、それを層として明確に区別できる場合もあれば、混合体として形成され明瞭に区別できない場合もある。極めて簡単な構成としては、陽極/発光層/陰極が順に積層された構造であり、この構造に加えて、陽極/正孔注入層/発光層/陰極や、陽極/正孔注入層/発光層/電子輸送層/陰極等の順に積層した構造等もある。
【0004】
正常に動作する発光素子は整流性を示し、所謂ダイオードと同じ電流−電圧特性が観測される。即ち、順方向バイアスを印加すると、印加電圧に対して指数関数的に電流は増大し、逆方向バイアスを印加した場合には、降伏電圧に達するまで殆ど電流は流れない。発光させるには電荷を注入させる必要があり、順方向バイアスを印加することになる。
【0005】
このような発光素子を電界効果型トランジスタで制御するアクティブマトリクス駆動方式の発光装置が知られている(例えば、特許文献1参照。)。これは、多結晶シリコンを用いた薄膜トランジスタ(TFT)の上層に二酸化シリコンから成る絶縁膜を介して有機エレクトロルミネセンス層が形成された構成が開示されている。また、陽極上にテーパー形状に加工された端部を有するパッシベーション層は、有機エレクトロルミネセンス層の下層側に位置している。また、陰極は仕事関数が4eVより低い材料が選択され、Ag又はAlのような金属とMgとを合金化したものが適用される。
【0006】
ところで、このような発光素子に対し、発光に関与しない逆方向電圧を印加すると、素子寿命が延びることが経験的に知られている。この現象を利用して、入力映像データの同期タイミングに応じて、非発光期間に逆方向電圧を印加するアクティブマトリクス駆動方式の発光装置が開示されている(例えば、特許文献2参照。)。
【0007】
一方、半導体の薄膜でダイオードを形成する太陽電池等では、逆方向電圧を印加することにより短絡部分を修復する方法が種々試みられ、その技術の一例は米国特許6,365,825号等で開示されている。この発明は逆方向電圧の印加により、短絡部分には集中的に電流が流れ、ジュール熱による発熱でその部分を絶縁化させることで短絡不良を修復することを可能とするものである。
【0008】
図9(A)は、ピンホール14や異物15の混入により短絡欠陥を含む発光素子を模式的に示し、その逆方向電圧の効果を説明する図である。陽極11と陰極13とから成る一対の電極間に、整流接触若しくは整流接合を形成する薄膜12を有するダイオード素子10に短絡不良部14があると、逆方向電圧を印加した際にその部位を介して逆方向飽和電流以上の電流が流れる。
【0009】
このダイオード素子10の電流対電圧特性は図9(B)に模式的に示すように、逆方向電圧を印加した時に点線で示すポイントA、Bで示すように、ある電圧で急激に逆方向電流が増加する。例えば、ピンホールを含む短絡欠陥部14に起因するような短絡欠陥は、その部位に陰極材料が回り込んで比較的低い電圧で逆方向電流が流れることになる。また、微小な異物15が含まれている場合には耐圧が低くなり、絶縁破壊により降伏電圧以下で逆方向電流が増大するような短絡欠陥部15を形成する。
【0010】
この時、短絡欠陥部14、15に電流が集中して流れ、電流密度が増加することにより発熱して高温になりその部位が変質して絶縁化する。これにより2回目以降の電圧走査では正常なダイオード特性を得ることができるようになる。仮に1回の走査で短絡欠陥部が修復されなくとも電圧走査を複数回繰り返せば修復する確率を増すことができる。このように、所定の逆方向電圧を印加することにより短絡箇所を絶縁化して修復することができる。
【0011】
逆方向電圧の印加による短絡箇所の修理は、比較的簡便に行うことができるが、その原理は電流集中による発熱現象を利用するものであり、瞬間的に大電流を流す必要がある。従って、適用する電源にはそれに見合った電流供給能力を有する定電圧源が要求される。
【0012】
【特許文献1】
特開平8−234683号公報
【特許文献2】
特開2001−109432号公報
【0013】
【発明が解決しようとする課題】
しかしながら、アクティブマトリクス駆動方式で用いられるTFTのドレイン電流は、図10で示すようにゲート電圧が決まると、ドレイン電圧をいくら増加させても流れる電流はほぼ飽和してしまう。つまり、TFTの飽和領域で動作させている限りは定電流源に接続されている場合と同等である。また、線形領域で動作させたとしても同様であり、所詮飽和電流以上の電流を流すことはできない。結局TFTを介して逆方向電圧を印加しても、最大電流値が限定されるため、図9で示すような短絡不良を十分絶縁化させることができないことになる。
【0014】
本発明はこのような問題点を解決するためのものであり、TFTをマトリクス状に配列させて成るアクティブマトリクス駆動方式の表示装置において、逆方向電圧の印加による欠陥部分の修復を完全に行い、発光素子のショートやリーク箇所を修復することにより輝度の安定化及び使用時における劣化を防ぐことを目的とする。
【0015】
【課題を解決するための手段】
本発明は上記問題点を解決するために、各画素にTFTが備えられたアクティブマトリクス駆動方式の画素構造を有する発光装置において、発光素子にTFTを介さずに逆方向電圧を印加することに特徴を有している。本発明はそれを可能とする画素構成及びその作製方法を提供する。
【0016】
本発明に係る発光装置の作製方法は、TFTと接続する第1電極と帯状に延在する第2電極とを同一絶縁表面に形成し、その第2電極上に発光体を含む一つの層又は複数の層の積層体と、それを介して第2電極と交差する発光素子の第3電極を形成し、第2電極と第3電極とに電圧を印加して短絡不良箇所を修復した後、第3電極を第1電極と接続する個別の第3電極に分離加工する各段階を有するものである。この作製方法において、第1電極と第2電極とは同一材料で形成することが可能であり、第1電極及び第2電極上の開口部が形成され、その端部を被覆する隔壁層を形成し、第3電極はその隔壁層上に延設するように形成することを許容する。
【0017】
帯状に延在する第2電極と発光体を含む一つの層又は複数の層の積層体上に第2電極と交差する第3電極との間に電圧を印加することで、TFTを介さずに逆方向電圧を印加して欠陥部分の修復を完全に行い、発光素子のショートやリーク箇所を修復することができる。第2電極と第3電極とは、TFTの上層に位置する層間絶縁膜上に形成し、互いに交差するように形成することで、この両電極間に自由に逆方向電圧を印加することが可能である。第3電極はその後エッチングにより分離加工して個別電極とすれば良い。
【0018】
また、本発明に係る発光装置の作製方法は、TFTに接続する個別画素電極を形成し、個別画素電極上に発光体を含む一つの層又は複数の層の積層体と、それを介して個別画素電極と重畳し互いに分離された第1共通電極と第2共通電極を形成し、第1共通電極と第2共通電極との間に電圧を印加して短絡不良箇所を修復する各段階を有するものである。この作製方法において、個別画素電極上に開口部を有し、その端部を被覆する隔壁層を形成し、隔壁層上に延設し互いに分離された第1共通電極と第2共通電極を形成することを許容する。
【0019】
発光体を含む一つの層又は複数の層の積層体上に第1共通電極と第2共通電極とを並列的に配設して、この両電極間に電圧を印加することで、TFTを介さずに逆方向電圧を印加して欠陥部分の修復を完全に行い、発光素子のショートやリーク箇所を修復することができる。
【0020】
逆方向電圧の印加に際しては、電圧をパルス状に印加して短絡不良個所を修復する方法を適用することが可能であり、パルス状であり、且つ階段状に増減する電圧を印加して短絡不良個所を修復することが可能である。
【0021】
本発明の発光装置は、TFTに接続する第1電極がマトリクス状に配置され、当該第1電極と帯状に延在する第2電極とが同一絶縁表面に形成され、第2電極上に発光体を含む一つの層又は複数の層の積層体と、それを介して第2電極と重畳して第1電極に接続する第3電極が配設されることで形成される発光素子が備えられているものである。この発明の構成において、第1電極及び第2電極上に開口部を有する隔壁層を有し、第2電極上に発光体を含む一つの層又は複数の層の積層体と、それを介して第2電極と重畳し隔壁層上に延設される第3電極を設けた構成としても良い。
【0022】
この発明の構成において、発光体を含む一つの層又は複数の層の積層体上に形成する第3電極を、第1電極と接続する構造とすることで、TFTを介さずに発光素子に逆方向電圧を印加することができ、欠陥部分の修復を完全に行い発光素子のショートやリーク箇所を修復することができる。
【0023】
本発明の発光装置は、TFTに接続する個別画素電極マトリクス状に配置され、当該個別画素電極は絶縁表面に形成され、個別画素電極上には、発光体を含む一つの層又は複数の層の積層体と、それを介して個別画素電極と重畳し、互いに交差することなく延設される、第1共通電極及び第2共通電極を有し、第1共通電極と第2共通電極とは発光時に同一の電位が印加され、非発光時には異なる電位が印加されるものである。この発明の構成において、個別画素電極上に開口部を有する隔壁層を有し、個別画素電極上の発光体を含む一つの層又は複数の層の積層体と、それを介して個別画素電極と重畳し、互いに交差することなく隔壁層上に延設される第1共通電極及び第2共通電極を有する構成としても良い。この第1共通電極と第2共通電極とは、互いに異なる電源に接続することでも、極性の異なる電圧印加を可能とし、容易とすることができる。
【0024】
この発明の構成により、発光体を含む一つの層又は複数の層の積層体上に第1共通電極と第2共通電極とを並列的に配設して、この両電極間に電圧を印加することで、TFTを介さずに逆方向電圧を印加して欠陥部分の修復を完全に行い、発光素子のショートやリーク箇所を修復することができる。
【0025】
【発明の実施の形態】
以下に、本発明の実施の形態について、図面を参照しながら詳細に説明する。
【0026】
(実施の形態1)
本実施の形態は、TFTに接続する第1電極と帯状に延在する発光素子の第2電極を同一絶縁表面に形成し、第2電極上に発光媒体の被膜を形成し、その上に第2電極と交差するように延設する発光素子の第3電極を形成し、短絡不良箇所を修復する逆方向電圧印加処理をした後、第3電極を個別電極に分離加工する発光装置について説明する。この形態の発光装置では、第2電極と第3電極とに電圧を印加して、短絡不良箇所を修復することが可能であり、逆方向電圧はパルス状に印加しても良いし、パルス状であり、且つ階段状に増減する電圧を印加して短絡不良個所を修復することもできる。
【0027】
まず、図2(A)に示すように第1絶縁膜102が形成された基板101上に、TFTのチャネル形成領域やソース・ドレイン領域等の不純物領域を形成する半導体膜103を形成する。基板101はガラス基板、石英基板等の絶縁性基板を適用する。第1絶縁膜102は、窒化珪素、酸化珪素、窒酸化珪素等の被膜又はそれらの積層体により50〜200nmの厚さで形成するものであり、基板101からの不純物をブロッキングする機能を有する被膜を用いる。半導体膜103は、好適にはプラズマCVD法又は減圧CVD法により30〜150nmの厚さに堆積形成した非晶質珪素膜を、熱又は光エネルギーの利用により結晶化させた結晶性珪素膜を適用する。第2絶縁膜104は、プラズマCVD法でTEOSで形成される酸化珪素、SiHとNOを混合して形成する窒酸化珪素膜を用い、50〜150nmの厚さで形成する。また、他の材料として、窒酸化アルミニウム(AlO1−x:x=0.01〜20原子%)、窒化アルミニウム、窒化シリコン等窒素を含む絶縁膜で形成することも可能である。ゲート電極105はAl、W、Ta、Ti、Mo等の金属材料うち少なくともいずれかを含むものとし、その断面形状は矩形、テーパー形状、或いは底部が上部よりも外側に凸設した異形としても良い。この場合、窒化物金属を第2絶縁膜104側に形成して密着性の向上と、選択加工を容易にさせても良い。
【0028】
図4はこの状態の上面図であり、A−A’線に対応する縦断面図が図2(A)に示されている。図4で示す上面図には、第2半導体膜20、ゲート電極を兼ねる走査信号線21、消去信号線22も同様に形成される。
【0029】
次に、図2(B)において第3絶縁膜106は窒化珪素を含むものとし、50〜200nmの厚さで形成する。第4絶縁膜107は酸化珪素又は窒酸化珪素膜で50〜100nmの厚さで形成する。半導体膜の水素化は第3絶縁膜106が含む水素を供給すれば足り、400〜450℃の加熱処理により行うことが可能である。
【0030】
図2(C)では、さらに第5絶縁膜108を形成する。第5絶縁膜108は感光性アクリル又は感光性ポリイミド等の有機化合物で形成し、厚さを0.5〜2μm程度として配線間の容量を低減させる。感光性材料を用いることにより、この第5絶縁膜108を形成すると同時に開口部110を形成することができる。開口部110は感光性材料を用いる場合、側壁が傾斜し、その上端部及び下端部が曲率をもって形成されるので、配線材料を被着させたときに被覆性よく形成することを可能としている。その後、開口部110の内側に開口部110’を形成するレジストマスク109を形成し、それをマスクとしてエッチング処理を行うことにより第2絶縁膜104、第3絶縁膜106及び第4絶縁膜107にコンタクトホールを形成する。
【0031】
図3(A)で示すように、TFTに接続する第1電極111と配線112(電源線)、配線113(データ線号線)はAl、W、Ta、Ti、Mo等の金属材料うち少なくともいずれかを含むものとして形成する。これらの配線はTiとAlの積層構造として、Tiを半導体膜と接触させることにより耐熱性を向上させる。画素領域において、帯状に延設する第2電極114は第1電極111と同じ材料で形成しても良いし、発光素子に対して正孔注入性又は電子注入性を考慮して、仕事関数の高い材料又は低い材料を選択して形成すれば良い。
【0032】
第2電極114を発光素子の陽極とする場合には仕事関数が4eV以上の材料を選択し、ITO(Indium Tin Oxide:酸化錫を混入した酸化インジウム)、酸化亜鉛、IZO((Indium Zinc Oxide:酸化亜鉛を混入した酸化インジウム)、窒化チタン、窒化タングステン等を用いる。また、第2電極114を陰極とする場合には仕事関数が4eV以下の材料を選択し、アルカリ金属又はアルカリ土類金属、或いはそれを含む合金又は化合物を用いる。例えば、AlLi、MgAg、LiF、CaF、CsF等を用いる。
【0033】
図5はこの状態の上面図であり、A−A’線に対応する縦断面図が図3(A)に示されている。また、図5で符号23は配線112等と同時に形成する画素内のTFTを接続する配線である。
【0034】
図3(B)に示すように第6絶縁層115は、第1電極111上に開口部117と第2電極114上に開口部116を有し、その端部を覆うように形成し、感光性樹脂材料を使うことにより側壁部を傾斜状とし、連続的な曲率を持たせて形成することができる。
【0035】
図3(C)に示すように、発光体を含む層118はこの第2電極114上及び第6絶縁層115の側壁部に沿って形成されるものであるから、この部位の連続的な曲面形状は発光体を含む層118の内部応力を緩和するのに適している。
【0036】
発光体を含む層118は、有機化合物又は無機化合物を含む電荷注入輸送媒体及び発光媒体であり、低分子系有機化合物、中分子系有機化合物、高分子系有機化合物から選ばれた一種又は複数種の層を含み、電子注入輸送性又は正孔注入輸送性の無機化合物と組み合わせても良い。発光体は、フェニルアントラセン誘導体、テトラアリールジアミン誘導体、キノリノール錯体誘導体、ジスチリルベンゼン誘導体などが適用可能でありこれをホスト物質として、クマリン誘導体、DCM、キナクリドン、ルブレン等が適用されるが、その他公知の材料を適用することが可能である。高分子系有機化合物としては、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、ポリフルオレン系などがあり、ポリ(パラフェニレンビニレン)(poly(p−phenylene vinylene)):(PPV)、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン)(poly(2,5−dialkoxy−1,4−phenylene vinylene)):(RO−PPV)、ポリ(2−(2’−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビニレン)(poly[2−(2’−ethylhexoxy)−5−methoxy−1,4−phenylene vinylene]):(MEH−PPV)、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレンビニレン)(poly[2−(dialkoxyphenyl)−1,4−phenylene vinylene]):(ROPh−PPV)、ポリパラフェニレン(poly[p−phenylene]):(PPP)、ポリ(2,5−ジアルコキシ−1,4−フェニレン)(poly(2,5−dialkoxy−1,4−phenylene)):(RO−PPP)、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)(poly(2,5−dihexoxy−1,4−phenylene))、ポリチオフェン(polythiophene):(PT)、ポリ(3−アルキルチオフェン)(poly(3−alkylthiophene)):(PAT)、ポリ(3−ヘキシルチオフェン)(poly(3−hexylthiophene)):(PHT)、ポリ(3−シクロヘキシルチオフェン)(poly(3−cyclohexylthiophene)):(PCHT)、ポリ(3−シクロヘキシル−4−メチルチオフェン)(poly(3−cyclohexyl−4−methylthiophene)):(PCHMT)、ポリ(3,4−ジシクロヘキシルチオフェン)(poly(3,4−dicyclohexylthiophene)):(PDCHT)、ポリ[3−(4−オクチルフェニル)−チオフェン](poly[3−(4octylphenyl)−thiophene]):(POPT)、ポリ[3−(4−オクチルフェニル)−2,2ビチオフェン](poly[3−(4−octylphenyl)−2,2−bithiophene]):(PTOPT)、ポリフルオレン(polyfluorene):(PF)、ポリ(9,9−ジアルキルフルオレン)(poly(9,9−dialkylfluorene):(PDAF)、ポリ(9,9−ジオクチルフルオレン)(poly(9,9−dioctylfluorene):(PDOF)などが挙げられる。無機化合物材料としては、ダイヤモンドライクカーボン(DLC)、Si、Ge、及びこれらの酸化物又は窒化物であり、P、B、Nなどが適宜ドーピングされていても良い。またアルカリ金属又はアルカリ土類金属の、酸化物、窒化物又はフッ化物や、当該金属と少なくともZn、Sn、V、Ru、Sm、Inの化合物又は合金であっても良い。
【0037】
以上に掲げる材料は一例であり、これらを用いて正孔注入輸送層、正孔輸送層、電子注入輸送層、電子輸送層、発光層、電子ブロック層、正孔ブロック層などの機能性の各層を適宜積層することで発光素子を形成することができる。また、これらの各層を合わせた混合層又は混合接合を形成しても良い。
【0038】
カラーフィルターとの好適な組み合わせにおいては、白色発光を呈するものが好ましく、発光層に含まれる単一の色素で白色発光が得られない場合は、複数の色素を発光中心として使用し、同時に発光させて加法混色により白色化する。この場合には、異なる発光色を有する発光層を積層する方法や、一つ又は複数の発光層に複数の発光中心を含有させる方法などを適用することができる。白色発光を得る方法は光の3原色であるR(赤)G(緑)B(青)の各色を発光する発光層を積層して加法混色する方式と、2色の補色の関係を利用する方式とがある。補色を用いる場合には、青−黄色又は青緑−橙色の組み合わせが知られている。特に、後者の方が比較的視感度の高い波長領域の発光を利用できる点で有利であると考えられている。
【0039】
発光体を含む層118に低分子系有機発光媒体を用いる一例では、第2電極(陰極)114上に電子注入輸送層、赤色発光層、緑色発光層、正孔輸送層、青色発光層が順次積層された構造である。具体的には、正孔輸送層として1,2,4−トリアゾール誘導体(p−EtTAZ)を適用し3nmにすると、p−EtTAZ層中の正孔通過量が増えて緑色発光層として用いるトリス(8−キノリラト)アルミニウム(Alq)にも正孔が注入されて発光が得られる。この構造においては青色発光層としてTPDの青色にAlqの緑色が混ざった青緑色の発光が得られる。この発光に赤色を加え白色発光を実現するには赤色発光層としてAlqかTPDのどちらかに赤色発光色素をドープすれば良い。赤色発光色素としてはナイルレッドなどを適用することができる。
【0040】
また、発光体を含む層118の他の構成として、第2電極(陰極)114側から、電子注入輸送層、電子輸送層、発光層、正孔輸送層、正孔注入輸送層とすることもできる。この場合適した材料の組み合わせは、電子注入輸送層としてAlqを15nmの厚さで、電子輸送層としてフェニルアントラセン誘導体を20nmの厚さで形成する。発光層はテトラアリールベンジジン誘導体とフェニルアントラセン誘導体とが体積比1:3で混合し、且つスチリルアミン誘導体を3体積%含ませる25nmの第1発光層と、テトラアリールベンジジン誘導体と10,10’−ビス[2−ビフェニルイル]−9,9’−ビアンスリル(フェニルアントラセン誘導体)とを体積比1:3で混合し、且つナフタセン誘導体を3重量%含ませる40nmの第2発光層とを積層させた構成とする。正孔輸送層はN,N,N’,N’−テトラキス−(3−ビフェニル−1−イル)ベンジジン(テトラアリールベンジジン誘導体)を20nmの厚さに形成し、正孔注入層としてN,N’−ジフェニル−N,N’−ビス[N−フェニル−N−4−トリル(4−アミノフェニル)]ベンジジンを30nmの厚さに形成する。
【0041】
上記構造において、電子注入輸送層を無機電子注入輸送層を用いても良い。無機電子輸送層としてはn型化したダイヤモンドライクカーボン(DLC)を適用することができる。DLC膜のn型化には燐などを適宜ドープすれば良い。その他に、アルカリ金属元素、アルカリ土類金属元素、及びランタノイド系元素から選択される一種の酸化物と、Zn、Sn、V、Ru、Sm、Inから選択される1種以上の無機材料を適用することができる。
【0042】
発光体を含む層118の上にITO、ZnO、SnO等の酸化物導電性材料層119を10〜30nm程度の厚さで形成する。図示しないが、酸化物導電性材料層119と発光体を含む層118との間には、仕事関数が3eV以下である、アルカリ金属又はアルカリ土類金属を含む層を形成しておく。
【0043】
さらに、帯状に延設する第2電極114と交差するように形成され、同様に帯状の第3電極120を延設する。第3電極120は第1電極111と酸化物透明導電性材料119と接触するように形成する。第3電極120は第2電極114と極性が反対となる材料を選択して形成する。
【0044】
図6はこの状態の上面図であり、A−A’線に対応する縦断面図が図3(C)に示されている。よって、第2電極114と第3電極120との交差部において、発光体を含む層118と酸化物導電性材料層119とを介在させることにより電場を印加することことができる。
【0045】
この状態で、逆方向電圧を印加することが可能となる。即ち、第2電極114を陽極、第3電極を陰極とする極性に対しては、第3電極に正の電圧を印加する。また、第2電極114を陰極、第3電極を陽極とする極性に対しては、第3電極に負の電圧を印加する。電圧は直流電圧を印加しても良いし、パルス状の電圧(図19(A))を印加しても良いし、パルス状であり且つ階段状に増減する電圧(図19(B))を印加しても良い。
【0046】
図8は一つの層又は複数の層の積層体に発光体を含む発光素子を画素毎に設け、当該画素をマトリクス状に配列させた状態で逆方向電圧を印加する方法を示す上面図あり、帯状に形成した第2電極114と、第3電極120との間で定電圧電源125により逆方向電圧を印加する。この状態では第3電極120は共通電極である。第2電極114、第3電極120と定電圧源125との接続は、画素部の外部にてプローブを用いて接触コンタクトを形成すれば良い。各画素の下層には、TFTが設けられているが、この構成においてTFTは電気的に何ら関与しない。
【0047】
図9で説明したように、もし微小な短絡箇所があると、逆方向電圧を印加した場合に本来流れないはずの電流が短絡箇所に集中して流れ、その部分がジュール熱で発熱することにより変質し絶縁化を図ることができる。発光体を含む層118は主として有機化合物により形成され、炭素を主成分とする材料で大部分は形成される。短絡箇所の形態は様々であるが、概略、酸化物導電性材料層119や第3電極が空孔にしみ出す形で形成される。或いは、発光体を含む層118に異物が介在する形態となっていることが多い。逆方向電圧印加による発熱はこの部分において、第3電極の金属材料を変質させるが、酸化物導電性材料は酸素を供給して金属材料を酸化させ絶縁させるのに有効に作用する。
【0048】
逆方向電圧により短絡箇所を修復した後、図1に示すように第3電極上に第7絶縁膜122を形成して、さらに個別電極の形状に合わせたパターンとする。第7絶縁膜122は窒化珪素で形成し、このパターンをマスクとして、それと重ならない第3電極をエッチング加工して除去する。こうしてTFT150と接続する発光素子100を形成することができる。発光素子100は第2電極114、発光体を含む層118、酸化物導電性材料119、第3電極121が積層して形成されている。
【0049】
図7はこの状態の上面図であり、A−A’線に対応する縦断面図が図1に示されている。こうして個別電極となる第3電極121が形成される。さらに、全体を覆う第8絶縁膜122は保護膜として外部から水分等の侵入を防止する。
【0050】
このような製造方法により、アクティブマトリクス駆動方式の画素構成としても、TFTを介さずに逆方向電圧を印加することができ、欠陥個所がある場合には瞬間的に十分な電流を供給してその部分を変質させて絶縁化させることができる。
尚、本発明は上記形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形を許容するものである。
【0051】
(実施の形態2)
本実施の形態は、TFTに接続する個別電極上に発光体を含む一つの層又は複数の層の積層体と、それを介して個別画素電極と重畳し互いに分離された第1共通電極と第2共通電極を形成し、第1共通電極と第2共通電極との間に電圧を印加して短絡不良箇所を修復するものである。
【0052】
図11は本実施の形態における画素部の等価回路図を示す。走査信号線305、消去信号線306、データ線307、電源線308、選択用TFT301、消去用TFT302、制御用TFT303が備えられた構成の一例を示している。発光素子304の一方の端子は制御用TFT303に接続されるが、他方の側は第1共通配線309と第2共通配線310とに分かれて接続している。
【0053】
第1共通電極309と第2共通電極310はそれぞれ異なる極性の定電圧源311と312に接続され、スイッチ313により適宜接続状態を変えることにより発光素子304に効果的に逆方向電圧を印加する仕組みとなっている。
【0054】
このような画素の構成において、第1共通配線と第2共通配線とは図12に示すような形態で実現される。第1共通配線123と第2共通配線124は画素部の外側において、それらに交差する形で形成される接続配線315、316により連結して、それぞれ異なる極性の定電圧源311と312に接続することで実現する。
【0055】
発光素子304と制御用TFT303の構成の一例として、その縦断面図を図14に示す。基板101、第1絶縁膜102、半導体膜103、第2絶縁膜104、ゲート電極105、第3絶縁膜106、第4絶縁膜107、第5絶縁膜108、第1電極111、配線(電源線)112、第6絶縁膜115の構成は実施の形態1と同様である。図15はこの状態の上面図であり、A−A’線に対応する縦断面図が図14に示されている。
【0056】
発光素子304は第5絶縁膜108上に形成される個別画素電極122と、発光体を含む層116、酸化物導電性材料117とが積層され、その上に第1共通電極123と第2共通電極124が形成された構成となっている。この共通電極は同じ材料で形成され、ダイオードとして見た場合には同じ方向に整流性を持つ。第1共通電極123と第2共通電極124は、逆方向電圧を印加する場合には異なる電位が付与され、その電位が交互に入替ることにより発光素子の修復を可能としている。
【0057】
図13は本実施の形態において発光素子の修復がどのように成されるのかを模式的に説明する回路図である。図13(A)は第1共通配線309が高電位、第2共通配線310が低電位に接続された状態であり、発光素子に短絡欠陥若しくはそれに近いリーク箇所が含まれていない正常な素子には、逆方向飽和電流以上の電流は流れない。一方、素子Aに短絡欠陥が内在するような場合には、その部分を通して電流が流れる(異常A)。この場合、短絡欠陥は修復可能である。しかし、素子Bに短絡欠陥があるような場合(異常B)には、このバイアス状態でその欠陥を修復することはできない。素子Aと素子Bとの両方に短絡欠陥がある場合(異常C)には、素子A、素子B共に欠陥の修復が可能であるが、素子Aの欠陥の修復が早く完了すると素子Bの欠陥の修復は不可能となる。
【0058】
素子Aと素子Bの欠陥を共に修復するには、図13(B)で示すように第1共通配線309と第2共通配線310とのバイアス状態を反転させれば良い。逆方向電圧の印加に際しては、電圧をパルス状に印加して短絡不良個所を修復する方法を適用することが可能であり、パルス状であり、且つ階段状に増減する電圧を印加して短絡不良個所を修復することが可能である。
【0059】
このような画素の構成により、アクティブマトリクス駆動方式の画素構成としても、TFTを介さずに逆方向電圧を印加することができ、欠陥個所がある場合には瞬間的に十分な電流を供給してその部分を変質させて絶縁化させることができる。
尚、本発明は上記形態に限定されるものではなく、その要旨を逸脱しない範囲で各種の変形を許容するものである。
【0060】
(実施の形態3)
逆方向電圧の印加による発光素子の修復の実際的な一例は図16〜図18に示されている。発光素子は一対の電極間に発光体を含む層として、CuPc、α−NPD、ドーパントとしてDCMを添加したAlq、及びノンドープのAlqを積層した構造である。図16では、順方向電圧から逆方向電圧まで±12Vの電圧を掃引した時の電流電圧特性を示している。順方向電圧を印加した時に、5V以下の領域において異常な順方向電流の増加が見られ、逆方向電圧を印加した時にも0〜−5Vの範囲において異常な逆方向電流の増加が見られる。この時逆方向電流は一旦急激に増加するが、その後すぐに元の電流値まで減少している。つまり、短絡箇所が修復された状態であり、局部的に高密度の電流が流れることによりその部位が発熱し、絶縁化することを意味している。しかしながら、その反応が十分でないと、或いは他に同様な短絡箇所が内在していると、図17に示すように2回目の電圧掃引においても同様な現象が観測されることがある。このような順方向から逆方向への電圧掃引又は逆方向の電圧掃引を、1回又は複数回繰り返すと図18に示すようにきれいな電流電圧特性を得ることができる。
【0061】
【発明の効果】
以上説明したように、本発明によれば、発光体を含む一つの層又は複数の層の積層体上に第1共通電極と第2共通電極とを並列的に配設して、この両電極間に電圧を印加することで、TFTを介さずに逆方向電圧を印加して欠陥部分の修復を完全に行い、発光素子のショートやリーク箇所を修復することができる。
【0062】
それにより、発光装置の不要な消費電流を抑えることで発熱を抑えて、発光素子の非発光点の増加及び拡大等の劣化を低減することが可能となる。
【図面の簡単な説明】
【図1】実施の形態1において画素の構成を説明する縦断面図。
【図2】実施の形態1において画素の作製工程を説明する縦断面図。
【図3】実施の形態1において画素の作製工程を説明する縦断面図。
【図4】実施の形態1において画素の作製工程を説明する上面図。
【図5】実施の形態1において画素の作製工程を説明する上面図。
【図6】実施の形態1において画素の作製工程を説明する上面図。
【図7】実施の形態1における画素の構造を示す上面図。
【図8】実施の形態1における画素部に逆方向電圧を印加する状態を示す上面図。
【図9】逆方向電圧の印加により欠陥個所が修復されることを模式的に説明する縦断面図とその電流対電圧特性を示すグラフ。
【図10】TFTのドレイン電圧対ドレイン電流の関係を模式的に示すグラフ。
【図11】実施の形態2における画素部の構成を示す等価回路図。
【図12】実施の形態2における画素部の構成を示す上面図。
【図13】実施の形態2において逆方向電圧により発光素子が修復される原理を説明する等価回路図。
【図14】実施の形態2における画素の構造を示す縦断面図。
【図15】実施の形態2における画素の構造を示す上面図。
【図16】発光素子に1回目の電圧掃引を行った時の電流電圧特性を示すグラフ。
【図17】発光素子に2回目の電圧掃引を行った時の電流電圧特性を示すグラフ。
【図18】発光素子に3回目の電圧掃引を行った時の電流電圧特性を示すグラフ。
【図19】本発明においてパルス状の逆方向電圧を印加するときの電圧波形を示す図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting device having a light-emitting element including a light-emitting element in a single layer or a stacked body of a plurality of layers between a pair of electrodes and a method for manufacturing the light-emitting element. Is a technique that can be repaired by a simple method.
[0002]
[Prior art]
A light-emitting element formed using a light-emitting medium called an organic electroluminescent material includes, for example, an organic amine-based hole transport layer between a pair of electrodes, a tris-8-quinolino that exhibits electronic conductivity and emits light. Rat aluminum complex (Alq 3 ), And several hundred cd / cm by applying a DC voltage of 6 to 8V. 2 Can be obtained.
[0003]
In a light-emitting element, if a layer that directly or indirectly contributes to light emission is functionally represented, it can be distinguished from a light-emitting layer, a hole injection layer, an electron injection layer, a hole transport layer, an electron transport layer, and the like. . In some cases, these functional expressions can be clearly distinguished as layers, or they can be formed as a mixture and cannot be clearly distinguished. An extremely simple structure is a structure in which an anode / light-emitting layer / cathode is laminated in order. In addition to this structure, an anode / hole injection layer / light-emitting layer / cathode, or an anode / hole injection layer / light-emitting layer / Electron transport layer / cathode and the like.
[0004]
A normally operating light emitting element exhibits rectification, and the same current-voltage characteristics as a so-called diode are observed. That is, when a forward bias is applied, the current increases exponentially with respect to the applied voltage, and when a reverse bias is applied, almost no current flows until the breakdown voltage is reached. To emit light, it is necessary to inject a charge, and a forward bias is applied.
[0005]
An active matrix driving type light emitting device in which such a light emitting element is controlled by a field effect transistor is known (for example, see Patent Document 1). This discloses a configuration in which an organic electroluminescence layer is formed on a thin film transistor (TFT) using polycrystalline silicon via an insulating film made of silicon dioxide. A passivation layer having a tapered end on the anode is located below the organic electroluminescence layer. As the cathode, a material having a work function lower than 4 eV is selected, and a material obtained by alloying a metal such as Ag or Al with Mg is applied.
[0006]
By the way, it is empirically known that application of a reverse voltage that does not contribute to light emission to such a light emitting element extends the life of the light emitting element. Utilizing this phenomenon, an active matrix drive type light emitting device that applies a reverse voltage during a non-light emitting period in accordance with the synchronization timing of input video data is disclosed (for example, see Patent Document 2).
[0007]
On the other hand, in a solar cell or the like in which a diode is formed by a thin film of a semiconductor, various methods of repairing a short-circuit portion by applying a reverse voltage have been tried, and an example of the technique is disclosed in US Pat. No. 6,365,825 and the like. Have been. According to the present invention, a short-circuit portion can be repaired by applying a reverse voltage so that a current flows intensively in a short-circuited portion and the portion is insulated by heat generated by Joule heat.
[0008]
FIG. 9A is a diagram schematically illustrating a light-emitting element having a short-circuit defect due to the incorporation of the pinhole 14 or the foreign matter 15 and illustrating the effect of the reverse voltage. If the diode element 10 having the thin film 12 that forms a rectifying contact or a rectifying junction has a short-circuit failure portion 14 between a pair of electrodes composed of the anode 11 and the cathode 13, when a reverse voltage is applied, the short-circuit failure portion 14 passes through the portion. As a result, a current greater than the reverse saturation current flows.
[0009]
As schematically shown in FIG. 9B, the current-voltage characteristic of the diode element 10 is such that when a reverse voltage is applied, as shown by points A and B shown by dotted lines, the reverse current suddenly increases at a certain voltage. Increase. For example, a short-circuit defect caused by the short-circuit defect portion 14 including a pinhole causes the cathode material to wrap around the portion, and a reverse current flows at a relatively low voltage. When a minute foreign matter 15 is contained, the short-circuit defect portion 15 is formed such that the breakdown voltage becomes low and the reverse current increases below the breakdown voltage due to dielectric breakdown.
[0010]
At this time, current concentrates and flows in the short-circuit defective portions 14 and 15, and the current density increases, so that heat is generated to increase the temperature, and the portions are denatured and insulated. As a result, normal diode characteristics can be obtained in the second and subsequent voltage scans. Even if the short-circuit defect is not repaired by one scan, the probability of repair can be increased by repeating the voltage scan a plurality of times. Thus, by applying a predetermined reverse voltage, the short-circuited portion can be insulated and repaired.
[0011]
Repair of a short-circuited portion by applying a reverse voltage can be performed relatively easily, but the principle is to use a heat generation phenomenon due to current concentration, and a large current needs to flow instantaneously. Therefore, a constant voltage source having a current supply capacity corresponding to the power source is required for the applied power supply.
[0012]
[Patent Document 1]
JP-A-8-234683
[Patent Document 2]
JP 2001-109432 A
[0013]
[Problems to be solved by the invention]
However, as shown in FIG. 10, the drain current of the TFT used in the active matrix drive method is almost saturated when the gate voltage is determined, no matter how much the drain voltage is increased. That is, as long as the TFT is operated in the saturation region, it is equivalent to the case where the TFT is connected to the constant current source. The same is true even if the operation is performed in the linear region, and a current higher than the saturation current cannot be passed. Eventually, even if a reverse voltage is applied via the TFT, the maximum current value is limited, so that short-circuit failure as shown in FIG. 9 cannot be sufficiently insulated.
[0014]
The present invention is intended to solve such a problem, and in a display device of an active matrix drive system in which TFTs are arranged in a matrix, a defective portion is completely repaired by applying a reverse voltage, An object of the present invention is to stabilize luminance and prevent deterioration during use by repairing a short circuit or a leak portion of a light emitting element.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is characterized in that in a light emitting device having an active matrix driving type pixel structure in which each pixel is provided with a TFT, a reverse voltage is applied to the light emitting element without passing through the TFT. have. The present invention provides a pixel structure and a method for manufacturing the pixel structure that enable the above.
[0016]
In the method for manufacturing a light-emitting device according to the present invention, a first electrode connected to a TFT and a second electrode extending in a band shape are formed on the same insulating surface, and one layer containing a light-emitting material or After forming a stacked body of a plurality of layers and a third electrode of the light-emitting element intersecting with the second electrode through the stacked body, and applying a voltage to the second electrode and the third electrode to repair a short-circuit defect portion, The method includes the steps of separately processing the third electrode into individual third electrodes connected to the first electrode. In this manufacturing method, the first electrode and the second electrode can be formed of the same material, an opening is formed on the first electrode and the second electrode, and a partition layer covering the ends is formed. However, the third electrode is allowed to be formed so as to extend on the partition layer.
[0017]
By applying a voltage between the second electrode extending in a belt shape and a third electrode that intersects with the second electrode on a layered structure of one layer or a plurality of layers including a light-emitting body, without using a TFT, By applying a reverse voltage, a defective portion can be completely repaired, and a short circuit or a leak portion of the light emitting element can be repaired. The second electrode and the third electrode are formed on the interlayer insulating film located above the TFT and are formed so as to cross each other, so that a reverse voltage can be freely applied between the two electrodes. It is. The third electrode may then be separated and processed by etching to form an individual electrode.
[0018]
Further, in the method for manufacturing a light-emitting device according to the present invention, an individual pixel electrode connected to a TFT is formed, and a single layer or a stacked layer of a plurality of layers including a light-emitting body is formed over the individual pixel electrode, Forming a first common electrode and a second common electrode that are overlapped with the pixel electrode and separated from each other, and applying a voltage between the first common electrode and the second common electrode to repair a short-circuit failure portion; Things. In this manufacturing method, a partition layer having an opening on an individual pixel electrode and covering an end thereof is formed, and a first common electrode and a second common electrode extending on the partition layer and separated from each other are formed. Allow to do.
[0019]
A first common electrode and a second common electrode are arranged in parallel on one layer or a stacked body of a plurality of layers including a light-emitting body, and a voltage is applied between the two electrodes, so that a TFT is interposed. Without applying a reverse voltage, the defective portion can be completely repaired, and a short circuit or a leaked portion of the light emitting element can be repaired.
[0020]
When applying a reverse voltage, it is possible to apply a method of repairing a short-circuit failure portion by applying a voltage in a pulse shape, and applying a pulse-like voltage that increases and decreases in a stepwise manner. It is possible to repair the location.
[0021]
In the light-emitting device of the present invention, a first electrode connected to a TFT is arranged in a matrix, the first electrode and a second electrode extending in a strip shape are formed on the same insulating surface, and a light-emitting element is formed on the second electrode. And a light-emitting element formed by disposing a third electrode connected to the first electrode by being overlapped with the second electrode via the stacked body of one layer or a plurality of layers including Is what it is. In the structure of the present invention, a partition layer having an opening on the first electrode and the second electrode is provided, and a single layer or a plurality of layers including a light-emitting body is provided on the second electrode, and A configuration in which a third electrode overlapping with the second electrode and extending on the partition layer may be provided.
[0022]
In the structure of the present invention, the third electrode formed over one layer or a stacked body of a plurality of layers including the light-emitting body is configured to be connected to the first electrode, so that the light-emitting element can be inverted without a TFT. A directional voltage can be applied, and a defective portion can be completely repaired to repair a short circuit or a leaked portion of the light emitting element.
[0023]
The light-emitting device of the present invention is arranged in a matrix of individual pixel electrodes connected to a TFT, the individual pixel electrode is formed on an insulating surface, and a single layer or a plurality of layers including a light-emitting body is formed on the individual pixel electrode. A stacked body and a first common electrode and a second common electrode that are overlapped with the individual pixel electrodes via the stacked body and extend without intersecting with each other; the first common electrode and the second common electrode emit light; Sometimes, the same potential is applied, and when no light is emitted, different potentials are applied. In the configuration of the present invention, a partition layer having an opening on an individual pixel electrode, a single layer or a stacked layer of a plurality of layers including a light-emitting body on the individual pixel electrode, and an individual pixel electrode A configuration in which the first common electrode and the second common electrode overlap each other and extend on the partition layer without intersecting with each other may be employed. By connecting the first common electrode and the second common electrode to different power sources, it is possible to apply voltages having different polarities, which can be facilitated.
[0024]
According to the configuration of the present invention, the first common electrode and the second common electrode are arranged in parallel on one layer or a stacked body of a plurality of layers including a light emitting body, and a voltage is applied between the two electrodes. Thus, a defective portion can be completely repaired by applying a reverse voltage without using a TFT, and a short circuit or a leak portion of the light emitting element can be repaired.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0026]
(Embodiment 1)
In this embodiment mode, a first electrode connected to a TFT and a second electrode of a light-emitting element extending in a belt shape are formed on the same insulating surface, a film of a light-emitting medium is formed on the second electrode, and a second electrode is formed thereon. A light-emitting device in which a third electrode of a light-emitting element extending so as to intersect with two electrodes is formed, reverse voltage application processing for repairing a short-circuit defective portion is performed, and then the third electrode is separated into individual electrodes will be described. . In the light emitting device of this mode, it is possible to repair a short-circuit failure portion by applying a voltage to the second electrode and the third electrode, and the reverse voltage may be applied in a pulsed manner, or may be applied in a pulsed manner. In addition, by applying a voltage that increases and decreases in a stepwise manner, a short-circuit failure portion can be repaired.
[0027]
First, as shown in FIG. 2A, a semiconductor film 103 which forms impurity regions such as a channel formation region and a source / drain region of a TFT is formed over a substrate 101 over which a first insulating film 102 is formed. As the substrate 101, an insulating substrate such as a glass substrate or a quartz substrate is used. The first insulating film 102 is formed of a film of silicon nitride, silicon oxide, silicon oxynitride, or the like or a laminate thereof to a thickness of 50 to 200 nm, and has a function of blocking impurities from the substrate 101. Is used. The semiconductor film 103 is preferably a crystalline silicon film obtained by crystallizing an amorphous silicon film deposited by plasma CVD or low-pressure CVD to a thickness of 30 to 150 nm using heat or light energy. I do. The second insulating film 104 is made of silicon oxide, SiH formed by TEOS by a plasma CVD method. 4 And N 2 It is formed with a thickness of 50 to 150 nm using a silicon oxynitride film formed by mixing O. As another material, aluminum oxynitride (AlO x N 1-x : X = 0.01 to 20 atomic%), and an insulating film containing nitrogen such as aluminum nitride and silicon nitride can be used. The gate electrode 105 includes at least one of metal materials such as Al, W, Ta, Ti, and Mo, and may have a rectangular, tapered, or irregular shape in which the bottom is protruded outward from the top. In this case, a nitride metal may be formed on the second insulating film 104 side to improve the adhesion and facilitate the selective processing.
[0028]
FIG. 4 is a top view in this state, and FIG. 2A is a longitudinal sectional view corresponding to line AA ′. In the top view shown in FIG. 4, a second semiconductor film 20, a scanning signal line 21 also serving as a gate electrode, and an erasing signal line 22 are similarly formed.
[0029]
Next, in FIG. 2B, the third insulating film 106 contains silicon nitride and is formed with a thickness of 50 to 200 nm. The fourth insulating film 107 is a silicon oxide or silicon oxynitride film having a thickness of 50 to 100 nm. The hydrogenation of the semiconductor film may be performed by supplying hydrogen contained in the third insulating film 106, and can be performed by heat treatment at 400 to 450 ° C.
[0030]
In FIG. 2C, a fifth insulating film 108 is further formed. The fifth insulating film 108 is formed of an organic compound such as photosensitive acrylic or photosensitive polyimide, and has a thickness of about 0.5 to 2 μm to reduce the capacitance between wirings. By using a photosensitive material, the opening 110 can be formed simultaneously with the formation of the fifth insulating film 108. When a photosensitive material is used for the opening 110, the side wall is inclined, and the upper end and the lower end are formed with a curvature, so that when the wiring material is applied, the opening 110 can be formed with good coverage. After that, a resist mask 109 for forming the opening 110 ′ is formed inside the opening 110, and the second insulating film 104, the third insulating film 106, and the fourth insulating film 107 are etched by using the resist mask 109 as a mask. Form a contact hole.
[0031]
As shown in FIG. 3A, the first electrode 111 connected to the TFT, the wiring 112 (power supply line), and the wiring 113 (data line) are at least any one of metal materials such as Al, W, Ta, Ti, and Mo. Is formed. These wirings have a laminated structure of Ti and Al to improve heat resistance by bringing Ti into contact with a semiconductor film. In the pixel region, the second electrode 114 extending in a band shape may be formed of the same material as the first electrode 111, or may have a work function of a light emitting element in consideration of hole injection property or electron injection property. What is necessary is just to select and form a high material or a low material.
[0032]
When the second electrode 114 is used as an anode of a light emitting element, a material having a work function of 4 eV or more is selected, and ITO (Indium Tin Oxide: indium oxide mixed with tin oxide), zinc oxide, and IZO ((Indium Zinc Oxide: Indium oxide mixed with zinc oxide), titanium nitride, tungsten nitride, or the like is used.When the second electrode 114 is used as a cathode, a material having a work function of 4 eV or less is selected, and an alkali metal or an alkaline earth metal, Alternatively, an alloy or a compound containing the same is used, such as AlLi, MgAg, LiF, CaF, or CsF.
[0033]
FIG. 5 is a top view in this state, and FIG. 3A is a longitudinal sectional view corresponding to line AA ′. In FIG. 5, reference numeral 23 denotes a wiring for connecting a TFT in a pixel formed simultaneously with the wiring 112 and the like.
[0034]
As shown in FIG. 3B, the sixth insulating layer 115 has an opening 117 on the first electrode 111 and an opening 116 on the second electrode 114, and is formed so as to cover the ends thereof. By using the conductive resin material, the side wall portion can be formed to have an inclined shape and to have a continuous curvature.
[0035]
As shown in FIG. 3C, since the layer 118 including the light emitting body is formed on the second electrode 114 and along the side wall of the sixth insulating layer 115, a continuous curved surface of this portion is formed. The shape is suitable for relieving the internal stress of the layer 118 containing the light emitter.
[0036]
The light-emitting layer-containing layer 118 is a charge-injection-transport medium and a light-emitting medium containing an organic compound or an inorganic compound, and one or more kinds selected from a low-molecular organic compound, a medium-molecular organic compound, and a high-molecular organic compound. And may be combined with an inorganic compound having an electron injecting / transporting property or a hole injecting / transporting property. As the luminous body, a phenylanthracene derivative, a tetraaryldiamine derivative, a quinolinol complex derivative, a distyrylbenzene derivative, or the like can be used. As a host material, a coumarin derivative, DCM, quinacridone, rubrene, or the like is used. Material can be applied. Examples of the high molecular organic compound include polyparaphenylene vinylene, polyparaphenylene, polythiophene, and polyfluorene. Poly (para-phenylene vinylene) (poly (p-phenylene vinylene)): (PPV), poly (2,5-dialkoxy-1,4-phenylenevinylene) (poly (2,5-dialkoxy-1,4-phenylene vinylene)): (RO-PPV), poly (2- (2′-ethyl-hexoxy) ) -5-Methoxy-1,4-phenylenevinylene) (poly [2- (2′-ethylhexoxy) -5-methoxy-1,4-phenylene vinylene]): (MEH-PPV), poly (2- (di (Alkoxyphenyl) -1,4-phenylenevinylene (Poly [2- (dialkyloxyphenyl) -1,4-phenylene vinylene]): (ROP-PPV), polyparaphenylene (poly [p-phenylene]): (PPP), poly (2,5-dialkoxy-1) , 4-phenylene) (poly (2,5-dialkoxy-1,4-phenylene)): (RO-PPP), poly (2,5-dihexoxy-1,4-phenylene) (poly (2,5-dihexoxy)) -1,4-phenylene)), polythiophene: (PT), poly (3-alkylthiophene) (poly (3-alkylthiophene)): (PAT), poly (3-hexylthiophene) (poly (3- hexylthiophene )): (PHT), poly (3-cyclohexylthiophene): (PCHT), poly (3-cyclohexyl-4-methylthiophene) (poly (3-cyclohexyl-4-methylthiophene)) : (PCHMT), poly (3,4-dicyclohexylthiophene): (PDCHT), poly [3- (4-octylphenyl) -thiophene] (poly [3- (4octylphenyl) -Thiophene]): (POPT), poly [3- (4-octylphenyl) -2,2-bithiophene] (poly [3- (4-octylphenyl) -2,2-bithiophene]) : (PTOPT), polyfluorene (polyfluorene): (PF), poly (9,9-dialkylfluorene) (poly (9,9-dialkylfluorene)): (PDAF), poly (9,9-dioctylfluorene) (poly ( 9,9-dioctylfluorene): (PDOF) and the like. Examples of the inorganic compound material include diamond-like carbon (DLC), Si, Ge, and oxides or nitrides thereof, and P, B, N, and the like may be appropriately doped. Further, it may be an oxide, a nitride or a fluoride of an alkali metal or an alkaline earth metal, or a compound or alloy of the metal and at least Zn, Sn, V, Ru, Sm, and In.
[0037]
The materials listed above are examples, and each of them is used to form a functional layer such as a hole injection transport layer, a hole transport layer, an electron injection transport layer, an electron transport layer, a light emitting layer, an electron block layer, and a hole block layer. Can be formed to form a light-emitting element. Further, a mixed layer or a mixed junction of these layers may be formed.
[0038]
In a preferred combination with a color filter, those that emit white light are preferable.If white light emission cannot be obtained with a single dye contained in the light emitting layer, a plurality of dyes are used as light emission centers to emit light simultaneously. White by additive color mixing. In this case, a method of stacking light-emitting layers having different emission colors, a method of including a plurality of light-emitting centers in one or more light-emitting layers, or the like can be applied. A method for obtaining white light emission utilizes a method of adding light-emitting layers that emit light of three primary colors of light, R (red), G (green), and B (blue), and performing additive color mixing, and a relationship between two complementary colors. There is a method. When using complementary colors, combinations of blue-yellow or blue-green-orange are known. In particular, the latter is considered to be advantageous in that light emission in a wavelength region having relatively high visibility can be used.
[0039]
In an example in which a low-molecular-weight organic light-emitting medium is used as the light-emitting layer 118, an electron injection / transport layer, a red light-emitting layer, a green light-emitting layer, a hole-transport layer, and a blue light-emitting layer are sequentially formed on the second electrode (cathode) 114. It is a laminated structure. Specifically, when a 1,2,4-triazole derivative (p-EtTAZ) is applied to the hole transporting layer to have a thickness of 3 nm, the amount of holes passing through the p-EtTAZ layer increases, and the tris ( 8-quinolinato) aluminum (Alq 3 The holes are also injected into ()) to emit light. In this structure, the blue light emitting layer of TPD 3 And blue-green light emission mixed with the green color. To achieve white light emission by adding red light to this light emission, Alq 3 Or TPD may be doped with a red light-emitting dye. Nile red or the like can be used as the red light emitting dye.
[0040]
Further, as another structure of the layer 118 containing a light-emitting body, an electron injection / transport layer, an electron transport layer, a light-emitting layer, a hole transport layer, and a hole injection / transport layer may be formed from the second electrode (cathode) 114 side. it can. In this case, a suitable material combination is Alq for the electron injection / transport layer. 3 Is formed to a thickness of 15 nm, and a phenylanthracene derivative is formed to a thickness of 20 nm as an electron transport layer. The light emitting layer is a 25 nm first light emitting layer in which a tetraarylbenzidine derivative and a phenylanthracene derivative are mixed at a volume ratio of 1: 3 and contains a styrylamine derivative at 3% by volume, a tetraarylbenzidine derivative and a 10,10′-layer. Bis [2-biphenylyl] -9,9'-bianthryl (phenylanthracene derivative) was mixed at a volume ratio of 1: 3, and a 40 nm second light-emitting layer containing 3% by weight of a naphthacene derivative was laminated. Configuration. The hole transport layer is formed of N, N, N ', N'-tetrakis- (3-biphenyl-1-yl) benzidine (tetraarylbenzidine derivative) to a thickness of 20 nm, and N, N is used as a hole injection layer. '-Diphenyl-N, N'-bis [N-phenyl-N-4-tolyl (4-aminophenyl)] benzidine is formed to a thickness of 30 nm.
[0041]
In the above structure, the electron injection / transport layer may be an inorganic electron injection / transport layer. As the inorganic electron transporting layer, n-type diamond-like carbon (DLC) can be used. The N-type DLC film may be appropriately doped with phosphorus or the like. In addition, one kind of oxide selected from alkali metal elements, alkaline earth metal elements, and lanthanoid elements, and one or more kinds of inorganic materials selected from Zn, Sn, V, Ru, Sm, and In are applied. can do.
[0042]
ITO, ZnO, SnO on the layer 118 containing the luminous body 2 Is formed to a thickness of about 10 to 30 nm. Although not illustrated, a layer containing an alkali metal or an alkaline earth metal having a work function of 3 eV or less is formed between the oxide conductive material layer 119 and the layer 118 containing a light-emitting body.
[0043]
Further, a third electrode 120, which is formed so as to intersect with the second electrode 114 extending in a belt shape, is also extended in the same manner. The third electrode 120 is formed to be in contact with the first electrode 111 and the transparent conductive oxide material 119. The third electrode 120 is formed by selecting a material having a polarity opposite to that of the second electrode 114.
[0044]
FIG. 6 is a top view of this state, and FIG. 3C is a longitudinal sectional view corresponding to line AA ′. Therefore, an electric field can be applied by interposing the light-emitting layer 118 and the oxide conductive material layer 119 at the intersection of the second electrode 114 and the third electrode 120.
[0045]
In this state, a reverse voltage can be applied. That is, a positive voltage is applied to the third electrode with respect to the polarity where the second electrode 114 is an anode and the third electrode is a cathode. Further, a negative voltage is applied to the third electrode with respect to the polarity where the second electrode 114 is a cathode and the third electrode is an anode. As the voltage, a DC voltage may be applied, a pulse-like voltage (FIG. 19A) may be applied, or a pulse-like voltage (FIG. 19B) that increases and decreases stepwise may be used. It may be applied.
[0046]
FIG. 8 is a top view illustrating a method in which a light-emitting element including a light-emitting element is provided for each pixel in one layer or a stacked body of a plurality of layers, and a reverse voltage is applied in a state where the pixels are arranged in a matrix. A reverse voltage is applied between the band-shaped second electrode 114 and the third electrode 120 by the constant voltage power supply 125. In this state, the third electrode 120 is a common electrode. The connection between the second electrode 114 and the third electrode 120 and the constant voltage source 125 may be achieved by forming a contact outside the pixel portion using a probe. A TFT is provided below each pixel, but in this configuration, the TFT has no electrical connection.
[0047]
As described with reference to FIG. 9, if there is a minute short-circuited portion, a current that should not flow when a reverse voltage is applied flows intensively at the short-circuited portion, and the portion generates heat by Joule heat. Deterioration and insulation can be achieved. The layer 118 including a light-emitting body is mainly formed using an organic compound, and is mostly formed using a material mainly containing carbon. Although the form of the short-circuit portion is various, the oxide conductive material layer 119 and the third electrode are generally formed so as to seep into the holes. Alternatively, in many cases, a foreign substance is interposed in the layer 118 including a light-emitting body. The heat generated by the application of the reverse voltage alters the metal material of the third electrode in this portion, but the oxide conductive material effectively acts to supply oxygen to oxidize and insulate the metal material.
[0048]
After repairing the short-circuited portion by the reverse voltage, a seventh insulating film 122 is formed on the third electrode as shown in FIG. 1 to form a pattern that further matches the shape of the individual electrode. The seventh insulating film 122 is formed of silicon nitride, and using this pattern as a mask, the third electrode which does not overlap with the third electrode is etched and removed. Thus, the light-emitting element 100 connected to the TFT 150 can be formed. The light-emitting element 100 is formed by stacking a second electrode 114, a layer 118 including a light-emitting body, an oxide conductive material 119, and a third electrode 121.
[0049]
FIG. 7 is a top view in this state, and FIG. 1 shows a longitudinal sectional view corresponding to line AA ′. Thus, the third electrode 121 serving as an individual electrode is formed. Further, the eighth insulating film 122 covering the whole is used as a protective film to prevent moisture and the like from entering from the outside.
[0050]
With such a manufacturing method, a reverse voltage can be applied without using a TFT even in a pixel configuration of an active matrix driving method, and when there is a defective portion, a sufficient current is supplied instantaneously to supply a sufficient current. The part can be transformed and insulated.
Note that the present invention is not limited to the above-described embodiment, and allows various modifications without departing from the gist of the present invention.
[0051]
(Embodiment 2)
In this embodiment mode, a single layer or a stacked layer of a plurality of layers including a light-emitting element is provided over an individual electrode connected to a TFT, and a first common electrode and a first common electrode which are overlapped with an individual pixel electrode and separated from each other. Two common electrodes are formed, and a voltage is applied between the first common electrode and the second common electrode to repair a short-circuit failure portion.
[0052]
FIG. 11 shows an equivalent circuit diagram of a pixel portion in this embodiment. An example of a configuration including a scanning signal line 305, an erasing signal line 306, a data line 307, a power supply line 308, a selection TFT 301, an erasing TFT 302, and a control TFT 303 is shown. One terminal of the light emitting element 304 is connected to the control TFT 303, while the other side is separately connected to a first common wiring 309 and a second common wiring 310.
[0053]
The first common electrode 309 and the second common electrode 310 are connected to constant voltage sources 311 and 312 of different polarities, respectively, and a connection state is appropriately changed by a switch 313 to effectively apply a reverse voltage to the light emitting element 304. It has become.
[0054]
In such a pixel configuration, the first common wiring and the second common wiring are realized in a form as shown in FIG. The first common wiring 123 and the second common wiring 124 are connected outside the pixel portion by connection wirings 315 and 316 formed so as to cross each other, and connected to constant voltage sources 311 and 312 having different polarities. It is realized by.
[0055]
FIG. 14 is a longitudinal sectional view showing an example of the structure of the light emitting element 304 and the control TFT 303. Substrate 101, first insulating film 102, semiconductor film 103, second insulating film 104, gate electrode 105, third insulating film 106, fourth insulating film 107, fifth insulating film 108, first electrode 111, wiring (power supply line) ) 112 and the configuration of the sixth insulating film 115 are the same as in the first embodiment. FIG. 15 is a top view in this state, and FIG. 14 is a longitudinal sectional view corresponding to line AA ′.
[0056]
In the light-emitting element 304, the individual pixel electrode 122 formed over the fifth insulating film 108, the layer 116 including a light-emitting body, and the oxide conductive material 117 are stacked, and the first common electrode 123 and the second common electrode 123 are stacked thereon. The configuration is such that an electrode 124 is formed. The common electrode is formed of the same material, and has a rectifying property in the same direction when viewed as a diode. When a reverse voltage is applied, different potentials are applied to the first common electrode 123 and the second common electrode 124, and the light emitting element can be repaired by alternately changing the potentials.
[0057]
FIG. 13 is a circuit diagram schematically illustrating how the light emitting element is repaired in the present embodiment. FIG. 13A shows a state in which the first common wiring 309 is connected to a high potential and the second common wiring 310 is connected to a low potential. Does not flow a current higher than the reverse saturation current. On the other hand, when a short-circuit defect exists in the element A, a current flows through that part (abnormal A). In this case, the short-circuit defect can be repaired. However, when the element B has a short-circuit defect (abnormal B), the defect cannot be repaired in this bias state. When both the elements A and B have a short-circuit defect (abnormal C), the defects can be repaired for both the elements A and B. Repair becomes impossible.
[0058]
In order to repair both the defects of the element A and the element B, the bias states of the first common wiring 309 and the second common wiring 310 may be reversed as shown in FIG. When applying a reverse voltage, it is possible to apply a method of repairing a short-circuit failure portion by applying a voltage in a pulse shape, and applying a pulse-like voltage that increases and decreases in a stepwise manner. It is possible to repair the location.
[0059]
With such a pixel configuration, even in an active matrix drive type pixel configuration, a reverse voltage can be applied without using a TFT, and if there is a defective portion, a sufficient current is supplied instantaneously. The part can be transformed and insulated.
Note that the present invention is not limited to the above-described embodiment, and allows various modifications without departing from the gist of the present invention.
[0060]
(Embodiment 3)
A practical example of repairing a light emitting element by applying a reverse voltage is shown in FIGS. The light-emitting element includes CuPc, α-NPD, and Alq to which DCM is added as a dopant as a layer including a light-emitting body between a pair of electrodes. 3 , And undoped Alq 3 Are laminated. FIG. 16 shows current-voltage characteristics when a voltage of ± 12 V is swept from the forward voltage to the reverse voltage. When a forward voltage is applied, an abnormal increase in forward current is observed in a region of 5 V or less, and when a reverse voltage is applied, an abnormal increase in reverse current is observed in a range of 0 to -5 V. At this time, the reverse current temporarily increases rapidly, but immediately thereafter decreases to the original current value. In other words, the short-circuited portion is in a repaired state, which means that a locally high-density current flows to generate heat and insulate the portion. However, if the reaction is not sufficient, or if there is another similar short-circuit portion, a similar phenomenon may be observed in the second voltage sweep as shown in FIG. When such voltage sweep from the forward direction to the reverse direction or the voltage sweep in the reverse direction is repeated once or plural times, a clean current-voltage characteristic can be obtained as shown in FIG.
[0061]
【The invention's effect】
As described above, according to the present invention, the first common electrode and the second common electrode are arranged in parallel on one layer or a stacked body of a plurality of layers including the light emitting body, and the two electrodes are arranged in parallel. By applying a voltage in between, it is possible to completely repair a defective portion by applying a reverse voltage without using a TFT, and to repair a short circuit or a leak portion of the light emitting element.
[0062]
Accordingly, heat generation is suppressed by suppressing unnecessary current consumption of the light emitting device, and deterioration such as increase and expansion of non-light emitting points of the light emitting element can be reduced.
[Brief description of the drawings]
FIG. 1 is a vertical cross-sectional view illustrating a structure of a pixel in Embodiment 1.
FIG. 2 is a vertical cross-sectional view illustrating a manufacturing process of a pixel in Embodiment 1.
FIG. 3 is a vertical cross-sectional view illustrating a manufacturing process of a pixel in Embodiment 1.
FIG. 4 is a top view illustrating a manufacturing process of a pixel in Embodiment 1;
FIG. 5 is a top view illustrating a manufacturing process of a pixel in Embodiment 1;
FIG. 6 is a top view illustrating a manufacturing process of a pixel in Embodiment 1;
FIG. 7 is a top view illustrating a structure of a pixel in Embodiment 1.
FIG. 8 is a top view illustrating a state where a reverse voltage is applied to the pixel portion in Embodiment 1.
FIG. 9 is a longitudinal sectional view schematically illustrating that a defective portion is repaired by application of a reverse voltage, and a graph showing current-voltage characteristics thereof.
FIG. 10 is a graph schematically showing a relationship between a drain voltage and a drain current of a TFT.
FIG. 11 is an equivalent circuit diagram illustrating a structure of a pixel portion in Embodiment 2.
FIG. 12 is a top view illustrating a structure of a pixel portion in Embodiment 2.
FIG. 13 is an equivalent circuit diagram illustrating a principle in which a light-emitting element is repaired by a reverse voltage in Embodiment 2.
FIG. 14 is a vertical cross-sectional view illustrating a structure of a pixel in Embodiment 2.
FIG. 15 is a top view illustrating a structure of a pixel in Embodiment 2;
FIG. 16 is a graph showing current-voltage characteristics when a first voltage sweep is performed on a light-emitting element.
FIG. 17 is a graph showing current-voltage characteristics when a second voltage sweep is performed on a light-emitting element.
FIG. 18 is a graph showing current-voltage characteristics when a third voltage sweep is performed on a light-emitting element.
FIG. 19 is a diagram showing a voltage waveform when a pulsed reverse voltage is applied in the present invention.

Claims (12)

一つの層又は複数の層の積層体に発光体を含む発光素子を画素毎に設け、当該画素をマトリクス状に配列させた発光装置の作製方法であって、
薄膜トランジスタと接続する第1電極と、帯状に延在する第2電極を同一絶縁表面に形成し、前記第2電極上に、前記一つの層又は複数の層の積層体と、それを介して、前記第2電極と交差するように延設する発光素子の第3電極を形成し、
前記第2電極と前記第3電極とに電圧を印加して短絡不良箇所を修復した後、前記第3電極を、前記第1電極と接続する個別の第3電極に分離加工する各段階を有することを特徴とする発光装置の作製方法。
A method for manufacturing a light-emitting device in which a light-emitting element including a light-emitting element is provided for each pixel in one layer or a stacked body of a plurality of layers, and the pixels are arranged in a matrix.
A first electrode connected to a thin film transistor and a second electrode extending in a band shape are formed on the same insulating surface, and the one or more layers are stacked on the second electrode, Forming a third electrode of the light emitting element extending so as to intersect with the second electrode;
After applying a voltage to the second electrode and the third electrode to repair a short-circuit defect portion, the method comprises the steps of separating the third electrode into individual third electrodes connected to the first electrode. A method for manufacturing a light-emitting device, comprising:
一つの層又は複数の層の積層体に発光体を含む発光素子を画素毎に設け、当該画素をマトリクス状に配列させた発光装置の作製方法であって、
薄膜トランジスタと接続する第1電極と、帯状に延在する第2電極を同一絶縁表面に形成し、前記第1電極及び第2電極上の開口部が形成され、その端部を被覆する隔壁層を形成し、前記第2電極上に、前記一つの層又は複数の層の積層体と、それを介して、前記第2電極と交差し、前記隔壁層上に延設する発光素子の第3電極を形成し、
前記第2電極と前記第3電極とに電圧を印加して短絡不良箇所を修復した後、前記第3電極を、前記第1電極と接続する個別の第3電極に分離加工する各段階を有することを特徴とする発光装置の作製方法。
A method for manufacturing a light-emitting device in which a light-emitting element including a light-emitting element is provided for each pixel in one layer or a stacked body of a plurality of layers, and the pixels are arranged in a matrix.
A first electrode connected to the thin film transistor and a second electrode extending in a strip shape are formed on the same insulating surface, and an opening on the first electrode and the second electrode is formed, and a partition layer covering the ends is formed. Forming, on the second electrode, a laminate of the one layer or the plurality of layers, and a third electrode of the light emitting element extending on the partition layer, intersecting with the second electrode via the laminate. To form
After applying a voltage to the second electrode and the third electrode to repair a short-circuit defect portion, the method comprises the steps of separating the third electrode into individual third electrodes connected to the first electrode. A method for manufacturing a light-emitting device, comprising:
一つ又は複数の層の積層体に発光体を含む発光素子を画素毎に設け、当該画素をマトリクス状に配列させた発光装置の作製方法であって、
薄膜トランジスタに接続する個別画素電極を形成し、前記個別画素電極上に、前記一つの層又は複数の層の積層体と、それを介して前記個別画素電極と重畳し、互いに分離された第1共通電極と第2共通電極を形成し、
前記第1共通電極と第2共通電極との間に電圧を印加して短絡不良箇所を修復する各段階を有することを特徴とする発光装置の作製方法。
A method for manufacturing a light-emitting device in which a light-emitting element including a light-emitting element is provided for each pixel in a stacked body of one or more layers, and the pixels are arranged in a matrix.
Forming an individual pixel electrode connected to the thin film transistor, on the individual pixel electrode, a laminate of the one layer or the plurality of layers, and a first common electrode overlapped with the individual pixel electrode through the first common electrode and separated from each other; Forming an electrode and a second common electrode,
A method for manufacturing a light-emitting device, comprising: applying a voltage between the first common electrode and the second common electrode to repair a short-circuit failure portion.
一つ又は複数の層の積層体に発光体を含む発光素子を画素毎に設け、当該画素をマトリクス状に配列させた発光装置の作製方法であって、
薄膜トランジスタに接続する個別画素電極を形成し、前記個別電極上に開口部を有し、その端部を被覆する隔壁層を形成し、前記個別画素電極上に、前記一つの層又は複数の層の積層体と、それを介して前記個別画素電極と重畳し、前記隔壁層上に延設され互いに分離された第1共通電極と第2共通電極を形成し、
前記第1共通電極と第2共通電極との間に電圧を印加して短絡不良箇所を修復する各段階を有することを特徴とする発光装置の作製方法。
A method for manufacturing a light-emitting device in which a light-emitting element including a light-emitting element is provided for each pixel in a stacked body of one or more layers, and the pixels are arranged in a matrix.
Forming an individual pixel electrode connected to the thin film transistor, having an opening on the individual electrode, forming a partition layer covering an end thereof, and forming the one or more layers on the individual pixel electrode; A stacked body, and a first common electrode and a second common electrode which are overlapped with the individual pixel electrode via the stacked body and are extended from the partition layer and separated from each other;
A method for manufacturing a light-emitting device, comprising: applying a voltage between the first common electrode and the second common electrode to repair a short-circuit failure portion.
請求項1又は2において、前記第1電極と第2電極とは同一材料で形成することを特徴とする発光装置の作製方法。3. The method according to claim 1, wherein the first electrode and the second electrode are formed of the same material. 請求項1乃至4のいずれか一項において、電圧をパルス状に印加して短絡不良個所を修復することを特徴とする発光装置の作製方法。The method for manufacturing a light-emitting device according to any one of claims 1 to 4, wherein a short-circuit defect is repaired by applying a voltage in a pulsed manner. 請求項1乃至4のいずれか一項において、パルス状であり、且つ階段状に増減する電圧を印加して短絡不良個所を修復することを特徴とする発光装置の作製方法。The method for manufacturing a light-emitting device according to any one of claims 1 to 4, wherein a short-circuit defect is repaired by applying a pulse-like voltage that increases and decreases stepwise. 薄膜トランジスタに接続する第1電極がマトリクス状に配置され、当該第1電極と帯状に延在する第2電極とが同一絶縁表面に形成され、前記第2電極上に発光体を含む一つの層又は複数の層の積層体と、それを介して前記第2電極と重畳し、前記第1電極に接続する第3電極が配設されて、前記薄膜トランジスタと接続する発光素子が備えられていることを特徴とする発光装置。A first electrode connected to the thin film transistor is arranged in a matrix, the first electrode and a second electrode extending in a band shape are formed on the same insulating surface, and one layer containing a light-emitting body is formed on the second electrode or A stacked body of a plurality of layers, a third electrode overlapping with the second electrode via the stacked body, and a third electrode connected to the first electrode are provided, and a light emitting element connected to the thin film transistor is provided. Characteristic light emitting device. 薄膜トランジスタに接続する第1電極がマトリクス状に配置され、当該第1電極と帯状に延在する第2電極とが同一絶縁表面に形成され、前記第1電極及び第2電極上に開口部を有する隔壁層を有し、前記第2電極上に発光体を含む一つの層又は複数の層の積層体と、それを介して前記第2電極と重畳し、前記隔壁層上に延設され、前記第1電極に接続する第3電極が設けられ、前記薄膜トランジスタと接続する発光素子が備えられていることを特徴とする発光装置。A first electrode connected to the thin film transistor is arranged in a matrix, the first electrode and a second electrode extending in a band shape are formed on the same insulating surface, and has an opening on the first electrode and the second electrode. Having a partition layer, a layered structure of one layer or a plurality of layers including a light-emitting body on the second electrode, overlapping with the second electrode through the stacked body, and extending on the partition layer, A light-emitting device, comprising: a third electrode connected to the first electrode; and a light-emitting element connected to the thin film transistor. 薄膜トランジスタに接続する個別画素電極がマトリクス状に配置され、当該個別画素電極は絶縁表面に形成され、前記個別画素電極上には、発光体を含む一つの層又は複数の層の積層体と、それを介して前記個別画素電極と重畳し、互いに交差することなく、延設される、第1共通電極及び第2共通電極を有し、前記第1共通電極と第2共通電極とは、発光時に同一の電位が印加され、非発光時には異なる電位が印加されることを特徴とする発光装置。Individual pixel electrodes connected to the thin film transistor are arranged in a matrix, the individual pixel electrodes are formed on an insulating surface, and a single layer or a stacked layer of a plurality of layers including a light-emitting body is provided on the individual pixel electrodes. A first common electrode and a second common electrode, which are overlapped with the individual pixel electrodes via each other and extend without intersecting each other, and the first common electrode and the second common electrode A light-emitting device in which the same potential is applied and different potentials are applied when light is not emitted. 薄膜トランジスタに接続する個別画素電極がマトリクス状に配置され、当該個別画素電極は絶縁表面に形成され、前記個別画素電極上に開口部を有する隔壁層を有し、前記個別画素電極上には、発光体を含む一つの層又は複数の層の積層体と、それを介して前記個別画素電極と重畳し、互いに交差することなく、前記隔壁層上に延設される、第1共通電極及び第2共通電極を有し、前記第1共通電極と第2共通電極とは、発光時に同一の電位が印加され、非発光時には異なる電位が印加されることを特徴とする発光装置。Individual pixel electrodes connected to the thin film transistor are arranged in a matrix, the individual pixel electrodes are formed on an insulating surface, and have a partition layer having an opening on the individual pixel electrode. A first common electrode and a second stacked body including one or a plurality of layers including a body, and overlapping with the individual pixel electrode through the stacked body and extending on the partition layer without crossing each other. A light emitting device having a common electrode, wherein the first common electrode and the second common electrode are applied with the same potential during light emission, and different potentials are applied during non-light emission. 請求項10又は11において、前記第1共通電極と、前記第2共通電極とは、互いに異なる電源に接続されていることを特徴とする発光装置。The light-emitting device according to claim 10, wherein the first common electrode and the second common electrode are connected to different power supplies.
JP2003120650A 2002-04-30 2003-04-24 Method for manufacturing active matrix light-emitting device Expired - Fee Related JP4342827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120650A JP4342827B2 (en) 2002-04-30 2003-04-24 Method for manufacturing active matrix light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002129408 2002-04-30
JP2003120650A JP4342827B2 (en) 2002-04-30 2003-04-24 Method for manufacturing active matrix light-emitting device

Publications (3)

Publication Number Publication Date
JP2004031335A true JP2004031335A (en) 2004-01-29
JP2004031335A5 JP2004031335A5 (en) 2006-06-15
JP4342827B2 JP4342827B2 (en) 2009-10-14

Family

ID=31190025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120650A Expired - Fee Related JP4342827B2 (en) 2002-04-30 2003-04-24 Method for manufacturing active matrix light-emitting device

Country Status (1)

Country Link
JP (1) JP4342827B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310659A (en) * 2004-04-23 2005-11-04 Nippon Seiki Co Ltd Manufacturing method for organic el panel
JP2006091866A (en) * 2004-08-27 2006-04-06 Semiconductor Energy Lab Co Ltd Display device and electronic device
JP2007042498A (en) * 2005-08-04 2007-02-15 Aitesu:Kk Organic EL laser repair method and laser repair apparatus
JP2007042492A (en) * 2005-08-04 2007-02-15 Aitesu:Kk Organic EL repair method and repair device
JP2007066707A (en) * 2005-08-31 2007-03-15 Denso Corp Manufacturing method of organic el element
US7462897B2 (en) 2005-01-31 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
JP2009128374A (en) * 2007-11-19 2009-06-11 Sony Corp Active matrix display device
JP2009181766A (en) * 2008-01-30 2009-08-13 Kyocera Corp Organic el display, and method of manufacturing organic el display
JP2010108693A (en) * 2008-10-29 2010-05-13 Sony Corp Organic el display and its manufacturing method
US7834827B2 (en) 2004-07-30 2010-11-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method thereof
WO2010137452A1 (en) * 2009-05-28 2010-12-02 コニカミノルタホールディングス株式会社 Organic el panel inspection method, organic el panel inspection device, and organic el panel
WO2012046819A1 (en) * 2010-10-08 2012-04-12 三菱化学株式会社 Method of controlling illumination apparatus
JP2012510135A (en) * 2008-11-25 2012-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Short circuit prevention of organic light emitting diodes
JP2015191868A (en) * 2014-03-28 2015-11-02 Necライティング株式会社 Repair method for organic el element, manufacturing method of organic el panel and light-emitting device
KR20180002436A (en) * 2016-06-29 2018-01-08 엘지디스플레이 주식회사 Top Emission Type Organic Light Emitting Diode Display

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162637A (en) * 1997-11-25 1999-06-18 Matsushita Electron Corp How to repair organic light emitting diodes
JPH11305727A (en) * 1998-04-21 1999-11-05 Pioneer Electron Corp Driving method of light emitting display
JP2000068056A (en) * 1998-08-17 2000-03-03 Matsushita Electric Ind Co Ltd Driving method of organic light emitting diode panel
JP2000347621A (en) * 1999-06-09 2000-12-15 Nec Corp Method and device for image display
JP2001109432A (en) * 1999-10-06 2001-04-20 Pioneer Electronic Corp Driving device for active matrix light emitting panel
JP2001117534A (en) * 1999-10-21 2001-04-27 Pioneer Electronic Corp Active matrix display device and driving method thereof
US20020042152A1 (en) * 2000-10-10 2002-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating and/or repairing a light emitting device
JP2002318556A (en) * 2001-04-20 2002-10-31 Toshiba Corp Active matrix type flat display device and manufacturing method thereof
JP2003059660A (en) * 2001-08-17 2003-02-28 Toshiba Corp Manufacturing method of self-luminescence display
JP2003068472A (en) * 2001-08-29 2003-03-07 Hitachi Ltd Organic light emitting device and organic light emitting display using the same
JP2003295792A (en) * 2002-01-29 2003-10-15 Internatl Business Mach Corp <Ibm> Organic LED device and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162637A (en) * 1997-11-25 1999-06-18 Matsushita Electron Corp How to repair organic light emitting diodes
JPH11305727A (en) * 1998-04-21 1999-11-05 Pioneer Electron Corp Driving method of light emitting display
JP2000068056A (en) * 1998-08-17 2000-03-03 Matsushita Electric Ind Co Ltd Driving method of organic light emitting diode panel
JP2000347621A (en) * 1999-06-09 2000-12-15 Nec Corp Method and device for image display
JP2001109432A (en) * 1999-10-06 2001-04-20 Pioneer Electronic Corp Driving device for active matrix light emitting panel
JP2001117534A (en) * 1999-10-21 2001-04-27 Pioneer Electronic Corp Active matrix display device and driving method thereof
US20020042152A1 (en) * 2000-10-10 2002-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating and/or repairing a light emitting device
JP2002318556A (en) * 2001-04-20 2002-10-31 Toshiba Corp Active matrix type flat display device and manufacturing method thereof
JP2003059660A (en) * 2001-08-17 2003-02-28 Toshiba Corp Manufacturing method of self-luminescence display
JP2003068472A (en) * 2001-08-29 2003-03-07 Hitachi Ltd Organic light emitting device and organic light emitting display using the same
JP2003295792A (en) * 2002-01-29 2003-10-15 Internatl Business Mach Corp <Ibm> Organic LED device and method of manufacturing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310659A (en) * 2004-04-23 2005-11-04 Nippon Seiki Co Ltd Manufacturing method for organic el panel
US8624807B2 (en) 2004-07-30 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method thereof
US7834827B2 (en) 2004-07-30 2010-11-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method thereof
JP2006091866A (en) * 2004-08-27 2006-04-06 Semiconductor Energy Lab Co Ltd Display device and electronic device
US7462897B2 (en) 2005-01-31 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
JP2007042492A (en) * 2005-08-04 2007-02-15 Aitesu:Kk Organic EL repair method and repair device
JP2007042498A (en) * 2005-08-04 2007-02-15 Aitesu:Kk Organic EL laser repair method and laser repair apparatus
JP2007066707A (en) * 2005-08-31 2007-03-15 Denso Corp Manufacturing method of organic el element
JP2009128374A (en) * 2007-11-19 2009-06-11 Sony Corp Active matrix display device
US8013513B2 (en) 2007-11-19 2011-09-06 Sony Corporation Active matrix display device
JP2009181766A (en) * 2008-01-30 2009-08-13 Kyocera Corp Organic el display, and method of manufacturing organic el display
JP2010108693A (en) * 2008-10-29 2010-05-13 Sony Corp Organic el display and its manufacturing method
US8518754B2 (en) 2008-10-29 2013-08-27 Sony Corporation Organic EL display and method of manufacturing the same
US8188476B2 (en) 2008-10-29 2012-05-29 Sony Corporation Organic EL display and method of manufacturing the same
JP2012510135A (en) * 2008-11-25 2012-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Short circuit prevention of organic light emitting diodes
WO2010137452A1 (en) * 2009-05-28 2010-12-02 コニカミノルタホールディングス株式会社 Organic el panel inspection method, organic el panel inspection device, and organic el panel
JPWO2010137452A1 (en) * 2009-05-28 2012-11-12 コニカミノルタホールディングス株式会社 Organic EL panel inspection method, organic EL panel inspection apparatus, and organic EL panel
US8841928B2 (en) 2009-05-28 2014-09-23 Konica Minolta Holdings, Inc. Organic EL panel inspection method, organic EL panel inspection device, and organic EL panel
WO2012046819A1 (en) * 2010-10-08 2012-04-12 三菱化学株式会社 Method of controlling illumination apparatus
US8841848B2 (en) 2010-10-08 2014-09-23 Mitsubishi Chemical Corporation Method of controlling illumination apparatus
JP2015191868A (en) * 2014-03-28 2015-11-02 Necライティング株式会社 Repair method for organic el element, manufacturing method of organic el panel and light-emitting device
KR20180002436A (en) * 2016-06-29 2018-01-08 엘지디스플레이 주식회사 Top Emission Type Organic Light Emitting Diode Display
KR102715832B1 (en) 2016-06-29 2024-10-10 엘지디스플레이 주식회사 Top Emission Type Organic Light Emitting Diode Display

Also Published As

Publication number Publication date
JP4342827B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US7759859B2 (en) Light emitting device and manufacturing method thereof
US7986095B2 (en) Organic light emitting diode with enhanced luminance and light uniformity
KR101790349B1 (en) Thin film transistor, method of manufacturing thin film transistor, method of increasing threshold voltage of thin film transistor, and display device
US7928971B2 (en) Active matrix organic electroluminescent display device and method of fabricating the same
CN100585905C (en) display device
US7554265B2 (en) Display device
US7863602B2 (en) Organic light emitting diode display and method for manufacturing the same
US6524884B1 (en) Method for fabricating an organic electroluminescene device having organic field effect transistor and organic eloectroluminescence diode
CN104347819B (en) Flexible organic electroluminescent device and method of fabricating the same
US7710019B2 (en) Organic light-emitting diode display comprising auxiliary electrodes
US20040012058A1 (en) Electro-optical device and electronic apparatus
US20090153033A1 (en) Organic light emitting diode device and method of manufacturing the same
JP5372337B2 (en) Organic thin film transistor substrate and manufacturing method thereof, and image display panel and manufacturing method thereof
JP4342827B2 (en) Method for manufacturing active matrix light-emitting device
US8087962B2 (en) Manufacturing method of display apparatus
US6483123B1 (en) Organic electroluminescent device having organic field effect transistor and organic light-emitting diode and method for fabricating the same
TW201320328A (en) Organic light emitting display device and method of manufacturing same
JP2004165067A (en) Organic electroluminescent panel
EP2144291A1 (en) Organic light emitting display and method of fabricating the same
US7915613B2 (en) Organic light emitting display device and method of manufacturing the same
US7897270B2 (en) Organic light emitting diode display and manufacturing method thereof
CN100385674C (en) Light emitting body, light emitting element and light emitting display device
US7626330B2 (en) Organic electroluminescence display device
US20070269916A1 (en) Organic light emitting diode display and manufacturing method
JP6779839B2 (en) Manufacturing method of organic EL display panel and organic EL display panel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees