[go: up one dir, main page]

JP2004028375A - Refrigerating equipment combined with absorption type and compression type and operating method thereof - Google Patents

Refrigerating equipment combined with absorption type and compression type and operating method thereof Download PDF

Info

Publication number
JP2004028375A
JP2004028375A JP2002181672A JP2002181672A JP2004028375A JP 2004028375 A JP2004028375 A JP 2004028375A JP 2002181672 A JP2002181672 A JP 2002181672A JP 2002181672 A JP2002181672 A JP 2002181672A JP 2004028375 A JP2004028375 A JP 2004028375A
Authority
JP
Japan
Prior art keywords
compressor
condenser
pipe
compression
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002181672A
Other languages
Japanese (ja)
Other versions
JP3821286B2 (en
Inventor
Osayuki Inoue
井上 修行
Izumi Hashimoto
橋本 泉
Kiichi Irie
入江 毅一
Tetsuya Endo
遠藤 哲也
Atsushi Aoyama
青山 淳
Tomoyuki Uchimura
内村 知行
Yukihiro Fukuzumi
福住 幸大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002181672A priority Critical patent/JP3821286B2/en
Publication of JP2004028375A publication Critical patent/JP2004028375A/en
Application granted granted Critical
Publication of JP3821286B2 publication Critical patent/JP3821286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating equipment that can be used for an air conditioner, economically and efficiently operated by selecting the optimal operation mode of a compression freezer. <P>SOLUTION: This freezing equipment is constituted by combining an absorption freezer having an evaporator E and a compression freezer having two or more compressors M1, M2, a first condenser C1 cooling by outside air or cooling water, a second condenser C2 connected having heat exchange relation with the evaporator E of the absorption freezer, a use side evaporator Ec providing a cooling effect, and a pipe circulating and connecting them. The compressors M1, M2 are connected in parallel with each other. The compressor M1 is connected by a pipe with the first condenser C1 at the discharge side, and the outlet side of the first condenser C1 is connected by a pipe with an inlet of the second condenser C2. The compressor M2 is connected at the discharge side with a pipe between the first and second condensers and is provided with a by-pass pipe 6 by-passing the compressor M2 in parallel with the compressor M2. The control valve V1 is provided to the by-pass pipe 6. A pipe on the discharge side of the compressor M2 and that of the compressor M1 can be connected by a pipe having a selector valve equivalent with a three-way valve. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍装置に係り、特に、エンジン、タービン、各種プラント等からの排熱を熱源とする吸収冷凍機又は吸収冷温水機からの冷凍効果を、圧縮冷凍機と組合せて有効利用する空気調和装置として使用できる冷凍装置に関する。
【0002】
【従来の技術】
一般にコージェネレーションシステムでは、発電に伴って排気ガスや温水等の形で熱が排出される。これら排熱は、温度があまり高くないことから、低ポテンシャルエネルギに分類され、給湯又は暖房に利用されることが多い。最近では排熱で吸収冷凍機を運転して、冷房に利用することも多くなってきている。
コージェネレーションシステムの中で、この排熱は、ガスタービンやエンジンの排気ガス及び冷却水、あるいは、燃料電池の冷却水から得られる。排熱だけで吸収冷凍機を運転する場合もあるが、複合冷房装置として、排熱を高ポテンシャルエネルギと共に用いることで、運転に要する高ポテンシャルエネルギの量を節約する使い方が提案され、採用され始めている。
【0003】
ところで、排熱は発電量に応じて変化するため、その供給量は不安定であり、排熱だけで吸収冷凍機を運転する場合、冷房負荷に応じた能力を取出すことは困難である。これを解決するために、吸収冷凍機の冷熱を圧縮冷凍機の放熱源として用いて、循環冷媒を冷却する冷凍装置が知られている。しかし、この冷凍装置の圧縮冷凍機では、圧縮機で圧縮した冷媒蒸気を熱源側熱交換器(凝縮器)で凝縮させ、この凝縮液を、吸収冷凍機の蒸発器で過冷却させており、吸収冷凍効果は、冷房負荷に関係なく、常に圧縮冷凍機を運転した状態で利用する必要があり、また過冷却分だけで利用しているので、吸収冷凍効果の比率(圧縮冷凍効果に対する比率)を大きくすることができず、圧縮機を駆動する電動機の消費電力を大幅には削減ができないという問題があった。
【0004】
【発明が解決しようとする課題】
本発明では、上記従来技術の問題点を解消し、供給される排熱の量や冷房負荷に応じて、圧縮冷凍機の運転モードを最適なものに切替えることにより、経済的で効率の良い運転ができ、空気調和装置に使用できる冷凍装置を提供する。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、蒸発器を有する吸収冷凍機と、2台以上の圧縮機、外気又は冷却水で冷却する第一凝縮器、前記吸収冷凍機の蒸発器と熱交換関係に接続した第二凝縮器、冷凍効果を発揮する利用側蒸発器及びそれらを循環接続する配管を有する圧縮冷凍機とを組合せた冷凍装置であって、前記2台以上の圧縮機を並列に接続し、該第一の圧縮機は、吐出側を第一凝縮器と配管接続し、該第一凝縮器の出口側を第二凝縮器の入口に配管接続し、前記他の圧縮機は、吐出側を第一凝縮器と第二凝縮器の間の配管に接続すると共に、該圧縮機をバイパスするバイパス管を圧縮機と並列に設け、該バイパス管には制御弁を有していることを特徴とする冷凍装置としたものである。
【0006】
前記冷凍装置において、圧縮冷凍機には、他の圧縮機の吐出側の配管と第一の圧縮機の吐出側の配管とが、三方弁相当の切替弁を有する配管で接続されると共に、第一の圧縮機の吐出側から他の圧縮機の吐出側への接続と、他の圧縮機の吐出側から第一凝縮器と第二凝縮器の間の配管への接続とを切替可能とすることができ、また、前記第一凝縮器と第二凝縮器との間の配管で、他の圧縮機の吐出側と接続する前に、三方弁相当の切替弁を設け、第二凝縮器をバイパスするバイパス管を接続することができ、前記圧縮冷凍機は、吸収冷凍機1台に対し、複数台を接続することができる。
【0007】
また、本発明では、前記の冷凍装置の運転方法において、圧縮冷凍機は、第一の圧縮機と他の圧縮機を有し、次の(a)〜(e)の運転モード、
(a)第一の圧縮機を運転し、圧縮蒸気を第一凝縮器で凝縮させ、他の圧縮機を停止、バイパス制御弁を全閉とする運転モード、
(b)圧縮機を停止し、バイパス制御弁を全開又は開度調節し、第二凝縮器で冷媒蒸気を凝縮させる運転モード、
(c)第一の圧縮機を停止、他の圧縮機を運転し、バイパス制御弁を全閉とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、
(d)第一の圧縮機を運転し、圧縮蒸気を第一凝縮器で凝縮させると共に、他の圧縮機を停止し、バイパス制御弁を全開とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、
(e)第一の圧縮機を運転し、圧縮蒸気を第一凝縮器で凝縮させ、他の圧縮機を運転し、圧縮蒸気を第二凝縮器で凝縮させる運転モード、
のうちの少なくとも3種類以上の運転モードで運転することを特徴とする冷凍装置の運転方法としたものである。
【0008】
【発明の実施の形態】
本発明は、圧縮冷凍機の凝縮熱の放出先として、吸収冷凍機を利用するもので、特に冷房負荷及び吸収冷凍機運転状態(吸収冷凍効果への負荷状態など)に応じて、圧縮冷凍機の運転状態を選択して圧縮機の所要動力(ヘッド)の低減等、エネルギ節約を図ろうとするものである。
本発明では、圧縮冷凍機の第一凝縮器の機能ON/OFFを冷却媒体の供給/停止で行い、また圧縮機を高ヘッド機、低ヘッド機の2機(以上)とし、さらに圧縮機のバイパス回路を設けて、負荷に応じて冷媒フロー(運転モード)を切替え、圧縮機あるいはバイパスの選択により、吸収冷凍機からの冷熱を有効に利用して、圧縮機の消費電力を削減することができる。
【0009】
次に、本発明を図面を用いて詳細に説明する。
図1〜図3は、本発明の冷凍装置の圧縮冷凍機側の構成機器の接続例を示すフロー構成図であり、図4は、本発明の冷凍装置の吸収冷凍機と圧縮冷凍機とを組合せた接続例を示すフロー構成図である。
図において、M1、M2は圧縮機、Ecは蒸発器、C1は第一凝縮器、C2は第二凝縮器、V1は制御弁、V2、V3は切替弁、V4、V5は制御弁(膨張弁)、Pは液ポンプ、INVはインバータ、2〜5は循環配管、6、8はバイパス配管、7は接続配管を示す。
【0010】
次に、図1を用いた運転モードについて説明する。
▲1▼モード1(M1+C1)は、吸収冷凍機が停止している場合など、第二凝縮器C2に吸収冷凍効果搬送媒体(冷水など)が供給されない時の運転モードで、通常の圧縮冷凍機と同様な運転となる。冷媒は圧縮機M1で圧縮され、第一凝縮器C1で凝縮・過冷却する。制御弁(膨張弁)で過冷却度を調節すると共に、冷媒蒸気の吹き抜けを調節している。液化した冷媒は、第二凝縮器C2を通過し、蒸発器Ecに入り、被冷却媒体の熱を奪って蒸発し、再び圧縮機M1に吸込まれ、冷凍サイクルを成す。
▲2▼モード2(C2直接凝縮)は、吸収冷凍機で得られる冷熱が充分な時に、圧縮機M1、M2を停止し、M1バイパス弁V1を開けて蒸発器Ecで蒸発した冷媒を第二凝縮器C2で凝縮させて、自然循環、又は液ポンプにより循環させる運転である。
このモードでは、圧縮機を運転しないため、所要電力を大幅に削減することができる。
【0011】
▲3▼モード3(M2+C2)は、吸収冷凍機で得られる冷熱の温度が直接凝縮するには高すぎる場合など、低ヘッド圧縮機M2を運転し、冷媒蒸気を第二凝縮器C2で凝縮させる運転である。M2バイパス弁は全閉とする。
▲4▼モード4(M1+C1+C2直接凝縮)は、吸収冷凍機で得られる冷熱温度は、直接凝縮させられるが、熱量が不足する場合では、C2での直接凝縮と、高ヘッド圧縮機M1+第一凝縮器C1の運転をする。C1で凝縮した冷媒はC2で過冷却する。
この運転でC1出口の制御弁(膨張弁)を少し開方向とし、冷媒蒸気と凝縮液の二相状態で第二凝縮器C2に冷媒を導いてもよい。このとき、第一凝縮器C1内の冷媒流動が活発になり、また凝縮冷媒液による伝熱悪化も解消され、伝熱が非常によくなり、凝縮圧力は低下し、圧縮動力の低減ができる。ただし、吸収冷凍効果への負荷は大きくなる。
▲5▼モード5(M1+Cl、M2+C2)は、吸収冷凍機で得られる冷熱の温度が不十分で、熱量も不足する場合のモードであり、高ヘッド圧縮機M1+第一凝縮器C1及び低ヘッド圧縮機M2+第二凝縮器C2の運転をする。
【0012】
図2は、図1に、M2の吐出側に切替弁V2を設け、M1の吐出側と配管7で接続している。
第一凝縮器C1に接続する圧縮機を選択可能としている。
モード1の運転で、第一凝縮器C1を冷却する媒体の温度が所定値以上のときは高ヘッド圧縮機M1を選択し、未満であれば低ヘッド圧縮機M2を選択する。
図3は、C1とC2の配管3に切替弁V3を設け、C2をバイパスする配管8を接続している。
第二凝縮器C2にかかる負荷を調節するため、第一凝縮器C1からの冷媒液を、第二凝縮器C2をバイパスできるようにしたものである。
【0013】
図4は、吸収冷凍機と圧縮冷凍機とを組合せたフロー構成図であり、Aは吸収器、Eは蒸発器、Gは再生器、Cは凝縮器、SPは吸収溶液ポンプ、RPは冷媒ポンプ、1は吸収冷凍機、10は熱交換器11〜14、16は溶液管路、15、17、18は冷媒管路、19は冷水循環路、20は冷却水循環路、21は排熱源流路である。
図4において、吸収冷凍機では、冷媒を吸収した溶液は、吸収器Aから吸収溶液ポンプSPにより熱交換器10の被加熱側を通り、管路12から再生器Gへと導かれる。再生器Gでは、溶液は、外部ガスタービン等からの排ガスを熱源、として加熱されて冷媒を蒸発して濃縮され、管路13から熱交換器10の加熱側を通り、吸収器Aへ導入される。
一方、再生器Gで発生した冷媒蒸気は、凝縮器Cにおいて冷却水により凝縮した後蒸発器Eへと導かれ、蒸発器Eでは、冷水循環路19から潜熱を奪うことで冷水の取り出しが可能となる。
圧縮冷凍機サイクルは図1の構成であり、前記の蒸発器Eの吸収冷凍効果を搬送媒体(例えば、冷水循環路19)で凝縮器C2に接続している。
【0014】
吸収冷凍機は、単効用、二重効用、一二重効用等、特に限定はなく、また吸収冷凍機の作動媒体による限定もない。熱源の形態も、温水、水蒸気、燃料あるいは排ガスなど特に限定はなく、また、排熱に限定せず、安価な燃料などを熱源とする吸収冷凍機であってもよい。
1台の圧縮冷凍機を構成する各機器は複数器であっても差支えない。
圧縮冷凍機として説明しているが、配管切替でヒートポンプによる暖房運転とする形態をとってもよい。そのとき、吸収冷凍機を冷温水機として温熱をヒートポンプに与え、あるいは、排熱源を直接ヒートポンプに与えても良い。
【0015】
【発明の効果】
本発明によれば、供給される排熱の量や冷房負荷に応じて、圧縮冷凍機の運転モードを最適なものに切替えることにより、経済的で効率の良い運転ができ、空気調和装置に使用できる冷凍装置を提供することができた。
【図面の簡単な説明】
【図1】本発明の冷凍装置の圧縮冷凍機の一例を示すフロー構成図。
【図2】本発明の冷凍装置の圧縮冷凍機の他の例を示すフロー構成図。
【図3】本発明の冷凍装置の圧縮冷凍機の他の例を示すフロー構成図。
【図4】本発明の冷凍装置の吸収冷凍機と圧縮冷凍機を組合せた例を示すフロー構成図。
【符号の説明】
M1、M2:圧縮機、Ec:蒸発器、C1:第一凝縮器、C2:第二凝縮器、V1:制御弁、V2、V3:切替弁、V4、V5:制御弁(膨張弁)、P:液ポンプ、INV:インバータ、A:吸収器、E:蒸発器、G:再生器、C:凝縮器、SP:吸収溶液ポンプ、RP:冷媒ポンプ、1:吸収冷凍機、2〜5:循環配管、6、8:バイパス配管、7:接続配管、10:熱交換器、11〜14、16:溶液管路、15、17、18:冷媒管路、19:冷水循環路、20:冷却水循環路、21:排熱源流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerating apparatus, and in particular, air that effectively utilizes a refrigerating effect from an absorption refrigerator or an absorption chiller / heater using exhaust heat from an engine, a turbine, various plants or the like as a heat source in combination with a compression refrigerator. The present invention relates to a refrigeration device that can be used as a harmony device.
[0002]
[Prior art]
Generally, in a cogeneration system, heat is discharged in the form of exhaust gas, hot water, or the like, along with power generation. Since the exhaust heat is not so high in temperature, it is classified as low potential energy and is often used for hot water supply or heating. Recently, absorption chillers have been operated with waste heat and used for cooling.
In the cogeneration system, the exhaust heat is obtained from exhaust gas and cooling water of a gas turbine or an engine, or cooling water of a fuel cell. In some cases, an absorption refrigerator is operated using only exhaust heat. However, as a combined cooling device, a method of using exhaust heat together with high potential energy to save the amount of high potential energy required for operation has been proposed and adopted. I have.
[0003]
By the way, since the exhaust heat changes according to the power generation amount, the supply amount is unstable, and it is difficult to obtain the capacity according to the cooling load when operating the absorption refrigerator only with the exhaust heat. In order to solve this, a refrigerating apparatus that cools a circulating refrigerant by using cold heat of an absorption refrigerator as a heat radiation source of a compression refrigerator is known. However, in the compression refrigerator of this refrigerator, the refrigerant vapor compressed by the compressor is condensed by a heat source side heat exchanger (condenser), and the condensate is supercooled by an evaporator of an absorption refrigerator. Regarding the absorption refrigeration effect, it is necessary to always use it while the compression chiller is running, regardless of the cooling load, and since it is used only for the subcooling, the ratio of the absorption refrigeration effect (ratio to the compression refrigeration effect) Therefore, there has been a problem that the power consumption of the motor driving the compressor cannot be significantly reduced.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and switches the operation mode of the compression refrigerator to an optimum one according to the amount of supplied exhaust heat and the cooling load, thereby achieving economical and efficient operation. And a refrigeration apparatus that can be used for an air conditioner.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an absorption refrigerator having an evaporator, two or more compressors, a first condenser cooled by outside air or cooling water, and heat exchange with an evaporator of the absorption refrigerator. A refrigeration apparatus combining a second condenser connected in a relationship, a use side evaporator exhibiting a refrigeration effect, and a compression refrigerator having a pipe for circulating them, wherein the two or more compressors are connected in parallel. Connecting the first compressor, the discharge side is connected to the first condenser by piping, the outlet side of the first condenser is connected to the inlet of the second condenser by piping, and the other compressor is The discharge side is connected to a pipe between the first condenser and the second condenser, and a bypass pipe for bypassing the compressor is provided in parallel with the compressor, and the bypass pipe has a control valve. A refrigeration apparatus characterized by the following.
[0006]
In the refrigeration apparatus, the compression refrigerator is connected to a discharge-side pipe of another compressor and a discharge-side pipe of the first compressor by a pipe having a switching valve equivalent to a three-way valve. The connection from the discharge side of one compressor to the discharge side of another compressor and the connection from the discharge side of the other compressor to the pipe between the first condenser and the second condenser can be switched. Before connecting to the discharge side of another compressor with a pipe between the first condenser and the second condenser, a switching valve equivalent to a three-way valve is provided, and the second condenser is provided. A bypass pipe for bypassing can be connected, and a plurality of compression refrigerators can be connected to one absorption refrigerator.
[0007]
Also, in the present invention, in the method for operating the refrigeration apparatus, the compression refrigerator includes a first compressor and another compressor, and includes the following operation modes (a) to (e);
(A) an operation mode in which the first compressor is operated, compressed steam is condensed in the first condenser, the other compressors are stopped, and the bypass control valve is fully closed;
(B) an operation mode in which the compressor is stopped, the bypass control valve is fully opened or the opening is adjusted, and the refrigerant vapor is condensed in the second condenser;
(C) an operation mode in which the first compressor is stopped, the other compressors are operated, the bypass control valve is fully closed, and the refrigerant vapor is condensed in the second condenser,
(D) Operation of operating the first compressor, condensing the compressed vapor in the first condenser, stopping other compressors, fully opening the bypass control valve, and condensing the refrigerant vapor in the second condenser. mode,
(E) an operation mode in which the first compressor is operated, the compressed steam is condensed in the first condenser, the other compressor is operated, and the compressed steam is condensed in the second condenser,
Operating the refrigeration system in at least three types of operation modes.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention utilizes an absorption refrigerator as a destination of the condensation heat of the compression refrigerator. In particular, the compression refrigerator depends on the cooling load and the operation state of the absorption refrigerator (load state on the absorption refrigerator effect, etc.). In order to save energy, for example, by reducing the required power (head) of the compressor by selecting the operating state of the compressor.
In the present invention, the ON / OFF of the function of the first condenser of the compression refrigerator is performed by supplying / stopping the cooling medium, and the compressor is a high-head machine and a low-head machine (or more). By providing a bypass circuit, the refrigerant flow (operating mode) is switched according to the load, and by selecting the compressor or the bypass, the cooling heat from the absorption refrigerator can be effectively used to reduce the power consumption of the compressor. it can.
[0009]
Next, the present invention will be described in detail with reference to the drawings.
1 to 3 are flow configuration diagrams showing connection examples of components on the compression refrigerator side of the refrigeration apparatus of the present invention. FIG. 4 shows an absorption refrigerator and a compression refrigerator of the refrigeration apparatus of the present invention. It is a flow block diagram which shows the example of a combined connection.
In the figure, M1 and M2 are compressors, Ec is an evaporator, C1 is a first condenser, C2 is a second condenser, V1 is a control valve, V2 and V3 are switching valves, and V4 and V5 are control valves (expansion valves). ), P is a liquid pump, INV is an inverter, 2 to 5 are circulation pipes, 6 and 8 are bypass pipes, and 7 is a connection pipe.
[0010]
Next, the operation mode using FIG. 1 will be described.
{Circle around (1)} Mode 1 (M1 + C1) is an operation mode when the absorption refrigeration effect transfer medium (such as cold water) is not supplied to the second condenser C2, such as when the absorption refrigerator is stopped, and is a normal compression refrigerator. The operation is the same as. The refrigerant is compressed by the compressor M1, and is condensed and supercooled in the first condenser C1. The control valve (expansion valve) controls the degree of supercooling and also controls the blow-through of refrigerant vapor. The liquefied refrigerant passes through the second condenser C2, enters the evaporator Ec, evaporates by removing heat of the medium to be cooled, and is sucked into the compressor M1 again to form a refrigeration cycle.
(2) Mode 2 (C2 direct condensation) is to stop the compressors M1 and M2, open the M1 bypass valve V1, and transfer the refrigerant evaporated by the evaporator Ec to the second when the cooling heat obtained by the absorption refrigerator is sufficient. This is an operation of condensing in the condenser C2 and circulating by natural circulation or a liquid pump.
In this mode, since the compressor is not operated, the required power can be significantly reduced.
[0011]
{Circle around (3)} Mode 3 (M2 + C2) operates the low-head compressor M2 to condense the refrigerant vapor in the second condenser C2, for example, when the temperature of the cold obtained in the absorption refrigerator is too high to directly condense. Driving. The M2 bypass valve is fully closed.
{Circle around (4)} In mode 4 (M1 + C1 + C2 direct condensation), the cooling temperature obtained by the absorption refrigerator is directly condensed. However, when the amount of heat is insufficient, the direct condensation in C2 and the high head compressor M1 + first condensation are performed. The device C1 is operated. The refrigerant condensed in C1 is supercooled in C2.
In this operation, the control valve (expansion valve) at the outlet of C1 may be slightly opened, and the refrigerant may be guided to the second condenser C2 in a two-phase state of the refrigerant vapor and the condensate. At this time, the refrigerant flow in the first condenser C1 becomes active, and the heat transfer deterioration due to the condensed refrigerant liquid is also eliminated, the heat transfer becomes very good, the condensing pressure decreases, and the compression power can be reduced. However, the load on the absorption refrigeration effect increases.
(5) Mode 5 (M1 + Cl, M2 + C2) is a mode in which the temperature of the cold heat obtained by the absorption refrigerator is insufficient and the amount of heat is also insufficient, and the high head compressor M1 + the first condenser C1 and the low head compression are used. The operation of the machine M2 + the second condenser C2 is performed.
[0012]
FIG. 2 shows a configuration in which a switching valve V2 is provided on the discharge side of M2 in FIG.
The compressor connected to the first condenser C1 can be selected.
In the operation of mode 1, when the temperature of the medium for cooling the first condenser C1 is equal to or higher than a predetermined value, the high head compressor M1 is selected, and when it is lower than the predetermined value, the low head compressor M2 is selected.
In FIG. 3, a switching valve V3 is provided in the pipes 3 of C1 and C2, and a pipe 8 that bypasses C2 is connected.
In order to adjust the load applied to the second condenser C2, the refrigerant liquid from the first condenser C1 can be bypassed to the second condenser C2.
[0013]
FIG. 4 is a flow diagram showing a combination of an absorption refrigerator and a compression refrigerator. A is an absorber, E is an evaporator, G is a regenerator, C is a condenser, SP is an absorption solution pump, and RP is a refrigerant. A pump, 1 is an absorption refrigerator, 10 is a heat exchanger, 11 to 14, 16 are solution pipelines, 15, 17, and 18 are refrigerant pipelines, 19 is a cold water circulation channel, 20 is a cooling water circulation channel, and 21 is a waste heat source flow. Road.
In FIG. 4, in the absorption refrigerator, the solution having absorbed the refrigerant passes from the absorber A to the regenerator G through the pipe 12 through the heated side of the heat exchanger 10 by the absorption solution pump SP. In the regenerator G, the solution is heated using exhaust gas from an external gas turbine or the like as a heat source, evaporates a refrigerant, is concentrated, and is introduced into the absorber A from the pipe 13 through the heating side of the heat exchanger 10. You.
On the other hand, the refrigerant vapor generated in the regenerator G is condensed by the cooling water in the condenser C and then guided to the evaporator E. In the evaporator E, the cold water can be taken out by removing latent heat from the chilled water circulation path 19. It becomes.
The compression refrigeration cycle has the configuration shown in FIG. 1, and the absorption refrigeration effect of the evaporator E is connected to the condenser C2 by a transport medium (for example, the cold water circulation path 19).
[0014]
The absorption refrigerator is not particularly limited, such as single-effect, double-effect, and single-effect, and is not limited by the working medium of the absorption refrigerator. The form of the heat source is not particularly limited, such as hot water, steam, fuel or exhaust gas, and is not limited to exhaust heat, and may be an absorption refrigerator using inexpensive fuel or the like as a heat source.
Each device constituting one compression refrigerator may be a plurality of devices.
Although described as a compression refrigerator, a mode in which heating operation is performed by a heat pump by switching pipes may be employed. At this time, heat may be supplied to the heat pump using the absorption refrigerator as a chiller / heater, or an exhaust heat source may be supplied directly to the heat pump.
[0015]
【The invention's effect】
According to the present invention, an economical and efficient operation can be performed by switching the operation mode of a compression refrigerator to an optimum one according to an amount of supplied exhaust heat and a cooling load, and the compressor is used for an air conditioner. It was possible to provide a refrigerating device that can be used.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of a compression refrigerator of a refrigerator of the present invention.
FIG. 2 is a flow configuration diagram showing another example of the compression refrigerator of the refrigerator of the present invention.
FIG. 3 is a flowchart showing another example of the compression refrigerator of the refrigerator of the present invention.
FIG. 4 is a flow diagram showing an example in which an absorption refrigerator and a compression refrigerator of the refrigerator of the present invention are combined.
[Explanation of symbols]
M1, M2: compressor, Ec: evaporator, C1: first condenser, C2: second condenser, V1: control valve, V2, V3: switching valve, V4, V5: control valve (expansion valve), P : Liquid pump, INV: inverter, A: absorber, E: evaporator, G: regenerator, C: condenser, SP: absorption solution pump, RP: refrigerant pump, 1: absorption refrigerator, 2-5: circulation Piping, 6, 8: bypass piping, 7: connection piping, 10: heat exchanger, 11 to 14, 16: solution piping, 15, 17, 18: refrigerant piping, 19: cold water circulation, 20: cooling water circulation Road 21: Exhaust heat source flow path

Claims (5)

蒸発器を有する吸収冷凍機と、2台以上の圧縮機、外気又は冷却水で冷却する第一凝縮器、前記吸収冷凍機の蒸発器と熱交換関係に接続した第二凝縮器、冷凍効果を発揮する利用側蒸発器及びそれらを循環接続する配管を有する圧縮冷凍機とを組合せた冷凍装置であって、前記2台以上の圧縮機を並列に接続し、該第一の圧縮機は、吐出側を第一凝縮器と配管接続し、該第一凝縮器の出口側を第二凝縮器の入口に配管接続し、前記他の圧縮機は、吐出側を第一凝縮器と第二凝縮器の間の配管に接続すると共に、該圧縮機をバイパスするバイパス管を圧縮機と並列に設け、該バイパス管には制御弁を有していることを特徴とする冷凍装置。An absorption refrigerator having an evaporator, two or more compressors, a first condenser cooled by outside air or cooling water, a second condenser connected in a heat exchange relationship with an evaporator of the absorption refrigerator, A refrigeration system in which a utilization side evaporator to be used and a compression refrigerator having a pipe for circulating them are combined, wherein the two or more compressors are connected in parallel, and the first compressor is provided with a discharger. Side with the first condenser, the outlet side of the first condenser is connected with the inlet of the second condenser, and the other compressor has a discharge side with the first condenser and the second condenser. A refrigerating apparatus, wherein a bypass pipe is provided in parallel with the compressor, the refrigerating apparatus being connected to a pipe between the compressor and the compressor, and having a control valve in the bypass pipe. 前記圧縮冷凍機には、他の圧縮機の吐出側の配管と第一の圧縮機の吐出側の配管とが、三方弁相当の切替弁を有する配管で接続されると共に、第一の圧縮機の吐出側から他の圧縮機の吐出側への接続と、他の圧縮機の吐出側から第一凝縮器と第二凝縮器の間の配管への接続とを切替可能としたことを特徴とする請求項1に記載の冷凍装置。In the compression refrigerator, a discharge-side pipe of another compressor and a discharge-side pipe of the first compressor are connected by a pipe having a switching valve equivalent to a three-way valve, and the first compressor The connection from the discharge side of the other compressor to the discharge side of the other compressor and the connection from the discharge side of the other compressor to the pipe between the first condenser and the second condenser can be switched. The refrigeration apparatus according to claim 1, wherein 前記圧縮冷凍機には、第一凝縮器と第二凝縮器との間の配管で、他の圧縮機の吐出側と接続する前に、三方弁相当の切替弁を設け、第二凝縮器をバイパスするバイパス管を接続したことを特徴とする請求項1又は2に記載の冷凍装置。In the compression refrigerator, a switching valve equivalent to a three-way valve is provided before connecting to a discharge side of another compressor with a pipe between the first condenser and the second condenser, and a second condenser is provided. The refrigeration apparatus according to claim 1 or 2, wherein a bypass pipe for bypassing is connected. 前記圧縮冷凍機は、吸収冷凍機1台に対し、複数台を接続することを特徴とする請求項1、2又は3に記載の冷凍装置。4. The refrigeration apparatus according to claim 1, wherein a plurality of compression chillers are connected to one absorption chiller. 5. 請求項1〜4のいずれか1項に記載の冷凍装置の運転方法において、圧縮冷凍機は、第一の圧縮機と他の圧縮機を有し、次の(a)〜(e)の運転モード、
(a)第一の圧縮機を運転し、圧縮蒸気を第一凝縮器で凝縮させ、他の圧縮機を停止し、バイパス制御弁を全閉とする運転モード、(b)圧縮機を停止し、バイパス制御弁を全開又は開度調節し、第二凝縮器で冷媒蒸気を凝縮させる運転モード、(c)第一の圧縮機を停止、他の圧縮機を運転し、バイパス制御弁を全閉とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、(d)第一の圧縮機を運転し、圧縮蒸気を第一凝縮器で凝縮させると共に、他の圧縮機を停止し、バイパス制御弁を全開とし、第二凝縮器で冷媒蒸気を凝縮させる運転モード、(e)第一の圧縮機を運転し、圧縮蒸気を第一凝縮器で凝縮させ、他の圧縮機を運転し、圧縮蒸気を第二凝縮器で凝縮させる運転モード、のうちの少なくとも3種類以上の運転モードで運転することを特徴とする冷凍装置の運転方法。
The method of operating a refrigeration apparatus according to any one of claims 1 to 4, wherein the compression chiller has a first compressor and another compressor, and operates in the following (a) to (e). mode,
(A) The first compressor is operated, the compressed steam is condensed in the first condenser, the other compressors are stopped, the operation mode in which the bypass control valve is fully closed, and (b) the compressor is stopped. The operation mode in which the bypass control valve is fully opened or the opening degree is adjusted to condense the refrigerant vapor in the second condenser, (c) the first compressor is stopped, the other compressors are operated, and the bypass control valve is fully closed. An operation mode in which refrigerant vapor is condensed in the second condenser, (d) the first compressor is operated, the compressed vapor is condensed in the first condenser, and the other compressors are stopped; Is fully opened, the operation mode in which the refrigerant vapor is condensed in the second condenser, (e) the first compressor is operated, the compressed vapor is condensed in the first condenser, the other compressor is operated, and the compressed steam is operated. In at least three types of operation modes among the operation modes in which How the operation of the refrigeration system, characterized in that.
JP2002181672A 2002-06-21 2002-06-21 Refrigeration system combining absorption type and compression type and its operating method Expired - Fee Related JP3821286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181672A JP3821286B2 (en) 2002-06-21 2002-06-21 Refrigeration system combining absorption type and compression type and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181672A JP3821286B2 (en) 2002-06-21 2002-06-21 Refrigeration system combining absorption type and compression type and its operating method

Publications (2)

Publication Number Publication Date
JP2004028375A true JP2004028375A (en) 2004-01-29
JP3821286B2 JP3821286B2 (en) 2006-09-13

Family

ID=31178450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181672A Expired - Fee Related JP3821286B2 (en) 2002-06-21 2002-06-21 Refrigeration system combining absorption type and compression type and its operating method

Country Status (1)

Country Link
JP (1) JP3821286B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127871A (en) * 2009-12-21 2011-06-30 Ihi Corp Heat pump and method of controlling the same
JP2012137202A (en) * 2010-12-24 2012-07-19 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
CN102817656A (en) * 2012-09-07 2012-12-12 天津大学 Device and method utilizing semi-water gas low-temperature exhaust heat to generate electricity
CN113587471A (en) * 2021-06-21 2021-11-02 东南大学 Cold and hot confession system that allies oneself with of doublestage compression and absorption formula high temperature heat pump complex

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127871A (en) * 2009-12-21 2011-06-30 Ihi Corp Heat pump and method of controlling the same
JP2012137202A (en) * 2010-12-24 2012-07-19 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
CN105066495A (en) * 2010-12-24 2015-11-18 荏原冷热系统株式会社 Compressed refrigerator
CN102817656A (en) * 2012-09-07 2012-12-12 天津大学 Device and method utilizing semi-water gas low-temperature exhaust heat to generate electricity
CN113587471A (en) * 2021-06-21 2021-11-02 东南大学 Cold and hot confession system that allies oneself with of doublestage compression and absorption formula high temperature heat pump complex
CN113587471B (en) * 2021-06-21 2022-06-28 东南大学 Double-stage compression and absorption type high-temperature heat pump combined cold and heat combined supply system

Also Published As

Publication number Publication date
JP3821286B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP2004257586A (en) Refrigeration system using carbon dioxide as refrigerant
KR20120022203A (en) Defrosting system using air cooling refrigerant evaporator and condenser
JPH0926226A (en) Refrigeration equipment
JP5240040B2 (en) Refrigeration equipment
JP5402186B2 (en) Refrigeration equipment
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP4152140B2 (en) Waste heat absorption refrigerator
JP2003004334A (en) Waste heat recovery air conditioner
WO2016199671A1 (en) Refrigeration system
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JP3918980B2 (en) Refrigeration equipment
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP2003207223A (en) Exhaust heat recovery-type refrigerating device
JP3830141B2 (en) Power generation and absorption cold / hot water equipment
JP3871206B2 (en) Refrigeration system combining absorption and compression
JP5310224B2 (en) Refrigeration equipment
JPH09250837A (en) Refrigerator
JP2003004330A (en) Exhaust heat recovery air conditioner
JP5402187B2 (en) Refrigeration equipment
JP2000018757A (en) Cooler
CN213362912U (en) Air source heat pump system
JP2004325048A (en) Low temperature water production equipment
JP3874263B2 (en) Refrigeration system combining absorption and compression
JP3830140B2 (en) Power generation and absorption cold / hot water equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3821286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees