[go: up one dir, main page]

JP2004023043A - Film forming method, film forming apparatus, and method of manufacturing semiconductor device - Google Patents

Film forming method, film forming apparatus, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2004023043A
JP2004023043A JP2002179743A JP2002179743A JP2004023043A JP 2004023043 A JP2004023043 A JP 2004023043A JP 2002179743 A JP2002179743 A JP 2002179743A JP 2002179743 A JP2002179743 A JP 2002179743A JP 2004023043 A JP2004023043 A JP 2004023043A
Authority
JP
Japan
Prior art keywords
gas
film
film forming
substrates
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002179743A
Other languages
Japanese (ja)
Other versions
JP3670628B2 (en
Inventor
Masahiro Kiyotoshi
清利 正弘
Junya Nakahira
中平 順也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Fujitsu Ltd
Original Assignee
Toshiba Corp
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Fujitsu Ltd filed Critical Toshiba Corp
Priority to JP2002179743A priority Critical patent/JP3670628B2/en
Publication of JP2004023043A publication Critical patent/JP2004023043A/en
Application granted granted Critical
Publication of JP3670628B2 publication Critical patent/JP3670628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】ALD法を用いてバッチ式処理により成膜作業を行う際に、良質な化合物膜を効率よく、かつ容易に成膜できる成膜方法を提供する。
【解決手段】ALD法を用いてバッチ式処理により複数枚のウェーハ23の表面上に一括してTa膜28を成膜する成膜処理が行われる処理室11内に、各ウェーハ23をそれらの表面を互いに離間させて配置した後、処理室11内にArガスを供給して処理室11内をパージするとともに、処理室11内の雰囲気を加熱して、室内圧力を約0.6Torrに、室内温度を約280℃にそれぞれ保持する。各ウェーハ23に向けてArガスを供給し続けるとともに、HOガスを各ウェーハ23の表面上に供給する。HOガスの供給を断った後、各ウェーハ23に向けてArガスを供給し続けるとともに、PETガスを各ウェーハ23の表面上に供給することにより、各ウェーハ23の表面上にTa膜28を成膜する。
【選択図】  図2
An object of the present invention is to provide a film forming method capable of forming a high-quality compound film efficiently and easily when performing a film forming operation by batch processing using an ALD method.
Each wafer 23 is placed in a processing chamber 11 in which a Ta 2 O 2 film 28 is formed on the surfaces of a plurality of wafers 23 by batch processing using an ALD method. After arranging the surfaces so as to be separated from each other, the inside of the processing chamber 11 is purged by supplying Ar gas into the processing chamber 11, and the atmosphere in the processing chamber 11 is heated to reduce the indoor pressure to about 0.1 mm. The room temperature is maintained at about 280 ° C. at 6 Torr. While continuously supplying the Ar gas toward each wafer 23, the H 2 O gas is supplied onto the surface of each wafer 23. After the supply of the H 2 O gas is stopped, the Ar gas is continuously supplied to each wafer 23, and the PET gas is supplied on the surface of each wafer 23, so that Ta 2 O is added on the surface of each wafer 23. Two films 28 are formed.
[Selection] Figure 2

Description

【0001】
【発明の属する技術分野】
本発明は、化合物薄膜の成膜方法および成膜装置に係り、特にBST,STO,(Ti,Al)N,Ta−Ti−Oなどの化合物の薄膜をAtomic Layer Deposition(ALD)法を用いてバッチ式で成膜可能な成膜方法および成膜装置、ならびにこれらを用いた半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、電子デバイスのダウンサイジング化に伴い、電子デバイスを構成する各素子の投影面積を縮小しつつ、各素子の特性を低下させないために、各素子の配置を平面的な配置から立体的な配置に変更する必要が増している。特に、キャパシタ素子は、集積回路の最小加工寸法が小さくなっても、そのS/N比を低下させないために、所定のキャパシタ容量を確保する必要がある。4MDRAM以降の世代では、いわゆるスタックセルまたはトレンチセルなどの立体型のキャパシタ素子が採用されている。そして、集積度の向上に従って、さらに複雑な立体形状を有するキャパシタ素子の採用が不可避になりつつある。
【0003】
また、素子の立体化が進むということは、実質的に、多層構造からなる複数本の配線の各レイヤー間を接続するコンタクトホールのアスペクト比が増大することを意味する。この場合、プラグ電極膜やバリアメタル膜などを高アスペクト比のコンタクトホール内に均一に形成することが求められる。
【0004】
他方、素子の投影面積が小さくなるにつれて、素子に採用される各種の膜の薄膜化も当然厳しく要求される。例えば、複数の構成元素からなり、しかも多くの場合、複数の金属元素を構成元素として含む化合物膜の薄膜化が求められている。具体的には、キャパシタ誘電体膜としては、一般的なNO膜より酸化膜換算膜厚を大幅に薄膜化可能なTa膜,Ta−Ti−O膜,Ba−Sr−Ti−O(BST)膜,Sr−Ti−O(STO)膜,あるいはPb−Zr−Ti−O(PZT)膜などの高誘電率薄膜である。また、バリアメタル膜としては、TiN膜、TaN膜、あるいはWN膜などよりも強靭な耐酸化性を示す(Ti,Al)N膜および(Ta,Si)N膜などである。さらに、高誘電率を発現するゲート絶縁膜としては、Al膜、Hf−Si−O膜、あるいはZr−Si−O膜などである。
【0005】
しかも、前述したように、素子の立体化が進行する中で、これらの膜は段差被覆性を良好に保持して形成することが求められている。また、素子のシステムLSI等への混載を考慮すると、LSIのマスクパターンや素子の被覆率に依存しない成膜方法が求められている。
【0006】
前述したような多元系の化合物膜を段差被覆性良く形成するために、一般に用いられている熱CVD法を用いる場合、以下に述べるような問題がある。
【0007】
熱CVD法により多元系の化合物膜を段差被覆性良く成膜するためには、表面反応律速条件で成膜を行う必要がある。ところが、このような条件下では、得られる膜組成は膜表面での化学反応で決まるため、必ずしも所望の膜質や膜組成が得られるとは限らない。特に、深いコンタクトホールの内部などでは、原料によって拡散係数、化学反応速度係数、あるいは表面マイグレーションの速度などが異なるために、穴の上部と底部とで組成が異なってしまうことがある。また、表面反応律速条件では、成膜が成膜温度に強く依存するために、膜の下地の状態、例えば配線や電極、あるいはコンタクトホールの被覆率などによって基板温度が異なってしまう。特に、システムLSI等のように、マスクパターンや素子の被覆率が頻繁に変わる場合、それらの変化に合わせた頻繁な成膜条件出しを余儀なくされるなどの問題もある。
【0008】
このような熱CVD法の問題点を解決する手法として、近年、いわゆるAtomicLayer Deposition(ALD)法が注目されている。前述したような複数種類の金属元素を含む化合物膜を成膜する場合でも、ALD法では一元素ごとに成膜を行うために組成制御が容易である。また、通常、熱分解ではないが、ALD法は略完全に表面反応律速条件下で原子層成膜を行うために、段差被覆性も極めて良好である。しかし、ALD法は一般に成膜時間が長いという問題がある。ALD法は、通例、HO,NH,O等の活性ガスの供給、真空排気によるパージ、AlCl等の金属原料ガスの供給、真空排気によるパージ、再度HO,NH,O等の活性ガスの供給、というシーケンスを複数回繰り返すことにより原子層単位で成膜するため、元来成膜時間が長くなる傾向がある。特に、複数種類の金属原料ガスを用いる場合、各金属原料ガス間の相互反応を抑止するために多元系で組成制御する必要が生じる。この場合、真空排気によるパージ時間が長大になる。
【0009】
そこで、ALD法においても、ウェーハ1枚あたりの正味のプロセス時間(RPT:raw process time)を短縮するために、バッチ処理により成膜可能な装置が検討されている。
【0010】
【発明が解決しようとする課題】
図10に、ALD法を用いてバッチ処理でAl膜を成膜する装置の一例を示す。この成膜装置101は、通常のALD装置を大型化し、複数枚のウェーハ(基板)102に対して同時に成膜処理を施すことができるようにしたものである。Al膜の各種原料ガスは、それらの処理室(反応容器)103内への供給状態をガス供給系104において制御される。各原料ガスは、チャンバー105の一端側(入口側)に設けられている整流板106を通過させられて層流状に処理室103内へ供給される。整流板106は、チャンバー105を大型化したため必須である。処理室103内へ供給された各原料ガスは、各ウェーハ102上を通過した後、チャンバー105の他端側(出口側)から排気系107により排気される。
【0011】
図11に、成膜装置101を用いて行われる成膜工程のシーケンスの一例を示す。
【0012】
この例では、チャンバー105が大型化されており、また整流板106の上流側での反応を抑制するために、パージ時間が長くなるという問題がある。また、チャンバー105が大型化したために、各原料ガスの消費速度が大きくなるという問題がある。これは、基板102表面に到達しない各原料ガスは成膜に寄与することなく排気され、また基板102表面で必要とされる各原料ガスの分圧を確保するためには反応容器103内全体で各原料ガスの分圧を高めなければならないためである。原料ガスの消費速度が大きくなると、成膜効率が低下して成膜コストが上昇し、ひいては半導体装置の製造コストも上昇する。また、通例、ALD法では、各シーケンス間のパージ時間を短くするために、チャンバー105内のデッドスペースをできる限り無くそうとする。すると、バッチ処理を行い難くなり、バッチ処理とパージ時間の短縮化との両立が困難になる。さらに、ALD法は、通例、ガスの流れの均一性等はあまり重視されない。ところが、バッチ処理では、各ウェーハ102の表面にできる限り均一にALD反応を起こさせる必要があるために、例えば整流板106のようなガスの流れを均一化させる装備が必要になる。これにより、パージ時間の短縮化がさらに困難になる。
【0013】
図12に、成膜装置101と同様に、ALD法を用いてバッチ処理でAl膜を成膜する装置の他の例を示す。この成膜装置201では、バッチ処理に伴うパージ時間の増大を抑制するために、時間の掛かる真空パージではなく、短時間化の容易なガスパージが採用されている。それとともに、成膜装置201では、複数本のガスインジェクター202が、複数枚のウェーハ102が搭載されているサセプター203上を回転する設定となっている。これらにより、成膜装置201は、RPTの短縮化が図られている。成膜装置201の場合、4本のガスインジェクター202はそれぞれ、金属原料ガスとしてのAlClガス、パージガスとしてのアルゴン(Ar)ガス、反応ガスとしてのHOガス、そしてパージガスとしてのArガスの供給に1本ずつ割り当てられている。そして、各ガスインジェクター202からは、ガスの種類を切り替えること無く、各ウェーハ102の表面に向けて各ガスが順番に常時供給される。すなわち、成膜装置201では、4本のガスインジェクター202を回転させて、各ウェーハ102に向けて供給されるガスの種類を、例えばAlCl,Ar,HO,Ar,再びAlClという順番で切り替えることにより、ALD成膜を行う。
【0014】
しかし、この例では次に述べるような問題がある。成膜装置201では、チャンバー204内に複数種類のガスが常時、同時供給されているために、チャンバー204内における各ガスの分離が困難である。したがって、チャンバー204内における各ガス同士の気相反応や、あるいはHOガス用インジェクター202aへのAlの堆積等、ガス系における好ましくない反応を適正な許容範囲内に抑制することが困難である。特に、BST膜やPZT膜等の多くの構成元素からなる化合物膜を成膜する場合、原料ガスの種類も多くなるので、各原料ガス間の反応抑制が極めて困難になる。それとともに、装置構成が複雑化するという問題もある。また、このような成膜装置201および成膜方法によれば、化合物膜の膜質が劣化し易く、ひいては半導体装置全体の品質の劣化を招くおそれがある。すると、半導体装置の製造歩留まりが低下して半導体装置の製造効率が低下するとともに、半導体装置の製造コストが上昇するおそれがある。
【0015】
本発明は、以上説明したような課題を解決するためになされたものであり、その目的とするところは、ALD法を用いてバッチ式処理により成膜作業を行う際に、パージを短時間で容易に行うことにより成膜作業の長時間化を容易に抑制でき、またガスの使用効率を容易に向上でき、さらには複数種類のガス同士の相互反応を容易に抑制して、良質な化合物膜を効率よく、かつ容易に成膜できる成膜方法および成膜装置を提供することにある。それとともに、良質な化合物膜を有する良質な半導体装置を効率よく、かつ容易に製造できる半導体装置の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
前記課題を解決するために、本発明に係る成膜方法は、複数枚の被処理基板の表面上に化合物膜を原子層レベルで一括して成膜する成膜方法であって、前記成膜処理が行われる反応容器内に前記各被処理基板を互いに離間させて厚さ方向に沿って平行に配置する第1の工程と、隣接する前記各被処理基板間に向けて、前記反応容器内に所定のガスを供給する複数本のガス供給治具のうち、成膜反応を活性化させる活性化ガスを供給する活性化ガス供給治具から前記活性化ガスを供給するとともに、他のガス供給治具からパージガスを供給する第2の工程と、前記活性化ガス供給治具から供給するガスを前記活性化ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第3の工程と、隣接する前記各被処理基板間に向けて、成膜すべき化合物膜の主な原料となる原料ガスを供給する原料ガス供給治具から前記原料ガスを供給するとともに、他のガス供給治具から前記パージガスを供給する第4の工程と、前記原料ガス供給治具から供給するガスを前記原料ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第5の工程と、を含み、かつ、前記第2の工程から前記第5の工程を複数回繰り返すことを特徴とするものである。
【0017】
この成膜方法においては、成膜処理が行われる反応容器内に複数枚の被処理基板を互いに離間させて厚さ方向に沿って平行に配置した後、隣接する各被処理基板間に向けて、パージガスを供給しつつ、活性化ガスと原料ガスとを交互に切り替えて供給する工程を複数回繰り返す。これにより、複数枚の被処理基板の表面上に化合物膜を原子層レベルで一括して成膜する。この成膜方法によれば、反応容器内をパージする際にパージガスを用いるので、パージを短時間で容易に行うことができ、成膜作業の長時間化を容易に抑制できる。また、複数枚の被処理基板を、互いに離間させて厚さ方向に沿って並べて反応容器内に配置し、隣接する各被処理基板間に向けて活性化ガスおよび原料ガスを供給するので、ガスの使用効率を容易に向上できる。さらに、活性化ガスの供給と原料ガスの供給とを排他的に行うとともに、活性化ガスおよび原料ガスを供給する際にも、パージガスを隣接する各被処理基板間に向けて供給するので、複数種類のガス同士の相互反応を容易に抑制できる。
【0018】
また、前記課題を解決するために、本発明に係る成膜方法は、複数枚の被処理基板の表面上に化合物膜を一括して形成する成膜方法であって、前記各被処理基板を互いに離間させて厚さ方向に沿って並べて配置し、前記各被処理基板に向けてそれらの基板面と略平行な方向から、パージガスを連続的に供給しつつ、成膜反応を活性化させるための活性化ガスと、成膜すべき化合物膜の主な原料となる原料ガスとを、交互に切り替えて供給することを特徴とするものである。
【0019】
この成膜方法においては、複数枚の被処理基板を互いに離間させて厚さ方向に沿って並べて配置するとともに、各被処理基板に向けてそれらの基板面と略平行な方向から、パージガスを連続的に供給しつつ、成膜反応を活性化させるための活性化ガスと、成膜すべき化合物膜の主な原料となる原料ガスとを、交互に切り替えて供給する。これにより、複数枚の被処理基板の表面上に化合物膜を一括して形成する。この成膜方法によれば、パージを行う際にパージガスを用いるので、パージを短時間で容易に行うことができ、成膜作業の長時間化を容易に抑制できる。また、複数枚の被処理基板を互いに離間させて厚さ方向に沿って並べて配置するとともに、各被処理基板に向けてそれらの基板面と略平行な方向から活性化ガスおよび原料ガスを供給するので、ガスの使用効率を容易に向上できる。さらに、各被処理基板に向けてパージガスを連続的に供給しつつ、活性化ガスと原料ガスとを、交互に切り替えて供給するので、複数種類のガス同士の相互反応を容易に抑制できる。
【0020】
また、前記課題を解決するために、本発明に係る成膜方法は、複数枚の被処理基板の表面上に化合物膜を一括して成膜する成膜処理が行われる処理室内に、前記各被処理基板を、それらの表面を互いに離間させて厚さ方向に沿って並べて配置し、前記各被処理基板が配置された前記処理室内にパージガスを供給して前記処理室内をパージした後、パージされた前記処理室内に配置されている前記各被処理基板に向けて、それらの基板面と略平行な方向から、前記パージガスを供給し続けるとともに、成膜反応を活性化させる活性化ガスを前記各被処理基板の表面上に供給し、前記各被処理基板に向けて前記パージガスを供給しつつ、前記活性化ガスの供給を断つとともに、前記各被処理基板に向けて、それらの基板面と略平行な方向から、前記化合物膜の主な原料となる原料ガスを前記各被処理基板の表面上に供給することにより、前記各被処理基板の表面上に前記化合物膜を成膜することを特徴とするものである。
【0021】
この成膜方法においては、成膜処理が行われる処理室内をパージする際にパージガスを用いるので、パージを短時間で容易に行うことができ、成膜作業の長時間化を容易に抑制できる。また、処理室内に、成膜処理が施される複数枚の被処理基板を互いに離間させて厚さ方向に沿って並べて配置し、各被処理基板に向けてそれらの基板面と略平行な方向から活性化ガスおよび原料ガスを供給するので、ガスの使用効率を容易に向上できる。さらに、活性化ガスの供給と原料ガスの供給とを排他的に行うとともに、活性化ガスおよび原料ガスを供給する際にも、各被処理基板に向けてそれらの基板面と略平行な方向からパージガスを供給するので、複数種類のガス同士の相互反応を容易に抑制できる。
【0022】
また、本発明に係る成膜方法を実施するにあたり、その工程などの一部を以下に述べるような設定としても構わない。
【0023】
前記活性化ガスの供給と前記原料ガスの供給とを交互に複数回ずつ繰り返す。
【0024】
前記各被処理基板に向けて、前記活性化ガスを供給している状態と、前記原料ガスとを供給している状態との間に、前記各被処理基板に向けて、それらの基板面と平行な方向から、前記パージガスのみを供給する。
【0025】
前記原料ガスを複数種類用いるとともに、前記活性化ガスの供給と前記原料ガスの供給とを、前記原料ガスの種類ごとに所定の順番で複数回ずつ繰り返す。
【0026】
前記各ガスを、前記各被処理基板に向けて、それらの基板面と平行な方向から供給する際に、互いに隣接する前記各被処理基板同士の間および前記各被処理基板のそれぞれの表面に向けて前記各ガスを供給する。
【0027】
前記パージガス、前記活性化ガス、および前記原料ガスのうち、少なくとも前記原料ガスを前記処理室内に供給する際の圧力の大きさを、前記処理室内の圧力の大きさの10倍以上に設定する。
【0028】
前記パージガス、前記活性化ガス、および前記原料ガスを、前記各被処理基板を間に挟んで、前記各ガスが供給される側の反対側から前記処理室の外へ排気する。
【0029】
前記活性化ガスに、HO,O,NHのうちの少なくとも1種類を含ませる。
【0030】
前記原料ガスに、アルカリ土類金属のシクロペンタジエニル化合物とチタンのアルコキシド化合物、または組成式がC1119で表されるアルコキシル基を含むジピバロイルメタナート錯体を含ませる。
【0031】
前記シクロペンタジエニル化合物として、シクロペンタジエニル環に結合する水素の一部が、アルキル基またはアルコキシル基に置換された物質も含ませる。
【0032】
前記パージガスに、OおよびNOの少なくとも一方を含ませる。
【0033】
本発明に係る成膜方法を実施するにあたり、その工程などの一部を以上述べたような各種設定とすることにより、成膜作業の長時間化および複数種類のガス同士の相互反応をより容易に抑制できるとともに、ガスの使用効率をより容易に向上できる。したがって、良質な化合物膜をより効率よく、かつ、より容易に成膜できる。
【0034】
また、前記課題を解決するために、本発明に係る成膜装置は、成膜処理に供される処理室と、この処理室内において、成膜処理が施される複数枚の被処理基板を互いに離間させつつ、厚さ方向に沿って並べて支持可能な基板支持具と、前記各被処理基板の表面上に一括して成膜される化合物膜の主な原料となる原料ガス、および前記処理室内をパージするためのパージガスを、前記各被処理基板に向けて、それらの基板面と略平行な方向から供給する原料ガス供給治具と、前記原料ガスを前記原料ガス供給治具に供給する原料ガス供給系と、前記化合物膜が成膜される際の成膜反応を活性化させる活性化ガス、および前記パージガスを、前記各被処理基板に向けて、それらの基板面と略平行な方向から供給する活性化ガス供給治具と、前記活性化ガスを前記活性化ガス供給治具に供給する活性化ガス供給系と、前記パージガスを、前記原料ガスおよび前記活性化ガスと選択的に切り替えて前記原料ガス供給治具および前記活性化ガス供給治具に供給するパージガス供給系と、を具備することを特徴とするものである。
【0035】
この成膜装置においては、成膜処理に供される処理室内をパージガスを用いてパージするので、パージを短時間で容易に行うことができ、成膜作業の長時間化を容易に抑制できる。また、成膜処理が施される複数枚の被処理基板を、基板支持具を用いて互いに離間させつつ、厚さ方向に沿って並べて支持した状態で処理室内に配置する。そして、原料ガス供給治具および活性化ガス供給治具を用いて、原料ガスおよび活性化ガスを供給する。これにより、ガスの使用効率を容易に向上できる。さらに、原料ガス供給治具および活性化ガス供給治具は、パージガス供給系により、原料ガスおよび活性化ガスとパージガスとを選択的に切り替えて、各被処理基板に向けてそれらの基板面と略平行な方向からパージガスを供給できる。これにより、複数種類のガス同士の相互反応を容易に抑制できる。
【0036】
また、本発明に係る成膜装置を実施するにあたり、その構成などの一部を以下に述べるような設定としても構わない。
【0037】
前記活性化ガス供給治具および前記活性化ガス供給系は、前記活性化ガスの種類ごとに独立して設けられているとともに、前記活性化ガス供給系は、前記活性化ガスをその種類ごとに独立に前記活性化ガス供給治具に供給可能に設定されている。
【0038】
前記パージガスを、前記各被処理基板に向けて、それらの基板面と略平行な方向から供給するパージガス供給治具を具備するとともに、前記パージガス供給系は、前記パージガス供給治具に前記パージガスを供給可能に設定されている。
【0039】
前記原料ガス供給治具および前記活性化ガス供給治具には、前記各被処理基板が並べられている方向に沿って、隣接する前記各被処理基板同士の間および前記各被処理基板の基板面の少なくとも一方と略対向する位置に、前記各ガスを前記各被処理基板に向けて供給する吹き出し孔が複数個設けられている。
【0040】
前記処理室には、前記基板支持具に支持されて前記処理室内に配置された前記各被処理基板を間に挟んで、前記原料ガス供給治具および前記活性化ガス供給治具が設けられている側と対向する側に、前記各被処理基板が並べられている方向に沿って、隣接する前記各被処理基板同士の間および前記各被処理基板の基板面の少なくとも一方と略対向する位置に、前記原料ガス、前記活性化ガス、および前記パージガスを前記処理室の外に排気する排気孔が複数個設けられているとともに、前記基板支持具には、前記原料ガス供給治具および前記活性化ガス供給治具付近から前記各排気孔付近にかけて、前記各被処理基板をそれらの側方から囲む整流部材が設けられている。
【0041】
本発明に係る成膜装置を実施するにあたり、その構成などの一部を以上述べたような各種設定とすることにより、成膜作業の長時間化および複数種類のガス同士の相互反応をより容易に抑制できるとともに、ガスの使用効率をより容易に向上できる。したがって、良質な化合物膜をより効率よく、かつ、より容易に成膜できる。
【0042】
また、前記課題を解決するために、本発明に係る半導体装置の製造方法は、本発明に係る成膜方法により成膜された化合物膜を用いて半導体素子を形成することを特徴とするものである。
【0043】
この半導体装置の製造方法においては、本発明に係る成膜方法により成膜された化合物膜を用いて半導体素子を形成する。これにより、半導体装置の内部に組み込まれる各種の微細な半導体素子などを高い品質で効率よく形成して、半導体装置の品質および歩留まりを向上させることができる。
【0044】
【発明の実施の形態】
以下、本発明の詳細を図示の実施形態によって説明する。
【0045】
(第1の実施の形態)
先ず、本発明に係る第1実施形態を図1〜図4を参照しつつ説明する。図1は、第1実施形態に係る成膜装置を簡略化して示す図である。図2は、第1実施形態に係る成膜方法のシーケンスを示す図である。図3は、基板上にTa膜が成膜される仕組みを模式的に示す工程断面図である。図4は、Ta膜を成膜する際に発生するパーティクルの成膜サイクルに対する依存性をグラフにして示す図である。
【0046】
本実施形態では、具体的には、Atomic Layer Deposition(ALD)法をバッチ処理で実施することにより、化合物膜としてのTa膜を成膜する際の成膜方法および成膜装置、Ta膜の成膜条件、そして得られたTa膜の特性について説明する。また、本実施形態の成膜方法および成膜装置を利用する半導体装置の製造方法について説明する。
【0047】
本実施形態の成膜プロセスでは、化合物膜の主な原料を含む原料ガスとしてペンタエトキシタンタル(PET)ガスを用いる。また、成膜反応を活性化させる活性化ガスとしてHOガスを用いる。さらに、パージガスとして酸素(O)ガスおよびアルゴン(Ar)ガスを用いる。
【0048】
先ず、図1(a),(b)を参照しつつ、本実施形態の成膜装置1について説明する。
【0049】
図1(a)は、成膜装置1の概略構成を正面もしくは側面から臨んで示す図である。図1(b)は、成膜装置1を図1(a)中実線矢印の向きから臨んで示す平面図である。この成膜装置1は、主に原料ガス供給系2および反応系3からなる。原料ガス供給系2は、PETガス供給系4、およびHOガスを供給する活性化ガス供給系(HOガス供給系)5などからなる。本実施形態においては、活性化ガス供給系5を原料ガス供給系2の一部として構成したが、それらを互いに独立した個別の系として構成しても構わないのはもちろんである。
【0050】
PETガス供給系4は、主にPET原料容器6、PETの液体流量制御装置7、およびPET気化器8などからなる。気化温度は約180℃である。PET気化器8で気化されたPETガスは、約200℃に加熱されたPETガス配管9を通り、原料ガス供給治具としての石英製のPETガスインジェクター10に送られる。PETガスインジェクター10は、成膜処理が行われる処理室(反応容器)11内に設けられており、PETガスはPETガスインジェクター10を経て反応容器11内に供給(導入)される。PETガス配管9とPETガスインジェクター10との接続部分付近、すなわちPETガスインジェクター10の根元の部分には、PETガスインジェクター10に通すガスを、PETガスまたはArガスに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12が設けられている。
【0051】
Oガス供給系5は、主にHO容器13、このHO容器13を約80℃に加熱するHO加熱装置14、およびHOガスのガス流量制御装置15などからなる。HOガスは約150℃に加熱されたHOガス配管16を通り、活性化ガス供給治具としての石英製のHOガスインジェクター17に送られる。HOガスインジェクター17は、反応容器11内に設けられており、HOガスはHOガスインジェクター17を経て反応容器11内に供給される。HOガス配管16とHOガスインジェクター17との接続部分付近、すなわちHOガスインジェクター17の根元の部分には、HOガスインジェクター17に通すガスを、HOガス、Arガス、またはOガスに選択的に切り替えることができるように、活性化ガス供給系切り替えバルブ18が設けられている。
【0052】
また、成膜装置1には、以上説明した2本のガスインジェクター10,17とは別に、反応容器11内にArガスおよびOガスを選択的に供給可能なパージガス供給治具としてのOガスインジェクター19が反応容器11内に設けられている。すなわち、成膜装置1は、合計3系統のガスインジェクター10,17,19を備えている。また、成膜装置1には、3本のガスインジェクター10,17,19にArガスまたはOガスを供給するパージガス供給系20が設けられている。ArガスおよびOガスは、パージガス供給系20が有するパージガス配管21を通り、各ガスインジェクター10,17,19に送られる。
【0053】
また、パージガス供給系20のうち、Oガスインジェクター19に接続されているOガス系統は、その一部がオゾナイザー22に接続されている。これにより、パージガス供給系20は、オゾナイザー22を通してO/O混合ガスをOガスインジェクター19および反応容器11内に供給することが可能である。
【0054】
他方、反応系3は、成膜処理が施される被処理基板(ウェーハ)23を複数枚同時に収容可能である反応容器11、この反応容器11内において各ウェーハ23を一括して支持可能な基板支持具としてのボート24、反応容器11内に供給された原料ガス、活性化ガス、およびパージガスを反応容器11の外に排気する排気系25などからなる。本実施形態の反応容器11には、その内部の雰囲気および反応容器11内に収容された複数枚のウェーハ23を略均一に加熱できる容器加熱装置26が設けられた、いわゆるホットウォール式の反応容器11が採用されている。また、ボート24は、各ウェーハ23をそれらの表面(基板面)を互いに所定の間隔ずつ離間させつつ、互いに平行に、かつ、厚さ方向に沿って積層するように並べた状態で支持可能な構造となっている。さらに、ボート24は、ウェーハ23の枚数や、あるいは成膜される膜の種類やその膜厚などに応じて、成膜処理が適正な状態で効率よく行われるように、その形状を選択的できることが好ましい。
【0055】
また、前述したPETガスインジェクター10、HOガスインジェクター17、およびOガスインジェクター19には、反応容器11内に収容された複数枚のウェーハ23に向けて、それらの基板面と略平行な方向からPETガス、HOガス、Oガス、およびArガスを供給できるように、複数個の吹き出し孔27がそれぞれ設けられている。具体的には、PETガスインジェクター10、HOガスインジェクター17、およびOガスインジェクター19には、各ウェーハ23が互いに離間されて積層されている方向に沿って、隣接する各ウェーハ23同士の間および各ウェーハ23の基板面の少なくとも一方と略対向する位置に、前記各ガスを各ウェーハ23に向けて供給する吹き出し孔27が複数個設けられている。すなわち、3本のガスインジェクター10,17,19は、それぞれ多孔ガスインジェクターとして形成されている。これにより、各ガスインジェクター10,17,19は、複数枚のウェーハ23の表面、もしくは各ウェーハ23同士の間に向けて、各ガスを集中的に効率よく供給できる。それとともに、各ウェーハ23の表面、もしくは各ウェーハ23同士の間に向けて、OガスまたはArガスを供給することにより、各ウェーハ23の表面付近、もしくは各ウェーハ23同士の間から、不要なガスを迅速かつ容易に排除できる。
【0056】
次に、図2および図3を参照しつつ、本実施形態の成膜方法について説明する。本実施形態の成膜方法は、具体的には、成膜装置1を用いて、以下に述べるシーケンスで化合物膜としてのTa膜28を成膜するものである。
【0057】
複数枚のウェーハ23を反応容器11内に導入し、反応容器11内に配置されているボート24に支持させる。続けて、容器加熱装置26を用いて、反応容器11内の雰囲気および各ウェーハ23の温度が約280℃になるように略均一に加熱する。それとともに、PETガスインジェクター10、HOガスインジェクター17、およびOガスインジェクター19からそれぞれ約1SLMずつArガスを反応容器11内に供給して、反応容器11内の圧力を約0.6Torrに保つ。ヒートリカバリー時間は約10分間とする。反応容器11内の温度(炉内温度)が280℃±10℃程度で安定していることを確認した後、容器内圧力を約0.6Torrに保ちつつ、図2に示すシーケンスに基づいて以下に述べる成膜処理を実行する。
【0058】
先ず、反応容器11内に、HOガスインジェクター17からHOガスを約45秒間、約500sccm導入するとともに、PETガスインジェクター10およびOガスインジェクター19からArガスをそれぞれ約45秒間、約500sccmずつ供給する。反応容器11内に導入されたHOガスは、図3(a)に示すように、各ウェーハ23の表面に吸着する。
【0059】
次に、反応容器11内に、PETガスインジェクター10およびOガスインジェクター19からArガスを供給しつつ、HOガスインジェクター17から供給するガスをArガスに切り替える。そして、反応容器11内に、PETガスインジェクター10、Oガスインジェクター19、およびHOガスインジェクター17からArガスをそれぞれ約20秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を約20秒間パージする。
【0060】
次に、PET原料流量が約3sccmとなる条件で、PETガスを反応容器11内にPETガスインジェクター10より約20秒間導入する。この際、PETガスインジェクター10の内圧は、約23Torrである。また、Oガスインジェクター19およびHOガスインジェクター17からは、Arガスをそれぞれ約20秒間、約500sccmずつ反応容器11内に供給する。
【0061】
通常、280℃前後ではPETの分解反応は殆ど起こらないが、各ウェーハ23の表面にはHOが吸着しているので、図3(b)に示すように、各ウェーハ23の表面に到達したPETガスは吸着しているHOとの間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、膜厚が約0.3nmのTaの酸化物の膜が成膜される。なお、図3(a),(b)においては、ウェーハ23の表面にTa膜28が形成される仕組みを理解し易くするために、HO分子やPET分子などを模式的に描いた。
【0062】
次に、Oガスインジェクター19およびHOガスインジェクター17からArガスを反応容器11内に供給しつつ、PETガスインジェクター10から供給するガスをArガスに切り替える。そして、反応容器11内に、PETガスインジェクター10、Oガスインジェクター19、およびHOガスインジェクター17からArガスをそれぞれ約10秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を約10秒間パージする。
【0063】
次に、反応容器11内に、PETガスインジェクター10からArガスを供給しつつ、Oガスインジェクター19およびHOガスインジェクター17から供給するガスをOガスに切り替える。そして、反応容器11内に、PETガスインジェクター10からArガスを供給するとともに、Oガスインジェクター19およびHOガスインジェクター17からはOガスをそれぞれ約20秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を、ArガスおよびOガスを用いてさらに約20秒間パージする。
【0064】
次に、反応容器11内に、PETガスインジェクター10からArガスを供給しつつ、Oガスインジェクター19およびHOガスインジェクター17から供給するガスをArガスに切り替える。そして、反応容器11内に、PETガスインジェクター10、Oガスインジェクター19、およびHOガスインジェクター17からArガスをそれぞれ約5秒間、約1SLMずつ供給する。これにより、隣接する各ウェーハ23間を約5秒間パージする。
【0065】
以上説明した一連のシーケンス(手順)により、約120秒で各ウェーハ23の表面上に約0.3nmの膜厚を有するTaO膜28を略均一に成膜することができる。この約120秒のシーケンスを1サイクルとし、これを30回繰り返すことにより、各ウェーハ23の表面上にTa膜28を約9nm堆積させる。その後、Oガスインジェクター19からO/O混合ガスを反応容器11内に導入して、Ta膜28に所定の処理を施すことにより、本実施形態の成膜プロセスを終了とする。なお、この成膜プロセスが実施されている間、反応容器11に供給され、不要となった各ガスは、反応容器11内の圧力、温度、および雰囲気の成分などが適正な状態に保持されるように適宜、排気系25から反応容器11の外へ排気される。
【0066】
図4に、PETガスインジェクター10に設けられている各吹き出し孔27の断面積(開口面積)を試験的に変えて、成膜回数とTa膜28のパーティクルとの相関関係をモニタリングした結果を示す。図4中の表に示すように、各吹き出し孔27断面積を変えることにより、Ta膜28の成膜時におけるPETガスインジェクター10の内部圧力が変化することが分かる。それとともに、PETガスインジェクター10の内圧が役5Torr以下になると、成膜回数の増加とともにパーティクルが増大することが分かる。
【0067】
本発明者らが行った調査によれば、パーティクルが増大した場合のPETガスインジェクター10の内部をHF洗浄してICP分光分析を行ったところ、PETガスインジェクター10の内部にTa膜28が堆積していたことが判明した。これは、PETガスインジェクター10の内圧が低下すると、インジェクター10の内部に侵入したHOガスがインジェクター10の内部表面に吸着し、インジェクター10の内部でもALD反応が起こることを意味する。この結果によれば、ALD法に基づく成膜処理を適正な状態で実施するためには、多孔ガスインジェクターとしてのPETガスインジェクター10、HOガスインジェクター17、およびOガスインジェクター19のうち、少なくとも原料ガスインジェクターとしてのPETガスインジェクター10は、成膜時におけるインジェクターの内部圧力が反応容器11の内部圧力の約10倍以上となる形状に形成されることが好ましいことが分かる。
【0068】
以上説明したように、この第1実施形態においては、ALD成膜を採用することにより、複雑な立体形状からなる化合物膜28を成膜する場合においても、成膜時における膜組成の精密な制御が可能である。また、ALD成膜を採用することにより、化合物膜28による良好な段差被覆性の実現が可能である。また、原料ガスおよび活性化ガスを各ウェーハ23の表面もしくは各ウェーハ23の間に集中的に供給できるので、原料ガスおよび活性化ガスの濃度を、各ウェーハ23の間のみ選択的に高めることが可能である。これにより、原料ガスおよび活性化ガスの量が少ない場合でも、適正な状態で十分なALD成膜反応を実現できるので、各ガスの使用(利用)効率を向上できる。また、原料ガスの消費速度が増大することに伴う成膜コストの上昇、ひいては半導体装置の製造コストの上昇を抑制することができる。
【0069】
また、複数枚のウェーハ23をバッチ処理により一括して処理することができるので、成膜処理に掛かる正味のプロセス時間(RPT:raw process time)を短縮することができる。さらに、一般に時間の掛かる真空パージではなく、パージが短時間で済むガスパージを採用することにより、RPTの短縮が可能である。特に、隣接するウェーハ23同士が互いに整流板の働きをするので、ガスパージを効果的に行うことができる。この各ウェーハ23の整流板としての働きは、各ウェーハ23に原料ガスおよび活性化ガス供給する際にも、それら各ガスの使用効率を高める上で効果的であるのはもちろんである。
【0070】
また、成膜中は、各ウェーハ23間およびそれらの周囲に常時パージガスを供給しつつ、原料ガスまたは活性化ガスを選択的に切り替えて供給する。これにより、好ましくない雰囲気下において成膜プロセスが進行して、成膜される化合物膜28の膜質が劣化するおそれを殆どなくすことができる。
【0071】
また、各ウェーハ23に原料ガスを供給するのに先立って、各ウェーハ23の表面に活性化ガスを付着させておくので、通常では不可能な低温でALD反応を起こさせることができる。それとともに、成膜時における原料ガスインジェクター10の内部圧力を、反応容器11内の圧力に比べて10倍以上高く設定することで、成膜処理に酸化性のガスを用いても反応容器11内の残留原料ガスとの間で気相反応が起こるおそれが殆ど無い。しかも、成膜される化合物膜28中の配位子等の有機物の効率的な脱離が可能となる。
【0072】
さらに、ホットウォール式の加熱方式を採用することで、複数枚のウェーハ23を略均一に一括して加熱することが容易である。ホットウォール式を採用することにより、薄膜を形成する場合、ウェーハ23の下地構造やマスクパターンに依存することなく、成膜温度を略一定に保持することができる。通常、ホットウォール型の加熱方式では、ヒートリカバリー時間を長くとる必要があるが、ALD法では精密な温度制御は要求されない。したがって、本実施形態の成膜プロセスでは、長大なヒートリカバリー時間は不要であり、これはRPTの短縮する上で極めて効果的である。また、本実施形態の成膜装置1の装置構成は比較的簡素であるため、成膜する化合物膜の種類などに応じた装置構成の変更が容易である。
【0073】
このように、この第1実施形態によれば、ALD法を用いてバッチ式処理により成膜作業を行って、良質な化合物膜を効率よく、かつ容易に成膜できる。
【0074】
次に、本発明の第1実施形態に係る半導体装置の製造方法について簡潔に説明する。本実施形態の半導体装置の製造方法は、前述した本実施形態に係る成膜方法および成膜装置1により成膜された化合物膜(Ta膜)28を用いて、半導体装置の内部に組み込まれる各種の微細な半導体素子などを形成する工程を含むものである。前述した成膜方法および成膜装置1によれば、良質な化合物膜を効率よく、かつ容易に成膜できる。したがって、本実施形態の半導体装置の製造方法によれば、半導体装置の内部に組み込まれる各種の微細な半導体素子などを高い品質で効率よく、かつ容易に形成して、半導体装置の品質および歩留まりを容易に向上させることができる。したがって、この第1実施形態に係る半導体装置の製造方法によれば、良質な化合物膜を有する良質な半導体装置を効率よく、かつ容易に製造できる。
【0075】
(第2の実施の形態)
次に、本発明に係る第2実施形態を図5〜図7を参照しつつ説明する。図5は、第2実施形態に係る成膜装置を簡略化して示す図である。図6は、第2実施形態に係る成膜方法のシーケンスを示す図である。図7は、第2実施形態に係る成膜方法により穴の内部および周囲に成膜されたSTO膜を簡略化して示す断面図である。なお、図1と同一部分は同一符号を付してその詳しい説明を省略する。
【0076】
本実施形態では、具体的には、Atomic Layer Deposition(ALD)法をバッチ処理で実施することにより、化合物膜としてのSTO膜およびBST膜を成膜する際の成膜方法および成膜装置、STO膜およびBST膜の成膜条件、そして得られたSTO膜およびBST膜の特性について説明する。
【0077】
本実施形態の成膜プロセスでは、原料ガスとして、ストロンチウムビストリイソプロピルシクロペンタジエニル(Sr(C−i−Pr)、バリウムビスペンタメチルシクロペンタジエニル(Ba(CMe)のテトラヒドロフラン(THF:CO)溶液(溶液濃度は0.15モル/リットル)、およびテトライソプロポキシドチタン(TTIP)のそれぞれのガスを用いる。また、活性化ガスとしてHOガスを用いる。さらに、パージガスとして酸素(O)ガスおよびアルゴン(Ar)ガスを用いる。
【0078】
先ず、図5(a),(b)を参照しつつ、本実施形態の成膜装置31について説明する。
【0079】
図5(a)は、成膜装置31の概略構成を正面もしくは側面から臨んで示す図である。図5(b)は、成膜装置31を図5(a)中実線矢印の向きから臨んで示す平面図である。この成膜装置31は、前述した第1実施形態と同様に、主に原料ガス供給系32および反応系33からなる。原料ガス供給系2は、Baガス供給系34、Srガス供給系35、TTIPガス供給系36、およびHOガス供給系5などからなる。なお、BaガスおよびSrガスの成膜条件は略等しいので、以下の説明においては、煩雑を避けるためにSrガスおよびその供給系35のみ、すなわちSTO膜を成膜する場合についてのみ説明する。また、前述したSrを含む原料には適当な略名が存在せず、正式名称を用いると記述が煩雑になるので、これを避けるために以下の説明では単にSr原料またはSrガスと略称することとする。
【0080】
Srガス供給系35は、主にSr原料容器37、Srの液体流量制御装置38、およびSr気化器39などからなる。気化温度は約200℃である。Sr気化器39で気化されたSrガスは、キャリアガスとしてのArガスと混合されて約250℃に加熱されたSrガス配管40を通り、原料ガス供給治具としての石英製のSrガスインジェクター(Sr−Moガスインジェクター)41に送られる。Srガスインジェクター41は反応容器11内に設けられており、SrガスはSrガスインジェクター41を経て反応容器11内に供給される。Srガス配管40とSrガスインジェクター41との接続部分付近、すなわちSrガスインジェクター41の根元の部分には、Srガスインジェクター41に通すガスを、Srガスと、ArガスまたはOガスとに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12aが設けられている。
【0081】
また、TTIPガス供給系36は、主にTTIP容器42、このTTIP容器42を約60℃に加熱するTTIP加熱装置43、およびTTIPのガス流量制御装置44などからなる。TTIPガスは、約100℃に加熱されたTTIPガス配管45を通り、原料ガス供給治具としての石英製のTTIPガスインジェクター46に送られる。TTIPガスインジェクター46は反応容器11内に設けられており、TTIPガスはTTIPガスインジェクター46を経て反応容器11内に供給される。TTIPガス配管45とTTIPガスインジェクター46との接続部分付近、すなわちTTIPガスインジェクター46の根元の部分には、TTIPガスインジェクター46に通すガスを、TTIPガスと、ArガスまたはOガスとに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12bが設けられている。
【0082】
Oガス供給系5は、主にHO容器13、このHO容器13を約80℃に加熱するHO加熱装置14、およびHOガスのガス流量制御装置15などからなる。HOガスは約150℃に加熱されたHOガス配管16を通り、活性化ガス供給治具としての石英製のHOガスインジェクター17に送られる。HOガスインジェクター17は、反応容器11内に設けられており、HOガスはHOガスインジェクター17を経て反応容器11内に供給される。HOガス配管16とHOガスインジェクター17との接続部分付近、すなわちHOガスインジェクター17の根元の部分には、HOガスインジェクター17に通すガスを、HOガス、Arガス、またはOガスに選択的に切り替えることができるように、活性化ガス供給系切り替えバルブ18が設けられている。
【0083】
また、成膜装置31には、以上説明した3本(実際には、図示しないBaガスインジェクターも含めて4本)のガスインジェクター41,46,17とは別に、反応容器11内にArガスおよびOガスを選択的に供給可能なパージガス供給治具としてのOガスインジェクター19が反応容器11内に設けられている。すなわち、成膜装置31は、合計4系統(実際には、図示しないBaガスインジェクターも含めて5系統)のガスインジェクター41,46,17,19を備えている。また、成膜装置31には、3本のガスインジェクター41,46,17,19にArガスおよびOガスの少なくとも一方を供給するパージガス供給系20が設けられている。ArガスまたはOガスは、パージガス供給系20が有するパージガス配管21を通り、各ガスインジェクター41,46,17,19に送られる。
【0084】
また、Srガスインジェクター41、TTIPガスインジェクター46、HOガスインジェクター17、およびOガスインジェクター19は、それぞれ第1実施形態と同様に、多孔ガスインジェクターとして形成されている。
【0085】
他方、反応系33は、第1実施形態と同様に、成膜処理が施される被処理基板(ウェーハ)23を複数枚同時に収容可能であるとともに、それら各ウェーハ23を略均一に加熱できるように容器加熱装置26が設けられたホットウォール式の反応容器11、この反応容器11内において各ウェーハ23をそれらの表面を互いに所定の間隔離間させて支持可能な基板支持具としてのボート24、反応容器11内に供給された原料ガス、活性化ガス、およびパージガスを反応容器11の外に排気する排気系25などからなる。
【0086】
次に、図6を参照しつつ、本実施形態の成膜方法について説明する。本実施形態の成膜方法は、具体的には、成膜装置31を用いて、以下に述べるシーケンスで化合物膜としてのSTO膜47を成膜するものである。
【0087】
複数枚のウェーハ23を反応容器11内に導入し、反応容器11内に配置されているボート24に支持させる。続けて、容器加熱装置26を用いて、反応容器11内の雰囲気および各ウェーハ23の温度が約300℃になるように略均一に加熱する。それとともに、Srガスインジェクター41、TTIPガスインジェクター46、Oガスインジェクター19、およびHOガスインジェクター17からそれぞれ約1SLMずつArガスを反応容器11内に供給して、反応容器11内の圧力を約1.5Torrに保つ。反応容器11内の温度(炉内温度)が300℃±10℃程度で安定していることを確認した後、容器内圧力を約1.5Torrに保ちつつ、図6に示すシーケンスに基づいて以下に述べる成膜処理を実行する。
【0088】
先ず、反応容器11内に、HOガスインジェクター17からHOガスを約20秒間、約500sccm導入するとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびOガスインジェクター19からはOガスをそれぞれ約20秒間、約500sccmずつ供給する。反応容器11内に導入されたHOガスは、各ウェーハ23の表面に吸着する。
【0089】
次に、HOガスインジェクター17、TTIPガスインジェクター46、およびOガスインジェクター19から供給するガスをArガスに切り替える。それとともに、Srガスインジェクター41から供給するガスをSrガスに切り替えて、Sr原料ガスをそのTHF溶液流量が約3sccmとなる条件でSrガスインジェクター41から約10秒間、反応容器11内に導入する。キャリアガスとしてのArガスの流量は、約250sccmである。この際、Srガスインジェクター41の内圧は約35Torrであった。また、TTIPガスインジェクター46、Oガスインジェクター19、およびHOガスインジェクター17からは、Arガスをそれぞれ約10秒間、約500sccmずつ反応容器11内に供給する。
【0090】
通常、280℃前後ではSr原料の分解反応は殆ど起こらないが、各ウェーハ23の表面にはHOが吸着しているので、各ウェーハ23の表面に到達したSr原料は吸着しているHOとの間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないSrの酸化物の膜が成膜される。
【0091】
次に、反応容器11内に、再びHOガスインジェクター17からHOガスを約20秒間、約500sccm導入するとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびOガスインジェクター19からはOガスをそれぞれ約20秒間、約500sccmずつ供給する。これにより、各ウェーハ23の表面上に成膜されたSr酸化物膜中の炭素不純物が減少するとともに、導入されたHOガスがSr酸化物膜の表面に吸着する。
【0092】
以上説明したHOガスの供給およびSrガスの供給を交互に4回ずつ繰り返すことにより、約120秒で各ウェーハ23の表面上に約0.3nmの膜厚を有するSr酸化物膜を略均一に成膜することができる。
【0093】
次に、HOガスインジェクター17から供給するガスをHOガスに切り替えて、反応容器11内にHOガスを約20秒間、約500sccm導入する。それとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびOガスインジェクター19から供給するガスをOガスに切り替え、Oガスをそれぞれ約20秒間、約500sccmずつ反応容器11内に供給する。
【0094】
次に、TTIPガスインジェクター46から供給するガスをTTIPガスに切り替えて、反応容器11内にTTIPガスを約10秒間、約150sccm導入する。それとともに、HOガスインジェクター17、Srガスインジェクター41、およびOガスインジェクター19から供給するガスをArガスに切り替え、Arガスをそれぞれ約10秒間、約500sccmずつ反応容器11内に供給する。
【0095】
通常、280℃前後で酸素が存在しない条件下では、TTIPの分解反応は殆ど起こらないが、各ウェーハ23の表面に成膜されたSr酸化物膜の表面にはHOが吸着しているので、Sr酸化物膜の表面に到達したTTIPガスのエトキシ基は吸着しているHOとの間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないTiの酸化物の膜が成膜され、さらにSr酸化物膜と反応する。
【0096】
次に、反応容器11内に、再びHOガスインジェクター17からHOガスを約20秒間、約500sccm導入するとともに、Srガスインジェクター41、TTIPガスインジェクター46、およびOガスインジェクター19からはOガスをそれぞれ約20秒間、約500sccmずつ供給する。すると、Oにより、Ti酸化物膜中の炭素不純物が減少するとともに、導入されたHOガスがTi−Sr酸化物膜の表面に吸着する。
【0097】
以上説明したHOガスの供給およびTTIPガスの供給を交互に3回ずつ繰り返す。これにより、各ウェーハ23の表面上に堆積したTi−Sr酸化物膜に含まれるTiとSrとのモル比が略等しくなり、ペロブスカイト型結晶構造(SrTiO)を有するSTO膜47を、各ウェーハ23の表面上に約90秒で、約0.4nmの略均一な膜厚で成膜することができる。
【0098】
すなわち、前述したように、HOガスの供給およびSrガスの供給を交互に4回ずつ繰り返す一連のシーケンスを行った後、HOガスの供給およびTTIPガスの供給を交互に3回ずつ繰り返す一連のシーケンスを行うことにより、合計約210秒で各ウェーハ23の表面上に約0.4nmの膜厚を有するSTO膜47を略均一に成膜することができる。これら2種類のシーケンスからなる合計約210秒のシーケンスを1サイクルとし、これを30回繰り返すことにより、各ウェーハ23の表面上にSTO膜47を約12nm堆積させる。その後、Nガスを反応容器11内に導入して、STO膜47に約400℃で加熱処理を施すことにより、本実施形態の成膜プロセスを終了とする。
【0099】
次に、図7に示すように、開口径Wが約70nm、深さDが約420nmで、アスペクト比が約6の穴48の内側および周辺にSTO膜を成膜する。この際、本実施形態の成膜方法および通常の熱CVD法のそれぞれに基づいてSTO膜を成膜する。そして、本実施形態によるSTO膜47、および通常の熱CVD法による図示しないSTO膜のそれぞれの膜厚および膜組成の均一性を、図7中▲1▼〜▲5▼の5箇所において評価する。この評価の結果を表1に示す。なお、膜厚は断面TEMにより、また膜組成はTEM−EDXにより評価を行った。
【0100】
熱CVD法の実施条件を次に示す。
【0101】
成膜温度を約400℃に、成膜圧力を約1Torrに設定する。それとともに、原料としてのSr(METHD)、およびTi(MPD)(THD)のnブチル酢酸溶液(約0.15モル/リットル)を総原料流量が約0.3sccmとなるように設定する。併せて約50%/50%のOとNOとの混合ガスを用いる。このような実施条件下において、熱CVD法により非晶質のSTO膜を成膜した後、STO膜にNを用いて約650℃でRTA(Rapid Thermal Anneal)を施して結晶化させる。この熱CVD法の実施条件は、通常、図示しない約150nm径のコンタクトホール内で略一様な膜厚と組成比とが得られるとされているものである。
【0102】
【表1】

Figure 2004023043
【0103】
表1より、従来の熱CVD法では、STO膜の膜厚の均一性を保持することはできても、穴48のようなアスペクト比が大きい、細くて深い穴内での膜組成の均一性までは保持でき無いことが分かる。この表1によれば、穴48の底では、殆どTiの酸化物膜しか成膜されないことを示す。すなわち、従来の熱CVD法では、現在そして将来に向けたLSIの微細化への追随が非常に困難であることが容易に予想される。
【0104】
また、図示しないキャパシタが有する平面形状のRu電極上に、本実施形態に基づいて成膜したSTO膜47、および従来の熱CVD法に基づいて成膜したSTO膜の、それぞれの電気的特性を評価した結果を表2に示す。この表2によれば、従来の熱CVD法に基づいて成膜したSTO膜に比べて、本実施形態に基づいて成膜したSTO膜47の方が、より高い比誘電率およびより低いリーク電流値を示している。これは従来の熱CVD法よりも、本実施形態のALD成膜法の方が、より良好な結晶性を有する化合物膜を成膜するのにより適しているためと考えられる。
【0105】
【表2】
Figure 2004023043
【0106】
また、本実施形態の成膜プロセスにおける成膜温度の最高値は約400℃であるが、これは本プロセスを用いて形成したキャパシタを、例えば熱に弱い図示しないアルミニウム多層配線上に形成することが十分可能であることを示している。これにより、キャパシタ、ひいてはこのキャパシタを備える半導体装置を製造する際に、汚染管理が容易になることを意味する。また、例えば多層配線構造を有するLSI内の任意の層にキャパシタを混載しても、キャパシタよりも下層の配線、ひいてはLSI内の殆ど全ての層の配線間におけるコンタクトホールのアスペクト比増大等の問題を招かない等の利点を有することを意味する。
【0107】
以上説明したように、この第2実施形態においては、前述した第1実施形態と同様の効果を得ることができる。また、Sr原料としてシクロペンタジエニル系の化合物を用い、Ti原料としてアルコキシド、またはアルコキシドを含むDPM錯体を用いることで、HOとの加水分解反応による配位子の一括除去が可能になり、低温での結晶化が容易になる。例えば、STO膜の場合、300℃程度での結晶化が可能である。さらに、Sr原料ガスやTi原料ガスは、約400℃以下においてそれぞれ単独では酸素(O)や亜酸化窒素(NO)と殆ど反応しないので、パージガスとしてOやNOの使用が可能である。これは、配位子等に起因するSTO膜中の有機不純物の効率的な除去できる点で有効である。
【0108】
なお、前述したように、これら本実施形態に基づいて成膜したSTO膜47についての特性は、本実施形態に基づいて成膜するBST膜についても略同様に当てはまる。
【0109】
(第3の実施の形態)
次に、本発明に係る第3実施形態を図8および図9を参照しつつ説明する。図8は、第3実施形態に係る成膜装置を簡略化して示す図である。図9は、第3実施形態に係る成膜方法のシーケンスを示す図である。なお、図1と同一部分は同一符号を付してその詳しい説明を省略する。
【0110】
本実施形態では、具体的には、Atomic Layer Deposition(ALD)法をバッチ処理で実施することにより、化合物膜としてのTi−Al−N膜を成膜する際の成膜方法および成膜装置、Ti−Al−N膜の成膜条件、そして得られたTi−Al−N膜の特性について説明する。
【0111】
本実施形態の成膜プロセスでは、原料ガスとして、チタンクロライド(TiCl)、およびアルミニウムクロライド(AlCl)のそれぞれのガスを用いる。また、活性化ガスとしてNHガスを用いる。さらに、パージガスとしてアルゴン(Ar)ガスを用いる。
【0112】
先ず、図8(a),(b)を参照しつつ、本実施形態の成膜装置51について説明する。
【0113】
図8(a)は、成膜装置51の概略構成を正面もしくは側面から臨んで示す図である。図8(b)は、成膜装置51を図5(a)中実線矢印の向きから臨んで示す平面図である。この成膜装置51は、前述した第1実施形態および第2実施形態と同様に、主に原料ガス供給系52および反応系53からなる。原料ガス供給系52は、TiClガス供給系54、AlClガス供給系55、およびNHガス供給系56などからなる。
【0114】
TiClガス供給系54は、主にTiClガスボンベ56、このボンベ56を加熱するTiCl加熱装置57、および高温仕様TiClガス流量制御装置58などからなる。同様に、AlClガス供給系55は、主にAlClガスボンベ59、このボンベ59を加熱するAlCl加熱装置60、および高温仕様AlClガス流量制御装置61などからなる。TiClガスボンベ56およびAlClガスボンベ59の温度は、それぞれ約60℃である。TiClガスよびAlClガスは、それぞれ約80℃に加熱されたTiClガス配管62およびAlClガス配管63を通り、原料ガス供給治具としての石英製のTiClガスインジェクター64およびAlClガスインジェクター65に互いに独立に送られる。TiClガスインジェクター64およびAlClガスインジェクター65は互いに独立に反応容器11内に設けられており、TiClガスよびAlClガスはそれぞれTiClガスインジェクター64およびAlClガスインジェクター65を経て反応容器11内に供給される。
【0115】
TiClガス配管62とTiClガスインジェクター64との接続部分付近、すなわちTiClガスインジェクター64の根元の部分には、TiClガスインジェクター64に通すガスを、TiClガスまたはArガスに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12cが設けられている。同様に、AlClガス配管63とAlClガスインジェクター65との接続部分付近、すなわちAlClガスインジェクター65の根元の部分には、AlClガスインジェクター65に通すガスを、AlClガスまたはArガスに選択的に切り替えることができるように、原料ガス供給系切り替えバルブ12dが設けられている。
【0116】
Oガス供給系56は、主にNHガスボンベ66およびNHガスのガス流量制御装置67などからなる。NHガスは約60℃に加熱されたNHガス配管68を通り、活性化ガス供給治具としての石英製のNHガスインジェクター69に送られる。NHガスインジェクター69は、反応容器11内に設けられており、NHガスはNHガスインジェクター69を経て反応容器11内に供給される。NHガス配管68とNHガスインジェクター69との接続部分付近、すなわちNHガスインジェクター69の根元の部分には、NHガスインジェクター69に通すガスを、NHガスまたはArガスに選択的に切り替えることができるように、活性化ガス供給系切り替えバルブ18aが設けられている。
【0117】
このように、成膜装置31は、3系統のガスインジェクター64,65,69を備えている。また、TiClガスインジェクター64、AlClガスインジェクター65、およびNHガスインジェクター69は、それぞれ第1実施形態および第2実施形態と同様に、多孔ガスインジェクターとして形成されている。
【0118】
他方、反応系53は、第1実施形態および第2実施形態と同様に、成膜処理が施される被処理基板(ウェーハ)23を複数枚同時に収容可能であるとともに、それら各ウェーハ23を略均一に加熱できるように容器加熱装置26が設けられたホットウォール式の反応容器11、この反応容器11内において各ウェーハ23をそれらの表面を互いに所定の間隔離間させて支持可能な基板支持具としてのボート24、反応容器11内に供給された原料ガス、活性化ガス、およびパージガスを反応容器11の外に排気する排気系25などからなる。それとともに、反応容器(チャンバー)11の内部をクリーニングするためのClFガスを反応容器11内に供給する、ClFガス供給系70を備えている。
【0119】
また、図8(a),(b)に示すように、本実施形態の反応容器11には、その内部に収容される各ウェーハ23を間に挟んで、3本のガスインジェクター64,65,69と対向する側(位置)に、反応容器11内の不要なガスを反応容器11の外に排気するためのスリット状の排気孔71が、各ウェーハ23の枚数に応じて複数個設けられている。それとともに、ボート24には、各排気孔71付近から3本のガスインジェクター64,65,69付近にかけて、各ウェーハ23をそれらの両側方から囲む整流部材としての遮蔽板(整流板)72が設けられている。これにより、3本のガスインジェクター64,65,69を通して反応容器11に供給された各ガスは、遮蔽板72の外側に殆ど流れ出すこと無く、ボート24に支持された各ウェーハ23を集中的に包むように、各ガスインジェクター64,65,69の吹き出し孔27から各排気孔71に向けて流れる。
【0120】
このような構造を採用することにより、第1に、反応容器11の内壁自体に金属膜が堆積(付着)することを抑制して、各ウェーハ23の温度を精密に制御することが可能になる。一般に、反応容器11の内壁を覆う金属膜が多くなる程、例えば容器加熱装置26などの外部熱源からの輻射熱が各ウェーハ23に到達し難くなるためである。ところが、本実施形態の反応容器11では、前述した構造により反応容器11の内壁に金属膜が堆積することを抑制できるので、容器加熱装置26により、反応容器11内に収容された各ウェーハ23の温度を精密に制御することができる。第2に、前述した構造により、原料ガス、活性化ガス、およびパージガスを、各ウェーハ23の表面付近や、各ウェーハ23同士の間など、各ウェーハ23の周りに実質的にガスを閉じ込めつつ流すことができる。これにより、成膜反応の反応速度を高めることができるとともに、各ガスの利用効率をより向上させることができる。さらに、反応容器11内、特に各ウェーハ23の周りのパージを容易かつ迅速に行うことができるという利点も生まれる。
【0121】
さらに、際膜プロセスを複数回繰り返す場合には、各プロセス間に反応容器11内にClFガスを供給することにより、反応容器11内をClFクリーニングすることができる。これにより、成膜処理を行うのに先立って、反応容器11の内壁に堆積した金属膜を略完全に除去することが可能である。このように、本実施形態の成膜装置51によれば、より適正な状態で化合物膜を成膜できる。
【0122】
次に、図9を参照しつつ、本実施形態の成膜方法について説明する。本実施形態の成膜方法は、具体的には、成膜装置51を用いて、以下に述べるシーケンスで化合物膜としての図示しないTi0.7Al0.3N膜を成膜するものである。
【0123】
成膜処理が施される複数枚のウェーハ23には、Ti0.7Al0.3N膜が埋め込まれる開口径約130nmの図示しないコンタクトホールが予め形成されている。そして、各ウェーハ23の表面には、コンタクト抵抗を低減するために、予めロングスロースパッタ(LTS)により図示しないTi膜を約10nm形成しておく。それとともに、各ウェーハ23に対して、約600℃のRTAによりシリサイデーションを完了させておく。
【0124】
以上説明した処理が予め施された複数枚のウェーハ23を反応容器11内に導入し、反応容器11内に配置されているボート24に支持させる。続けて、容器加熱装置26を用いて、反応容器11内の雰囲気および各ウェーハ23の温度が約500℃になるように略均一に加熱する。それとともに、TiClガスインジェクター64、AlClガスインジェクター65、およびNHガスインジェクター69からそれぞれ約1SLMずつArガスを反応容器11内に供給して、反応容器11内の圧力を約1.0Torrに保つ。反応容器11内の温度(炉内温度)が500℃±20℃程度で安定していることを確認した後、容器内圧力を約1.0Torrに保ちつつ、図6に示すシーケンスに基づいて以下に述べる成膜処理を実行する。
【0125】
先ず、反応容器11内に、NHガスインジェクター69からNHガスを約10秒間、約1SLM導入するとともに、TiClガスインジェクター64およびAlClガスインジェクター65からはArガスをそれぞれ約10秒間、約500sccmずつ供給する。反応容器11内に導入されたNHガスは、各ウェーハ23の表面に吸着する。
【0126】
次に、AlClガスインジェクター65から反応容器11内にArガスを供給しつつ、NHガスインジェクター69から供給するガスをArガスに切り替える。それとともに、TiClガスインジェクター64から供給するガスをTiClガスに切り替えて、反応容器11内にTiClガスを約5秒間、約1SLM導入する。AlClガスインジェクター65およびNHガスインジェクター69から、Arガスをそれぞれ約5秒間、約500sccmずつ反応容器11内に供給する。
【0127】
通常、500℃前後ではTiClの分解反応は殆ど起こらないが、各ウェーハ23の表面にはNHが吸着しているので、各ウェーハ23の表面に到達したTiClガスは吸着しているNHとの間で分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないTiの窒化物の膜が成膜される。
【0128】
次に、反応容器11内に、再びNHガスインジェクター69からNHガスを約10秒間、約1SLM導入するとともに、TiClガスインジェクター64およびAlClガスインジェクター65からはArガスをそれぞれ約10秒間、約1SLMずつ供給する。これにより、各ウェーハ23の表面上に堆積されたTiが略完全に窒化されるとともに、このTiの窒化物の膜中に残留していたTi原料中の塩素が塩化アンモニウムとなって離脱する。さらには、導入されたNHガスがTi窒化物膜の表面に吸着する。
【0129】
以上説明したNHガスの供給およびTiClガスの供給を交互に5回ずつ、約75秒間かけて繰り返す。
【0130】
次に、NHガスインジェクター69からから供給するガスをNHガスに切り替えて、反応容器11内にNHガスを約10秒間、約1SLM導入する。また、AlClガスインジェクター65からArガスを反応容器11内に供給しつつ、TiClガスインジェクター64から供給するガスをArガスに切り替える。AlClガスインジェクター65およびTiClガスインジェクター64からは、Arガスをそれぞれ約10秒間、約1SLMずつ反応容器11内に供給する。
【0131】
次に、TiClガスインジェクター64から反応容器11内にArガスを供給しつつ、AlClガスインジェクター65から供給するガスをAlClガスに切り替える。それとともに、NHガスインジェクター69から供給するガスをArガスに切り替える。AlClガスインジェクター65から、反応容器11内にAlClガスを約5秒間、約1SLM供給する。また、TiClガスインジェクター64およびNHガスインジェクター69から、反応容器11内にArガスを約5秒間、それぞれ約1SLMずつ供給する。
【0132】
通常、500℃前後では、AlClの分解反応は殆ど起こらないが、各ウェーハ23の表面に成膜されたTi窒化物膜の表面にはNHが吸着しているので、Ti窒化物膜の表面に到達したAlClガスは吸着しているNHとの間で加水分解反応を起こす。これにより、各ウェーハ23の表面上に、図示しないAlの窒化物の膜が成膜される。
【0133】
次に、反応容器11内に、再びNHガスインジェクター69からNHガスを約10秒間、約1SLM導入するとともに、TiClガスインジェクター64およびAlClガスインジェクター65からはArガスをそれぞれ約10秒間、約1SLMずつ供給する。これにより、各ウェーハ23の表面上に堆積されたAlが略完全に窒化されるとともに、このAlの窒化物の膜中に残留していたAl原料中の塩素が塩化アンモニウムとなって離脱する。さらには、導入されたNHガスがAl窒化物膜の表面に吸着する。
【0134】
以上説明したNHガスの供給およびAlClガスの供給を交互に2回ずつ繰り返す。これにより、各ウェーハ23の表面上に約30秒で、Ti0.7Al0.3Nの組成を有する化合物膜を約2.5nmの略均一な膜厚で成膜することができる。
【0135】
すなわち、前述したように、NHガスの供給およびTiClガスの供給を交互に5回ずつ繰り返す一連のシーケンスを行った後、NHガスの供給およびAlClガスの供給を交互に2回ずつ繰り返す一連のシーケンスを行うことにより、合計約105秒で各ウェーハ23の表面上に約2.5nmの膜厚を有するTi0.7Al0.3N膜を略均一に成膜することができる。これら2種類のシーケンスからなる合計約105秒のシーケンスを1サイクルとし、これを30回繰り返すことにより、各ウェーハ23の表面上にTi−Al−N膜を約75nm堆積させる。これにより、本実施形態の成膜プロセスを終了とする。
【0136】
本発明者らによれば、以上説明した成膜プロセスにより、各ウェーハ23に予め形成されていたコンタクトホールを、ボイド等が殆ど生じない状態で略完全に埋め込むことができることが確認された。また、これらのコンタクトホールを用いて形成された図示しないコンタクトプラグの表面は、約540℃の酸化性雰囲気下における熱処理でも殆ど酸化されず、コンタクト抵抗が十分に低いことが確認された。
【0137】
以上説明したように、この第3実施形態においては、前述した第1実施形態と同様の効果を得ることができる。また、前述したように、各ウェーハ23を間に挟んで、反応容器11の各ガスインジェクター64,65,69が設けられている側と対向する側に複数個の排気孔11を設ける。これにより、原料ガス、活性化ガス、およびパージガスを、それらの流れを略一定の向きに制御して流すことができる。この結果、各ガスの利用効率および排気効率をより高めることができるとともに、パージ時間をより短縮することが可能である。このような効果は、各ガスインジェクター64,65,69から各排気孔11にかけてボート24に取り付けられた遮蔽板72の遮蔽効果および整流効果、ならびに互いに離間されてボート24に支持された各ウェーハ23自体の整流効果と相乗効果を及ぼし合うことにより、一層高められる。各ガスインジェクター64,65,69に設けられた複数個の吹き出し孔27から各ウェーハ23に向けて供給された原料ガス、活性化ガス、およびパージガスは、各ウェーハ23および遮蔽板72に案内されて各排気孔11に向けて各ウェーハ23を包むように流れる。したがって、この第3実施形態によれば、良質な化合物膜を極めて効率よく、かつ極めて容易に成膜できる。
【0138】
なお、本発明に係る成膜方法、成膜装置、および半導体装置の製造方法は、前述した第1〜第3の各実施形態には制約されない。本発明の趣旨を逸脱しない範囲で、それらの構成、あるいは工程などの一部を種々様々な設定に変更したり、あるいは各種設定を適宜、適当に組み合わせて用いたりして実施することができる。
【0139】
例えば、第1実施形態の成膜装置1を、その装置構成を変更することなく、原料としてテトライソプロポキシドチタン(TTIP)を用いることにより、TiO膜やTa−Ti−O膜を成膜することも可能である。同様に、原料としてAlClを用いることで、Al膜を成膜することも可能である。
【0140】
また、第1〜第3の各実施形態においては、各ウェーハ23を、それらの表面(基板面)を互いに離間させた状態で、上下(縦)方向に積層するように反応容器11内に配置したが、各ウェーハ23の配置状態はこれに限るものではない。例えば、各ウェーハ23を、それらの表面(基板面)を互いに離間させた状態で、左右(横)方向に並べるように反応容器11内に配置しても構わない。また、各ウェーハ23は、全て互いに平行となる姿勢で配置される必要は無い。それとともに、各ウェーハ23は、隣接する各ウェーハ23の間隔を全て均等な大きさに設定されて配置される必要は無い。各ウェーハ23の配置方向、姿勢、間隔などは、反応容器11内に導入されるガスの種類、重さ、性質、流れの方向、および各ガスが供給される順番などに応じて、各ウェーハ23の表面上に化合物膜が略均一に適正な状態で成膜されるように適宜、適正な状態に設定して構わない。この場合、ボート24を、各ウェーハ23の配置方向、姿勢、間隔などを適宜、適正な状態に設定できる構成とするとよい。
【0141】
また、原料ガスインジェクター、活性化ガスインジェクター、およびパージガスインジェクターから供給される各ガスの供給圧力や吹き出し量などは、一律に等しい大きさに設定する必要は無い。各ガスのガスの種類、重さ、性質、流れの方向、および各ガスが供給される順番などに応じて、各ウェーハ23の表面上に化合物膜が略均一に適正な状態で成膜されるように、各ガスインジェクターごとに適宜、適正な状態に設定して構わない。また、各ガスインジェクターに設けられた複数個の吹き出し孔27からのガス供給圧力や吹き出し量などは、各孔27の位置、すなわち各ウェーハ23の配置位置に応じて適宜、適正な大きさに設定して構わない。例えば、各ウェーハ23を、第1〜第3実施形態のように上下方向に積層するように配置した場合、各吹き出し孔27からのガス供給圧力や吹き出し量などを、最上層のウェーハ23から最下層のウェーハ23にかけて、各ガスが略均等に供給されるように、各孔27の高さごとに適正な大きさに設定するとよい。これにより、各ウェーハ23の表面上に、化合物膜をより均一に、より適正な状態で成膜できる。
【0142】
また、第3実施形態においては、遮蔽板(整流板)72を各ウェーハ23の両側方に設けたが、これに限るものではない。例えば、遮蔽板72を、各ガスインジェクターから各排気孔71にかけて、各ウェーハ23を支持しているボート24の上方に設けても構わない。これにより、各ウェーハ23に向けて供給される各ガスの遮蔽効果、整流効果をより向上させて、各ガスの利用効率、ひいては成膜効率を大幅に向上できる。あるいは、各ウェーハ23を支持しているボート24の上下両端部を、遮蔽効果および整流効果を発揮できる形状に形成するとよい。これにより、第1および第2実施形態のように、ボート24に遮蔽板72を、設けない場合でも、各ガスの利用効率および成膜効率を向上できる。また、そのような形状からなるボート24を遮蔽板72と併用すれば、各ガスの利用効率および成膜効率を極めて向上できるのはもちろんである。
【0143】
また、各ガスインジェクターから各ガスを供給している間は、反応容器11内の不要なガスを排気系25により反応容器11の外へ積極的に排気する設定とするとよい。これにより、複数種類のガスを用いる場合でも、不要な気相間反応を大幅に低減させて、より良質な化合物膜を成膜できる。
【0144】
さらに、本発明に係る成膜方法、成膜装置、および半導体装置の製造方法を用いて製造可能な半導体装置は、DRAM等、現在、一般に普及している半導体装置には限られない。本発明に係る半導体装置の製造方法は、例えばFeRAMなど、将来において発展が期待される各種の微細な半導体装置を製造する際にも十分適用可能なのはもちろんである。
【0145】
【発明の効果】
本発明に係る成膜方法および成膜装置によれば、処理室内のパージを短時間で容易に行うことができるので成膜作業の長時間化を容易に抑制できるとともに、ガスの使用効率を容易に向上でき、かつ、複数種類のガス同士の相互反応を容易に抑制できる。したがって、本発明に係る成膜方法によれば、ALD法を用いてバッチ式処理により成膜作業を行う際に、良質な化合物膜を効率よく、かつ容易に成膜できる。
【0146】
また、本発明に係る半導体装置の製造方法によれば、本発明に係る成膜方法により成膜された化合物膜を用いることにより、半導体装置の内部に組み込まれる各種の微細な半導体素子などを高い品質で効率よく、かつ容易に形成して、半導体装置の品質および歩留まりを容易に向上させることができる。したがって、本発明に係る半導体装置の製造方法によれば、良質な化合物膜を有する良質な半導体装置を効率よく、かつ容易に製造できる。
【図面の簡単な説明】
【図1】第1実施形態に係る成膜装置を簡略化して示す図。
【図2】第1実施形態に係る成膜方法のシーケンスを示す図。
【図3】基板上にTa膜が成膜される仕組みを模式的に示す工程断面図。
【図4】Ta膜を成膜する際に発生するパーティクルの成膜サイクルに対する依存性をグラフにして示す図。
【図5】第2実施形態に係る成膜装置を簡略化して示す図。
【図6】第2実施形態に係る成膜方法のシーケンスを示す図。
【図7】第2実施形態に係る成膜方法により穴の内部および周囲に成膜されたSTO膜を簡略化して示す断面図。
【図8】第3実施形態に係る成膜装置を簡略化して示す図。
【図9】第3実施形態に係る成膜方法のシーケンスを示す図。
【図10】従来の技術に係る成膜装置を簡略化して示す斜視図。
【図11】従来の技術に係る成膜方法のシーケンスを示す図。
【図12】従来の技術に係る他の成膜装置を簡略化して示す斜視図。
【符号の説明】
1,31,51…成膜装置
2,32,52…原料ガス供給系
5,56…活性化ガス供給系
10…PETガスインジェクター(原料ガス供給治具)
11…反応容器(処理室)
17…HOガスインジェクター(活性化ガス供給治具)
19…Oガスインジェクター(パージガス供給治具)
20…パージガス供給系
23…ウェーハ(被処理基板)
24…ボート(基板支持具)
27…吹き出し孔
28…Ta膜(化合物膜)
41…Srガスインジェクター(原料ガス供給治具)
46…TTIPガスインジェクター(原料ガス供給治具)
47…SrTiO膜(化合物膜)
64…TiClガスインジェクター(原料ガス供給治具)
65…AlClガスインジェクター(原料ガス供給治具)
69…NHガスインジェクター(活性化ガス供給治具)
71…排気孔
72…遮蔽板(整流板、整流部材)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for forming a compound thin film, and more particularly, to a method for forming a thin film of a compound such as BST, STO, (Ti, Al) N, and Ta—Ti—O by using an atomic layer deposition (ALD) method. The present invention relates to a film forming method and a film forming apparatus capable of forming a film in a batch system, and a method for manufacturing a semiconductor device using the same.
[0002]
[Prior art]
In recent years, with the downsizing of electronic devices, the arrangement of each element has been changed from a planar arrangement to a three-dimensional arrangement in order to reduce the projected area of each element constituting the electronic device and not to reduce the characteristics of each element. The need to change to is increasing. In particular, it is necessary to secure a predetermined capacitor capacity of the capacitor element so that the S / N ratio is not reduced even when the minimum processing size of the integrated circuit is reduced. In the 4MDRAM and subsequent generations, a three-dimensional capacitor element such as a so-called stack cell or trench cell is employed. As the degree of integration increases, it is becoming inevitable to employ a capacitor element having a more complicated three-dimensional shape.
[0003]
Further, the fact that the element is made three-dimensionally means that the aspect ratio of a contact hole that connects between layers of a plurality of wirings having a multilayer structure substantially increases. In this case, it is required to uniformly form a plug electrode film, a barrier metal film, and the like in a contact hole having a high aspect ratio.
[0004]
On the other hand, as the projected area of the device becomes smaller, it is naturally required to make various films used in the device thinner. For example, thinning of a compound film composed of a plurality of constituent elements, and in many cases, including a plurality of metal elements as constituent elements has been demanded. Specifically, the capacitor dielectric film is made of Ta, which can greatly reduce the equivalent oxide film thickness from a general NO film. 2 O 5 Film, high dielectric constant thin film such as Ta-Ti-O film, Ba-Sr-Ti-O (BST) film, Sr-Ti-O (STO) film, or Pb-Zr-Ti-O (PZT) film is there. The barrier metal film includes a TiN film, a TaN film, a (Ti, Al) N film and a (Ta, Si) N film exhibiting stronger oxidation resistance than a WN film or the like. Further, as a gate insulating film exhibiting a high dielectric constant, Al 2 O 3 A Hf-Si-O film, a Zr-Si-O film, or the like.
[0005]
In addition, as described above, as the device becomes more three-dimensional, it is required that these films be formed while maintaining good step coverage. Further, in consideration of the mixed mounting of elements on a system LSI or the like, a film forming method that does not depend on the mask pattern of the LSI or the coverage of the elements is required.
[0006]
When a generally used thermal CVD method is used to form the above-described multi-component compound film with good step coverage, there are the following problems.
[0007]
In order to form a multi-component compound film with good step coverage by a thermal CVD method, it is necessary to form a film under conditions for controlling the surface reaction. However, under such conditions, the film composition to be obtained is determined by the chemical reaction on the film surface, and therefore, the desired film quality and film composition are not always obtained. In particular, inside a deep contact hole or the like, since the diffusion coefficient, chemical reaction rate coefficient, or surface migration rate differs depending on the raw material, the composition may be different between the top and bottom of the hole. Further, under the surface reaction rate-determining condition, the film formation strongly depends on the film formation temperature, so that the substrate temperature varies depending on the state of the base of the film, for example, the coverage of wirings, electrodes, or contact holes. In particular, when the mask pattern or the element coverage changes frequently as in a system LSI or the like, there is a problem that frequent deposition conditions must be set in accordance with the change.
[0008]
As a method of solving such a problem of the thermal CVD method, a so-called Atomic Layer Deposition (ALD) method has recently been receiving attention. Even when a compound film containing a plurality of types of metal elements is formed as described above, composition control is easy because the ALD method forms a film for each element. Also, although not usually thermal decomposition, the ALD method forms the atomic layer under almost completely the conditions of the surface reaction control, so that the step coverage is very good. However, the ALD method generally has a problem that the film formation time is long. The ALD method typically uses H 2 O, NH 3 , O 3 Supply of active gas, etc., purge by evacuation, AlCl 3 Supply of metal source gas, etc., purging by evacuation, 2 O, NH 3 , O 3 By repeatedly performing a sequence of supplying an active gas such as a plurality of times, a film is formed in units of atomic layers, and the film formation time tends to be originally long. In particular, when a plurality of types of metal source gases are used, it is necessary to control the composition in a multi-component system in order to suppress the mutual reaction between the metal source gases. In this case, the purge time by evacuation becomes long.
[0009]
Therefore, in the ALD method, an apparatus capable of forming a film by batch processing is being studied in order to reduce a net process time (RPT) per wafer.
[0010]
[Problems to be solved by the invention]
FIG. 10 shows that Al processing was performed by batch processing using the ALD method. 2 O 3 1 shows an example of an apparatus for forming a film. In this film forming apparatus 101, a normal ALD apparatus is enlarged so that a film forming process can be performed on a plurality of wafers (substrates) 102 simultaneously. Al 2 O 3 The supply state of the various source gases for the film into the processing chamber (reaction vessel) 103 is controlled by a gas supply system 104. Each raw material gas is passed through a current plate 106 provided on one end side (entrance side) of the chamber 105 and is supplied into the processing chamber 103 in a laminar flow. The current plate 106 is indispensable because the size of the chamber 105 is increased. Each source gas supplied into the processing chamber 103 passes through each wafer 102, and is then exhausted from the other end side (exit side) of the chamber 105 by the exhaust system 107.
[0011]
FIG. 11 shows an example of a sequence of a film forming process performed using the film forming apparatus 101.
[0012]
In this example, the size of the chamber 105 is increased, and there is a problem that the purge time becomes longer in order to suppress the reaction on the upstream side of the current plate 106. Further, since the size of the chamber 105 is increased, there is a problem that the consumption rate of each source gas increases. This is because each source gas that does not reach the surface of the substrate 102 is exhausted without contributing to film formation, and in order to secure a partial pressure of each source gas required on the surface of the substrate 102, This is because the partial pressure of each source gas must be increased. As the consumption rate of the source gas increases, the film formation efficiency decreases, the film formation cost increases, and the manufacturing cost of the semiconductor device also increases. In general, in the ALD method, the dead space in the chamber 105 is reduced as much as possible in order to shorten the purge time between each sequence. Then, it becomes difficult to perform the batch processing, and it is difficult to achieve both the batch processing and the shortening of the purge time. Further, in the ALD method, generally, the uniformity of the gas flow is not given much importance. However, in the batch processing, since it is necessary to cause the ALD reaction on the surface of each wafer 102 as uniformly as possible, equipment for uniformizing the gas flow such as the rectifying plate 106 is required. This makes it more difficult to shorten the purge time.
[0013]
In FIG. 12, similarly to the film forming apparatus 101, Al processing is performed by batch processing using the ALD method. 2 O 3 Another example of an apparatus for forming a film is shown. In this film forming apparatus 201, in order to suppress an increase in the purge time due to the batch processing, a gas purge that can be shortened easily is adopted instead of a vacuum purge that requires a long time. At the same time, in the film forming apparatus 201, a plurality of gas injectors 202 are set to rotate on a susceptor 203 on which a plurality of wafers 102 are mounted. Thus, the RPT of the film forming apparatus 201 is reduced. In the case of the film forming apparatus 201, each of the four gas injectors 202 has AlCl as a metal source gas. 3 Gas, argon (Ar) gas as a purge gas, H as a reaction gas 2 O gas and Ar gas as a purge gas are supplied one by one. Each gas is constantly supplied from the gas injector 202 to the surface of each wafer 102 in order without switching the type of gas. That is, in the film forming apparatus 201, the four gas injectors 202 are rotated to change the type of gas supplied to each wafer 102 to, for example, AlCl 3 , Ar, H 2 O, Ar, AlCl again 3 In this order, ALD film formation is performed.
[0014]
However, this example has the following problem. In the film forming apparatus 201, since a plurality of types of gases are always supplied simultaneously into the chamber 204, it is difficult to separate each gas in the chamber 204. Therefore, a gas phase reaction between each gas in the chamber 204 or H 2 It is difficult to suppress undesired reactions in the gas system, such as the deposition of Al on the O gas injector 202a, within an appropriate allowable range. In particular, in the case of forming a compound film including many constituent elements such as a BST film and a PZT film, the types of source gases are increased, and it is extremely difficult to suppress the reaction between the source gases. At the same time, there is a problem that the device configuration is complicated. Further, according to the film forming apparatus 201 and the film forming method, the film quality of the compound film is likely to be deteriorated, and the quality of the whole semiconductor device may be deteriorated. Then, the manufacturing yield of the semiconductor device may be reduced, the manufacturing efficiency of the semiconductor device may be reduced, and the manufacturing cost of the semiconductor device may be increased.
[0015]
The present invention has been made to solve the above-described problems, and an object of the present invention is to perform purging in a short time when performing a film forming operation by batch processing using an ALD method. By easily performing, it is possible to easily suppress the prolongation of the film formation work, easily improve the gas use efficiency, and furthermore, easily suppress the mutual reaction between a plurality of types of gases, and obtain a high-quality compound film. It is an object of the present invention to provide a film forming method and a film forming apparatus capable of forming a film efficiently and easily. It is another object of the present invention to provide a method for manufacturing a semiconductor device that can efficiently and easily manufacture a high-quality semiconductor device having a high-quality compound film.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a film forming method according to the present invention is a film forming method for forming a compound film at the atomic layer level on surfaces of a plurality of substrates to be processed, A first step of arranging the respective substrates to be separated from each other in a reaction vessel in which the processing is performed, and arranging the substrates in parallel along a thickness direction; Supply gas from a plurality of gas supply jigs for supplying an activation gas for activating a film formation reaction, and supplying another activation gas to the other gas supply jigs. A second step of supplying a purge gas from a jig; and a third step of switching the gas supplied from the activation gas supply jig from the activation gas to the purge gas and supplying the purge gas from another gas supply jig. And the adjacent each The source gas is supplied from a source gas supply jig that supplies a source gas serving as a main source of a compound film to be formed, and the purge gas is supplied from another gas supply jig. And a fifth step of switching the gas supplied from the source gas supply jig from the source gas to the purge gas and supplying the purge gas from another gas supply jig, and The method is characterized in that the second step to the fifth step are repeated a plurality of times.
[0017]
In this film forming method, a plurality of substrates to be processed are spaced apart from each other and arranged in parallel along the thickness direction in a reaction vessel where a film forming process is performed, and then directed toward each adjacent substrate to be processed. The step of alternately supplying the activation gas and the source gas while supplying the purge gas is repeated a plurality of times. As a result, a compound film is formed on the surfaces of a plurality of substrates to be processed at once at the atomic layer level. According to this film forming method, since the purge gas is used when purging the inside of the reaction vessel, the purging can be easily performed in a short time, and the prolongation of the film forming operation can be easily suppressed. In addition, a plurality of substrates to be processed are arranged in a reaction vessel while being spaced apart from each other along the thickness direction, and the activation gas and the source gas are supplied between adjacent substrates to be processed. Can be easily used. Furthermore, the supply of the activation gas and the supply of the source gas are performed exclusively, and the purge gas is also supplied between the adjacent substrates to be processed when supplying the activation gas and the source gas. It is possible to easily suppress the mutual reaction between the kinds of gases.
[0018]
In order to solve the above problems, a film forming method according to the present invention is a film forming method in which a compound film is collectively formed on a surface of a plurality of substrates to be processed. In order to activate the film formation reaction while continuously supplying a purge gas from the direction substantially parallel to the substrate surfaces toward the respective substrates to be processed, to be arranged side by side along the thickness direction so as to be separated from each other. And a source gas that is a main source of a compound film to be formed is alternately supplied.
[0019]
In this film forming method, a plurality of substrates to be processed are arranged side by side in the thickness direction while being separated from each other, and a purge gas is continuously supplied to each substrate to be processed from a direction substantially parallel to the substrate surface. An activation gas for activating a film formation reaction and a source gas as a main material of a compound film to be formed are alternately supplied while being supplied. Thus, compound films are collectively formed on the surfaces of the plurality of substrates to be processed. According to this film forming method, since the purge gas is used when performing the purge, the purge can be easily performed in a short time, and the prolongation of the film forming operation can be easily suppressed. In addition, a plurality of substrates to be processed are spaced apart from each other and arranged along the thickness direction, and an activating gas and a source gas are supplied to each of the substrates to be processed from a direction substantially parallel to the substrate surface. Therefore, the gas use efficiency can be easily improved. Furthermore, since the activation gas and the source gas are alternately supplied while the purge gas is continuously supplied to each substrate to be processed, the mutual reaction between a plurality of types of gases can be easily suppressed.
[0020]
Further, in order to solve the above problem, the film forming method according to the present invention includes a process chamber in which a film forming process for collectively forming a compound film on a surface of a plurality of substrates to be processed is performed. The substrates to be processed are arranged side by side in the thickness direction with their surfaces separated from each other, and after purging the processing chamber by supplying a purge gas into the processing chamber in which each of the substrates is disposed, purging is performed. Along with continuing to supply the purge gas from each of the substrates to be processed disposed in the processing chamber in a direction substantially parallel to the substrate surface, the activation gas for activating a film formation reaction is Supplying on the surface of each substrate to be processed, while supplying the purge gas toward each substrate to be processed, and cutting off the supply of the activation gas, and toward each substrate to be processed, the substrate surface From a direction almost parallel to the front By supplying the major raw material comprising the raw material gas of a compound film on the surface of each substrate to be treated, is characterized in that for forming the compound layer the on the surface of the substrate to be processed.
[0021]
In this film forming method, since a purge gas is used when purging the processing chamber where the film forming process is performed, the purging can be easily performed in a short time, and the prolongation of the film forming operation can be easily suppressed. In the processing chamber, a plurality of substrates to be subjected to a film forming process are arranged side by side in a thickness direction while being separated from each other, and are directed toward each of the substrates to be processed in a direction substantially parallel to their substrate surfaces. Since the activation gas and the raw material gas are supplied from, the gas use efficiency can be easily improved. Furthermore, while the supply of the activation gas and the supply of the source gas are performed exclusively, and when the activation gas and the source gas are supplied, the supply of the activation gas and the source gas is performed in a direction substantially parallel to the surfaces of the substrates to be processed. Since the purge gas is supplied, the mutual reaction between a plurality of types of gases can be easily suppressed.
[0022]
In carrying out the film forming method according to the present invention, some of the steps and the like may be set as described below.
[0023]
The supply of the activation gas and the supply of the source gas are alternately repeated a plurality of times.
[0024]
For each of the substrates to be processed, between the state in which the activation gas is being supplied and the state in which the source gas is being supplied, for each of the substrates to be processed, their substrate surfaces Only the purge gas is supplied from a parallel direction.
[0025]
A plurality of the source gases are used, and the supply of the activation gas and the supply of the source gas are repeated a plurality of times in a predetermined order for each type of the source gas.
[0026]
Each of the gases is directed toward each of the substrates to be processed, when supplied from a direction parallel to the surface of the substrates, between each of the substrates to be processed and each surface of each of the substrates to be processed. Each of the above gases is supplied to the apparatus.
[0027]
Among the purge gas, the activating gas, and the source gas, the magnitude of the pressure when at least the source gas is supplied into the processing chamber is set to be 10 times or more the magnitude of the pressure in the processing chamber.
[0028]
The purge gas, the activation gas, and the source gas are exhausted to the outside of the processing chamber from a side opposite to a side on which the gases are supplied, with the substrate to be processed interposed therebetween.
[0029]
The activating gas is H 2 O, O 3 , NH 3 At least one of them.
[0030]
The raw material gas includes an alkaline earth metal cyclopentadienyl compound and titanium alkoxide compound, or a composition formula of C 11 H 19 O 2 And a dipivaloyl methanate complex containing an alkoxyl group.
[0031]
The cyclopentadienyl compound also includes a substance in which a part of hydrogen bonded to a cyclopentadienyl ring is substituted by an alkyl group or an alkoxyl group.
[0032]
The purge gas contains O 2 And N 2 O is included.
[0033]
In carrying out the film forming method according to the present invention, by setting some of the steps and the like as described above, the film forming operation can be performed for a longer time and the mutual reaction between a plurality of types of gases can be more easily performed. And the gas use efficiency can be more easily improved. Therefore, a high-quality compound film can be formed more efficiently and more easily.
[0034]
Further, in order to solve the above problem, a film forming apparatus according to the present invention includes a processing chamber provided for a film forming process, and a plurality of substrates to be processed on which the film forming process is performed. A substrate support that can be arranged and supported along the thickness direction while being separated, a source gas that is a main source of a compound film that is collectively formed on the surface of each of the substrates to be processed, and the processing chamber A source gas supply jig for supplying a purge gas for purging the substrate toward each of the substrates to be processed from a direction substantially parallel to a surface of the substrate, and a source gas for supplying the source gas to the source gas supply jig. A gas supply system, an activating gas for activating a film forming reaction when the compound film is formed, and the purge gas are directed toward the respective substrates to be processed from a direction substantially parallel to their substrate surfaces. An activation gas supply jig for supplying the activated gas; An activation gas supply system for supplying an activation gas to the activation gas supply jig; and a source gas supply jig and the activation gas supply by selectively switching the purge gas between the source gas and the activation gas. And a purge gas supply system for supplying to the jig.
[0035]
In this film forming apparatus, since the processing chamber used for the film forming process is purged using the purge gas, the purging can be easily performed in a short time, and the prolongation of the film forming operation can be easily suppressed. Further, a plurality of substrates to be subjected to the film forming process are arranged in the processing chamber while being separated from each other using a substrate support and supported side by side along the thickness direction. Then, the source gas and the activation gas are supplied using the source gas supply jig and the activation gas supply jig. Thereby, the gas use efficiency can be easily improved. Further, the source gas supply jig and the activation gas supply jig are selectively switched between the source gas, the activation gas, and the purge gas by the purge gas supply system, and are substantially flush with their substrate surfaces toward the respective substrates to be processed. A purge gas can be supplied from a parallel direction. Thereby, the mutual reaction between a plurality of types of gases can be easily suppressed.
[0036]
In implementing the film forming apparatus according to the present invention, a part of the configuration and the like may be set as described below.
[0037]
The activation gas supply jig and the activation gas supply system are provided independently for each type of the activation gas, and the activation gas supply system converts the activation gas for each type. It is set so that it can be supplied to the activation gas supply jig independently.
[0038]
A purge gas supply jig for supplying the purge gas toward each of the substrates to be processed from a direction substantially parallel to the substrate surface is provided, and the purge gas supply system supplies the purge gas to the purge gas supply jig. It is set to be possible.
[0039]
The source gas supply jig and the activation gas supply jig are arranged along the direction in which the substrates to be processed are arranged, between the adjacent substrates to be processed and the substrates of the substrates to be processed. A plurality of blowout holes for supplying the respective gases toward the respective substrates to be processed are provided at positions substantially facing at least one of the surfaces.
[0040]
In the processing chamber, the source gas supply jig and the activating gas supply jig are provided with the respective substrates to be processed supported by the substrate support and arranged in the processing chamber therebetween. A position substantially opposite to at least one of the adjacent substrates to be processed and the substrate surface of each of the substrates to be processed, along the direction in which the substrates to be processed are arranged, A plurality of exhaust holes for exhausting the source gas, the activating gas, and the purge gas out of the processing chamber, and the substrate support includes a source gas supply jig and the active component. A rectifying member is provided from the vicinity of the chemical gas supply jig to the vicinity of each of the exhaust holes to surround each of the substrates to be processed from their sides.
[0041]
In carrying out the film forming apparatus according to the present invention, by setting a part of the configuration and the like to various settings as described above, it is possible to make the film forming work longer and to facilitate the mutual reaction between a plurality of types of gases. And the gas use efficiency can be more easily improved. Therefore, a high-quality compound film can be formed more efficiently and more easily.
[0042]
In order to solve the above problems, a method for manufacturing a semiconductor device according to the present invention is characterized in that a semiconductor element is formed using a compound film formed by the film forming method according to the present invention. is there.
[0043]
In this method of manufacturing a semiconductor device, a semiconductor element is formed using a compound film formed by the film forming method according to the present invention. This makes it possible to efficiently form various kinds of fine semiconductor elements and the like incorporated inside the semiconductor device with high quality, thereby improving the quality and yield of the semiconductor device.
[0044]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0045]
(First Embodiment)
First, a first embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a diagram schematically illustrating a film forming apparatus according to the first embodiment. FIG. 2 is a diagram showing a sequence of the film forming method according to the first embodiment. FIG. 3 shows Ta on the substrate. 2 O 5 FIG. 4 is a process cross-sectional view schematically illustrating a mechanism in which a film is formed. FIG. 2 O 5 FIG. 7 is a graph showing the dependence of particles generated when forming a film on the film forming cycle.
[0046]
In the present embodiment, specifically, the atomic layer deposition (ALD) method is performed by a batch process to obtain Ta as a compound film. 2 O 5 Film forming method and film forming apparatus for forming a film, Ta 2 O 5 Film formation conditions and obtained Ta 2 O 5 The characteristics of the film will be described. Further, a method of manufacturing a semiconductor device using the film forming method and the film forming apparatus of the present embodiment will be described.
[0047]
In the film forming process of this embodiment, a pentaethoxy tantalum (PET) gas is used as a source gas containing a main source of the compound film. Further, H is used as an activating gas for activating the film forming reaction. 2 O gas is used. Further, oxygen (O 2) is used as a purge gas. 2 ) Gas and argon (Ar) gas.
[0048]
First, a film forming apparatus 1 according to the present embodiment will be described with reference to FIGS.
[0049]
FIG. 1A is a diagram illustrating a schematic configuration of the film forming apparatus 1 viewed from the front or side. FIG. 1B is a plan view showing the film forming apparatus 1 viewed from the direction of a solid arrow in FIG. The film forming apparatus 1 mainly includes a source gas supply system 2 and a reaction system 3. The source gas supply system 2 includes a PET gas supply system 4 and H 2 Activated gas supply system (H 2 O gas supply system) 5 and the like. In the present embodiment, the activation gas supply system 5 is configured as a part of the source gas supply system 2, but it is needless to say that they may be configured as individual systems independent of each other.
[0050]
The PET gas supply system 4 mainly includes a PET raw material container 6, a PET liquid flow rate control device 7, a PET vaporizer 8, and the like. The vaporization temperature is about 180 ° C. The PET gas vaporized by the PET vaporizer 8 passes through a PET gas pipe 9 heated to about 200 ° C., and is sent to a quartz PET gas injector 10 as a source gas supply jig. The PET gas injector 10 is provided in a processing chamber (reaction vessel) 11 where a film forming process is performed, and the PET gas is supplied (introduced) into the reaction vessel 11 via the PET gas injector 10. In the vicinity of the connection between the PET gas pipe 9 and the PET gas injector 10, that is, at the root of the PET gas injector 10, the gas passing through the PET gas injector 10 can be selectively switched to PET gas or Ar gas. Is provided with a source gas supply system switching valve 12.
[0051]
H 2 The O gas supply system 5 mainly includes H 2 O container 13, this H 2 H for heating the O container 13 to about 80 ° C. 2 O heating device 14, and H 2 It comprises a gas flow control device 15 for O gas. H 2 O gas is H heated to about 150 ° C. 2 After passing through the O gas pipe 16, quartz H 2 It is sent to the O gas injector 17. H 2 The O gas injector 17 is provided in the reaction vessel 11 and 2 O gas is H 2 It is supplied into the reaction vessel 11 via the O gas injector 17. H 2 O gas pipe 16 and H 2 Near the connection with the O gas injector 17, that is, H 2 At the base of the O gas injector 17, H 2 The gas passed through the O gas injector 17 is H 2 O gas, Ar gas, or O gas 2 An activation gas supply system switching valve 18 is provided so that the gas can be selectively switched.
[0052]
In addition to the two gas injectors 10 and 17 described above, an Ar gas and an O 2 gas 2 O as a purge gas supply jig that can selectively supply gas 2 A gas injector 19 is provided in the reaction vessel 11. That is, the film forming apparatus 1 includes a total of three gas injectors 10, 17, and 19. In the film forming apparatus 1, the three gas injectors 10, 17, and 19 are supplied with Ar gas or O gas. 2 A purge gas supply system 20 for supplying gas is provided. Ar gas and O 2 The gas passes through a purge gas pipe 21 of the purge gas supply system 20 and is sent to each of the gas injectors 10, 17, and 19.
[0053]
In the purge gas supply system 20, O 2 O connected to the gas injector 19 2 A part of the gas system is connected to the ozonizer 22. As a result, the purge gas supply system 20 passes through the ozonizer 22 3 / O 2 Mix gas with O 2 It is possible to supply the gas into the gas injector 19 and the reaction vessel 11.
[0054]
On the other hand, the reaction system 3 includes a reaction vessel 11 capable of accommodating a plurality of substrates (wafers) 23 to be subjected to a film forming process at the same time, and a substrate capable of collectively supporting the wafers 23 in the reaction vessel 11. It comprises a boat 24 as a support, an exhaust system 25 for exhausting the raw material gas, the activation gas, and the purge gas supplied into the reaction vessel 11 out of the reaction vessel 11. The so-called hot-wall type reaction vessel provided with a vessel heating device 26 that can heat the plurality of wafers 23 accommodated in the reaction vessel 11 substantially uniformly in the reaction vessel 11 of the present embodiment. 11 are employed. In addition, the boat 24 can support the wafers 23 in a state where the wafers 23 are arranged side by side so as to be stacked in parallel with each other and along the thickness direction while separating their surfaces (substrate surfaces) by a predetermined interval. It has a structure. Further, the shape of the boat 24 can be selectively selected according to the number of the wafers 23, or the type of the film to be formed, the thickness of the film, and the like so that the film forming process is efficiently performed in an appropriate state. Is preferred.
[0055]
Further, the PET gas injector 10, H 2 O gas injector 17, and O 2 The gas injector 19 feeds a plurality of wafers 23 accommodated in the reaction vessel 11 from a direction substantially parallel to the substrate surface, from a PET gas or H gas. 2 O gas, O 2 A plurality of blowout holes 27 are provided so that gas and Ar gas can be supplied. Specifically, the PET gas injector 10, H 2 O gas injector 17, and O 2 In the gas injector 19, each of the wafers 23 is disposed between the adjacent wafers 23 and at a position substantially opposed to at least one of the substrate surfaces of the wafers 23 along the direction in which the wafers 23 are separated from each other and stacked. A plurality of blowing holes 27 for supplying gas toward each wafer 23 are provided. That is, each of the three gas injectors 10, 17, and 19 is formed as a porous gas injector. Thus, each of the gas injectors 10, 17, and 19 can supply each gas intensively and efficiently toward the surface of the plurality of wafers 23 or between the wafers 23. At the same time, toward the surface of each wafer 23 or between each wafer 23, O 2 By supplying the gas or the Ar gas, unnecessary gas can be quickly and easily removed from near the surface of each wafer 23 or between the wafers 23.
[0056]
Next, a film forming method according to the present embodiment will be described with reference to FIGS. Specifically, the film forming method according to the present embodiment uses the film forming apparatus 1 to form a Ta film as a compound film in the following sequence. 2 O 5 The film 28 is formed.
[0057]
A plurality of wafers 23 are introduced into the reaction vessel 11 and supported by a boat 24 disposed in the reaction vessel 11. Subsequently, the container heating device 26 is used to heat the reaction container 11 substantially uniformly so that the atmosphere in the reaction container 11 and the temperature of each wafer 23 become about 280 ° C. At the same time, the PET gas injector 10, H 2 O gas injector 17, and O 2 About 1 SLM of Ar gas is supplied into the reaction vessel 11 from the gas injector 19, and the pressure in the reaction vessel 11 is maintained at about 0.6 Torr. The heat recovery time is about 10 minutes. After confirming that the temperature in the reaction vessel 11 (furnace temperature) is stable at about 280 ° C. ± 10 ° C., while maintaining the pressure in the vessel at about 0.6 Torr, based on the sequence shown in FIG. Is performed.
[0058]
First, in the reaction vessel 11, H 2 O gas injector 17 to H 2 About 500 sccm of O gas is introduced for about 45 seconds, and the PET gas injector 10 and O gas are introduced. 2 Ar gas is supplied from the gas injector 19 at a rate of about 500 sccm for about 45 seconds. H introduced into the reaction vessel 11 2 The O gas is adsorbed on the surface of each wafer 23 as shown in FIG.
[0059]
Next, the PET gas injector 10 and the O 2 While supplying Ar gas from the gas injector 19, H 2 The gas supplied from the O gas injector 17 is switched to Ar gas. Then, the PET gas injector 10, O 2 Gas injector 19 and H 2 Ar gas is supplied from the O gas injector 17 at about 1 SLM for about 20 seconds. Thereby, the space between the adjacent wafers 23 is purged for about 20 seconds.
[0060]
Next, under the condition that the flow rate of the PET raw material is about 3 sccm, a PET gas is introduced into the reaction vessel 11 from the PET gas injector 10 for about 20 seconds. At this time, the internal pressure of the PET gas injector 10 is about 23 Torr. Also, O 2 Gas injector 19 and H 2 From the O gas injector 17, Ar gas is supplied into the reaction vessel 11 at about 500 sccm for about 20 seconds each.
[0061]
Normally, PET decomposition reaction hardly occurs at about 280 ° C., but H 2 Since O is adsorbed, the PET gas arriving at the surface of each wafer 23 is adsorbed H as shown in FIG. 2 A hydrolysis reaction occurs with O. As a result, an oxide film of Ta having a thickness of about 0.3 nm is formed on the surface of each wafer 23. 3A and 3B, the surface of the wafer 23 is made of Ta. 2 O 5 To facilitate understanding of the mechanism by which the film 28 is formed, H 2 O molecules and PET molecules are schematically depicted.
[0062]
Next, O 2 Gas injector 19 and H 2 The gas supplied from the PET gas injector 10 is switched to the Ar gas while the Ar gas is supplied from the O gas injector 17 into the reaction vessel 11. Then, the PET gas injector 10, O 2 Gas injector 19 and H 2 Ar gas is supplied from the O gas injector 17 at about 1 SLM for about 10 seconds. Thus, the space between the adjacent wafers 23 is purged for about 10 seconds.
[0063]
Next, while supplying Ar gas from the PET gas injector 10 into the reaction vessel 11, 2 Gas injector 19 and H 2 The gas supplied from the O gas injector 17 is O 2 Switch to gas. Then, Ar gas is supplied from the PET gas injector 10 into the reaction vessel 11 and O 2 Gas injector 19 and H 2 From the O gas injector 17, O 2 The gas is supplied at about 1 SLM for about 20 seconds each. This allows Ar gas and O 2 to flow between adjacent wafers 23. 2 Purge with gas for about another 20 seconds.
[0064]
Next, while supplying Ar gas from the PET gas injector 10 into the reaction vessel 11, 2 Gas injector 19 and H 2 The gas supplied from the O gas injector 17 is switched to Ar gas. Then, the PET gas injector 10, O 2 Gas injector 19 and H 2 Ar gas is supplied from the O gas injector 17 at a rate of about 1 SLM for about 5 seconds. As a result, the space between the adjacent wafers 23 is purged for about 5 seconds.
[0065]
By the above-described sequence (procedure), the TaO film 28 having a thickness of about 0.3 nm can be formed substantially uniformly on the surface of each wafer 23 in about 120 seconds. This sequence of about 120 seconds is defined as one cycle, and this cycle is repeated 30 times, so that Ta on the surface of each wafer 23 is formed. 2 O 5 A film 28 is deposited to about 9 nm. Then O 2 O from gas injector 19 3 / O 2 The mixed gas is introduced into the reaction vessel 11 and 2 O 5 By performing a predetermined process on the film 28, the film forming process of this embodiment is completed. During the execution of the film forming process, the unnecessary gases are supplied to the reaction vessel 11 and the pressure, temperature, atmosphere components, and the like in the reaction vessel 11 are maintained in appropriate states. As described above, the air is exhausted from the exhaust system 25 to the outside of the reaction vessel 11 as appropriate.
[0066]
FIG. 4 shows that the cross-sectional area (opening area) of each blowout hole 27 provided in the PET gas injector 10 was experimentally changed, and the number of film formations and Ta were changed. 2 O 5 The result of monitoring the correlation with the particles of the film 28 is shown. As shown in the table in FIG. 4, by changing the cross-sectional area of each blowout hole 27, Ta 2 O 5 It can be seen that the internal pressure of the PET gas injector 10 changes when the film 28 is formed. At the same time, when the internal pressure of the PET gas injector 10 is reduced to 5 Torr or less, the number of particles increases as the number of film formation increases.
[0067]
According to a study conducted by the present inventors, when the inside of the PET gas injector 10 when particles increased was subjected to HF cleaning and ICP spectroscopic analysis was performed, Ta was found inside the PET gas injector 10. 2 O 5 It was found that film 28 had been deposited. This is because when the internal pressure of the PET gas injector 10 decreases, the H gas that has entered the inside of the injector 10 2 This means that O gas is adsorbed on the inner surface of the injector 10 and an ALD reaction occurs inside the injector 10. According to this result, in order to perform a film forming process based on the ALD method in an appropriate state, the PET gas injector 10 as a porous gas injector and the H 2 O gas injector 17, and O 2 Of the gas injectors 19, at least the PET gas injector 10 as a source gas injector is preferably formed in a shape such that the internal pressure of the injector during film formation is about 10 times or more the internal pressure of the reaction vessel 11. I understand.
[0068]
As described above, in the first embodiment, by employing the ALD film formation, even when the compound film 28 having a complicated three-dimensional shape is formed, precise control of the film composition during the film formation is performed. Is possible. Further, by adopting the ALD film formation, it is possible to realize good step coverage with the compound film 28. Further, since the source gas and the activation gas can be intensively supplied to the surface of each wafer 23 or between the wafers 23, the concentration of the source gas and the activation gas can be selectively increased only between the wafers 23. It is possible. Thereby, even when the amounts of the source gas and the activating gas are small, a sufficient ALD film forming reaction can be realized in an appropriate state, so that the use (use) efficiency of each gas can be improved. In addition, an increase in film formation cost due to an increase in the consumption rate of the source gas, and an increase in manufacturing cost of the semiconductor device can be suppressed.
[0069]
In addition, since a plurality of wafers 23 can be processed collectively by batch processing, a net process time (RPT) required for the film formation processing can be reduced. Further, the RPT can be shortened by employing a gas purge which requires only a short time for purging instead of a vacuum purging which generally takes time. In particular, since the adjacent wafers 23 function as rectifying plates, gas purging can be effectively performed. The function of each wafer 23 as a current plate is, of course, effective in increasing the use efficiency of each gas when supplying the raw material gas and the activating gas to each wafer 23.
[0070]
Further, during the film formation, the source gas or the activation gas is selectively switched and supplied while always supplying the purge gas between the wafers 23 and around them. Accordingly, there is almost no possibility that the film quality of the compound film 28 to be formed is deteriorated due to the progress of the film forming process in an unfavorable atmosphere.
[0071]
In addition, before the source gas is supplied to each wafer 23, an activating gas is attached to the surface of each wafer 23, so that the ALD reaction can be caused at a low temperature which is not normally possible. At the same time, by setting the internal pressure of the source gas injector 10 at the time of film formation to be at least 10 times higher than the pressure inside the reaction vessel 11, even if an oxidizing gas is There is almost no possibility that a gas phase reaction will occur with the remaining raw material gas. In addition, organic substances such as ligands in the compound film 28 to be formed can be efficiently desorbed.
[0072]
Furthermore, by employing a hot wall heating method, it is easy to heat a plurality of wafers 23 substantially uniformly and collectively. By employing the hot wall method, when a thin film is formed, the film forming temperature can be kept substantially constant without depending on the underlying structure of the wafer 23 or the mask pattern. Usually, in the hot wall type heating method, it is necessary to increase the heat recovery time, but in the ALD method, precise temperature control is not required. Therefore, in the film forming process of this embodiment, a long heat recovery time is not required, which is extremely effective in shortening the RPT. Further, since the apparatus configuration of the film forming apparatus 1 of the present embodiment is relatively simple, it is easy to change the apparatus configuration according to the type of the compound film to be formed.
[0073]
As described above, according to the first embodiment, a high-quality compound film can be efficiently and easily formed by performing a film forming operation by batch processing using the ALD method.
[0074]
Next, a method for manufacturing the semiconductor device according to the first embodiment of the present invention will be briefly described. The method for manufacturing a semiconductor device according to the present embodiment includes a compound film (Ta) formed by the film forming method and the film forming apparatus 1 according to the above-described embodiment. 2 O 5 The process includes a step of forming various fine semiconductor elements incorporated inside the semiconductor device by using the film 28. According to the film forming method and the film forming apparatus 1 described above, a high-quality compound film can be formed efficiently and easily. Therefore, according to the method of manufacturing a semiconductor device of the present embodiment, various fine semiconductor elements incorporated inside the semiconductor device can be formed efficiently and easily with high quality, and the quality and yield of the semiconductor device can be reduced. It can be easily improved. Therefore, according to the method of manufacturing a semiconductor device according to the first embodiment, a high-quality semiconductor device having a high-quality compound film can be efficiently and easily manufactured.
[0075]
(Second embodiment)
Next, a second embodiment according to the present invention will be described with reference to FIGS. FIG. 5 is a diagram schematically illustrating a film forming apparatus according to the second embodiment. FIG. 6 is a diagram illustrating a sequence of a film forming method according to the second embodiment. FIG. 7 is a cross-sectional view schematically showing the STO film formed inside and around the hole by the film forming method according to the second embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0076]
In the present embodiment, specifically, by performing an atomic layer deposition (ALD) method in a batch process, a film forming method and a film forming apparatus for forming an STO film and a BST film as compound films, and a STO The film forming conditions of the film and the BST film and the characteristics of the obtained STO film and the BST film will be described.
[0077]
In the film forming process of the present embodiment, strontium bistriisopropylcyclopentadienyl (Sr (C 5 -I-Pr 3 H 2 ) 2 ), Barium bispentamethylcyclopentadienyl (Ba (C 5 Me 5 ) 2 ) Of tetrahydrofuran (THF: C 4 H 8 O) A solution (solution concentration: 0.15 mol / liter) and a gas of titanium tetraisopropoxide (TTIP) are used. Further, H is used as an activating gas. 2 O gas is used. Further, oxygen (O 2) is used as a purge gas. 2 ) Gas and argon (Ar) gas.
[0078]
First, the film forming apparatus 31 of the present embodiment will be described with reference to FIGS.
[0079]
FIG. 5A is a diagram illustrating a schematic configuration of the film forming apparatus 31 viewed from the front or side. FIG. 5B is a plan view showing the film forming apparatus 31 viewed from the direction of the solid arrow in FIG. The film forming apparatus 31 mainly includes a source gas supply system 32 and a reaction system 33 as in the first embodiment described above. The source gas supply system 2 includes a Ba gas supply system 34, a Sr gas supply system 35, a TTIP gas supply system 36, and H 2 It comprises an O gas supply system 5 and the like. Since the conditions for forming the Ba gas and the Sr gas are substantially the same, only the case where the Sr gas and its supply system 35 are formed, that is, the case where the STO film is formed, will be described below in order to avoid complication. Also, there is no appropriate abbreviation for the raw material containing Sr described above, and the use of a formal name complicates the description. In order to avoid this, in the following description, the raw material will be simply abbreviated as Sr raw material or Sr gas. And
[0080]
The Sr gas supply system 35 mainly includes an Sr raw material container 37, a liquid flow control device 38 for Sr, an Sr vaporizer 39, and the like. The vaporization temperature is about 200 ° C. The Sr gas vaporized by the Sr vaporizer 39 is mixed with Ar gas as a carrier gas, passes through an Sr gas pipe 40 heated to about 250 ° C., and passes through a quartz Sr gas injector (source gas supply jig). (Sr-Mo gas injector) 41. The Sr gas injector 41 is provided in the reaction vessel 11, and the Sr gas is supplied into the reaction vessel 11 via the Sr gas injector 41. In the vicinity of the connection between the Sr gas pipe 40 and the Sr gas injector 41, that is, at the root of the Sr gas injector 41, the gas passing through the Sr gas injector 41 is supplied with Sr gas, Ar gas or O 2 gas. 2 A source gas supply system switching valve 12a is provided so that it can be selectively switched to gas.
[0081]
The TTIP gas supply system 36 mainly includes a TTIP container 42, a TTIP heating device 43 for heating the TTIP container 42 to about 60 ° C., and a TTIP gas flow control device 44. The TTIP gas is sent through a TTIP gas pipe 45 heated to about 100 ° C. to a TTIP gas injector 46 made of quartz as a source gas supply jig. The TTIP gas injector 46 is provided in the reaction vessel 11, and the TTIP gas is supplied into the reaction vessel 11 via the TTIP gas injector 46. Near the connection between the TTIP gas pipe 45 and the TTIP gas injector 46, that is, at the root of the TTIP gas injector 46, the gas passing through the TTIP gas injector 46 is supplied with the TTIP gas and the Ar gas or O gas. 2 A source gas supply system switching valve 12b is provided so that it can be selectively switched to gas.
[0082]
H 2 The O gas supply system 5 mainly includes H 2 O container 13, this H 2 H for heating the O container 13 to about 80 ° C. 2 O heating device 14, and H 2 It comprises a gas flow control device 15 for O gas. H 2 O gas is H heated to about 150 ° C. 2 After passing through the O gas pipe 16, quartz H 2 It is sent to the O gas injector 17. H 2 The O gas injector 17 is provided in the reaction vessel 11 and 2 O gas is H 2 It is supplied into the reaction vessel 11 via the O gas injector 17. H 2 O gas pipe 16 and H 2 Near the connection with the O gas injector 17, that is, H 2 At the base of the O gas injector 17, H 2 The gas passed through the O gas injector 17 is H 2 O gas, Ar gas, or O gas 2 An activation gas supply system switching valve 18 is provided so that the gas can be selectively switched.
[0083]
In addition to the three gas injectors 41, 46, and 17 (actually, including the Ba gas injector not shown) described above, the film forming apparatus 31 includes an Ar gas and a O 2 O as a purge gas supply jig that can selectively supply gas 2 A gas injector 19 is provided in the reaction vessel 11. That is, the film forming apparatus 31 includes gas injectors 41, 46, 17, and 19 of a total of four systems (actually, five systems including a Ba gas injector not shown). In the film forming apparatus 31, Ar gas and O are supplied to the three gas injectors 41, 46, 17, and 19, respectively. 2 A purge gas supply system 20 for supplying at least one of the gases is provided. Ar gas or O 2 The gas passes through a purge gas pipe 21 of the purge gas supply system 20 and is sent to each of the gas injectors 41, 46, 17, and 19.
[0084]
Further, the Sr gas injector 41, the TTIP gas injector 46, 2 O gas injector 17, and O 2 Each of the gas injectors 19 is formed as a porous gas injector, similarly to the first embodiment.
[0085]
On the other hand, as in the first embodiment, the reaction system 33 is capable of accommodating a plurality of substrates (wafers) 23 to be subjected to a film forming process at the same time and heating each of the wafers 23 substantially uniformly. A hot-wall type reaction vessel 11 provided with a vessel heating device 26, a boat 24 as a substrate support capable of supporting each wafer 23 in the reaction vessel 11 with their surfaces separated from each other by a predetermined distance, An exhaust system 25 for exhausting the source gas, the activation gas, and the purge gas supplied into the container 11 to the outside of the reaction container 11 is provided.
[0086]
Next, a film forming method of the present embodiment will be described with reference to FIG. Specifically, the film forming method of the present embodiment is to form the STO film 47 as a compound film by using the film forming apparatus 31 in the following sequence.
[0087]
A plurality of wafers 23 are introduced into the reaction vessel 11 and supported by a boat 24 disposed in the reaction vessel 11. Subsequently, using the container heating device 26, the atmosphere in the reaction container 11 and the temperature of each wafer 23 are substantially uniformly heated so as to be about 300 ° C. At the same time, the Sr gas injector 41, TTIP gas injector 46, O 2 Gas injector 19 and H 2 About 1 SLM of Ar gas is supplied into the reaction vessel 11 from the O gas injector 17 respectively, and the pressure in the reaction vessel 11 is maintained at about 1.5 Torr. After confirming that the temperature inside the reaction vessel 11 (furnace temperature) was stable at about 300 ° C. ± 10 ° C., while maintaining the pressure inside the vessel at about 1.5 Torr, based on the sequence shown in FIG. Is performed.
[0088]
First, in the reaction vessel 11, H 2 O gas injector 17 to H 2 About 500 sccm of O gas is introduced for about 20 seconds, and the Sr gas injector 41, the TTIP gas injector 46, and the O 2 O from the gas injector 19 2 The gas is supplied at about 500 sccm for about 20 seconds each. H introduced into the reaction vessel 11 2 O gas is adsorbed on the surface of each wafer 23.
[0089]
Next, H 2 O gas injector 17, TTIP gas injector 46, and O 2 The gas supplied from the gas injector 19 is switched to Ar gas. At the same time, the gas supplied from the Sr gas injector 41 is switched to Sr gas, and the Sr source gas is introduced into the reaction vessel 11 from the Sr gas injector 41 for about 10 seconds under the condition that the THF solution flow rate is about 3 sccm. The flow rate of Ar gas as a carrier gas is about 250 sccm. At this time, the internal pressure of the Sr gas injector 41 was about 35 Torr. In addition, the TTIP gas injector 46, O 2 Gas injector 19 and H 2 Ar gas is supplied from the O gas injector 17 into the reaction vessel 11 at a rate of about 500 sccm for about 10 seconds.
[0090]
Usually, the decomposition reaction of the Sr raw material hardly occurs at about 280 ° C., but H 2 Since O is adsorbed, the Sr raw material reaching the surface of each wafer 23 is adsorbed H 2 A hydrolysis reaction occurs with O. Thus, an Sr oxide film (not shown) is formed on the surface of each wafer 23.
[0091]
Next, H is again stored in the reaction vessel 11. 2 O gas injector 17 to H 2 About 500 sccm of O gas is introduced for about 20 seconds, and the Sr gas injector 41, the TTIP gas injector 46, and the O 2 O from the gas injector 19 2 The gas is supplied at about 500 sccm for about 20 seconds each. As a result, carbon impurities in the Sr oxide film formed on the surface of each wafer 23 are reduced, and the introduced H 2 O gas is adsorbed on the surface of the Sr oxide film.
[0092]
H described above 2 By alternately repeating the supply of the O gas and the supply of the Sr gas four times, an Sr oxide film having a thickness of about 0.3 nm is formed substantially uniformly on the surface of each wafer 23 in about 120 seconds. be able to.
[0093]
Next, H 2 The gas supplied from the O gas injector 17 is H 2 Switch to O gas and add H 2 About 500 sccm of O gas is introduced for about 20 seconds. At the same time, the Sr gas injector 41, TTIP gas injector 46, and O 2 The gas supplied from the gas injector 19 is O 2 Switch to gas, O 2 The gas is supplied into the reaction vessel 11 at a rate of about 500 sccm for about 20 seconds each.
[0094]
Next, the gas supplied from the TTIP gas injector 46 is switched to TTIP gas, and TTIP gas is introduced into the reaction vessel 11 for about 10 seconds at about 150 sccm. At the same time, H 2 O gas injector 17, Sr gas injector 41, and O 2 The gas supplied from the gas injector 19 is switched to Ar gas, and the Ar gas is supplied into the reaction vessel 11 at about 500 sccm for about 10 seconds each.
[0095]
Normally, under the condition that oxygen does not exist at about 280 ° C., TTIP decomposition reaction hardly occurs, but the surface of the Sr oxide film formed on the surface of each wafer 23 has H 2 Since O is adsorbed, the ethoxy group of the TTIP gas that has reached the surface of the Sr oxide film is adsorbed by H 2 A hydrolysis reaction occurs with O. Thus, a Ti oxide film (not shown) is formed on the surface of each wafer 23, and further reacts with the Sr oxide film.
[0096]
Next, H is again stored in the reaction vessel 11. 2 O gas injector 17 to H 2 About 500 sccm of O gas is introduced for about 20 seconds, and the Sr gas injector 41, the TTIP gas injector 46, and the O 2 O from the gas injector 19 2 The gas is supplied at about 500 sccm for about 20 seconds each. Then, O 2 As a result, carbon impurities in the Ti oxide film are reduced, and the introduced H 2 O gas is adsorbed on the surface of the Ti—Sr oxide film.
[0097]
H described above 2 The supply of the O gas and the supply of the TTIP gas are alternately repeated three times. Thereby, the molar ratio between Ti and Sr contained in the Ti—Sr oxide film deposited on the surface of each wafer 23 becomes substantially equal, and the perovskite crystal structure (SrTiO 2) 3 ) Can be formed on the surface of each wafer 23 with a substantially uniform film thickness of about 0.4 nm in about 90 seconds.
[0098]
That is, as described above, H 2 After a series of sequences in which the supply of O gas and the supply of Sr gas are alternately repeated four times each, 2 By performing a series of sequences in which the supply of the O gas and the supply of the TTIP gas are alternately repeated three times, the STO film 47 having a thickness of about 0.4 nm is formed on the surface of each wafer 23 in about 210 seconds in total. A uniform film can be formed. A sequence of about 210 seconds in total consisting of these two types is defined as one cycle, and this cycle is repeated 30 times to deposit about 12 nm of the STO film 47 on the surface of each wafer 23. Then N 2 By introducing a gas into the reaction vessel 11 and subjecting the STO film 47 to a heat treatment at about 400 ° C., the film forming process of this embodiment is completed.
[0099]
Next, as shown in FIG. 7, an STO film is formed inside and around the hole 48 having an opening diameter W of about 70 nm, a depth D of about 420 nm, and an aspect ratio of about 6. At this time, the STO film is formed based on each of the film forming method of the present embodiment and the normal thermal CVD method. Then, the uniformity of the film thickness and film composition of the STO film 47 according to the present embodiment and the STO film (not shown) formed by the normal thermal CVD method are evaluated at five points (1) to (5) in FIG. . Table 1 shows the results of this evaluation. The film thickness was evaluated by a cross-sectional TEM, and the film composition was evaluated by a TEM-EDX.
[0100]
The conditions for implementing the thermal CVD method are as follows.
[0101]
The film forming temperature is set to about 400 ° C. and the film forming pressure is set to about 1 Torr. At the same time, Sr (METHD) as raw material 2 , And Ti (MPD) (THD) 2 Is set so that the total raw material flow rate is about 0.3 sccm. About 50% / 50% O 2 And N 2 A mixed gas with O is used. Under these conditions, an amorphous STO film is formed by a thermal CVD method, and then the NTO is formed on the STO film. 2 And RTA (Rapid Thermal Anneal) at about 650 ° C. for crystallization. The conditions for performing this thermal CVD method are such that a substantially uniform film thickness and composition ratio can be obtained in a contact hole (not shown) having a diameter of about 150 nm.
[0102]
[Table 1]
Figure 2004023043
[0103]
From Table 1, it can be seen that the conventional thermal CVD method can maintain the uniformity of the film thickness of the STO film, but the uniformity of the film composition in the thin and deep hole having a large aspect ratio like the hole 48 can be maintained. Can not be held. According to Table 1, at the bottom of the hole 48, almost only a Ti oxide film is formed. That is, in the conventional thermal CVD method, it is easily expected that it is very difficult to follow LSI miniaturization for present and future.
[0104]
The electrical characteristics of the STO film 47 formed based on the present embodiment and the STO film formed based on the conventional thermal CVD method on the planar Ru electrode of a capacitor (not shown) are shown. Table 2 shows the results of the evaluation. According to Table 2, the STO film 47 formed according to the present embodiment has a higher relative dielectric constant and a lower leakage current than the STO film formed according to the conventional thermal CVD method. Indicates the value. This is considered to be because the ALD film forming method of the present embodiment is more suitable for forming a compound film having better crystallinity than the conventional thermal CVD method.
[0105]
[Table 2]
Figure 2004023043
[0106]
The maximum value of the film forming temperature in the film forming process of the present embodiment is about 400 ° C. This is because a capacitor formed by using the present process is formed, for example, on an aluminum multilayer wiring (not shown) that is sensitive to heat. Indicates that is possible. This means that pollution control becomes easier when manufacturing the capacitor, and furthermore, the semiconductor device including the capacitor. Further, for example, even if a capacitor is mixedly mounted in an arbitrary layer in an LSI having a multilayer wiring structure, there is a problem such as an increase in the aspect ratio of a contact hole between wirings in layers below the capacitor and, in turn, almost all wirings in the LSI. This has the advantage of not inviting
[0107]
As described above, in the second embodiment, the same effects as those in the first embodiment can be obtained. By using a cyclopentadienyl compound as the Sr raw material and using an alkoxide or a DPM complex containing an alkoxide as the Ti raw material, H 2 Ligands can be removed at once by hydrolysis reaction with O, and crystallization at low temperature becomes easy. For example, in the case of an STO film, crystallization at about 300 ° C. is possible. Furthermore, the Sr raw material gas and Ti raw material gas are each independently oxygen (O 2 ) And nitrous oxide (N 2 O) hardly reacts with O), so O 2 And N 2 O can be used. This is effective in that organic impurities in the STO film due to ligands and the like can be efficiently removed.
[0108]
As described above, the characteristics of the STO film 47 formed based on the present embodiment apply to the BST film formed based on the present embodiment in substantially the same manner.
[0109]
(Third embodiment)
Next, a third embodiment according to the present invention will be described with reference to FIGS. FIG. 8 is a diagram schematically illustrating a film forming apparatus according to the third embodiment. FIG. 9 is a diagram illustrating a sequence of a film forming method according to the third embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0110]
In the present embodiment, specifically, by performing an atomic layer deposition (ALD) method in a batch process, a film forming method and a film forming apparatus for forming a Ti—Al—N film as a compound film, The conditions for forming the Ti-Al-N film and the characteristics of the obtained Ti-Al-N film will be described.
[0111]
In the film forming process of the present embodiment, titanium chloride (TiCl 4 ), And aluminum chloride (AlCl 3 ) Are used. Also, NH as an activating gas 3 Use gas. Further, an argon (Ar) gas is used as a purge gas.
[0112]
First, the film forming apparatus 51 of the present embodiment will be described with reference to FIGS.
[0113]
FIG. 8A is a diagram showing a schematic configuration of the film forming apparatus 51 viewed from the front or side. FIG. 8B is a plan view showing the film forming apparatus 51 viewed from the direction of the solid arrow in FIG. The film forming apparatus 51 mainly includes a source gas supply system 52 and a reaction system 53, as in the first and second embodiments described above. The source gas supply system 52 is made of TiCl 4 Gas supply system 54, AlCl 3 Gas supply system 55 and NH 3 It comprises a gas supply system 56 and the like.
[0114]
TiCl 4 The gas supply system 54 is mainly composed of TiCl 4 Gas cylinder 56, TiCl for heating this cylinder 56 4 Heating device 57 and high temperature specification TiCl 4 It comprises a gas flow control device 58 and the like. Similarly, AlCl 3 The gas supply system 55 mainly includes AlCl 3 Gas cylinder 59, AlCl for heating this cylinder 59 3 Heating device 60 and high temperature specification AlCl 3 It comprises a gas flow control device 61 and the like. TiCl 4 Gas cylinder 56 and AlCl 3 The temperature of the gas cylinders 59 is about 60 ° C. respectively. TiCl 4 Gas and AlCl 3 The gases were TiCl, each heated to about 80 ° C. 4 Gas piping 62 and AlCl 3 Passing through the gas pipe 63, the quartz-made TiCl as a source gas supply jig 4 Gas injector 64 and AlCl 3 The gas is sent to the gas injector 65 independently of each other. TiCl 4 Gas injector 64 and AlCl 3 The gas injectors 65 are provided in the reaction vessel 11 independently of each other, and 4 Gas and AlCl 3 Each gas is TiCl 4 Gas injector 64 and AlCl 3 The gas is supplied into the reaction vessel 11 via the gas injector 65.
[0115]
TiCl 4 Gas pipe 62 and TiCl 4 Near the connection with the gas injector 64, that is, TiCl 4 At the base of the gas injector 64, TiCl 4 The gas passed through the gas injector 64 is TiCl 4 A source gas supply system switching valve 12c is provided so that the gas or Ar gas can be selectively switched. Similarly, AlCl 3 Gas piping 63 and AlCl 3 Near the connection with the gas injector 65, ie, AlCl 3 At the base of the gas injector 65, AlCl 3 The gas passed through the gas injector 65 is AlCl 3 A source gas supply system switching valve 12d is provided so that the gas or Ar gas can be selectively switched.
[0116]
H 2 The O gas supply system 56 mainly includes NH 3 Gas cylinder 66 and NH 3 It comprises a gas flow controller 67 for gas. NH 3 The gas was NH heated to about 60 ° C. 3 Quartz NH as an activating gas supply jig passing through the gas pipe 68 3 The gas is sent to the gas injector 69. NH 3 The gas injector 69 is provided in the reaction vessel 11 and is provided with NH 3 3 Gas is NH 3 The gas is supplied into the reaction vessel 11 via the gas injector 69. NH 3 Gas piping 68 and NH 3 Near the connection with the gas injector 69, ie, NH 3 At the base of the gas injector 69, NH 3 The gas passed through the gas injector 69 is NH 3 An activation gas supply system switching valve 18a is provided so that it can be selectively switched to gas or Ar gas.
[0117]
As described above, the film forming apparatus 31 includes the three gas injectors 64, 65, and 69. Also, TiCl 4 Gas injector 64, AlCl 3 Gas injector 65 and NH 3 The gas injector 69 is formed as a porous gas injector similarly to the first and second embodiments.
[0118]
On the other hand, as in the first and second embodiments, the reaction system 53 can simultaneously accommodate a plurality of substrates (wafers) 23 on which a film forming process is to be performed, and can roughly store the respective wafers 23. A hot-wall type reaction vessel 11 provided with a vessel heating device 26 so as to be able to heat uniformly, and as a substrate support capable of supporting each wafer 23 in the reaction vessel 11 with their surfaces separated from each other by a predetermined distance. And an exhaust system 25 for exhausting the raw material gas, the activation gas, and the purge gas supplied into the reaction vessel 11 to the outside of the reaction vessel 11. At the same time, ClF for cleaning the inside of the reaction vessel (chamber) 11 3 ClF for supplying gas into the reaction vessel 11 3 A gas supply system 70 is provided.
[0119]
As shown in FIGS. 8 (a) and 8 (b), the reaction container 11 of the present embodiment has three gas injectors 64, 65, with each wafer 23 accommodated therein being interposed therebetween. A plurality of slit-shaped exhaust holes 71 for exhausting unnecessary gas in the reaction vessel 11 to the outside of the reaction vessel 11 are provided on the side (position) opposite to 69 in accordance with the number of wafers 23. I have. At the same time, the boat 24 is provided with a shielding plate (rectifying plate) 72 as a rectifying member that surrounds each wafer 23 from both sides thereof from near each exhaust hole 71 to near three gas injectors 64, 65, and 69. Have been. As a result, each gas supplied to the reaction vessel 11 through the three gas injectors 64, 65, and 69 hardly flows out of the shielding plate 72, and intensively wraps each wafer 23 supported by the boat 24. As described above, the gas flows from the outlets 27 of the gas injectors 64, 65, 69 toward the exhaust holes 71.
[0120]
By adopting such a structure, firstly, it is possible to suppress the deposition (adhesion) of the metal film on the inner wall itself of the reaction vessel 11 and to precisely control the temperature of each wafer 23. . Generally, the more the metal film covering the inner wall of the reaction vessel 11, the more difficult it is for radiant heat from an external heat source such as the vessel heating device 26 to reach each wafer 23. However, in the reaction vessel 11 of the present embodiment, since the metal film can be prevented from being deposited on the inner wall of the reaction vessel 11 by the above-described structure, the container heating device 26 can be used to remove each wafer 23 contained in the reaction vessel 11. The temperature can be precisely controlled. Second, with the above-described structure, the source gas, the activation gas, and the purge gas flow around each wafer 23 while substantially confining the gas, such as near the surface of each wafer 23 or between the wafers 23. be able to. Thereby, the reaction rate of the film forming reaction can be increased, and the utilization efficiency of each gas can be further improved. Further, there is an advantage that the purging inside the reaction vessel 11, particularly around each wafer 23, can be performed easily and quickly.
[0121]
Further, when the film process is repeated a plurality of times, ClF is placed in the reaction vessel 11 between each process. 3 By supplying the gas, the inside of the reaction 3 Can be cleaned. This makes it possible to substantially completely remove the metal film deposited on the inner wall of the reaction vessel 11 before performing the film forming process. Thus, according to the film forming apparatus 51 of the present embodiment, the compound film can be formed in a more appropriate state.
[0122]
Next, a film forming method according to the present embodiment will be described with reference to FIG. Specifically, the film forming method according to the present embodiment uses a film forming apparatus 51 to form a Ti film (not shown) as a compound film in the following sequence. 0.7 Al 0.3 This is for forming an N film.
[0123]
The plurality of wafers 23 on which the film forming process is performed include Ti 0.7 Al 0.3 A contact hole (not shown) having an opening diameter of about 130 nm in which the N film is embedded is formed in advance. Then, on the surface of each wafer 23, a Ti film (not shown) of about 10 nm is previously formed by long throw sputtering (LTS) in order to reduce the contact resistance. At the same time, silicidation of each wafer 23 is completed by RTA at about 600 ° C.
[0124]
A plurality of wafers 23 which have been subjected to the processing described above are introduced into the reaction vessel 11 and supported by the boat 24 arranged in the reaction vessel 11. Subsequently, using the container heating device 26, the atmosphere in the reaction container 11 and the temperature of each wafer 23 are substantially uniformly heated so that the temperature of each wafer 23 becomes about 500 ° C. At the same time, TiCl 4 Gas injector 64, AlCl 3 Gas injector 65 and NH 3 About 1 SLM of Ar gas is supplied into the reaction vessel 11 from the gas injector 69, and the pressure in the reaction vessel 11 is maintained at about 1.0 Torr. After confirming that the temperature inside the reaction vessel 11 (furnace temperature) was stable at about 500 ° C. ± 20 ° C., while maintaining the pressure inside the vessel at about 1.0 Torr, based on the sequence shown in FIG. Is performed.
[0125]
First, NH 3 is introduced into the reaction vessel 11. 3 NH from gas injector 69 3 A gas is introduced for about 1 SLM for about 10 seconds and TiCl 4 Gas injector 64 and AlCl 3 Ar gas is supplied from the gas injector 65 at about 500 sccm for about 10 seconds. NH introduced into the reaction vessel 11 3 The gas is adsorbed on the surface of each wafer 23.
[0126]
Next, AlCl 3 While supplying Ar gas from the gas injector 65 into the reaction vessel 11, 3 The gas supplied from the gas injector 69 is switched to Ar gas. At the same time, TiCl 4 The gas supplied from the gas injector 64 is TiCl 4 The gas was switched to TiCl in the reaction vessel 11. 4 The gas is introduced for about 1 SLM for about 5 seconds. AlCl 3 Gas injector 65 and NH 3 Ar gas is supplied from the gas injector 69 into the reaction vessel 11 at about 500 sccm for about 5 seconds.
[0127]
Usually, at around 500 ° C, TiCl 4 Decomposition reaction hardly occurs, but the surface of each wafer 23 3 Are adsorbed, so that TiCl reaching the surface of each wafer 23 4 The gas is adsorbed NH 3 Causes a decomposition reaction between Thus, a Ti nitride film (not shown) is formed on the surface of each wafer 23.
[0128]
Next, NH 3 is again introduced into the reaction vessel 11. 3 NH from gas injector 69 3 A gas is introduced for about 1 SLM for about 10 seconds and TiCl 4 Gas injector 64 and AlCl 3 Ar gas is supplied from the gas injector 65 at about 1 SLM for about 10 seconds. Thereby, the Ti deposited on the surface of each wafer 23 is almost completely nitrided, and the chlorine in the Ti raw material remaining in the Ti nitride film is released as ammonium chloride. Furthermore, the introduced NH 3 The gas is adsorbed on the surface of the Ti nitride film.
[0129]
NH explained above 3 Gas supply and TiCl 4 The supply of gas is repeated alternately five times over about 75 seconds.
[0130]
Next, NH 3 The gas supplied from the gas injector 69 is NH 3 Switch to gas and place NH in the reaction vessel 11 3 The gas is introduced for about 1 SLM for about 10 seconds. Also, AlCl 3 While supplying Ar gas into the reaction vessel 11 from the gas injector 65, TiCl 4 The gas supplied from the gas injector 64 is switched to Ar gas. AlCl 3 Gas injector 65 and TiCl 4 Ar gas is supplied into the reaction vessel 11 from the gas injector 64 by about 1 SLM for about 10 seconds each.
[0131]
Next, TiCl 4 While supplying Ar gas from the gas injector 64 into the reaction vessel 11, 3 The gas supplied from the gas injector 65 is AlCl 3 Switch to gas. At the same time, NH 3 The gas supplied from the gas injector 69 is switched to Ar gas. AlCl 3 From the gas injector 65, the AlCl 3 The gas is supplied for about 1 SLM for about 5 seconds. Also, TiCl 4 Gas injector 64 and NH 3 Ar gas is supplied into the reaction vessel 11 from the gas injector 69 at a rate of about 1 SLM for about 5 seconds.
[0132]
Usually, at around 500 ° C., AlCl 3 Decomposition reaction hardly occurs, but the surface of the Ti nitride film formed on the surface of each wafer 23 3 Is adsorbed, so that AlCl reaches the surface of the Ti nitride film. 3 The gas is adsorbed NH 3 And cause a hydrolysis reaction. Thus, an Al nitride film (not shown) is formed on the surface of each wafer 23.
[0133]
Next, NH 3 is again introduced into the reaction vessel 11. 3 NH from gas injector 69 3 A gas is introduced for about 1 SLM for about 10 seconds and TiCl 4 Gas injector 64 and AlCl 3 Ar gas is supplied from the gas injector 65 at about 1 SLM for about 10 seconds. As a result, Al deposited on the surface of each wafer 23 is almost completely nitrided, and chlorine in the Al raw material remaining in the Al nitride film is released as ammonium chloride. Furthermore, the introduced NH 3 The gas is adsorbed on the surface of the Al nitride film.
[0134]
NH explained above 3 Gas supply and AlCl 3 The supply of gas is repeated twice alternately. This allows the Ti over the surface of each wafer 23 in about 30 seconds. 0.7 Al 0.3 A compound film having a composition of N can be formed with a substantially uniform thickness of about 2.5 nm.
[0135]
That is, as described above, NH 3 3 Gas supply and TiCl 4 After a series of sequences of alternately repeating the supply of gas five times, NH 3 3 Gas supply and AlCl 3 By performing a series of sequences in which gas supply is alternately repeated twice each time, a Ti film having a thickness of about 2.5 nm is formed on the surface of each wafer 23 in about 105 seconds in total. 0.7 Al 0.3 The N film can be formed substantially uniformly. A sequence of about 105 seconds in total consisting of these two types is defined as one cycle, and this cycle is repeated 30 times to deposit a Ti-Al-N film on the surface of each wafer 23 to a thickness of about 75 nm. Thus, the film forming process of the present embodiment is completed.
[0136]
According to the present inventors, it has been confirmed that the contact holes formed in advance in each wafer 23 can be almost completely filled with almost no voids or the like by the film forming process described above. Also, the surface of the contact plug (not shown) formed using these contact holes was hardly oxidized even by heat treatment in an oxidizing atmosphere at about 540 ° C., and it was confirmed that the contact resistance was sufficiently low.
[0137]
As described above, in the third embodiment, the same effects as those in the first embodiment can be obtained. Further, as described above, a plurality of exhaust holes 11 are provided on the side of the reaction vessel 11 opposite to the side on which the gas injectors 64, 65, 69 are provided, with each wafer 23 interposed therebetween. This allows the source gas, the activation gas, and the purge gas to flow while controlling their flows in a substantially constant direction. As a result, the use efficiency and exhaust efficiency of each gas can be further increased, and the purge time can be further reduced. Such effects include a shielding effect and a rectifying effect of the shielding plate 72 attached to the boat 24 from each gas injector 64, 65, 69 to each exhaust hole 11, and each wafer 23 supported by the boat 24 while being separated from each other. It is further enhanced by synergistic effects with its own rectifying effect. The source gas, the activation gas, and the purge gas supplied toward the respective wafers 23 from the plurality of blowing holes 27 provided in the respective gas injectors 64, 65, and 69 are guided by the respective wafers 23 and the shielding plate 72. It flows so as to wrap each wafer 23 toward each exhaust hole 11. Therefore, according to the third embodiment, a high-quality compound film can be formed very efficiently and very easily.
[0138]
Note that the film forming method, the film forming apparatus, and the method for manufacturing a semiconductor device according to the present invention are not limited to the above-described first to third embodiments. The present invention can be implemented by changing a part of the configuration, the process, or the like to various various settings, or using the various settings as appropriate, without departing from the spirit of the present invention.
[0139]
For example, the film forming apparatus 1 of the first embodiment can be made of TiO 2 by using tetraisopropoxide titanium (TTIP) as a raw material without changing the apparatus configuration. 2 It is also possible to form a film or a Ta-Ti-O film. Similarly, as a raw material, AlCl 3 By using, Al 2 O 3 It is also possible to form a film.
[0140]
In each of the first to third embodiments, the wafers 23 are arranged in the reaction vessel 11 so as to be vertically stacked with their surfaces (substrate surfaces) separated from each other. However, the arrangement state of each wafer 23 is not limited to this. For example, the wafers 23 may be arranged in the reaction vessel 11 so as to be arranged in the left-right (lateral) direction with their surfaces (substrate surfaces) separated from each other. Further, each of the wafers 23 does not need to be arranged in a posture parallel to each other. At the same time, each of the wafers 23 does not need to be arranged such that the intervals between the adjacent wafers 23 are all set to a uniform size. The arrangement direction, posture, interval, and the like of each wafer 23 are determined according to the type, weight, properties, flow direction, and the order in which each gas is supplied to each wafer 23. May be appropriately set so that the compound film is formed almost uniformly and in an appropriate state on the surface. In this case, it is preferable that the boat 24 be configured so that the arrangement direction, posture, interval, and the like of each wafer 23 can be appropriately set to an appropriate state.
[0141]
Further, it is not necessary to uniformly set the supply pressure, the blowout amount, and the like of each gas supplied from the raw material gas injector, the activation gas injector, and the purge gas injector. A compound film is formed on the surface of each wafer 23 in a substantially uniform and appropriate state according to the type, weight, property, flow direction, and order of supply of each gas of each gas. As described above, an appropriate state may be set for each gas injector. Further, the gas supply pressure and the amount of gas blown out from the plurality of blowout holes 27 provided in each gas injector are set to appropriate sizes according to the position of each hole 27, that is, the arrangement position of each wafer 23. You can do it. For example, when the wafers 23 are arranged so as to be vertically stacked as in the first to third embodiments, the gas supply pressure and the blowout amount from the blowout holes 27 are adjusted from the uppermost wafer 23 to the lowest. An appropriate size may be set for each height of each hole 27 so that each gas is supplied substantially evenly to the lower wafer 23. Thereby, a compound film can be formed more uniformly and more appropriately on the surface of each wafer 23.
[0142]
Further, in the third embodiment, the shielding plates (rectifying plates) 72 are provided on both sides of each wafer 23, but the invention is not limited to this. For example, the shielding plate 72 may be provided from the gas injectors to the exhaust holes 71 and above the boat 24 supporting the wafers 23. As a result, the shielding effect and the rectifying effect of each gas supplied to each wafer 23 can be further improved, and the utilization efficiency of each gas and eventually the film formation efficiency can be greatly improved. Alternatively, the upper and lower ends of the boat 24 supporting each wafer 23 may be formed in a shape capable of exhibiting a shielding effect and a rectifying effect. Thereby, even when the boat 24 is not provided with the shielding plate 72 as in the first and second embodiments, the utilization efficiency of each gas and the film formation efficiency can be improved. Further, if the boat 24 having such a shape is used together with the shielding plate 72, it goes without saying that the utilization efficiency of each gas and the film formation efficiency can be extremely improved.
[0143]
In addition, while each gas is being supplied from each gas injector, it is preferable that unnecessary gas in the reaction vessel 11 is positively exhausted to the outside of the reaction vessel 11 by the exhaust system 25. Thus, even when a plurality of types of gases are used, unnecessary gas-phase reactions can be significantly reduced, and a higher quality compound film can be formed.
[0144]
Further, semiconductor devices that can be manufactured using the film forming method, the film forming apparatus, and the method for manufacturing a semiconductor device according to the present invention are not limited to semiconductor devices that are currently widely used, such as DRAM. The method for manufacturing a semiconductor device according to the present invention can of course be sufficiently applied to manufacture various fine semiconductor devices, such as FeRAM, which are expected to develop in the future.
[0145]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the film-forming method and film-forming apparatus which concern on this invention, since purging in a process chamber can be performed easily in a short time, prolongation of a film-forming operation | work can be easily suppressed and gas use efficiency can be made easy. And the mutual reaction between a plurality of types of gases can be easily suppressed. Therefore, according to the film forming method of the present invention, a high-quality compound film can be efficiently and easily formed when performing a film forming operation by batch processing using the ALD method.
[0146]
Further, according to the method for manufacturing a semiconductor device according to the present invention, by using a compound film formed by the film forming method according to the present invention, various fine semiconductor elements incorporated inside the semiconductor device can be improved. The semiconductor device can be formed efficiently and easily with high quality, and the quality and yield of the semiconductor device can be easily improved. Therefore, according to the method of manufacturing a semiconductor device according to the present invention, a high-quality semiconductor device having a high-quality compound film can be efficiently and easily manufactured.
[Brief description of the drawings]
FIG. 1 is a view schematically showing a film forming apparatus according to a first embodiment.
FIG. 2 is a view showing a sequence of a film forming method according to the first embodiment.
FIG. 3 shows Ta on a substrate 2 O 5 FIG. 4 is a process cross-sectional view schematically illustrating a mechanism in which a film is formed.
FIG. 4 is Ta 2 O 5 FIG. 4 is a graph showing the dependence of particles generated when forming a film on a film forming cycle.
FIG. 5 is a diagram schematically illustrating a film forming apparatus according to a second embodiment.
FIG. 6 is a view showing a sequence of a film forming method according to a second embodiment.
FIG. 7 is a cross-sectional view schematically showing an STO film formed inside and around a hole by a film forming method according to a second embodiment.
FIG. 8 is a diagram schematically illustrating a film forming apparatus according to a third embodiment.
FIG. 9 is a view showing a sequence of a film forming method according to a third embodiment.
FIG. 10 is a simplified perspective view showing a film forming apparatus according to a conventional technique.
FIG. 11 is a view showing a sequence of a film forming method according to a conventional technique.
FIG. 12 is a simplified perspective view showing another film forming apparatus according to the related art.
[Explanation of symbols]
1, 31, 51 ... film forming equipment
2, 32, 52 ... source gas supply system
5, 56 ... activated gas supply system
10 PET gas injector (source gas supply jig)
11 ... reaction vessel (processing chamber)
17 ... H 2 O gas injector (activation gas supply jig)
19 ... O 2 Gas injector (purge gas supply jig)
20 ... Purge gas supply system
23 ... Wafer (substrate to be processed)
24 ... Boat (substrate support)
27… Blowout hole
28 ... Ta 2 O 2 Film (compound film)
41 Sr gas injector (source gas supply jig)
46 TTIP gas injector (source gas supply jig)
47 ... SrTiO 3 Film (compound film)
64 ... TiCl 4 Gas injector (source gas supply jig)
65 ... AlCl 3 Gas injector (source gas supply jig)
69… NH 3 Gas injector (activation gas supply jig)
71 ... exhaust hole
72 ... Shielding plate (rectifying plate, rectifying member)

Claims (6)

複数枚の被処理基板の表面上に化合物膜を原子層レベルで一括して成膜する成膜方法であって、
前記成膜処理が行われる反応容器内に前記各被処理基板を互いに離間させて厚さ方向に沿って平行に配置する第1の工程と、
隣接する前記各被処理基板間に向けて、前記反応容器内に所定のガスを供給する複数本のガス供給治具のうち、成膜反応を活性化させる活性化ガスを供給する活性化ガス供給治具から前記活性化ガスを供給するとともに、他のガス供給治具からパージガスを供給する第2の工程と、
前記活性化ガス供給治具から供給するガスを前記活性化ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第3の工程と、
隣接する前記各被処理基板間に向けて、成膜すべき化合物膜の主な原料となる原料ガスを供給する原料ガス供給治具から前記原料ガスを供給するとともに、他のガス供給治具から前記パージガスを供給する第4の工程と、
前記原料ガス供給治具から供給するガスを前記原料ガスから前記パージガスに切り替えるとともに、他のガス供給治具から前記パージガスを供給する第5の工程と、
を含み、かつ、前記第2の工程から前記第5の工程を複数回繰り返すことを特徴とする成膜方法。
A film forming method for collectively forming a compound film on the surface of a plurality of substrates to be processed at an atomic layer level,
A first step of arranging the respective substrates to be separated from each other and parallel to each other along a thickness direction in a reaction vessel in which the film forming process is performed;
Activating gas supply for supplying an activating gas for activating a film forming reaction among a plurality of gas supply jigs for supplying a predetermined gas into the reaction vessel toward between the adjacent substrates to be processed. A second step of supplying the activation gas from a jig and supplying a purge gas from another gas supply jig;
A third step of switching the gas supplied from the activation gas supply jig from the activation gas to the purge gas and supplying the purge gas from another gas supply jig;
The source gas is supplied from a source gas supply jig that supplies a source gas serving as a main source of a compound film to be formed into a film between the adjacent target substrates, and from another gas supply jig. A fourth step of supplying the purge gas;
A fifth step of switching the gas supplied from the source gas supply jig from the source gas to the purge gas and supplying the purge gas from another gas supply jig;
And repeating the second to fifth steps a plurality of times.
複数枚の被処理基板の表面上に化合物膜を一括して形成する成膜方法であって、
前記各被処理基板を互いに離間させて厚さ方向に沿って並べて配置し、
前記各被処理基板に向けてそれらの基板面と略平行な方向から、パージガスを連続的に供給しつつ、成膜反応を活性化させるための活性化ガスと、成膜すべき化合物膜の主な原料となる原料ガスとを、交互に切り替えて供給することを特徴とする成膜方法。
A film forming method for collectively forming a compound film on surfaces of a plurality of substrates to be processed,
Each of the substrates to be processed is spaced apart from each other and arranged along the thickness direction,
An activation gas for activating a film formation reaction is continuously supplied with a purge gas from each of the substrates to be processed in a direction substantially parallel to the substrate surface. A film forming method characterized by alternately supplying a raw material gas serving as a raw material.
複数枚の被処理基板の表面上に化合物膜を一括して成膜する成膜処理が行われる処理室内に、前記各被処理基板を、それらの表面を互いに離間させて厚さ方向に沿って並べて配置し、
前記各被処理基板が配置された前記処理室内にパージガスを供給して前記処理室内をパージした後、
パージされた前記処理室内に配置されている前記各被処理基板に向けて、それらの基板面と略平行な方向から、前記パージガスを供給し続けるとともに、成膜反応を活性化させる活性化ガスを前記各被処理基板の表面上に供給し、
前記各被処理基板に向けて前記パージガスを供給しつつ、前記活性化ガスの供給を断つとともに、前記各被処理基板に向けて、それらの基板面と略平行な方向から、前記化合物膜の主な原料となる原料ガスを前記各被処理基板の表面上に供給することにより、前記各被処理基板の表面上に前記化合物膜を成膜することを特徴とする成膜方法。
In a processing chamber in which a film forming process for forming a compound film on the surfaces of a plurality of substrates to be formed collectively is performed, the respective substrates to be processed are separated along the thickness direction by separating their surfaces from each other. Place them side by side,
After purging the processing chamber by supplying a purge gas into the processing chamber where each of the substrates to be processed is disposed,
For each of the substrates to be processed disposed in the purged processing chamber, the purge gas is continuously supplied from a direction substantially parallel to the surfaces of the substrates, and an activation gas for activating a film forming reaction is supplied. Supplying on the surface of each of the substrates to be processed,
While supplying the purge gas toward each of the substrates to be processed, the supply of the activation gas is cut off, and the main surface of the compound film is directed toward each of the substrates to be processed from a direction substantially parallel to their substrate surfaces. Forming a film of the compound on the surface of each of the substrates to be processed by supplying a source gas serving as a raw material onto the surface of each of the substrates to be processed.
成膜処理に供される処理室と、
この処理室内において、成膜処理が施される複数枚の被処理基板を互いに離間させつつ、厚さ方向に沿って並べて支持可能な基板支持具と、
前記各被処理基板の表面上に一括して成膜される化合物膜の主な原料となる原料ガス、および前記処理室内をパージするためのパージガスを、前記各被処理基板に向けて、それらの基板面と略平行な方向から供給する原料ガス供給治具と、
前記原料ガスを前記原料ガス供給治具に供給する原料ガス供給系と、
前記化合物膜が成膜される際の成膜反応を活性化させる活性化ガス、および前記パージガスを、前記各被処理基板に向けて、それらの基板面と略平行な方向から供給する活性化ガス供給治具と、
前記活性化ガスを前記活性化ガス供給治具に供給する活性化ガス供給系と、
前記パージガスを、前記原料ガスおよび前記活性化ガスと選択的に切り替えて前記原料ガス供給治具および前記活性化ガス供給治具に供給するパージガス供給系と、
を具備することを特徴とする成膜装置。
A processing chamber provided for a film forming process;
In the processing chamber, a plurality of substrates to be processed on which the film forming process is performed are separated from each other, and a substrate support that can be arranged and supported along the thickness direction;
A source gas serving as a main source of a compound film formed on the surface of each of the substrates to be collectively formed, and a purge gas for purging the processing chamber are directed toward each of the substrates to be processed. A source gas supply jig for supplying from a direction substantially parallel to the substrate surface,
A source gas supply system that supplies the source gas to the source gas supply jig;
An activating gas for activating a film forming reaction when the compound film is formed, and an activating gas for supplying the purge gas toward each of the substrates to be processed from a direction substantially parallel to their substrate surfaces. A supply jig,
An activation gas supply system that supplies the activation gas to the activation gas supply jig;
A purge gas supply system that selectively switches the purge gas between the source gas and the activation gas and supplies the source gas and the activation gas supply jig to the source gas supply jig and the activation gas supply jig;
A film forming apparatus comprising:
前記原料ガス供給治具および前記原料ガス供給系は、前記原料ガスの種類ごとに独立して設けられているとともに、前記原料ガス供給系は、前記原料ガスをその種類ごとに独立に前記原料ガス供給治具に供給可能に設定されていることを特徴とする請求項4に記載の成膜装置。The source gas supply jig and the source gas supply system are independently provided for each type of the source gas, and the source gas supply system independently supplies the source gas for each type of the source gas. The film forming apparatus according to claim 4, wherein the apparatus is set so as to be able to be supplied to a supply jig. 請求項1〜3のうちのいずれかの成膜方法により成膜された化合物膜を用いて半導体素子を形成することを特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device, comprising: forming a semiconductor element using a compound film formed by the film forming method according to claim 1.
JP2002179743A 2002-06-20 2002-06-20 Film forming method, film forming apparatus, and semiconductor device manufacturing method Expired - Fee Related JP3670628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179743A JP3670628B2 (en) 2002-06-20 2002-06-20 Film forming method, film forming apparatus, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179743A JP3670628B2 (en) 2002-06-20 2002-06-20 Film forming method, film forming apparatus, and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2004023043A true JP2004023043A (en) 2004-01-22
JP3670628B2 JP3670628B2 (en) 2005-07-13

Family

ID=31177074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179743A Expired - Fee Related JP3670628B2 (en) 2002-06-20 2002-06-20 Film forming method, film forming apparatus, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP3670628B2 (en)

Cited By (378)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017987A1 (en) * 2003-08-15 2005-02-24 Hitachi Kokusai Electric Inc. Substrate treatment appratus and method of manufacturing semiconductor device
US6939760B2 (en) 2002-07-02 2005-09-06 Elpida Memory, Inc. Method for semiconductor device manufacturing to include multistage chemical vapor deposition of material oxide film
JP2005259966A (en) * 2004-03-11 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Thin film formation method
JP2006093550A (en) * 2004-09-27 2006-04-06 Ulvac Japan Ltd Method of forming vanadium content film
WO2006038659A1 (en) * 2004-10-07 2006-04-13 Hitachi Kokusai Electric Inc. Substrate treating apparatus and semiconductor device manufacturing method
JP2006222265A (en) * 2005-02-10 2006-08-24 Hitachi Kokusai Electric Inc Substrate processing equipment
WO2006098565A1 (en) * 2005-03-16 2006-09-21 Ips Ltd. Method of depositing thin film using ald process
JP2006310865A (en) * 2005-04-29 2006-11-09 Boc Group Inc:The Method and apparatus for using solution based precursors for atomic layer deposition
JP2007005545A (en) * 2005-06-23 2007-01-11 Tokyo Electron Ltd Surface treatment method for semiconductor processing apparatus
JP2007224348A (en) * 2006-02-22 2007-09-06 Tokyo Electron Ltd Environment-resistant member, apparatus for manufacturing semiconductor, method for producing environment-resistant member
JP2008053683A (en) * 2006-07-27 2008-03-06 Matsushita Electric Ind Co Ltd Insulating film forming method, semiconductor device, and substrate processing apparatus
WO2008032873A1 (en) * 2006-09-15 2008-03-20 Sumitomo Chemical Company, Limited Method for manufacturing semiconductor epitaxial crystal substrate
US7382014B2 (en) 2005-05-17 2008-06-03 Elpida Memory, Inc. Semiconductor device with capacitor suppressing leak current
US7408213B2 (en) 2005-04-12 2008-08-05 Oki Electric Industry Co., Ltd. Ferroelectric memory device and method of manufacture of same
US7425761B2 (en) 2005-10-28 2008-09-16 Samsung Electronics Co., Ltd. Method of manufacturing a dielectric film in a capacitor
JP2008545277A (en) * 2005-06-28 2008-12-11 マイクロン テクノロジー, インク. Atomic layer deposition using alkaline earth metal .BETA.-diketiminate precursors.
US7576016B2 (en) 2006-08-23 2009-08-18 Elpida Memory, Inc. Process for manufacturing semiconductor device
JP2009212303A (en) * 2008-03-04 2009-09-17 Hitachi Kokusai Electric Inc Substrate processing method
JP2010518259A (en) * 2007-02-12 2010-05-27 東京エレクトロン株式会社 Atomic layer deposition system and method
US7771535B2 (en) 2005-08-30 2010-08-10 Elpida Memory, Inc. Semiconductor manufacturing apparatus
WO2010103893A1 (en) 2009-03-13 2010-09-16 株式会社Adeka Process for removing residual water molecules in process for producing metallic thin film, and purge solvent
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
US7927662B2 (en) 2004-06-24 2011-04-19 Tokyo Electron Limited CVD method in vertical CVD apparatus using different reactive gases
JPWO2009104621A1 (en) * 2008-02-19 2011-06-23 東京エレクトロン株式会社 Method for forming Sr-Ti-O-based film and storage medium
KR101266153B1 (en) * 2004-03-27 2013-05-23 아익스트론 에스이 Metal oxide deposition method by discontinuous precursor injection
JP2013175720A (en) * 2012-01-24 2013-09-05 Fumihiko Hirose Thin film formation method and apparatus
KR20140081701A (en) * 2012-12-21 2014-07-01 도쿄엘렉트론가부시키가이샤 Method for depositing a film
WO2015009811A1 (en) * 2013-07-16 2015-01-22 3M Innovative Properties Company Sheet coating method
CN105039929A (en) * 2014-05-01 2015-11-11 东京毅力科创株式会社 Film forming method and film forming apparatus
JP2016129243A (en) * 2016-02-25 2016-07-14 東京エレクトロン株式会社 Deposition method
JP2016171244A (en) * 2015-03-13 2016-09-23 東京エレクトロン株式会社 Deposition method, deposition device and storage medium
WO2017212546A1 (en) * 2016-06-07 2017-12-14 株式会社日立国際電気 Substrate processing device, oven opening portion, semiconductor device production method and program
JP2018066050A (en) * 2016-10-21 2018-04-26 東京エレクトロン株式会社 Film forming apparatus and film forming method
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
TWI663283B (en) * 2014-04-07 2019-06-21 美商Asm Ip控股公司 Method for stabilizing reaction chamber pressure
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
TWI670390B (en) * 2014-03-18 2019-09-01 美商Asm Ip控股公司 Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10480072B2 (en) 2009-04-06 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
US10541173B2 (en) 2016-07-08 2020-01-21 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
JP2020025131A (en) * 2019-11-08 2020-02-13 株式会社Kokusai Electric Substrate processing apparatus, manufacturing method of semiconductor device, and program
US10566223B2 (en) 2012-08-28 2020-02-18 Asm Ip Holdings B.V. Systems and methods for dynamic semiconductor process scheduling
US10561975B2 (en) 2014-10-07 2020-02-18 Asm Ip Holdings B.V. Variable conductance gas distribution apparatus and method
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10604847B2 (en) 2014-03-18 2020-03-31 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10622375B2 (en) 2016-11-07 2020-04-14 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
JPWO2021009838A1 (en) * 2019-07-16 2021-01-21
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
US12148609B2 (en) 2020-09-16 2024-11-19 Asm Ip Holding B.V. Silicon oxide deposition method
US12154824B2 (en) 2020-08-14 2024-11-26 Asm Ip Holding B.V. Substrate processing method
US12159788B2 (en) 2020-12-14 2024-12-03 Asm Ip Holding B.V. Method of forming structures for threshold voltage control
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
US12195852B2 (en) 2020-11-23 2025-01-14 Asm Ip Holding B.V. Substrate processing apparatus with an injector
US12211742B2 (en) 2020-09-10 2025-01-28 Asm Ip Holding B.V. Methods for depositing gap filling fluid
US12209308B2 (en) 2020-11-12 2025-01-28 Asm Ip Holding B.V. Reactor and related methods
US12218269B2 (en) 2020-02-13 2025-02-04 Asm Ip Holding B.V. Substrate processing apparatus including light receiving device and calibration method of light receiving device
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
US12217954B2 (en) 2020-08-25 2025-02-04 Asm Ip Holding B.V. Method of cleaning a surface
US12218000B2 (en) 2020-09-25 2025-02-04 Asm Ip Holding B.V. Semiconductor processing method
US12217946B2 (en) 2020-10-15 2025-02-04 Asm Ip Holding B.V. Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT
US12221357B2 (en) 2020-04-24 2025-02-11 Asm Ip Holding B.V. Methods and apparatus for stabilizing vanadium compounds
US12230531B2 (en) 2018-04-09 2025-02-18 Asm Ip Holding B.V. Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method
US12243747B2 (en) 2020-04-24 2025-03-04 Asm Ip Holding B.V. Methods of forming structures including vanadium boride and vanadium phosphide layers
US12243757B2 (en) 2020-05-21 2025-03-04 Asm Ip Holding B.V. Flange and apparatus for processing substrates
US12241158B2 (en) 2020-07-20 2025-03-04 Asm Ip Holding B.V. Method for forming structures including transition metal layers
US12243742B2 (en) 2020-04-21 2025-03-04 Asm Ip Holding B.V. Method for processing a substrate
US12247286B2 (en) 2019-08-09 2025-03-11 Asm Ip Holding B.V. Heater assembly including cooling apparatus and method of using same
US12252785B2 (en) 2019-06-10 2025-03-18 Asm Ip Holding B.V. Method for cleaning quartz epitaxial chambers
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
US12266524B2 (en) 2020-06-16 2025-04-01 Asm Ip Holding B.V. Method for depositing boron containing silicon germanium layers
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
US12276023B2 (en) 2017-08-04 2025-04-15 Asm Ip Holding B.V. Showerhead assembly for distributing a gas within a reaction chamber
US12278129B2 (en) 2020-03-04 2025-04-15 Asm Ip Holding B.V. Alignment fixture for a reactor system
US12288710B2 (en) 2020-12-18 2025-04-29 Asm Ip Holding B.V. Wafer processing apparatus with a rotatable table
US12322591B2 (en) 2020-07-27 2025-06-03 Asm Ip Holding B.V. Thin film deposition process

Cited By (501)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939760B2 (en) 2002-07-02 2005-09-06 Elpida Memory, Inc. Method for semiconductor device manufacturing to include multistage chemical vapor deposition of material oxide film
WO2005017987A1 (en) * 2003-08-15 2005-02-24 Hitachi Kokusai Electric Inc. Substrate treatment appratus and method of manufacturing semiconductor device
US8598047B2 (en) 2003-08-15 2013-12-03 Hitachi Kokusai Electric Inc. Substrate processing apparatus and producing method of semiconductor device
JP2005259966A (en) * 2004-03-11 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Thin film formation method
KR101266153B1 (en) * 2004-03-27 2013-05-23 아익스트론 에스이 Metal oxide deposition method by discontinuous precursor injection
US7927662B2 (en) 2004-06-24 2011-04-19 Tokyo Electron Limited CVD method in vertical CVD apparatus using different reactive gases
JP2006093550A (en) * 2004-09-27 2006-04-06 Ulvac Japan Ltd Method of forming vanadium content film
WO2006038659A1 (en) * 2004-10-07 2006-04-13 Hitachi Kokusai Electric Inc. Substrate treating apparatus and semiconductor device manufacturing method
JPWO2006038659A1 (en) * 2004-10-07 2008-05-15 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP4516969B2 (en) * 2004-10-07 2010-08-04 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
KR100860437B1 (en) * 2004-10-07 2008-09-25 가부시키가이샤 히다치 고쿠사이 덴키 Substrate treating apparatus and semiconductor device manufacturing method
US7892983B2 (en) 2004-10-07 2011-02-22 Hitachi Kokusai Electric Inc. Substrate processing apparatus and producing method of semiconductor device
JP2006222265A (en) * 2005-02-10 2006-08-24 Hitachi Kokusai Electric Inc Substrate processing equipment
WO2006098565A1 (en) * 2005-03-16 2006-09-21 Ips Ltd. Method of depositing thin film using ald process
US7408213B2 (en) 2005-04-12 2008-08-05 Oki Electric Industry Co., Ltd. Ferroelectric memory device and method of manufacture of same
JP2006310865A (en) * 2005-04-29 2006-11-09 Boc Group Inc:The Method and apparatus for using solution based precursors for atomic layer deposition
KR101332877B1 (en) * 2005-04-29 2013-11-25 더 비오씨 그룹 인코포레이티드 Method and apparatus for using solution based precursors for atomic layer deposition
US7382014B2 (en) 2005-05-17 2008-06-03 Elpida Memory, Inc. Semiconductor device with capacitor suppressing leak current
JP2007005545A (en) * 2005-06-23 2007-01-11 Tokyo Electron Ltd Surface treatment method for semiconductor processing apparatus
JP2008545277A (en) * 2005-06-28 2008-12-11 マイクロン テクノロジー, インク. Atomic layer deposition using alkaline earth metal .BETA.-diketiminate precursors.
US8188464B2 (en) 2005-06-28 2012-05-29 Micron Technology, Inc. Atomic layer deposition systems and methods including metal beta-diketiminate compounds
US7771535B2 (en) 2005-08-30 2010-08-10 Elpida Memory, Inc. Semiconductor manufacturing apparatus
US7425761B2 (en) 2005-10-28 2008-09-16 Samsung Electronics Co., Ltd. Method of manufacturing a dielectric film in a capacitor
JP2007224348A (en) * 2006-02-22 2007-09-06 Tokyo Electron Ltd Environment-resistant member, apparatus for manufacturing semiconductor, method for producing environment-resistant member
JP2008053683A (en) * 2006-07-27 2008-03-06 Matsushita Electric Ind Co Ltd Insulating film forming method, semiconductor device, and substrate processing apparatus
US7576016B2 (en) 2006-08-23 2009-08-18 Elpida Memory, Inc. Process for manufacturing semiconductor device
JP2008098603A (en) * 2006-09-15 2008-04-24 Sumitomo Chemical Co Ltd Manufacturing method of semiconductor epitaxial crystal substrate
WO2008032873A1 (en) * 2006-09-15 2008-03-20 Sumitomo Chemical Company, Limited Method for manufacturing semiconductor epitaxial crystal substrate
US7951685B2 (en) 2006-09-15 2011-05-31 Sumitomo Chemical Company, Limited Method for manufacturing semiconductor epitaxial crystal substrate
GB2456437A (en) * 2006-09-15 2009-07-22 Sumitomo Chemical Co Method for manufacturing semiconductor epitaxial crystal substrate
JP2010518259A (en) * 2007-02-12 2010-05-27 東京エレクトロン株式会社 Atomic layer deposition system and method
JPWO2009104621A1 (en) * 2008-02-19 2011-06-23 東京エレクトロン株式会社 Method for forming Sr-Ti-O-based film and storage medium
JP2009212303A (en) * 2008-03-04 2009-09-17 Hitachi Kokusai Electric Inc Substrate processing method
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
WO2010103893A1 (en) 2009-03-13 2010-09-16 株式会社Adeka Process for removing residual water molecules in process for producing metallic thin film, and purge solvent
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10480072B2 (en) 2009-04-06 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
JP2013175720A (en) * 2012-01-24 2013-09-05 Fumihiko Hirose Thin film formation method and apparatus
US10566223B2 (en) 2012-08-28 2020-02-18 Asm Ip Holdings B.V. Systems and methods for dynamic semiconductor process scheduling
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
JP2014140018A (en) * 2012-12-21 2014-07-31 Tokyo Electron Ltd Deposition method
KR101695511B1 (en) 2012-12-21 2017-01-11 도쿄엘렉트론가부시키가이샤 Method for depositing a film
KR20140081701A (en) * 2012-12-21 2014-07-01 도쿄엘렉트론가부시키가이샤 Method for depositing a film
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10072333B2 (en) 2013-07-16 2018-09-11 3M Innovative Properties Company Sheet coating method
WO2015009811A1 (en) * 2013-07-16 2015-01-22 3M Innovative Properties Company Sheet coating method
CN105392919A (en) * 2013-07-16 2016-03-09 3M创新有限公司 Sheet coating method
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
TWI670390B (en) * 2014-03-18 2019-09-01 美商Asm Ip控股公司 Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10604847B2 (en) 2014-03-18 2020-03-31 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
TWI663283B (en) * 2014-04-07 2019-06-21 美商Asm Ip控股公司 Method for stabilizing reaction chamber pressure
JP2015213108A (en) * 2014-05-01 2015-11-26 東京エレクトロン株式会社 Deposition method and deposition device
CN105039929A (en) * 2014-05-01 2015-11-11 东京毅力科创株式会社 Film forming method and film forming apparatus
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10561975B2 (en) 2014-10-07 2020-02-18 Asm Ip Holdings B.V. Variable conductance gas distribution apparatus and method
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
JP2016171244A (en) * 2015-03-13 2016-09-23 東京エレクトロン株式会社 Deposition method, deposition device and storage medium
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US10720322B2 (en) 2016-02-19 2020-07-21 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top surface
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
JP2016129243A (en) * 2016-02-25 2016-07-14 東京エレクトロン株式会社 Deposition method
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US12240760B2 (en) 2016-03-18 2025-03-04 Asm Ip Holding B.V. Aligned carbon nanotubes
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
JPWO2017212546A1 (en) * 2016-06-07 2019-02-28 株式会社Kokusai Electric Substrate processing apparatus, furnace opening, semiconductor device manufacturing method and program
WO2017212546A1 (en) * 2016-06-07 2017-12-14 株式会社日立国際電気 Substrate processing device, oven opening portion, semiconductor device production method and program
US12065741B2 (en) 2016-06-07 2024-08-20 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
US10640872B2 (en) 2016-06-07 2020-05-05 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
US11365482B2 (en) 2016-06-07 2022-06-21 Kokusai Electric Corporation Substrate processing apparatus and method of manufacturing semiconductor device
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10541173B2 (en) 2016-07-08 2020-01-21 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
JP2018066050A (en) * 2016-10-21 2018-04-26 東京エレクトロン株式会社 Film forming apparatus and film forming method
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10644025B2 (en) 2016-11-07 2020-05-05 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10622375B2 (en) 2016-11-07 2020-04-14 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US12106965B2 (en) 2017-02-15 2024-10-01 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10468262B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10950432B2 (en) 2017-04-25 2021-03-16 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US12363960B2 (en) 2017-07-19 2025-07-15 Asm Ip Holding B.V. Method for depositing a Group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US12276023B2 (en) 2017-08-04 2025-04-15 Asm Ip Holding B.V. Showerhead assembly for distributing a gas within a reaction chamber
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10672636B2 (en) 2017-08-09 2020-06-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US12033861B2 (en) 2017-10-05 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US12040184B2 (en) 2017-10-30 2024-07-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US12119228B2 (en) 2018-01-19 2024-10-15 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US12173402B2 (en) 2018-02-15 2024-12-24 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US12230531B2 (en) 2018-04-09 2025-02-18 Asm Ip Holding B.V. Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755923B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US12176243B2 (en) 2019-02-20 2024-12-24 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US12195855B2 (en) 2019-06-06 2025-01-14 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US12252785B2 (en) 2019-06-10 2025-03-18 Asm Ip Holding B.V. Method for cleaning quartz epitaxial chambers
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US12107000B2 (en) 2019-07-10 2024-10-01 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
CN114026678A (en) * 2019-07-16 2022-02-08 株式会社国际电气 Manufacturing method of semiconductor device, substrate processing apparatus and program
WO2021009838A1 (en) * 2019-07-16 2021-01-21 株式会社Kokusai Electric Production method for semiconductor device, substrate treatment device, and program
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
JPWO2021009838A1 (en) * 2019-07-16 2021-01-21
US12080550B2 (en) 2019-07-16 2024-09-03 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP7149423B2 (en) 2019-07-16 2022-10-06 株式会社Kokusai Electric Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and program
CN114026678B (en) * 2019-07-16 2025-07-15 株式会社国际电气 Semiconductor device manufacturing method, substrate processing method, substrate processing device and recording medium
KR102788749B1 (en) * 2019-07-16 2025-03-31 가부시키가이샤 코쿠사이 엘렉트릭 Method for manufacturing semiconductor devices, method for processing substrates, apparatus for processing substrates and programs
KR20220019047A (en) * 2019-07-16 2022-02-15 가부시키가이샤 코쿠사이 엘렉트릭 Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus and program
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US12129548B2 (en) 2019-07-18 2024-10-29 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US12247286B2 (en) 2019-08-09 2025-03-11 Asm Ip Holding B.V. Heater assembly including cooling apparatus and method of using same
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US12040229B2 (en) 2019-08-22 2024-07-16 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US12033849B2 (en) 2019-08-23 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12230497B2 (en) 2019-10-02 2025-02-18 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US12266695B2 (en) 2019-11-05 2025-04-01 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
JP2020025131A (en) * 2019-11-08 2020-02-13 株式会社Kokusai Electric Substrate processing apparatus, manufacturing method of semiconductor device, and program
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US12119220B2 (en) 2019-12-19 2024-10-15 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US12218269B2 (en) 2020-02-13 2025-02-04 Asm Ip Holding B.V. Substrate processing apparatus including light receiving device and calibration method of light receiving device
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US12278129B2 (en) 2020-03-04 2025-04-15 Asm Ip Holding B.V. Alignment fixture for a reactor system
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US12243742B2 (en) 2020-04-21 2025-03-04 Asm Ip Holding B.V. Method for processing a substrate
US12221357B2 (en) 2020-04-24 2025-02-11 Asm Ip Holding B.V. Methods and apparatus for stabilizing vanadium compounds
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US12243747B2 (en) 2020-04-24 2025-03-04 Asm Ip Holding B.V. Methods of forming structures including vanadium boride and vanadium phosphide layers
US12130084B2 (en) 2020-04-24 2024-10-29 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US12243757B2 (en) 2020-05-21 2025-03-04 Asm Ip Holding B.V. Flange and apparatus for processing substrates
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12266524B2 (en) 2020-06-16 2025-04-01 Asm Ip Holding B.V. Method for depositing boron containing silicon germanium layers
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US12055863B2 (en) 2020-07-17 2024-08-06 Asm Ip Holding B.V. Structures and methods for use in photolithography
US12241158B2 (en) 2020-07-20 2025-03-04 Asm Ip Holding B.V. Method for forming structures including transition metal layers
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US12322591B2 (en) 2020-07-27 2025-06-03 Asm Ip Holding B.V. Thin film deposition process
US12154824B2 (en) 2020-08-14 2024-11-26 Asm Ip Holding B.V. Substrate processing method
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12217954B2 (en) 2020-08-25 2025-02-04 Asm Ip Holding B.V. Method of cleaning a surface
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12211742B2 (en) 2020-09-10 2025-01-28 Asm Ip Holding B.V. Methods for depositing gap filling fluid
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US12148609B2 (en) 2020-09-16 2024-11-19 Asm Ip Holding B.V. Silicon oxide deposition method
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12218000B2 (en) 2020-09-25 2025-02-04 Asm Ip Holding B.V. Semiconductor processing method
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US12217946B2 (en) 2020-10-15 2025-02-04 Asm Ip Holding B.V. Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US12209308B2 (en) 2020-11-12 2025-01-28 Asm Ip Holding B.V. Reactor and related methods
US12195852B2 (en) 2020-11-23 2025-01-14 Asm Ip Holding B.V. Substrate processing apparatus with an injector
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
US12159788B2 (en) 2020-12-14 2024-12-03 Asm Ip Holding B.V. Method of forming structures for threshold voltage control
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US12288710B2 (en) 2020-12-18 2025-04-29 Asm Ip Holding B.V. Wafer processing apparatus with a rotatable table
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover

Also Published As

Publication number Publication date
JP3670628B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3670628B2 (en) Film forming method, film forming apparatus, and semiconductor device manufacturing method
US11549177B2 (en) Process for passivating dielectric films
JP5097554B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
KR100323874B1 (en) Method of forming an aluminum oxide film in a semiconductor device
US7541284B2 (en) Method of depositing Ru films having high density
US8256077B2 (en) Method for forming a capacitor dielectric having tetragonal phase
US20030201541A1 (en) Method for fabricating metal electrode with atomic layer deposition (ALD) in semiconductor device
US20070014919A1 (en) Atomic layer deposition of noble metal oxides
KR101775203B1 (en) Film forming method
JP2003100908A (en) Semiconductor device having high dielectric film and method of manufacturing the same
US20040195653A1 (en) Capacitor structure and film forming method and apparatus
JPH11323560A (en) Method and apparatus for film deposition
US20040045503A1 (en) Method for treating a surface of a reaction chamber
KR101757515B1 (en) Ruthenium film formation method and storage medium
JP4770145B2 (en) Film forming method and film forming apparatus
KR20070106286A (en) Method for forming titanium oxide film crystallized in rutile structure and method for manufacturing capacitor using same
JP2009299101A (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP4212013B2 (en) Dielectric film fabrication method
JP3171246B2 (en) Vapor phase growth method of metal oxide dielectric film
KR100511914B1 (en) Method for fabricating of semiconductor device using PECYCLE-CVD
JP3353835B2 (en) Vapor phase growth method of metal oxide dielectric film
JP2009158539A (en) Manufacturing method of semiconductor device
JP2007059735A (en) Semiconductor device manufacturing method and substrate processing apparatus
KR20010114049A (en) A method of manufacturing a capacitor in a semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Ref document number: 3670628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees