JP2004022694A - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- JP2004022694A JP2004022694A JP2002173677A JP2002173677A JP2004022694A JP 2004022694 A JP2004022694 A JP 2004022694A JP 2002173677 A JP2002173677 A JP 2002173677A JP 2002173677 A JP2002173677 A JP 2002173677A JP 2004022694 A JP2004022694 A JP 2004022694A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- groove
- hole
- insulating film
- interlayer insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000011229 interlayer Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000005530 etching Methods 0.000 claims abstract description 27
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 abstract description 42
- 238000000206 photolithography Methods 0.000 abstract description 19
- 238000009413 insulation Methods 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 230000010354 integration Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
【課題】異なる膜厚の上層配線と、当該上層配線の配線膜厚の厚薄によらず、当該上層配線と下層配線と電気的に接続するビアプラグとを、効率的に形成することができる半導体装置の製造方法を提供することを目的とする。
【解決手段】所定の形状の下層配線を有する層間絶縁膜を、半導体基板上に形成し、一回目のフォトリソグラフィ工程で、第一の溝状開口部と第一の孔状開口部とをハーフエッチングにより同時に形成する。その後、二回目のフォトリソグラフィ工程で、前記第一の溝状開口部に重なる第二の孔状開口部および前記第一の孔状開口部に重なる第二の溝状開口部を、同時に形成する。最後に、前記第一および第二の溝状開口部、並びに、前記第一および第二の孔状開口部に導電体を充填することにより、前記上層配線および当該上層配線と前記下層配線とを電気的に接続するビアプラグを形成する。
【選択図】 図1
【解決手段】所定の形状の下層配線を有する層間絶縁膜を、半導体基板上に形成し、一回目のフォトリソグラフィ工程で、第一の溝状開口部と第一の孔状開口部とをハーフエッチングにより同時に形成する。その後、二回目のフォトリソグラフィ工程で、前記第一の溝状開口部に重なる第二の孔状開口部および前記第一の孔状開口部に重なる第二の溝状開口部を、同時に形成する。最後に、前記第一および第二の溝状開口部、並びに、前記第一および第二の孔状開口部に導電体を充填することにより、前記上層配線および当該上層配線と前記下層配線とを電気的に接続するビアプラグを形成する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
この発明は、半導体装置の製造方法に係る発明であって、特に、異なる配線厚の上層配線と、下層配線と、当該上層配線と当該下層配線とを電気的に接続するビアプラグとを有する半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
半導体装置の動作速度は、配線抵抗と配線容量に依存しており、配線抵抗、配線容量の値が低ければ低いほど、半導体装置の動作速度は早くなる。つまり、配線抵抗を低減するためには、配線膜厚および配線幅を大きくする必要があり、一方、配線容量を低減するためには、配線膜厚を薄くし、隣接する配線間隔を広げる必要がある。
【0003】
しかし、多層配線構造の半導体装置において、当該半導体装置の近年の微細化に伴い、配線抵抗と配線容量とが増加の一途を辿っており、半導体装置の製造に際し、半導体装置の微細化と信号速度の高速化の相反する要請に応える必要がある。
【0004】
そこで、第一の従来技術として、半導体装置の微細化と動作速度の高速化とを両立させるため、図9に示す断面構造の半導体装置が提案されていた。
【0005】
図9の多層配線半導体装置において、微細なローカル配線101とワイドピッチのグローバル配線102とが別個独立な層に、それぞれ設けられている。
【0006】
短距離配線に用いられるローカル配線101では、配線容量が半導体装置の動作速度に強く依存するため、配線容量が低くなるように配線膜厚を薄くしている。
【0007】
これに対して、長距離配線に用いられるグローバル配線102では、半導体装置の動作速度が配線抵抗に強く依存しているため、配線抵抗が低くなるように配線膜厚を厚くしており、また、配線幅を大きくとっている。
【0008】
また、ローカル配線101(またはグローバル配線102)に属するそれぞれの配線においても、半導体装置の性能をより向上させるために、配線幅、配線間隔等を調整して、配線抵抗や配線容量を最適化することが行われている。例えば、同じグローバル配線102に属する配線同士においても、より配線抵抗を低くしたい配線に対しては、他の配線よりも配線幅を大きく形成されている。
【0009】
これに対して、特開平9−321046号公報に開示されている第二の従来技術では、同一配線層に配線膜厚の異なる上層配線が形成されている。
【0010】
図10に示した第二の従来技術では、シリコン基板111上に第一のシリコン酸化膜112を形成した後、下層配線113を形成し、第一のシリコン酸化膜112と下層配線113とを覆うように、層間絶縁膜である第二のシリコン酸化膜114が形成されている。
【0011】
次に、一回目のフォトリソグラフィ工程により、第二のシリコン酸化膜114に第一の上層配線115となる第一の溝状開口部を形成する。その後、二回目のフォトリソグラフィ工程により、第二のシリコン酸化膜114に第一の上層配線115とは配線膜厚の異なる第二の上層配線116となる第二の溝状開口部と、第一の上層配線115と下層配線113とを電気的に接続するビアプラグ117となる孔状開口部とを同時に形成する。
【0012】
なお、上記二回目のフォトリソグラフィ工程のとき、一回目のフォトリソグラフィ工程で形成された第一の溝状開口部に引き続き、第二の溝状開口部を形成することにより、第三の上層配線118となる溝状開口部も形成されている。
【0013】
最後に、前記各溝状開口部と孔状開口部とを充填するように、第二のシリコン酸化膜114の表面上にアルミニウム等の金属を形成し、第二のシリコン酸化膜114の表面位置まで当該金属を研磨することにより、図10に示す断面構造の半導体装置が得られる。
【0014】
上記第二の従来技術では、同一配線層に2以上の異なる配線膜厚の配線を形成しているため、半導体装置の設計に際して、第一の従来技術よりも配線抵抗と配線容量を考慮した自由度の高い設計が可能となる。したがって、回路設計が簡易化され、さらに半導体装置の回路動作速度および集積度を向上させることが可能であった。
【0015】
【発明が解決しようとする課題】
しかし、上記第二の従来技術の製造方法では、配線膜厚の異なる上層配線と、当該配線膜厚の異なる上層配線のうち1の膜厚の上層配線と下層配線とを接続するビアプラグとの形成方法が記載されているだけで、配線膜厚の異なる各々の上層配線と下層配線とを電気的に接続するビアプラグを効率的に形成することは出来ない。
【0016】
つまり、上記に示した2回のエッチング工程だけからなる製造方法では、2種類の異なる配線膜厚の一方の上層配線115と下層配線113とを電気的に接続するビアプラグ117を形成することは可能であるが、他方の上層配線116と図示していない下層配線とを電気的に接続するビアプラグを形成することは不可能である。
【0017】
また、フォトリソグラフィ工程を増加することにより、他方の上層配線116と図示していない下層配線とを電気的に接続するビアプラグを形成することもできるが、効率的でない。
【0018】
実際の半導体装置においては、異なる配線膜厚から成る上層配線を形成するだけでなく、上層配線の配線膜厚の厚薄にかかわらず、各配線膜厚の異なる上層配線と下層配線とをビアプラグにて接続することが重要であり、実用性がはるかに高い。
【0019】
そこで、この発明は、半導体装置の設計に際して、当該半導体装置の動作速度に依存する配線抵抗と配線容量とを考慮したより自由度の高い設計を可能にし、かつ、実用性のある半導体装置を提供すべく、上層配線の配線膜厚の厚薄によらず、異なる膜厚の上層配線と、下層配線と、当該上層配線と当該下層配線とを電気的に接続するビアプラグとを、より効率的に形成することができる半導体装置の製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る請求項1に記載の半導体装置の製造方法は、2以上の異なる配線膜厚を有する上層配線と当該上層配線と下層配線とを電気的に接続する2以上のビアプラグを有しており、膜厚の薄い方の前記上層配線が密に形成されている第一の領域と、膜厚の厚い方の前記上層配線が前記第一の領域の前記上層配線よりも疎に形成されている第二の領域とを有している半導体装置において、(a)半導体基板を用意する工程と、(b)所定の形状の前記下層配線を有する第一の層間絶縁膜を、前記半導体基板上に形成する工程と、(c)前記第一の層間絶縁膜を覆うように、第二の層間絶縁膜を形成する工程と、(d)前記第二の層間絶縁膜の上面を貫通し、当該第二の層間絶縁膜の途中の深さまでの、前記第二の領域に存在する第一の溝状開口部および前記第一の領域に存在する第一の孔状開口部を、同時に形成する工程と、(e)前記工程(d)の後、前記第一の溝状開口部に重なる第二の孔状開口部および前記第一の孔状開口部に重なる第二の溝状開口部を、同時に形成する工程と、(f)前記第一および第二の溝状開口部、並びに、前記第一および第二の孔状開口部に導電体を充填することにより、前記上層配線および当該上層配線と前記下層配線とを電気的に接続する前記ビアプラグを形成する工程とを、備えている。
【0021】
また、請求項2に記載の半導体装置の製造方法では、前記工程(d)は、(d−1)所定の形状の溝状開口部と孔状開口部とがパターンニングされた第一のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(d−2)前記第一のマスクをマスクとして所定の深さまで、前記第二の層間絶縁膜をハーフエッチングする工程とを備え、前記工程(e)は、(e−1)前記第一の溝状開口部の一部を被覆することにより形成される所定の形状の孔状開口部と、前記第一の孔状開口部と重なる部分を有して形成されており、前記第一の溝状開口部よりも幅が狭い溝状開口部とがパターニングされた第二のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(e−2)前記第二のマスクをマスクとして前記第一および第二の孔状開口部が前記下層配線に到達するまで、前記第二の層間絶縁膜をエッチングする工程とを備えていてもよい。
【0022】
また、請求項3に記載の半導体装置の製造方法では、前記工程(e−1)において、前記第二のマスクは、前記第一の孔状開口部とは重ならない溝状開口部をさらにパターンニングされていてもよい。
【0023】
また、請求項4に記載の半導体装置の製造方法では、前記第一の溝状開口部は複数形成されており、前記工程(e−1)において、第二のマスクは、前記複数の第一の溝状開口部の一部の溝状開口部を完全に被覆するものであってもよい。
【0024】
【発明の実施の形態】
以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。図1は、本発明の一例の半導体装置の一部を示す断面図である。
【0025】
図1において、膜厚が例えば約1μmの第一の層間絶縁膜(シリコン酸化膜等)2が半導体基板1上に形成されており、当該第一の層間絶縁膜2の最表面から内部にかけて、銅等の導電体で形成された膜厚約400nmの下層配線3が所定の形状・本数で配設されている。
【0026】
また、下層配線3が銅である場合には、銅の酸化防止やエッチングストッパ等の目的ために、第一の層間絶縁膜2と下層配線3の全面を覆うように、例えばシリコン窒化膜10を約50nmの膜厚で形成する必要がある。これに対して、下層配線3が、例えばアルミニウムである場合には、前記シリコン窒化膜10を省略することも可能である。
【0027】
また、前記シリコン窒化膜10上には、第二の層間絶縁膜(シリコン酸化膜等)4が形成されており、当該第二の層間絶縁膜4の最表面から内部にかけて、第一の上層配線(銅等で形成された配線)5と、当該第一の上層配線と膜厚の異なる第二の上層配線6(銅等で形成された配線)とが所定の形状で、それぞれ複数配設されている。
【0028】
ここで、第二の層間絶縁膜4の膜厚は約1μmであり、第一の上層配線5の膜厚は約700nmであり、第二の上層配線6の膜厚は約400nmである。また、図1に示すように、第一の上層配線5と第二の上層配線6とは配線膜厚だけでなく、配線幅が異なるように形成してもかまわない。
【0029】
さらに、第二の層間絶縁膜4中には、第二の上層配線6と下層配線3とを電気的に接続する第一のビアプラグ7と、第一の上層配線5と下層配線3とを電気的に接続する第二のビアプラグ8とが形成されている。ここで、第一のビアプラグ7や第二のビアプラグ8は、孔状開口部に、例えば銅等の導電体を充填することにより形成される。
【0030】
上記に示した半導体装置では、異なる配線膜厚、配線幅の上層配線5,6が形成されているので、回路の設計に際して、配線抵抗と配線容量とを考慮した自由度の高い設計が可能となる。
【0031】
また、上記半導体装置は、配線膜厚の異なる上層配線5,6のそれぞれと下層配線3とを電気的に接続するビアプラグ7,8が形成されているので、より実用的な半導体装置となっている。
【0032】
例えば図1において、設計上、配線ピッチを詰めて集積度を上げたい部分には、第二の上層配線6および第一のビアプラグ7とを設計し、これに対して、配線抵抗を下げたい部分には、第一の上層配線5と第二のビアプラグ8とを設計する。
【0033】
次に、図1に示す半導体装置の製造方法を、半導体装置断面を表す図2〜8の製造工程図に従って説明する。
【0034】
まず、図2に示すように半導体基板1上に、例えばCVD(ChemicalVapor Deposition:化学気相成長)法等により、膜厚約1μmの第一の層間絶縁膜(シリコン酸化膜等)2が形成され、当該層間絶縁膜2中に、層間絶縁膜2の表面から所定の深さにいたる配線膜厚(例えば、約400nm)の下層配線3を所定の形状・本数で形成する。
【0035】
ここで、下層配線3は、例えば一連のフォトリソグラフィ工程により、第一の層間絶縁膜2中に所定の形状の溝開口部を形成し、当該溝開口部に導電体として銅等を埋め込み、その後、CMP(Chemical and Mechanical Polishing)等の平坦化技術により、当該導電体表面が第一の層間絶縁膜2の表面と面一となるように導電体を研磨することにより、形成される。
【0036】
続いて、図3に示すように、例えば下層配線3が銅である場合には、銅の酸化防止等の目的のために、第一の層間絶縁膜2および下層配線3の上面を覆うように、例えばシリコン窒化膜10等を約50nmの膜厚で形成した後、当該シリコン窒化膜10上に、例えばCVD法等により、第二の層間絶縁膜(シリコン酸化膜等)4を約1μm程度の厚さで形成する。
【0037】
ここで、下層配線3がアルミニウムである場合には、当該シリコン窒化膜10は形成しなくてもよい。
【0038】
次に、図4に示すように、所定のパターンを有するレジスト(第一のマスク)11を第二の層間絶縁膜4の上面に形成する。
【0039】
ここで、レジスト11には、図1の第一の上層配線5を形成するための溝状開口部5aと、第一のビアプラグ7を形成するための孔状開口部7aの二種類のパターニングがされている。
【0040】
上記のレジスト11を形成後、当該レジスト11をマスクとして一回目のエッチング処理を施し、当該エッチング処理後、レジスト11を除去する。当該工程を経た状態を図5に示す。ここで、図4から図5に示す工程を一回目のフォトリソグラフィ工程と称する。
【0041】
また、一回目のフォトリソグラフィ工程でのエッチング処理はハーフエッチング処理であり、第一の上層配線5が所望の配線膜厚となるように、第二の層間絶縁膜4の内部でエッチングを止める。このエッチング止めは、所望の深さ(この場合では、第一の上層配線5の配線膜厚で約700nm)までエッチングされる時間をエッチングレートから算出し、当該時間経過後、エッチングを止めることにより行われる。
【0042】
上記一回目のフォトリソグラフィ工程により、膜厚が約1μmの第二の層間絶縁膜4には、約700nmの第一の溝状開口部5bと、同程度の深さの第一の孔状開口部7bとが形成される。
【0043】
次に、図6に示すように、所定のパターンを有するレジスト(第二のマスク)12を第二の層間絶縁膜4の上面に形成する。
【0044】
レジスト12には、第二の上層配線6を形成するための溝状開口部6aと、第二のビアプラグ8を形成するための孔状開口部8aの二種類のパターニングがされている。
【0045】
このとき、第一の溝状開口部5bの一方には、レジスト12が完全に充填されており、第一の溝状開口部5bの他方には、一部レジスト12が充填されている。
【0046】
また、溝状開口部6aの一部は、第一の孔状開口部7bと重なるようにレジスト12にパターニングされており、他の溝状開口部6aは、第一の孔状開口部7bとは重ならないようにレジスト12にパターニングされている。
【0047】
上記のレジスト12を形成後、当該レジスト12をマスクとして二回目のエッチング処理を施し、その後、レジスト12を除去する。当該工程を経た状態を図7に示す。ここで、図6から図7に示す工程を二回目のフォトリソグラフィ工程と称する。
【0048】
上記二回目のフォトリソグラフィ工程のエッチング処理では、第二の上層配線6が所望の配線膜厚となる必要があり、かつ、第一のビアプラグ7および第二のビアプラグ8がそれぞれ下層配線3と接続されるように、一回目のフォトリソグラフィ工程で形成された第一の溝状開口部5bのアンダーエッチ部分と第一の孔状開口部7bのアンダーエッチ部分がエッチングされ、下層配線3に到達する必要がある。
【0049】
例えば、第二の上層配線6の配線膜厚を400nmで設計すると、400nmまでエッチングされる時間をエッチングレートから算出し、当該時間エッチングした後、二回目のエッチングを止める。そうすると、一回目のエッチング工程でのアンダーエッチ部分300nmはエッチングされ、第一の孔状開口部7bおよび第二の孔状開口部8bは下層配線3に到達する(図7)。
【0050】
次に、第二の層間絶縁膜4に形成された各開口部を充填するように銅等の導電体13を埋め込む。
【0051】
導電体13の埋め込む方法として、例えばスパッタ法により、図示しないメタルバリア層およびシード層の成膜を行い、その後メッキ法により、銅等の導電体13を当該各開口部に充填する。このとき、各開口部に導電体13が埋め込まれると同時に、第二の層間絶縁膜4の表面上にも導電体13が成膜される。当該工程を経た状態を図8に示す。
【0052】
最後に、例えばCMP法により、第二の層間絶縁膜4の上面と導電体13の上面とが面一になるまで導電体13を研磨し、第二の層間絶縁膜4に形成された各開口部にのみ導電体13を残す(図1)。
【0053】
上記一連の工程により、つまり、一回目のフォトリソグラフィ工程(レジスト11を用いるハーフエッチング処理工程)により、第一の溝状開口部5bと第一の孔状開口部7bとを同時に形成し、二回目のフォトリソグラフィ工程(レジスト12を用いるエッチング処理工程)により、前記第一の孔状開口部7bに重なるように形成される第二の溝状開口部6bと、前記第一の溝状開口部5b内に形成される第二の孔状開口部8bとを同時に形成することにより、図1に示したように、異なる配線膜厚の上層配線5,6と下層配線3を有する半導体装置において、配線膜厚の厚薄に依らず、上層配線5,6と下層配線3とを電気的に接続するビアプラグ7,8を備える半導体装置を効率的に製造することができる。
【0054】
例えば、配線ピッチを詰めて集積度を上げたい部分(配線膜厚が薄く、ビアプラグに対するカバーマージンを小さく設計する必要がある部分)には、第一の孔状開口部7b形成後に第二の溝状開口部6bを重ねて形成することにより、第二の上層配線6と第一のビアプラグ7とを形成することができ、また、配線抵抗を下げたい部分(配線膜厚や配線幅が大きく、ビアプラグに対するカバーマージンを大きく設計する必要のある部分)には、第一の溝状開口部5b形成後に第二の孔状開口部8bを重ねて形成することにより、第一の上層配線5と第二のビアプラグ8とを形成することができる。
【0055】
また、図1に示す構造の半導体装置を製造するに際し、第二の従来技術に記載の方法を適用した場合、つまり配線ピッチの詰まっている部分において、溝状開口部を形成した後に孔状開口部を形成する方法を適用した場合には、先に形成された溝状開口部の段差内に、孔状開口部形成のためのレジストをパターニングするため、レジスト膜厚は深くなり、つまりアスペクト比が高くなるので、焦点深度が小さくなり、集積度の高い箇所に対してレジストのファインパターンを形成することは困難であるという問題があった。
【0056】
しかし、配線ピッチの詰まっている部分において、本発明の上記に示した製造方法(手順)、つまり孔状開口部を形成後、溝状開口部を形成する手順を採用することにより、上記問題は解決される。
【0057】
また、上記の上層配線として配線幅の異なる配線を採用してもかまわず、これにより、例えば配線抵抗を下げたい上層配線の配線幅を大きく形成することが可能となる。従って、配線膜厚と配線幅とを自由に設計することができ、設計の自由度がさらに増える。ただし、配線形成にCMP法を用いる場合、配線ディッシング現象のため、配線幅を太くすること(配線抵抗を低くすること)に制限があるが、本発明の手法では、配線膜厚を厚膜化することにより、配線の低抵抗化が図れるため、従来よりも設計の自由度が増す。
【0058】
なお、本発明の製造方法(手順)を適用するのであれば、上記に示した各部材の寸法や材料はこれに限る必要はない。
【0059】
また、本発明の説明では、二層分の配線層について説明したが、これに限るものでなく、多層配線構造にも適用できることは言うまでもない。
【0060】
【発明の効果】
本発明の請求項1に記載の半導体装置の製造方法は、2以上の異なる配線膜厚を有する上層配線と当該上層配線と下層配線とを電気的に接続する2以上のビアプラグを有しており、膜厚の薄い方の前記上層配線が密に形成されている第一の領域と、膜厚の厚い方の前記上層配線が前記第一の領域の前記上層配線よりも疎に形成されている第二の領域とを有している半導体装置において、(a)半導体基板を用意する工程と、(b)所定の形状の前記下層配線を有する第一の層間絶縁膜を、前記半導体基板上に形成する工程と、(c)前記第一の層間絶縁膜を覆うように、第二の層間絶縁膜を形成する工程と、(d)前記第二の層間絶縁膜の上面を貫通し、当該第二の層間絶縁膜の途中の深さまでの、前記第二の領域に存在する第一の溝状開口部および前記第一の領域に存在する第一の孔状開口部を、同時に形成する工程と、(e)前記工程(d)の後、前記第一の溝状開口部に重なる第二の孔状開口部および前記第一の孔状開口部に重なる第二の溝状開口部を、同時に形成する工程と、(f)前記第一および第二の溝状開口部、並びに、前記第一および第二の孔状開口部に導電体を充填することにより、前記上層配線および当該上層配線と前記下層配線とを電気的に接続する前記ビアプラグを形成する工程とを、備えているので、半導体装置の設計に際して、当該半導体装置の動作速度に依存する配線抵抗と配線容量とを考慮したより自由度の高い設計を可能となり、上層配線の配線膜厚の厚薄によらず、異なる膜厚の上層配線と下層配線とを電気的に接続するビアプラグを、より効率的に形成することができる。
【0061】
本発明の請求項2に記載の半導体装置の製造方法は、前記工程(d)は、(d−1)所定の形状の溝状開口部と孔状開口部とがパターンニングされた第一のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(d−2)前記第一のマスクをマスクとして所定の深さまで、前記第二の層間絶縁膜をハーフエッチングする工程とを備え、前記工程(e)は、(e−1)前記第一の溝状開口部の一部を被覆することにより形成される所定の形状の孔状開口部と、前記第一の孔状開口部と重なる部分を有して形成されており、前記第一の溝状開口部よりも幅が狭い溝状開口部とがパターニングされた第二のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(e−2)前記第二のマスクをマスクとして前記第一および第二の孔状開口部が前記下層配線に到達するまで、前記第二の層間絶縁膜をエッチングする工程とを備えているので、上記2回のフォトリソグラフィ工程により、膜厚の異なる上層配線と、下層配線と、当該上層配線と当該下層配線とを電気的に接続するビアプラグとを容易に、かつ、精度良く形成することができる。
【0062】
本発明の請求項3に記載の半導体装置の製造方法は、前記工程(e−1)において、前記第二のマスクは、前記第一の孔状開口部とは重ならない溝状開口部をさらにパターンニングされているので、下層配線と電気的に接続しない上層配線となる第二の溝状開口部も二回目のフォトリソグラフィ工程で形成でき、さらに自由度の高い半導体装置の形成が可能となる。
【0063】
本発明の請求項4に記載の半導体装置の製造方法は、前記第一の溝状開口部は複数形成されており、前記工程(e−1)において、第二のマスクは、前記複数の第一の溝状開口部の一部の溝状開口部を完全に被覆するものであるので、一回目のフォトリソグラフィ工程で形成された第一の溝状開口部のうち、下層配線と電気的に接続しない上層配線となる第一の溝状開口部も形成でき、さらに自由度の高い半導体装置の形成が可能となる。
【図面の簡単な説明】
【図1】本発明の半導体装置の構成を示す断面図である。
【図2】本発明の半導体装置の製造工程を示す第一の図である。
【図3】本発明の半導体装置の製造工程を示す第二の図である。
【図4】本発明の半導体装置の製造工程を示す第三の図である。
【図5】本発明の半導体装置の製造工程を示す第四の図である。
【図6】本発明の半導体装置の製造工程を示す第五の図である。
【図7】本発明の半導体装置の製造工程を示す第六の図である。
【図8】本発明の半導体装置の製造工程を示す第七の図である。
【図9】第一の従来技術の半導体装置の構成を示す断面図である。
【図10】第二の従来技術の半導体装置の構成を示す断面図である。
【符号の説明】
1 半導体基板、2 第一の層間絶縁膜、3 下層配線、4 第二の層間絶縁膜、5 第一の上層配線、5b 第一の溝状開口部、6 第二の上層配線、6b第二の溝状開口部、7 第一のビアプラグ、7b 第一の孔状開口部、8 第二のビアプラグ、8b 第二の孔状開口部、10 シリコン窒化膜、11,12
レジスト、13 導電体(銅等)。
【発明の属する技術分野】
この発明は、半導体装置の製造方法に係る発明であって、特に、異なる配線厚の上層配線と、下層配線と、当該上層配線と当該下層配線とを電気的に接続するビアプラグとを有する半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
半導体装置の動作速度は、配線抵抗と配線容量に依存しており、配線抵抗、配線容量の値が低ければ低いほど、半導体装置の動作速度は早くなる。つまり、配線抵抗を低減するためには、配線膜厚および配線幅を大きくする必要があり、一方、配線容量を低減するためには、配線膜厚を薄くし、隣接する配線間隔を広げる必要がある。
【0003】
しかし、多層配線構造の半導体装置において、当該半導体装置の近年の微細化に伴い、配線抵抗と配線容量とが増加の一途を辿っており、半導体装置の製造に際し、半導体装置の微細化と信号速度の高速化の相反する要請に応える必要がある。
【0004】
そこで、第一の従来技術として、半導体装置の微細化と動作速度の高速化とを両立させるため、図9に示す断面構造の半導体装置が提案されていた。
【0005】
図9の多層配線半導体装置において、微細なローカル配線101とワイドピッチのグローバル配線102とが別個独立な層に、それぞれ設けられている。
【0006】
短距離配線に用いられるローカル配線101では、配線容量が半導体装置の動作速度に強く依存するため、配線容量が低くなるように配線膜厚を薄くしている。
【0007】
これに対して、長距離配線に用いられるグローバル配線102では、半導体装置の動作速度が配線抵抗に強く依存しているため、配線抵抗が低くなるように配線膜厚を厚くしており、また、配線幅を大きくとっている。
【0008】
また、ローカル配線101(またはグローバル配線102)に属するそれぞれの配線においても、半導体装置の性能をより向上させるために、配線幅、配線間隔等を調整して、配線抵抗や配線容量を最適化することが行われている。例えば、同じグローバル配線102に属する配線同士においても、より配線抵抗を低くしたい配線に対しては、他の配線よりも配線幅を大きく形成されている。
【0009】
これに対して、特開平9−321046号公報に開示されている第二の従来技術では、同一配線層に配線膜厚の異なる上層配線が形成されている。
【0010】
図10に示した第二の従来技術では、シリコン基板111上に第一のシリコン酸化膜112を形成した後、下層配線113を形成し、第一のシリコン酸化膜112と下層配線113とを覆うように、層間絶縁膜である第二のシリコン酸化膜114が形成されている。
【0011】
次に、一回目のフォトリソグラフィ工程により、第二のシリコン酸化膜114に第一の上層配線115となる第一の溝状開口部を形成する。その後、二回目のフォトリソグラフィ工程により、第二のシリコン酸化膜114に第一の上層配線115とは配線膜厚の異なる第二の上層配線116となる第二の溝状開口部と、第一の上層配線115と下層配線113とを電気的に接続するビアプラグ117となる孔状開口部とを同時に形成する。
【0012】
なお、上記二回目のフォトリソグラフィ工程のとき、一回目のフォトリソグラフィ工程で形成された第一の溝状開口部に引き続き、第二の溝状開口部を形成することにより、第三の上層配線118となる溝状開口部も形成されている。
【0013】
最後に、前記各溝状開口部と孔状開口部とを充填するように、第二のシリコン酸化膜114の表面上にアルミニウム等の金属を形成し、第二のシリコン酸化膜114の表面位置まで当該金属を研磨することにより、図10に示す断面構造の半導体装置が得られる。
【0014】
上記第二の従来技術では、同一配線層に2以上の異なる配線膜厚の配線を形成しているため、半導体装置の設計に際して、第一の従来技術よりも配線抵抗と配線容量を考慮した自由度の高い設計が可能となる。したがって、回路設計が簡易化され、さらに半導体装置の回路動作速度および集積度を向上させることが可能であった。
【0015】
【発明が解決しようとする課題】
しかし、上記第二の従来技術の製造方法では、配線膜厚の異なる上層配線と、当該配線膜厚の異なる上層配線のうち1の膜厚の上層配線と下層配線とを接続するビアプラグとの形成方法が記載されているだけで、配線膜厚の異なる各々の上層配線と下層配線とを電気的に接続するビアプラグを効率的に形成することは出来ない。
【0016】
つまり、上記に示した2回のエッチング工程だけからなる製造方法では、2種類の異なる配線膜厚の一方の上層配線115と下層配線113とを電気的に接続するビアプラグ117を形成することは可能であるが、他方の上層配線116と図示していない下層配線とを電気的に接続するビアプラグを形成することは不可能である。
【0017】
また、フォトリソグラフィ工程を増加することにより、他方の上層配線116と図示していない下層配線とを電気的に接続するビアプラグを形成することもできるが、効率的でない。
【0018】
実際の半導体装置においては、異なる配線膜厚から成る上層配線を形成するだけでなく、上層配線の配線膜厚の厚薄にかかわらず、各配線膜厚の異なる上層配線と下層配線とをビアプラグにて接続することが重要であり、実用性がはるかに高い。
【0019】
そこで、この発明は、半導体装置の設計に際して、当該半導体装置の動作速度に依存する配線抵抗と配線容量とを考慮したより自由度の高い設計を可能にし、かつ、実用性のある半導体装置を提供すべく、上層配線の配線膜厚の厚薄によらず、異なる膜厚の上層配線と、下層配線と、当該上層配線と当該下層配線とを電気的に接続するビアプラグとを、より効率的に形成することができる半導体装置の製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る請求項1に記載の半導体装置の製造方法は、2以上の異なる配線膜厚を有する上層配線と当該上層配線と下層配線とを電気的に接続する2以上のビアプラグを有しており、膜厚の薄い方の前記上層配線が密に形成されている第一の領域と、膜厚の厚い方の前記上層配線が前記第一の領域の前記上層配線よりも疎に形成されている第二の領域とを有している半導体装置において、(a)半導体基板を用意する工程と、(b)所定の形状の前記下層配線を有する第一の層間絶縁膜を、前記半導体基板上に形成する工程と、(c)前記第一の層間絶縁膜を覆うように、第二の層間絶縁膜を形成する工程と、(d)前記第二の層間絶縁膜の上面を貫通し、当該第二の層間絶縁膜の途中の深さまでの、前記第二の領域に存在する第一の溝状開口部および前記第一の領域に存在する第一の孔状開口部を、同時に形成する工程と、(e)前記工程(d)の後、前記第一の溝状開口部に重なる第二の孔状開口部および前記第一の孔状開口部に重なる第二の溝状開口部を、同時に形成する工程と、(f)前記第一および第二の溝状開口部、並びに、前記第一および第二の孔状開口部に導電体を充填することにより、前記上層配線および当該上層配線と前記下層配線とを電気的に接続する前記ビアプラグを形成する工程とを、備えている。
【0021】
また、請求項2に記載の半導体装置の製造方法では、前記工程(d)は、(d−1)所定の形状の溝状開口部と孔状開口部とがパターンニングされた第一のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(d−2)前記第一のマスクをマスクとして所定の深さまで、前記第二の層間絶縁膜をハーフエッチングする工程とを備え、前記工程(e)は、(e−1)前記第一の溝状開口部の一部を被覆することにより形成される所定の形状の孔状開口部と、前記第一の孔状開口部と重なる部分を有して形成されており、前記第一の溝状開口部よりも幅が狭い溝状開口部とがパターニングされた第二のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(e−2)前記第二のマスクをマスクとして前記第一および第二の孔状開口部が前記下層配線に到達するまで、前記第二の層間絶縁膜をエッチングする工程とを備えていてもよい。
【0022】
また、請求項3に記載の半導体装置の製造方法では、前記工程(e−1)において、前記第二のマスクは、前記第一の孔状開口部とは重ならない溝状開口部をさらにパターンニングされていてもよい。
【0023】
また、請求項4に記載の半導体装置の製造方法では、前記第一の溝状開口部は複数形成されており、前記工程(e−1)において、第二のマスクは、前記複数の第一の溝状開口部の一部の溝状開口部を完全に被覆するものであってもよい。
【0024】
【発明の実施の形態】
以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。図1は、本発明の一例の半導体装置の一部を示す断面図である。
【0025】
図1において、膜厚が例えば約1μmの第一の層間絶縁膜(シリコン酸化膜等)2が半導体基板1上に形成されており、当該第一の層間絶縁膜2の最表面から内部にかけて、銅等の導電体で形成された膜厚約400nmの下層配線3が所定の形状・本数で配設されている。
【0026】
また、下層配線3が銅である場合には、銅の酸化防止やエッチングストッパ等の目的ために、第一の層間絶縁膜2と下層配線3の全面を覆うように、例えばシリコン窒化膜10を約50nmの膜厚で形成する必要がある。これに対して、下層配線3が、例えばアルミニウムである場合には、前記シリコン窒化膜10を省略することも可能である。
【0027】
また、前記シリコン窒化膜10上には、第二の層間絶縁膜(シリコン酸化膜等)4が形成されており、当該第二の層間絶縁膜4の最表面から内部にかけて、第一の上層配線(銅等で形成された配線)5と、当該第一の上層配線と膜厚の異なる第二の上層配線6(銅等で形成された配線)とが所定の形状で、それぞれ複数配設されている。
【0028】
ここで、第二の層間絶縁膜4の膜厚は約1μmであり、第一の上層配線5の膜厚は約700nmであり、第二の上層配線6の膜厚は約400nmである。また、図1に示すように、第一の上層配線5と第二の上層配線6とは配線膜厚だけでなく、配線幅が異なるように形成してもかまわない。
【0029】
さらに、第二の層間絶縁膜4中には、第二の上層配線6と下層配線3とを電気的に接続する第一のビアプラグ7と、第一の上層配線5と下層配線3とを電気的に接続する第二のビアプラグ8とが形成されている。ここで、第一のビアプラグ7や第二のビアプラグ8は、孔状開口部に、例えば銅等の導電体を充填することにより形成される。
【0030】
上記に示した半導体装置では、異なる配線膜厚、配線幅の上層配線5,6が形成されているので、回路の設計に際して、配線抵抗と配線容量とを考慮した自由度の高い設計が可能となる。
【0031】
また、上記半導体装置は、配線膜厚の異なる上層配線5,6のそれぞれと下層配線3とを電気的に接続するビアプラグ7,8が形成されているので、より実用的な半導体装置となっている。
【0032】
例えば図1において、設計上、配線ピッチを詰めて集積度を上げたい部分には、第二の上層配線6および第一のビアプラグ7とを設計し、これに対して、配線抵抗を下げたい部分には、第一の上層配線5と第二のビアプラグ8とを設計する。
【0033】
次に、図1に示す半導体装置の製造方法を、半導体装置断面を表す図2〜8の製造工程図に従って説明する。
【0034】
まず、図2に示すように半導体基板1上に、例えばCVD(ChemicalVapor Deposition:化学気相成長)法等により、膜厚約1μmの第一の層間絶縁膜(シリコン酸化膜等)2が形成され、当該層間絶縁膜2中に、層間絶縁膜2の表面から所定の深さにいたる配線膜厚(例えば、約400nm)の下層配線3を所定の形状・本数で形成する。
【0035】
ここで、下層配線3は、例えば一連のフォトリソグラフィ工程により、第一の層間絶縁膜2中に所定の形状の溝開口部を形成し、当該溝開口部に導電体として銅等を埋め込み、その後、CMP(Chemical and Mechanical Polishing)等の平坦化技術により、当該導電体表面が第一の層間絶縁膜2の表面と面一となるように導電体を研磨することにより、形成される。
【0036】
続いて、図3に示すように、例えば下層配線3が銅である場合には、銅の酸化防止等の目的のために、第一の層間絶縁膜2および下層配線3の上面を覆うように、例えばシリコン窒化膜10等を約50nmの膜厚で形成した後、当該シリコン窒化膜10上に、例えばCVD法等により、第二の層間絶縁膜(シリコン酸化膜等)4を約1μm程度の厚さで形成する。
【0037】
ここで、下層配線3がアルミニウムである場合には、当該シリコン窒化膜10は形成しなくてもよい。
【0038】
次に、図4に示すように、所定のパターンを有するレジスト(第一のマスク)11を第二の層間絶縁膜4の上面に形成する。
【0039】
ここで、レジスト11には、図1の第一の上層配線5を形成するための溝状開口部5aと、第一のビアプラグ7を形成するための孔状開口部7aの二種類のパターニングがされている。
【0040】
上記のレジスト11を形成後、当該レジスト11をマスクとして一回目のエッチング処理を施し、当該エッチング処理後、レジスト11を除去する。当該工程を経た状態を図5に示す。ここで、図4から図5に示す工程を一回目のフォトリソグラフィ工程と称する。
【0041】
また、一回目のフォトリソグラフィ工程でのエッチング処理はハーフエッチング処理であり、第一の上層配線5が所望の配線膜厚となるように、第二の層間絶縁膜4の内部でエッチングを止める。このエッチング止めは、所望の深さ(この場合では、第一の上層配線5の配線膜厚で約700nm)までエッチングされる時間をエッチングレートから算出し、当該時間経過後、エッチングを止めることにより行われる。
【0042】
上記一回目のフォトリソグラフィ工程により、膜厚が約1μmの第二の層間絶縁膜4には、約700nmの第一の溝状開口部5bと、同程度の深さの第一の孔状開口部7bとが形成される。
【0043】
次に、図6に示すように、所定のパターンを有するレジスト(第二のマスク)12を第二の層間絶縁膜4の上面に形成する。
【0044】
レジスト12には、第二の上層配線6を形成するための溝状開口部6aと、第二のビアプラグ8を形成するための孔状開口部8aの二種類のパターニングがされている。
【0045】
このとき、第一の溝状開口部5bの一方には、レジスト12が完全に充填されており、第一の溝状開口部5bの他方には、一部レジスト12が充填されている。
【0046】
また、溝状開口部6aの一部は、第一の孔状開口部7bと重なるようにレジスト12にパターニングされており、他の溝状開口部6aは、第一の孔状開口部7bとは重ならないようにレジスト12にパターニングされている。
【0047】
上記のレジスト12を形成後、当該レジスト12をマスクとして二回目のエッチング処理を施し、その後、レジスト12を除去する。当該工程を経た状態を図7に示す。ここで、図6から図7に示す工程を二回目のフォトリソグラフィ工程と称する。
【0048】
上記二回目のフォトリソグラフィ工程のエッチング処理では、第二の上層配線6が所望の配線膜厚となる必要があり、かつ、第一のビアプラグ7および第二のビアプラグ8がそれぞれ下層配線3と接続されるように、一回目のフォトリソグラフィ工程で形成された第一の溝状開口部5bのアンダーエッチ部分と第一の孔状開口部7bのアンダーエッチ部分がエッチングされ、下層配線3に到達する必要がある。
【0049】
例えば、第二の上層配線6の配線膜厚を400nmで設計すると、400nmまでエッチングされる時間をエッチングレートから算出し、当該時間エッチングした後、二回目のエッチングを止める。そうすると、一回目のエッチング工程でのアンダーエッチ部分300nmはエッチングされ、第一の孔状開口部7bおよび第二の孔状開口部8bは下層配線3に到達する(図7)。
【0050】
次に、第二の層間絶縁膜4に形成された各開口部を充填するように銅等の導電体13を埋め込む。
【0051】
導電体13の埋め込む方法として、例えばスパッタ法により、図示しないメタルバリア層およびシード層の成膜を行い、その後メッキ法により、銅等の導電体13を当該各開口部に充填する。このとき、各開口部に導電体13が埋め込まれると同時に、第二の層間絶縁膜4の表面上にも導電体13が成膜される。当該工程を経た状態を図8に示す。
【0052】
最後に、例えばCMP法により、第二の層間絶縁膜4の上面と導電体13の上面とが面一になるまで導電体13を研磨し、第二の層間絶縁膜4に形成された各開口部にのみ導電体13を残す(図1)。
【0053】
上記一連の工程により、つまり、一回目のフォトリソグラフィ工程(レジスト11を用いるハーフエッチング処理工程)により、第一の溝状開口部5bと第一の孔状開口部7bとを同時に形成し、二回目のフォトリソグラフィ工程(レジスト12を用いるエッチング処理工程)により、前記第一の孔状開口部7bに重なるように形成される第二の溝状開口部6bと、前記第一の溝状開口部5b内に形成される第二の孔状開口部8bとを同時に形成することにより、図1に示したように、異なる配線膜厚の上層配線5,6と下層配線3を有する半導体装置において、配線膜厚の厚薄に依らず、上層配線5,6と下層配線3とを電気的に接続するビアプラグ7,8を備える半導体装置を効率的に製造することができる。
【0054】
例えば、配線ピッチを詰めて集積度を上げたい部分(配線膜厚が薄く、ビアプラグに対するカバーマージンを小さく設計する必要がある部分)には、第一の孔状開口部7b形成後に第二の溝状開口部6bを重ねて形成することにより、第二の上層配線6と第一のビアプラグ7とを形成することができ、また、配線抵抗を下げたい部分(配線膜厚や配線幅が大きく、ビアプラグに対するカバーマージンを大きく設計する必要のある部分)には、第一の溝状開口部5b形成後に第二の孔状開口部8bを重ねて形成することにより、第一の上層配線5と第二のビアプラグ8とを形成することができる。
【0055】
また、図1に示す構造の半導体装置を製造するに際し、第二の従来技術に記載の方法を適用した場合、つまり配線ピッチの詰まっている部分において、溝状開口部を形成した後に孔状開口部を形成する方法を適用した場合には、先に形成された溝状開口部の段差内に、孔状開口部形成のためのレジストをパターニングするため、レジスト膜厚は深くなり、つまりアスペクト比が高くなるので、焦点深度が小さくなり、集積度の高い箇所に対してレジストのファインパターンを形成することは困難であるという問題があった。
【0056】
しかし、配線ピッチの詰まっている部分において、本発明の上記に示した製造方法(手順)、つまり孔状開口部を形成後、溝状開口部を形成する手順を採用することにより、上記問題は解決される。
【0057】
また、上記の上層配線として配線幅の異なる配線を採用してもかまわず、これにより、例えば配線抵抗を下げたい上層配線の配線幅を大きく形成することが可能となる。従って、配線膜厚と配線幅とを自由に設計することができ、設計の自由度がさらに増える。ただし、配線形成にCMP法を用いる場合、配線ディッシング現象のため、配線幅を太くすること(配線抵抗を低くすること)に制限があるが、本発明の手法では、配線膜厚を厚膜化することにより、配線の低抵抗化が図れるため、従来よりも設計の自由度が増す。
【0058】
なお、本発明の製造方法(手順)を適用するのであれば、上記に示した各部材の寸法や材料はこれに限る必要はない。
【0059】
また、本発明の説明では、二層分の配線層について説明したが、これに限るものでなく、多層配線構造にも適用できることは言うまでもない。
【0060】
【発明の効果】
本発明の請求項1に記載の半導体装置の製造方法は、2以上の異なる配線膜厚を有する上層配線と当該上層配線と下層配線とを電気的に接続する2以上のビアプラグを有しており、膜厚の薄い方の前記上層配線が密に形成されている第一の領域と、膜厚の厚い方の前記上層配線が前記第一の領域の前記上層配線よりも疎に形成されている第二の領域とを有している半導体装置において、(a)半導体基板を用意する工程と、(b)所定の形状の前記下層配線を有する第一の層間絶縁膜を、前記半導体基板上に形成する工程と、(c)前記第一の層間絶縁膜を覆うように、第二の層間絶縁膜を形成する工程と、(d)前記第二の層間絶縁膜の上面を貫通し、当該第二の層間絶縁膜の途中の深さまでの、前記第二の領域に存在する第一の溝状開口部および前記第一の領域に存在する第一の孔状開口部を、同時に形成する工程と、(e)前記工程(d)の後、前記第一の溝状開口部に重なる第二の孔状開口部および前記第一の孔状開口部に重なる第二の溝状開口部を、同時に形成する工程と、(f)前記第一および第二の溝状開口部、並びに、前記第一および第二の孔状開口部に導電体を充填することにより、前記上層配線および当該上層配線と前記下層配線とを電気的に接続する前記ビアプラグを形成する工程とを、備えているので、半導体装置の設計に際して、当該半導体装置の動作速度に依存する配線抵抗と配線容量とを考慮したより自由度の高い設計を可能となり、上層配線の配線膜厚の厚薄によらず、異なる膜厚の上層配線と下層配線とを電気的に接続するビアプラグを、より効率的に形成することができる。
【0061】
本発明の請求項2に記載の半導体装置の製造方法は、前記工程(d)は、(d−1)所定の形状の溝状開口部と孔状開口部とがパターンニングされた第一のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(d−2)前記第一のマスクをマスクとして所定の深さまで、前記第二の層間絶縁膜をハーフエッチングする工程とを備え、前記工程(e)は、(e−1)前記第一の溝状開口部の一部を被覆することにより形成される所定の形状の孔状開口部と、前記第一の孔状開口部と重なる部分を有して形成されており、前記第一の溝状開口部よりも幅が狭い溝状開口部とがパターニングされた第二のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、(e−2)前記第二のマスクをマスクとして前記第一および第二の孔状開口部が前記下層配線に到達するまで、前記第二の層間絶縁膜をエッチングする工程とを備えているので、上記2回のフォトリソグラフィ工程により、膜厚の異なる上層配線と、下層配線と、当該上層配線と当該下層配線とを電気的に接続するビアプラグとを容易に、かつ、精度良く形成することができる。
【0062】
本発明の請求項3に記載の半導体装置の製造方法は、前記工程(e−1)において、前記第二のマスクは、前記第一の孔状開口部とは重ならない溝状開口部をさらにパターンニングされているので、下層配線と電気的に接続しない上層配線となる第二の溝状開口部も二回目のフォトリソグラフィ工程で形成でき、さらに自由度の高い半導体装置の形成が可能となる。
【0063】
本発明の請求項4に記載の半導体装置の製造方法は、前記第一の溝状開口部は複数形成されており、前記工程(e−1)において、第二のマスクは、前記複数の第一の溝状開口部の一部の溝状開口部を完全に被覆するものであるので、一回目のフォトリソグラフィ工程で形成された第一の溝状開口部のうち、下層配線と電気的に接続しない上層配線となる第一の溝状開口部も形成でき、さらに自由度の高い半導体装置の形成が可能となる。
【図面の簡単な説明】
【図1】本発明の半導体装置の構成を示す断面図である。
【図2】本発明の半導体装置の製造工程を示す第一の図である。
【図3】本発明の半導体装置の製造工程を示す第二の図である。
【図4】本発明の半導体装置の製造工程を示す第三の図である。
【図5】本発明の半導体装置の製造工程を示す第四の図である。
【図6】本発明の半導体装置の製造工程を示す第五の図である。
【図7】本発明の半導体装置の製造工程を示す第六の図である。
【図8】本発明の半導体装置の製造工程を示す第七の図である。
【図9】第一の従来技術の半導体装置の構成を示す断面図である。
【図10】第二の従来技術の半導体装置の構成を示す断面図である。
【符号の説明】
1 半導体基板、2 第一の層間絶縁膜、3 下層配線、4 第二の層間絶縁膜、5 第一の上層配線、5b 第一の溝状開口部、6 第二の上層配線、6b第二の溝状開口部、7 第一のビアプラグ、7b 第一の孔状開口部、8 第二のビアプラグ、8b 第二の孔状開口部、10 シリコン窒化膜、11,12
レジスト、13 導電体(銅等)。
Claims (4)
- 2以上の異なる配線膜厚を有する上層配線と当該上層配線と下層配線とを電気的に接続する2以上のビアプラグを有しており、膜厚の薄い方の前記上層配線が密に形成されている第一の領域と、膜厚の厚い方の前記上層配線が前記第一の領域の前記上層配線よりも疎に形成されている第二の領域とを有している半導体装置において、
(a)半導体基板を用意する工程と、
(b)所定の形状の前記下層配線を有する第一の層間絶縁膜を、前記半導体基板上に形成する工程と、
(c)前記第一の層間絶縁膜を覆うように、第二の層間絶縁膜を形成する工程と、
(d)前記第二の層間絶縁膜の上面を貫通し、当該第二の層間絶縁膜の途中の深さまでの、前記第二の領域に存在する第一の溝状開口部および前記第一の領域に存在する第一の孔状開口部を、同時に形成する工程と、
(e)前記工程(d)の後、前記第一の溝状開口部に重なる第二の孔状開口部および前記第一の孔状開口部に重なる第二の溝状開口部を、同時に形成する工程と、
(f)前記第一および第二の溝状開口部、並びに、前記第一および第二の孔状開口部に導電体を充填することにより、前記上層配線および当該上層配線と前記下層配線とを電気的に接続する前記ビアプラグを形成する工程とを、
備えることを特徴とする半導体装置の製造方法。 - 前記工程(d)は、
(d−1)所定の形状の溝状開口部と孔状開口部とがパターンニングされた第一のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、
(d−2)前記第一のマスクをマスクとして所定の深さまで、前記第二の層間絶縁膜をハーフエッチングする工程とを、備え、
前記工程(e)は、
(e−1)前記第一の溝状開口部の一部を被覆することにより形成される所定の形状の孔状開口部と、前記第一の孔状開口部と重なる部分を有して形成されており、前記第一の溝状開口部よりも幅が狭い溝状開口部とがパターニングされた第二のマスクを、前記第二の層間絶縁膜の表面上に形成する工程と、
(e−2)前記第二のマスクをマスクとして前記第一および第二の孔状開口部が前記下層配線に到達するまで、前記第二の層間絶縁膜をエッチングする工程とを、備えている、
ことを特徴とする請求項1に記載の半導体装置の製造方法。 - 前記工程(e−1)において、前記第二のマスクは、前記第一の孔状開口部とは重ならない溝状開口部をさらにパターンニングされている、ことを特徴とする請求項2に記載の半導体装置の製造方法。
- 前記第一の溝状開口部は複数形成されており、
前記工程(e−1)において、第二のマスクは、前記複数の第一の溝状開口部の一部の溝状開口部を完全に被覆する、
ことを特徴とする請求項2または請求項3に記載の半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002173677A JP2004022694A (ja) | 2002-06-14 | 2002-06-14 | 半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002173677A JP2004022694A (ja) | 2002-06-14 | 2002-06-14 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004022694A true JP2004022694A (ja) | 2004-01-22 |
Family
ID=31172839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002173677A Pending JP2004022694A (ja) | 2002-06-14 | 2002-06-14 | 半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004022694A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294514A (ja) * | 2006-04-21 | 2007-11-08 | Renesas Technology Corp | 半導体装置 |
JP2009509348A (ja) * | 2005-09-22 | 2009-03-05 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 集積回路及びその形成方法(異なる深さをもつ類似した集積回路デバイス) |
CN104659016A (zh) * | 2013-11-20 | 2015-05-27 | 瑞萨电子株式会社 | 半导体器件 |
-
2002
- 2002-06-14 JP JP2002173677A patent/JP2004022694A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009509348A (ja) * | 2005-09-22 | 2009-03-05 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 集積回路及びその形成方法(異なる深さをもつ類似した集積回路デバイス) |
JP2007294514A (ja) * | 2006-04-21 | 2007-11-08 | Renesas Technology Corp | 半導体装置 |
CN104659016A (zh) * | 2013-11-20 | 2015-05-27 | 瑞萨电子株式会社 | 半导体器件 |
JP2015099893A (ja) * | 2013-11-20 | 2015-05-28 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US10068849B2 (en) | 2013-11-20 | 2018-09-04 | Renesas Electronics Corporation | Semiconductor device |
US10396029B2 (en) | 2013-11-20 | 2019-08-27 | Renesas Electronics Corporation | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6100177A (en) | Grooved wiring structure in semiconductor device and method for forming the same | |
KR100413828B1 (ko) | 반도체 장치 및 그 형성방법 | |
JP2000077407A (ja) | 半導体装置及びその製造方法 | |
KR100267108B1 (ko) | 다층배선을구비한반도체소자및그제조방법 | |
JPH10209273A (ja) | 半導体装置の製造方法 | |
JP2004079924A (ja) | 半導体装置 | |
JP2004022694A (ja) | 半導体装置の製造方法 | |
JPH0817918A (ja) | 半導体装置及びその製造方法 | |
JP4110829B2 (ja) | 半導体装置の製造方法 | |
JPH11233624A (ja) | 半導体装置及びその製造方法 | |
TWI701793B (zh) | 電子元件及其製造方法 | |
KR100853800B1 (ko) | 반도체 소자의 듀얼 다마신 패턴 형성방법 | |
JP2001148423A (ja) | 半導体装置の製造方法 | |
JP2000058651A (ja) | 多層配線を有する半導体装置及びその製造方法 | |
KR100778852B1 (ko) | 반도체 소자 및 그 제조방법 | |
KR100383084B1 (ko) | 반도체 소자의 플러그 형성 방법 | |
KR20050033110A (ko) | 반도체 소자의 금속배선 형성방법 | |
JPH0415926A (ja) | 半導体装置の製造方法 | |
KR100193889B1 (ko) | 반도체 소자의 비아홀 형성방법 | |
JPH0758204A (ja) | 半導体装置の製造方法 | |
KR0182043B1 (ko) | 금속-절연막의 평탄화 방법 | |
WO2008031255A1 (fr) | Procédé de recouvrement au nitrure de silicium à auto-alignement pour un trou de contact sans bordure basé sur la technologie du cuivre | |
JP2001313334A (ja) | 半導体装置の製造方法 | |
JPH0595048A (ja) | 半導体集積回路装置の製造方法 | |
JP2001127154A (ja) | 半導体装置の製造方法 |