[go: up one dir, main page]

JP2004014662A - Semiconductor device having Schottky barrier - Google Patents

Semiconductor device having Schottky barrier Download PDF

Info

Publication number
JP2004014662A
JP2004014662A JP2002163852A JP2002163852A JP2004014662A JP 2004014662 A JP2004014662 A JP 2004014662A JP 2002163852 A JP2002163852 A JP 2002163852A JP 2002163852 A JP2002163852 A JP 2002163852A JP 2004014662 A JP2004014662 A JP 2004014662A
Authority
JP
Japan
Prior art keywords
semiconductor region
type semiconductor
substrate
region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163852A
Other languages
Japanese (ja)
Other versions
JP2004014662A5 (en
Inventor
Akihiko Matsuzaki
松崎 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2002163852A priority Critical patent/JP2004014662A/en
Publication of JP2004014662A publication Critical patent/JP2004014662A/en
Publication of JP2004014662A5 publication Critical patent/JP2004014662A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/60Schottky-barrier diodes 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】ショットキバリアダイオードの高耐圧化を、順方向電圧降下の増大及び逆回復時間の増大を抑制して達成することが困難であった。
【解決手段】N型半導体領域14とカソード側N型半導体領域15とを有する半導体基板10を用意する。基板10におけるショットキバリア電極として機能する第1の電極11の形成予定領域に、複数の内側P型半導体領域16を形成し、これ等を囲む部分にガードリングとして機能する外側P型半導体領域17を形成する。複数の内側P型半導体領域16の相互間にアノード側N型半導体領域18を配置する。第1の電極11を内側P型半導体領域16にオーミック接触させ、アノード側N型半導体領域18にショットキバリア接触させる。外側P型半導体領域17には第2の電極12を接触させない。
【選択図】    図2
It is difficult to achieve a high breakdown voltage of a Schottky barrier diode while suppressing an increase in a forward voltage drop and an increase in a reverse recovery time.
A semiconductor substrate having an N type semiconductor region and a cathode side N + type semiconductor region is prepared. A plurality of inner P + -type semiconductor regions 16 are formed in a region of the substrate 10 where the first electrode 11 functioning as a Schottky barrier electrode is to be formed, and an outer P + -type semiconductor region functioning as a guard ring is formed in a portion surrounding these regions. 17 is formed. An anode-side N + -type semiconductor region 18 is arranged between the plurality of inner P + -type semiconductor regions 16. The first electrode 11 is brought into ohmic contact with the inner P + -type semiconductor region 16 and is brought into Schottky barrier contact with the anode-side N + -type semiconductor region 18. The second electrode 12 is not brought into contact with the outer P + type semiconductor region 17.
[Selection] Fig. 2

Description

【0001】
【発明の属する技術分野】
本発明は、ショットキバリアダイオ−ド等のショットキバリアを有する半導体装置に関する。
【0002】
【従来の技術】
従来のショットキバリアダイオードは、図1に示すように、N型半導体領域1と、その一方の主面に形成されたN型半導体領域2と、N型半導体領域2内に形成されたP型半導体領域から成るガードリング領域3とを有している。
半導体基板の一方の主面には絶縁膜4が形成されており、N型半導体領域2の上面は絶縁膜4の中央側に設けられた開口から露出している。絶縁膜4の開口内に形成されたアノード電極5はN型半導体領域2の一方の主面に接触し、その界面にショットキ障壁を形成する。また、半導体基板の他方の主面にはカソード電極6が形成されており、N型半導体領域1の他方の主面に低抵抗接触(オーミック接触)している。
【0003】
【発明が解決しようとする課題】
ガードリング領域3を有さない典型的なショットキバリアダイオードは、PN接合を用いた高速リカバリーダイオード等に比較して順方向電圧降下が低く、また、多数キャリアデバイスであるため逆回復時間trrを極めて小さくできるという利点を有する。この反面、ショットキバリアダイオードは、PN接合ダイオードに比較して高耐圧化が難しく、また、絶縁膜とアノード電極との界面での電界集中により、逆方向電流が増大しやすいという欠点を有する。
このため、図1に示すように、絶縁膜4とアノード電極5との境界を含むようにガードリング領域3を形成し、ショットキバリアの周辺耐圧の向上、逆方向電流の抑制を図っている。
しかし、このようなガードリング領域3を形成したショットキバリアダイオードでは、ガードリング領域3から延びる空乏層がN型半導体領域1に到達することで耐圧が決定される。即ち、空乏層の広がりがN型半導体領域1で制限され、耐圧向上も制限される。このため、高耐圧化を図るためには、N型半導体領域2の比抵抗を高くし、且つN型半導体領域2の厚みを大きくする必要がある。ところが、このように高耐圧が得られるようにN型半導体領域2の比抵抗を高くし、またN型半導体領域2の厚みを大きくすると、ショットキバリアダイオードの利点である高周波特性(スイッチング特性)と順方向特性が著しく損なわれる。
【0004】
そこで、本発明の目的は、順方向特性及び耐圧特性の両方を良くすることができるショットキバリアを有する半導体装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決し、上記目的を達成するための本発明は、半導体基板と第1及び第2の電極とを備え、前記基板は、該基板の一方の主面に露出する部分を有するように配置された第1導電型の第1の半導体領域と、前記第1の半導体領域と前記基板の他方の主面との間に配置され且つ前記第1の半導体領域よりも高い不純物濃度を有している第1導電型の第2の半導体領域と、断面形状において、前記基板の一方の主面から前記第1の半導体領域の中に延びるように形成され且つ所定の相互間隔を有している複数の領域又は複数の部分から成る第2導電型の第3の半導体領域と、平面的に見て前記第3の半導体領域の外側を前記第1の半導体領域を介して連続的又は断続的に囲むように配置され且つ前記基板の一方の主面から前記第1の半導体領域の中に延びている第2導電型の第4の半導体領域と、前記複数の第3の半導体領域の相互間又は前記第3の半導体領域の前記複数の部分の相互間の少なくとも一部を埋めるように配置され且つ前記第1の半導体領域よりも高い不純物濃度を有している第1導電型の第5の半導体領域とを有し、前記第1の電極は、前記第5の半導体領域にショットキ接触し且つ前記第3の半導体領域にオーミック接触し、且つ前記第4の半導体領域には接触しないように前記基板の一方の主面上に形成され、前記第2の電極は、前記第2の半導体領域に電気的に接続されていることを特徴とするショットキバリアを有する半導体装置に係わるものである。
【0006】
また、請求項2に示すように、前記第1の電極は前記第4の半導体領域よりも内側において前記第1の半導体領域に接触していることが望ましい。
また、請求項3に示すように、前記第5の半導体領域は前記第3の半導体領域の深さ以下の深さに形成されていることが望ましい。
また、請求項4に示すように、前記第3及び第5の半導体領域の深さは、前記第1の半導体領域の厚みの1/6以上であることが望ましい。
また、請求項5に示すように、前記第3の半導体領域の相互間隔は、定格の逆方向電圧を前記第1及び第2の電極間に印加した時に空乏層によって埋められるように決定されていることが望ましい。
【0007】
【発明の効果】
本願の各請求項の発明は次の効果を有する。
(1) 平面的に見て第3の半導体領域に囲まれている第5の半導体領域には、逆方向電圧印加時に空乏層が広がり、また第3の半導体領域に隣接する第1の半導体領域にも空乏層が広がり、また、第4の半導体領域を囲む部分にも空乏層が広がる。従って、上記複数の空乏層の組み合せによって逆方向の耐圧が決定され、逆方向耐圧の優れた半導体装置を提供することができる。
(2) 順方向電圧印加時のショットキバリア即ち障壁を通って流れる多数キャリアの通路となる第5の半導体領域は第1の半導体領域よりも不純物濃度が高く且つ抵抗率が低いので、多数キャリアの通路の順方向電圧降下が小さくなる。
(3) 第4の半導体領域は第1の電極に接続されていない。従って、逆方向電圧印加時における第4の半導体領域と第1の半導体領域との間のPN接合及びこの近傍での電界強度の変化が図1の従来構造の場合よりも緩やかになり、耐圧特性が良くなる。
【0008】
【第1の実施形態】
次に、図1及び図2を参照して本発明の第1の実施形態を説明する。
本発明の第1の実施形態に従う半導体装置としてのショットキバリアを有するダイオードは図1に示すように、シリコン又は3−5族化合物半導体等の半導体基板10と第1及び第2の電極11、12と、絶縁膜13とから成る。
【0009】
半導体基板10は、第1の半導体領域としてのN型半導体領域14と、第2の半導体領域としてのカソード側N型半導体領域15と、第3の半導体領域としての内側P型半導体領域16と、第4の半導体領域又はガードリング領域としての外側P型半導体領域17と、第5の半導体領域としてのアノード側N型半導体領域18とから成る。
【0010】
N型半導体領域14は、カソード側N型半導体領域15の上面に周知のエピタキシャル成長により形成されたものである。N型半導体領域14の比抵抗は2.5Ωcmであり、従来のJBS構造のダイオード、即ちショットキ接合とPN接合とが交互に配置されたダイオードのN型半導体領域の比抵抗(4.5Ωcm)よりも小さくなっている。これは、図2のダイオードは、従来のダイオードのようにガードリングから延びる空乏層がN型半導体領域15に到達することで耐圧が決定される構造ではなく、後述のように半導体基板10の一方の主面19側に形成されたP型半導体領域16、17とN型半導体領域18を埋めるように形成される空乏層によって耐圧が負担される構造であり、アノード側N型半導体領域18及びN型半導体領域14の比抵抗を相対的に小さく設定できるからである。
また、図2では、N型半導体領域14の基板10の一方の主面19からの厚みが比較的薄い12μmに決定されている。これは、図2のダイオードでは図1の従来のダイオードのようにガードリング領域3から延びる空乏層がN型半導体領域1に到達することによって耐圧が決定される構造でないためである。
【0011】
カソード側N型半導体領域15は、N型半導体領域14よりも高い不純物濃度を有し且つ低い抵抗率を有し、N型半導体領域14と基板10の他方の主面20との間に配置されている。
【0012】
内側P型半導体領域16は、図3に示すように平面的に見て分散配置された複数(25個)の領域から成る。各内側P型半導体領域16は、図3の平面形状において所定の相互間隔W1、例えば2.94μmを有して5行5列に規則正しく配置されている。また、図2の断面形状においても、内側P型半導体領域16は所定の相互間隔を有して並置されている。各内側P型半導体領域16の深さは基板10の一方の主面19からのN型半導体領域14の厚みWnの1/6以上且つWn未満に設定されている。即ち、P型半導体領域16はカソード側N型半導体領域15に到達しない例えばWn/4=2.96μmの深さを有する。P型半導体領域16、17の好ましい深さは第1の半導体領域14の厚みWnの1/6〜1/2、より好ましい深さはWnの1/5〜1/3である。各内側P型半導体領域16の幅は例えば3.06μmである。
【0013】
外側P型半導体領域17は、ガードリング領域として機能させるために、複数の内側P型半導体領域16の平面的に見た最外周の包絡線から所定間隔W2だけ離れた位置に環状に配置されている。外側P型半導体領域17は平面パターンを除いて内側P型半導体領域16と同一の深さ、同一の幅、同一の不純物濃度に形成されている。外側P型半導体領域17の表面は絶縁膜13で覆われ、第1の電極11に接続されていない。
内側及び外側P型半導体領域16、17を同時に形成する時には、周知のフォトリソグラフィ技術によって形成したシリコン酸化膜等から成る拡散マスクを使用し、N型半導体領域14即ち基板10の一方の主面19からP型不純物を選択的にイオン注入し、これを熱拡散(ドライブン)する。内側及び外側P型半導体領域16、17のP型不純物濃度はN型半導体領域14のN型不純物濃度よりも高く、内側及び外側P型半導体領域16、17の表面不純物濃度は例えば3.5×1016cm−3である。
【0014】
アノード側N型半導体領域18は、内周側P型半導体領域16の相互間に配置され、図3の平面形状において網目状又は格子状パターンに形成されている。アノード側N型半導体領域18のN型不純物濃度はN型半導体領域14のN型不純物濃度よりも高く且つ内側P型半導体領域16のP型不純物濃度よりも低く、このアノード側N型半導体領域18のN型表面不純物濃度は例えば1.3×1016cm−3である。
図2においてアノード側N型半導体領域18の基板10の一方の主面19からの深さは、2.71μmであって、P型半導体領域16の深さよりも若干浅い。アノード側N型半導体領域18の好ましい深さはWnの1/6〜1/2、より好ましい深さはWnの1/5〜1/3である。また、アノード側N型半導体領域18の幅はP型半導体領域16の相互間隔W1と同一の2.94μmである。
なお、アノード側N型半導体領域18の幅をP型半導体領域16の相互間隔W1よりも少し狭くすることができる。この場合には、P型半導体領域16の相互間にN型半導体領域18とN型半導体領域14との両方が配置される。
【0015】
アノード側N型半導体領域18を形成する時には、P型半導体領域16、17の形成と同様に、N型半導体領域14の主面即ち基板10の一方の主面19に、周知のフォトリソ技術によってシリコン酸化膜等から成る拡散マスクを形成し、このマスクを使用してN型不純物を選択的にイオン注入し、これを熱拡散(ドライブイン)する。
【0016】
アノード電極即ち第1の電極11は、N型半導体領域14及びN型半導体領域18に対してショットキ障壁(バリア)を生成することができる金属(例えばチタンとアルミニウム)から成る。この第1の電極11は、図2及び図3から明らかなように、基板10の一方の主面19に配置され、N型半導体領域18及びN型半導体領域14にショットキ接触し、内側P型半導体領域16に低抵抗接触している。しかし、第1の電極11は外側P型半導体領域17には接続されていない。外側P型半導体領域17の表面及びN型半導体領域14の基板10の一方の主面19への露出面は例えば、シリコン酸化膜から成る絶縁膜13で被覆されている。
なお、図2では第1の電極11の外周端が外側P型半導体領域17と内側P型半導体領域16との間に配置されているが、点線で示すように絶縁膜13の上にフィールドプレートとして延在させることができる。
【0017】
カソード電極即ち第2の電極12は、基板10の他方の主面20に配置され且つN型半導体領域15に低抵抗接触即ち電気的に接続されている。
【0018】
図2のショットキバリアダイオードに順方向電圧、即ち第1の電極11の電位が第2の電極12の電位よりも高くなる電圧を第1及び第2の電極11、12間に印加すると、第1の電極11とアノード側N型半導体領域18とN型半導体領域14とカソード側N型半導体領域15と第2の電極12とから成る経路でショットキ障壁を通る多数キャリアに基づく電流が流れ、且つ第1の電極11と内側P型半導体領域16とN型半導体領域14とカソード側N型半導体領域15と第2の電極12から成る通路でPN接合を通る電流が流れる。
【0019】
第1の電極11の電位が第2の電極12の電位よりも低くなる逆方向電圧を第1及び第2の電極11、12間に印加すると、内側P型半導体領域16とN型半導体領域18との界面に形成されるPN接合、内側P型半導体領域16とN型半導体領域14との界面に形成されるPN接合、及び第1の電極11とN型半導体領域18との界面に形成されるショットキ接合、及び外側P型半導体領域17とN型半導体領域14との間のPN接合からそれぞれ空乏層が広がる。定格の逆方向電圧又は許容最大逆方向電圧が第1及び第2の電極11、12間に印加されると、図2で点線21で示すように上記各接合から広がる空乏層が連続して一体化される。内側P型半導体領域16の相互間即ちアノード側N型半導体領域18の全部に空乏層が広がる。また、最外周の内側P型半導体領域16と外側P型半導体領域17との間は不純物濃度が比較的低いN型半導体領域14であるので、空乏層が延びやすく、この間も空乏層で埋められる。外側P型半導体領域17は第1の電極11に接続されていないが、第1及び第2の電極11、12間の電圧を抵抗で分割した電位が外側P型半導体領域17に与えられ、この外側P型半導体領域17の囲りのN型半導体領域14にも空乏層が広がる。図2では点線21による空乏層がN型半導体領域14内のみに延びているが、逆方向電圧が大きい時にはカソード側N型半導体領域15に達する又は侵入するように空乏層が広がることもある。
【0020】
本実施形態によれば次の効果が得られる。
(1) ガードリング領域として機能する外側P型半導体領域17のみでなく、第1の電極11に接続された複数の内側P型半導体領域16を設けたので、基板10の中央部分で平坦性が良く、基板10の周辺部でなだらかに徐々に狭くなる空乏層を得ることができ、安定的に高耐圧化を達成することができる。
即ち、図1の従来のショットキバリアダイオードでは、P型ガードリング領域3から延びる空乏層とショットキ接合から延びる空乏層との連続性が悪く、P型ガードリング領域3から延びる空乏層に逆方向電圧が集中的に加わり、この領域でピンポイント的にブレークダウンを発生することがあった。このため、ショットキバリアダイオードの高耐圧化が困難であり且つ量産時における耐圧のバラツキが大きくなった。これに対して、本発明に従う図2のショットキバリアダイオードでは、逆方向電圧印加時に、点線21で示す空乏層を局所的電界集中を防ぐことができる理想又はこれに近い状態に形成することができ、高耐圧化が達成され且つ量産時における耐圧のバラツキが少なくなる。なお、基板10の外周側でのブレークダウンの防止は、外側P型半導体領域17を第1の電極11に接続しないことによって達成されている。即ち、内側P型半導体領域16とN型半導体領域14との間のPN接合には第1及び第2の電極11、12間の電圧が直接に印加され、空乏層が比較的大きく広がるが、外側P型半導体領域17には第1及び第2の電極11、12間の電圧が分割して印加されるために外側P型半導体領域17とN型半導体領域14との間のPN接合からの空乏層の広がりは内側P型半導体領域16からの空乏層の広がりよりも小さくなり、基板10の周辺に向って徐々に狭くなる空乏層を得ることができ、耐圧特性が良くなる。
(2) 耐圧が図1の従来と同一で良い場合には、N型半導体領域14の厚さを図1よりも薄く(例えば1/4)して順方向耐圧降下を小さくすることができる。
(3) 内側P型半導体領域16を設けて耐圧向上を図っているにも拘らず、内側P型半導体領域16の相互間にN型半導体領域14よりも抵抗率の低いN型半導体領域18が配置されているので順方向電圧降下を小さくすることができる。
(4) ダイオードのスイッチング特性が比較的良好になる。即ち、図2のダイオードでは、電界緩和を良好に達成する空乏層を形成するPN接合を得るための内側P型半導体領域16の間に、N型半導体領域14よりも相対的に不純物濃度の高いN型半導体領域18が形成されている。このため、図1の従来のガードリング領域3を備えたショットキバリアダイオードに比較してP型半導体領域16、17の面積は増大しているが、内側P型半導体領域16の大部分は比較的不純物濃度の高いN型半導体領域18に接触しているので、内側P型半導体領域16からの少数キャリアの注入量が抑制され且つ伝導度変調が抑制される。この結果、順方向電圧印加の終了時即ち逆方向電圧印加の開始時におけるN型半導体領域18における少数キャリアの蓄積量が少なくなり、アノード側N型半導体領域18を設けない場合に比べて逆回復時間が短くなり、スイッチング速度が速くなる。
(5) N型半導体領域14の不純物濃度が従来のJBS構造のそれよりも低く決定され且つこの厚みWnも12μmと小さいので、内側P型半導体領域16からN型半導体領域14への少数キャリアの注入が従来のJBS構造の場合よりも少なくなり、逆回復時間が短くなり、スイッチング速度が速くなる。また、順方向電圧降下も従来のJBS構造のものよりも小さくなる。
(6) 基板10の第1の電極11の周辺における絶縁膜13の下に空乏層が形成されるので、逆方向電圧印加時の漏れ電流を小さくすることができる。
【0021】
【第2の実施形態】
次に、図4を参照して第2の実施形態のショットキバリアダイオードを説明する。但し、図4及び後述する図5において、図2及び図3と実質的に同一の部分には同一の符号を付し、その説明を省略する。
【0022】
第2の実施形態のショットキバリアダイオードは、図2及び図3の外側P型半導体領域17を17aに変形し、この他は図2及び図3と同一に構成したものである。図4の外側P型半導体領域17aは、複数個(24個)設けられている。図14の複数個の外側P型半導体領域17aは、図3の外側P型半導体領域17と同一の位置に分散配置されている。即ち、外側P型半導体領域17aは、定格の逆方向電圧印加時に、これ等の相互間のN型半導体領域14が空乏層で埋まるような間隔W1を有して断続的に配列されている。
【0023】
図4のように外側P型半導体領域17aを形成しても逆方向電圧印加時には図2と同様な空乏層を得ることができる。従って、第2の実施形態によっても第1の実施形態と同一の効果を得ることができる。
【0024】
【変形例】
本発明は上述の実施形態に限定されるものでなく、例えば次の変形が可能なものである。
(1) 図5に示すように、内側P型半導体領域16及びアノード側N型半導体領域18を環状に形成することができる。この場合にも、複数のP型半導体領域16の相互間隔を空乏層で埋まるように設定する。これにより、第1及び第2の実施形態と同一の効果が得られる。
(2) 図3の内側P型半導体領域16を格子状又は網目状又は櫛歯状に形成し、格子、網目又は櫛歯の断面形状において所定の相互間隔を有して並置される複数の部分の相互間にアノード側N型半導体領域18を配置することができる。即ち、概略的には、図3のN型半導体領域18の部分を第3の半導体領域としてのP型半導体領域16に置き換え、図3のP型半導体領域16の部分をN型半導体領域18に置き換えることができる。なお、この場合には内側P型半導体領域が連続する1個となり、この1個の内側P型半導体領域が互いに対向する複数の部分を有することになる。
(3) カソード側N型半導体領域15の延長部を基板10の一方の主面19に導出し、ここに第2の電極12を接続することができる。
(4) P型半導体領域16、17の深さ及びN型半導体領域18の深さを任意に変えることができる。しかし、半導体基板10の一方の主面19に形成されるP型半導体領域16、17とN型半導体領域18の深さは、半導体基板10の一方の主面側に電界集中を良好に緩和できる空乏層を形成するために、N型半導体領域14の厚みの1/6以上、好ましくは1/5以上に設定するのが望ましい。一方、P型半導体領域16、17とN型半導体領域18があまり深すぎると、空乏層がポイント的にカソード側N型半導体領域15に到達し、高耐圧化が安定して得られない。従って、N型半導体領域14の厚みの1/2以下、好ましく1/3以下に設定するのが望ましい。
(5) 各領域の不純物濃度を任意に変えることができる。しかし、所定の逆方向電圧が印加された時に、図2で点線21で示すような連続した空乏層を得るために、P型半導体領域16、17及びアノード側N型半導体領域18の不純物濃度は、好ましくは、N型半導体領域14の不純物濃度の5〜100倍に設定する。
【図面の簡単な説明】
【図1】従来のショットキバリアダイオードの断面図である。
【図2】本発明の第1の実施形態のショットキバリアダイオードを図3A−Aに相当する部分で示す断面図である。
【図3】図2の半導体基板の表面を示す平面図である。
【図4】第2の実施形態のショットキバリアダイオードの基板を図3と同様に示す平面図である。
【図5】変形例のショットキバリアダイオードの基板の一部を示す平面図である。
【符号の説明】
10 基板
11、12 第1及び第2の電極
14 N型半導体領域
15 カソード側N型半導体領域
16 内側P型半導体領域
17 外側P型半導体領域
18 アノード側N型半導体領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device having a Schottky barrier such as a Schottky barrier diode.
[0002]
[Prior art]
As shown in FIG. 1, a conventional Schottky barrier diode includes an N + type semiconductor region 1, an N type semiconductor region 2 formed on one main surface thereof, and a P type semiconductor region formed in the N type semiconductor region 2. And a guard ring region 3 made of a semiconductor region.
An insulating film 4 is formed on one main surface of the semiconductor substrate, and the upper surface of the N-type semiconductor region 2 is exposed from an opening provided on the center side of the insulating film 4. The anode electrode 5 formed in the opening of the insulating film 4 contacts one main surface of the N-type semiconductor region 2 and forms a Schottky barrier at the interface. Further, a cathode electrode 6 is formed on the other main surface of the semiconductor substrate, and has a low resistance contact (ohmic contact) with the other main surface of the N + type semiconductor region 1.
[0003]
[Problems to be solved by the invention]
A typical Schottky barrier diode having no guard ring region 3 has a lower forward voltage drop than a high-speed recovery diode using a PN junction or the like, and has a very short reverse recovery time trr because it is a majority carrier device. It has the advantage that it can be made smaller. On the other hand, the Schottky barrier diode has the disadvantage that it is difficult to increase the breakdown voltage as compared with the PN junction diode, and that the reverse current tends to increase due to the electric field concentration at the interface between the insulating film and the anode electrode.
For this reason, as shown in FIG. 1, the guard ring region 3 is formed so as to include the boundary between the insulating film 4 and the anode electrode 5, thereby improving the peripheral breakdown voltage of the Schottky barrier and suppressing the reverse current.
However, in the Schottky barrier diode in which such a guard ring region 3 is formed, the breakdown voltage is determined when the depletion layer extending from the guard ring region 3 reaches the N + type semiconductor region 1. That is, the extension of the depletion layer is limited by the N + type semiconductor region 1, and the improvement of the breakdown voltage is also limited. Therefore, in order to increase the breakdown voltage, it is necessary to increase the specific resistance of the N-type semiconductor region 2 and increase the thickness of the N-type semiconductor region 2. However, when the specific resistance of the N-type semiconductor region 2 is increased and the thickness of the N-type semiconductor region 2 is increased so as to obtain a high breakdown voltage, the high-frequency characteristics (switching characteristics), which are the advantages of the Schottky barrier diode, are reduced. The forward characteristics are significantly impaired.
[0004]
Therefore, an object of the present invention is to provide a semiconductor device having a Schottky barrier that can improve both the forward characteristics and the breakdown voltage characteristics.
[0005]
[Means for Solving the Problems]
The present invention for solving the above problems and achieving the above object includes a semiconductor substrate and first and second electrodes, wherein the substrate has a portion exposed on one main surface of the substrate. A first semiconductor region of the first conductivity type disposed and a higher impurity concentration than the first semiconductor region, the first semiconductor region being disposed between the first semiconductor region and the other main surface of the substrate; A second semiconductor region of the first conductivity type having a predetermined cross-sectional shape, the cross-sectional shape of the second semiconductor region extending from one main surface of the substrate into the first semiconductor region; A third semiconductor region of a second conductivity type including a plurality of regions or a plurality of portions, and a region outside the third semiconductor region in a plan view continuously or intermittently via the first semiconductor region. And surrounding the first semiconductor from one main surface of the substrate. A fourth semiconductor region of the second conductivity type extending into the region and at least a portion between the plurality of third semiconductor regions or between the plurality of portions of the third semiconductor region. A fifth semiconductor region of a first conductivity type, which is arranged to be filled and has a higher impurity concentration than the first semiconductor region, wherein the first electrode is provided in the fifth semiconductor region And is formed on one main surface of the substrate so as to make a Schottky contact with the third semiconductor region and an ohmic contact with the third semiconductor region, and not to contact the fourth semiconductor region. The present invention relates to a semiconductor device having a Schottky barrier, which is electrically connected to the second semiconductor region.
[0006]
It is preferable that the first electrode is in contact with the first semiconductor region inside the fourth semiconductor region.
Preferably, the fifth semiconductor region is formed at a depth equal to or less than the depth of the third semiconductor region.
Preferably, the depth of the third and fifth semiconductor regions is at least 1/6 of the thickness of the first semiconductor region.
According to a fifth aspect of the present invention, the mutual interval between the third semiconductor regions is determined so as to be filled with a depletion layer when a rated reverse voltage is applied between the first and second electrodes. Is desirable.
[0007]
【The invention's effect】
The invention of each claim of the present application has the following effects.
(1) The depletion layer expands when a reverse voltage is applied to the fifth semiconductor region surrounded by the third semiconductor region when viewed in plan, and the first semiconductor region adjacent to the third semiconductor region. The depletion layer also extends to the area surrounding the fourth semiconductor region. Therefore, the reverse breakdown voltage is determined by the combination of the plurality of depletion layers, and a semiconductor device with excellent reverse breakdown voltage can be provided.
(2) The fifth semiconductor region serving as a passage for majority carriers flowing through the Schottky barrier when a forward voltage is applied has a higher impurity concentration and a lower resistivity than the first semiconductor region. The forward voltage drop in the passage is reduced.
(3) The fourth semiconductor region is not connected to the first electrode. Therefore, when a reverse voltage is applied, the PN junction between the fourth semiconductor region and the first semiconductor region and the change in the electric field intensity in the vicinity thereof become more gradual than in the case of the conventional structure of FIG. Will be better.
[0008]
[First Embodiment]
Next, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a diode having a Schottky barrier as a semiconductor device according to the first embodiment of the present invention includes a semiconductor substrate 10 such as silicon or a Group 3-5 compound semiconductor and first and second electrodes 11 and 12. And an insulating film 13.
[0009]
The semiconductor substrate 10 includes an N-type semiconductor region 14 as a first semiconductor region, a cathode-side N + type semiconductor region 15 as a second semiconductor region, and an inner P + type semiconductor region 16 as a third semiconductor region. And an outer P + -type semiconductor region 17 as a fourth semiconductor region or a guard ring region, and an anode-side N + -type semiconductor region 18 as a fifth semiconductor region.
[0010]
The N-type semiconductor region 14 is formed on the upper surface of the cathode-side N + -type semiconductor region 15 by well-known epitaxial growth. The specific resistance of the N-type semiconductor region 14 is 2.5 Ωcm, which is higher than the specific resistance (4.5 Ωcm) of the N-type semiconductor region of a diode having a conventional JBS structure, that is, a diode in which Schottky junctions and PN junctions are alternately arranged. Is also getting smaller. This is because the diode in FIG. 2 does not have a structure in which the breakdown voltage is determined by the depletion layer extending from the guard ring reaching the N + -type semiconductor region 15 as in the conventional diode. a structure breakdown voltage by a depletion layer is borne to be formed so as to fill the formed on one main surface 19 side a and the P + -type semiconductor regions 16, 17 N + -type semiconductor region 18, anode-side N + -type semiconductor This is because the specific resistance of the region 18 and the N-type semiconductor region 14 can be set relatively small.
In FIG. 2, the thickness of the N-type semiconductor region 14 from one main surface 19 of the substrate 10 is determined to be relatively thin, 12 μm. This is because the diode of FIG. 2 does not have a structure in which the breakdown voltage is determined by the depletion layer extending from the guard ring region 3 reaching the N + type semiconductor region 1 as in the conventional diode of FIG.
[0011]
Cathode-side N + -type semiconductor region 15 has a higher impurity concentration and lower resistivity than N-type semiconductor region 14, and is arranged between N-type semiconductor region 14 and the other main surface 20 of substrate 10. Have been.
[0012]
As shown in FIG. 3, the inner P + type semiconductor region 16 is composed of a plurality (25) of regions that are dispersed and viewed in plan. Each of the inner P + -type semiconductor regions 16 is regularly arranged in five rows and five columns with a predetermined mutual interval W1, for example, 2.94 μm in the planar shape of FIG. Also in the cross-sectional shape of FIG. 2, the inner P + type semiconductor regions 16 are juxtaposed with a predetermined interval. The depth of each inner P + -type semiconductor region 16 is set to be equal to or more than 6 of the thickness Wn of the N-type semiconductor region 14 from one main surface 19 of the substrate 10 and less than Wn. That is, the P + type semiconductor region 16 has a depth of, for example, Wn / 4 = 2.96 μm that does not reach the cathode side N + type semiconductor region 15. The preferred depth of the P + type semiconductor regions 16 and 17 is 1/6 to 1/2 of the thickness Wn of the first semiconductor region 14, and the more preferred depth is 1/5 to 1/3 of Wn. The width of each inner P + type semiconductor region 16 is, for example, 3.06 μm.
[0013]
The outer P + -type semiconductor region 17 is annularly arranged at a position separated by a predetermined distance W2 from the outermost envelope in plan view of the plurality of inner P + -type semiconductor regions 16 so as to function as a guard ring region. Have been. The outer P + type semiconductor region 17 is formed to have the same depth, the same width, and the same impurity concentration as the inner P + type semiconductor region 16 except for the plane pattern. The surface of the outer P + type semiconductor region 17 is covered with the insulating film 13 and is not connected to the first electrode 11.
When simultaneously forming the inner and outer P + -type semiconductor regions 16 and 17, a diffusion mask made of a silicon oxide film or the like formed by a known photolithography technique is used, and the N-type semiconductor region 14, that is, one main surface of the substrate 10 is used. 19, a P-type impurity is selectively ion-implanted and thermally diffused (drived). P-type impurity concentration of the inner and outer P + -type semiconductor regions 16 and 17 is higher than the N-type impurity concentration of the N-type semiconductor region 14, the surface impurity concentration of the inner and outer P + -type semiconductor regions 16 and 17, for example 3. It is 5 × 10 16 cm −3 .
[0014]
The anode-side N + -type semiconductor regions 18 are arranged between the inner peripheral side P + -type semiconductor regions 16 and are formed in a mesh-like or lattice-like pattern in the planar shape of FIG. Anode N + -type N-type impurity concentration of the semiconductor region 18 is lower than the P-type impurity concentration of the N-type semiconductor region 14 of the N-type impurity concentration and higher than the inner P + type semiconductor region 16, the anode-side N + -type The N-type surface impurity concentration of the semiconductor region 18 is, for example, 1.3 × 10 16 cm −3 .
In FIG. 2, the depth of the anode-side N + type semiconductor region 18 from one main surface 19 of the substrate 10 is 2.71 μm, which is slightly smaller than the depth of the P + type semiconductor region 16. The preferred depth of the anode-side N + type semiconductor region 18 is 1/6 to 1/2 of Wn, and the more preferred depth is 1/5 to 1/3 of Wn. The width of the anode-side N + type semiconductor region 18 is 2.94 μm, which is the same as the mutual interval W1 of the P + type semiconductor region 16.
The width of the anode-side N + type semiconductor region 18 can be made slightly smaller than the mutual interval W1 of the P + type semiconductor region 16. In this case, both the N + -type semiconductor region 18 and the N-type semiconductor region 14 are arranged between the P + -type semiconductor regions 16.
[0015]
When the anode side N + type semiconductor region 18 is formed, a well-known photolithography technique is applied to the main surface of the N type semiconductor region 14, that is, one main surface 19 of the substrate 10, similarly to the formation of the P + type semiconductor regions 16 and 17. A diffusion mask made of a silicon oxide film or the like is formed by using the mask, and an N-type impurity is selectively ion-implanted using the mask and thermally diffused (driven in).
[0016]
The anode or first electrode 11 is made of a metal (for example, titanium and aluminum) capable of generating a Schottky barrier for the N-type semiconductor region 14 and the N + -type semiconductor region 18. 2 and 3, the first electrode 11 is disposed on one main surface 19 of the substrate 10, makes Schottky contact with the N + -type semiconductor region 18 and the N-type semiconductor region 14, It has low resistance contact with the + type semiconductor region 16. However, the first electrode 11 is not connected to the outer P + type semiconductor region 17. The surface of the outer P + -type semiconductor region 17 and the exposed surface of the N-type semiconductor region 14 on one main surface 19 of the substrate 10 are covered with an insulating film 13 made of, for example, a silicon oxide film.
In FIG. 2, the outer peripheral end of the first electrode 11 is disposed between the outer P + type semiconductor region 17 and the inner P + type semiconductor region 16, but on the insulating film 13 as shown by a dotted line. It can be extended as a field plate.
[0017]
The cathode electrode or second electrode 12 is disposed on the other main surface 20 of the substrate 10 and is connected to the N + type semiconductor region 15 with a low resistance contact, that is, electrically.
[0018]
When a forward voltage, that is, a voltage at which the potential of the first electrode 11 becomes higher than the potential of the second electrode 12, is applied between the first and second electrodes 11 and 12 to the Schottky barrier diode of FIG. A current based on majority carriers passing through a Schottky barrier flows through a path including the electrode 11, the anode-side N + -type semiconductor region 18, the N-type semiconductor region 14, the cathode-side N + -type semiconductor region 15, and the second electrode 12, In addition, a current flowing through the PN junction flows through a path including the first electrode 11, the inner P + type semiconductor region 16, the N type semiconductor region 14, the cathode side N + type semiconductor region 15, and the second electrode 12.
[0019]
When a reverse voltage in which the potential of the first electrode 11 is lower than the potential of the second electrode 12 is applied between the first and second electrodes 11 and 12, the inner P + -type semiconductor region 16 and the N + -type semiconductor The PN junction formed at the interface with the region 18, the PN junction formed at the interface between the inner P + -type semiconductor region 16 and the N-type semiconductor region 14, and the PN junction between the first electrode 11 and the N + -type semiconductor region 18. The depletion layers spread from the Schottky junction formed at the interface and the PN junction between the outer P + -type semiconductor region 17 and the N-type semiconductor region 14, respectively. When a rated reverse voltage or a maximum allowable reverse voltage is applied between the first and second electrodes 11 and 12, the depletion layer extending from each of the above junctions is continuously integrated as shown by a dotted line 21 in FIG. Be converted to The depletion layer spreads between the inner P + -type semiconductor regions 16, that is, the entirety of the anode-side N + -type semiconductor region 18. Since the N-type semiconductor region 14 having a relatively low impurity concentration is located between the outermost inner P + -type semiconductor region 16 and the outermost P + -type semiconductor region 17, the depletion layer is easily extended. Buried. The outer P + -type semiconductor region 17 is not connected to the first electrode 11, but a potential obtained by dividing the voltage between the first and second electrodes 11 and 12 by resistance is applied to the outer P + -type semiconductor region 17. The depletion layer also extends to the N-type semiconductor region 14 surrounding the outer P + -type semiconductor region 17. In FIG. 2, the depletion layer indicated by the dotted line 21 extends only in the N-type semiconductor region 14. However, when the reverse voltage is large, the depletion layer may spread to reach or enter the cathode-side N + -type semiconductor region 15. .
[0020]
According to the present embodiment, the following effects can be obtained.
(1) Since not only the outer P + -type semiconductor region 17 functioning as a guard ring region but also a plurality of inner P + -type semiconductor regions 16 connected to the first electrode 11 are provided, the central portion of the substrate 10 is flat. It is possible to obtain a depletion layer that has good properties and gradually narrows in the peripheral portion of the substrate 10, and can stably achieve a high breakdown voltage.
That is, in the conventional Schottky barrier diode of FIG. 1, P + -type continuity of the depletion layer extending from the guard ring region 3 and the depletion layer extending from the Schottky junction is poor, contrary to the depletion layer extending from the P + -type guard ring region 3 Directional voltage is intensively applied, and breakdown may occur pinpointly in this region. For this reason, it is difficult to increase the breakdown voltage of the Schottky barrier diode, and the variation in breakdown voltage during mass production has increased. On the other hand, in the Schottky barrier diode of FIG. 2 according to the present invention, when a reverse voltage is applied, the depletion layer indicated by the dotted line 21 can be formed in an ideal state or a state close to the ideal state where local electric field concentration can be prevented. Thus, a high withstand voltage is achieved, and variations in the withstand voltage during mass production are reduced. The prevention of breakdown on the outer peripheral side of the substrate 10 is achieved by not connecting the outer P + type semiconductor region 17 to the first electrode 11. That is, the voltage between the first and second electrodes 11 and 12 is directly applied to the PN junction between the inner P + -type semiconductor region 16 and the N-type semiconductor region 14, and the depletion layer spreads relatively large. , the outer P + -type semiconductor region 17 PN between the outer P + -type semiconductor region 17 and the N-type semiconductor region 14 to be applied by dividing the voltage between the first and second electrodes 11 and 12 The expansion of the depletion layer from the junction is smaller than the expansion of the depletion layer from the inner P + type semiconductor region 16, and a depletion layer gradually narrowing toward the periphery of the substrate 10 can be obtained, and the withstand voltage characteristics are improved. .
(2) If the withstand voltage is the same as that of the conventional example shown in FIG. 1, the thickness of the N-type semiconductor region 14 can be made smaller (for example, 1/4) than in FIG.
(3) Despite the provision of the inner P + -type semiconductor region 16 to improve the breakdown voltage, an N + -type semiconductor having a lower resistivity than the N-type semiconductor region 14 between the inner P + -type semiconductor regions 16. Since the region 18 is provided, a forward voltage drop can be reduced.
(4) The switching characteristics of the diode become relatively good. That is, in the diode of FIG. 2, the impurity concentration is relatively lower than that of the N-type semiconductor region 14 between the inner P + -type semiconductor region 16 for obtaining the PN junction forming the depletion layer that achieves good electric field relaxation. A high N + type semiconductor region 18 is formed. Therefore, although the area of the P + -type semiconductor regions 16 and 17 as compared to the Schottky barrier diode having a conventional guard ring region 3 of FIG. 1 is increased, a large part of the inner P + type semiconductor region 16 Since it is in contact with the N + type semiconductor region 18 having a relatively high impurity concentration, the injection amount of minority carriers from the inner P + type semiconductor region 16 is suppressed, and the conductivity modulation is suppressed. As a result, the amount of the minority carriers accumulated in the N + -type semiconductor region 18 at the end of the forward voltage application, that is, at the start of the reverse voltage application, is reduced, as compared with the case where the anode-side N + -type semiconductor region 18 is not provided. The reverse recovery time is shorter, and the switching speed is faster.
(5) Since the impurity concentration of the N-type semiconductor region 14 is determined to be lower than that of the conventional JBS structure and the thickness Wn is as small as 12 μm, minority carriers from the inner P + -type semiconductor region 16 to the N-type semiconductor region 14 Injection is less than in the conventional JBS structure, the reverse recovery time is shorter, and the switching speed is faster. Also, the forward voltage drop is smaller than that of the conventional JBS structure.
(6) Since a depletion layer is formed below the insulating film 13 around the first electrode 11 of the substrate 10, the leakage current when a reverse voltage is applied can be reduced.
[0021]
[Second embodiment]
Next, a Schottky barrier diode according to a second embodiment will be described with reference to FIG. However, in FIG. 4 and FIG. 5, which will be described later, portions that are substantially the same as those in FIGS. 2 and 3 are denoted by the same reference numerals, and description thereof is omitted.
[0022]
The Schottky barrier diode of the second embodiment has the same configuration as that of FIGS. 2 and 3 except that the outer P + type semiconductor region 17 of FIGS. 2 and 3 is modified to 17a. A plurality (24) of the outer P + type semiconductor regions 17a in FIG. 4 is provided. The plurality of outer P + -type semiconductor regions 17a in FIG. 14 are distributed at the same positions as the outer P + -type semiconductor regions 17 in FIG. That is, the outer P + -type semiconductor regions 17a are intermittently arranged with an interval W1 such that when a rated reverse voltage is applied, the N-type semiconductor regions 14 therebetween are filled with a depletion layer. .
[0023]
Even when the outer P + type semiconductor region 17a is formed as shown in FIG. 4, a depletion layer similar to that shown in FIG. 2 can be obtained when a reverse voltage is applied. Therefore, the same effects as in the first embodiment can be obtained also in the second embodiment.
[0024]
[Modification]
The present invention is not limited to the above embodiment, and for example, the following modifications are possible.
(1) As shown in FIG. 5, the inner P + -type semiconductor region 16 and the anode-side N + -type semiconductor region 18 can be formed in a ring shape. Also in this case, the interval between the plurality of P + -type semiconductor regions 16 is set to be filled with the depletion layer. Thereby, the same effect as in the first and second embodiments can be obtained.
(2) A plurality of the inner P + type semiconductor regions 16 in FIG. 3 are formed in a lattice shape, a mesh shape, or a comb shape, and are juxtaposed at predetermined mutual intervals in the cross section of the grid, the mesh shape, or the comb shape. The anode-side N + type semiconductor region 18 can be arranged between the portions. That is, generally to replace the portion of the N + -type semiconductor region 18 in FIG. 3 to the third P + type semiconductor region 16 serving as the semiconductor region, a portion of the P + -type semiconductor region 16 in FIG. 3 N + -type The semiconductor region 18 can be replaced. In this case, the inner P + -type semiconductor region becomes one continuous one, and this one inner P + -type semiconductor region has a plurality of portions facing each other.
(3) The extension of the cathode-side N + type semiconductor region 15 is led out to one main surface 19 of the substrate 10, and the second electrode 12 can be connected thereto.
(4) The depth of the P + type semiconductor regions 16 and 17 and the depth of the N + type semiconductor region 18 can be arbitrarily changed. However, the depths of the P + -type semiconductor regions 16 and 17 and the N + -type semiconductor region 18 formed on one main surface 19 of the semiconductor substrate 10 make it possible to favorably concentrate the electric field on one main surface side of the semiconductor substrate 10. In order to form a depletion layer that can be relaxed, it is desirable that the thickness is set to 1/6 or more, preferably 1/5 or more of the thickness of the N-type semiconductor region 14. On the other hand, if the P + -type semiconductor regions 16 and 17 and the N + -type semiconductor region 18 are too deep, the depletion layer reaches the cathode-side N + -type semiconductor region 15 in a point manner, and a high breakdown voltage can be stably obtained. Absent. Therefore, it is desirable to set the thickness of the N-type semiconductor region 14 to 以下 or less, preferably 1 / or less.
(5) The impurity concentration of each region can be arbitrarily changed. However, when a predetermined reverse voltage is applied, in order to obtain a continuous depletion layer as indicated by a dotted line 21 in FIG. 2, the impurities in the P + -type semiconductor regions 16 and 17 and the anode-side N + -type semiconductor region 18 are removed. The concentration is preferably set to 5 to 100 times the impurity concentration of the N-type semiconductor region 14.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conventional Schottky barrier diode.
FIG. 2 is a cross-sectional view showing the Schottky barrier diode according to the first embodiment of the present invention at a portion corresponding to FIG. 3A-A.
FIG. 3 is a plan view showing the surface of the semiconductor substrate of FIG. 2;
FIG. 4 is a plan view showing a substrate of a Schottky barrier diode according to a second embodiment, similarly to FIG.
FIG. 5 is a plan view showing a part of a substrate of a Schottky barrier diode according to a modified example.
[Explanation of symbols]
Reference Signs List 10 Substrates 11, 12 First and second electrodes 14 N-type semiconductor region 15 Cathode-side N + -type semiconductor region 16 Inside P + -type semiconductor region 17 Outside P + -type semiconductor region 18 Anode-side N + -type semiconductor region

Claims (5)

半導体基板と第1及び第2の電極とを備え、
前記基板は、
該基板の一方の主面に露出する部分を有するように配置された第1導電型の第1の半導体領域と、
前記第1の半導体領域と前記基板の他方の主面との間に配置され且つ前記第1の半導体領域よりも高い不純物濃度を有している第1導電型の第2の半導体領域と、
断面形状において、前記基板の一方の主面から前記第1の半導体領域の中に延びるように形成され且つ所定の相互間隔を有している複数の領域又は複数の部分から成る第2導電型の第3の半導体領域と、
平面的に見て前記第3の半導体領域の外側を前記第1の半導体領域を介して連続的又は断続的に囲むように配置され且つ前記基板の一方の主面から前記第1の半導体領域の中に延びている第2導電型の第4の半導体領域と、
前記複数の第3の半導体領域の相互間又は前記第3の半導体領域の前記複数の部分の相互間の少なくとも一部を埋めるように配置され且つ前記第1の半導体領域よりも高い不純物濃度を有している第1導電型の第5の半導体領域とを有し、前記第1の電極は、前記第5の半導体領域にショットキ接触し且つ前記第3の半導体領域にオーミック接触し、且つ前記第4の半導体領域には接触しないように前記基板の一方の主面上に形成され、
前記第2の電極は、前記第2の半導体領域に電気的に接続されていることを特徴とするショットキバリアを有する半導体装置。
A semiconductor substrate and first and second electrodes,
The substrate is
A first conductivity type first semiconductor region disposed so as to have a portion exposed on one main surface of the substrate;
A second semiconductor region of a first conductivity type disposed between the first semiconductor region and the other main surface of the substrate and having a higher impurity concentration than the first semiconductor region;
In the cross-sectional shape, a second conductive type of a plurality of regions or a plurality of portions formed to extend from one main surface of the substrate into the first semiconductor region and have a predetermined mutual interval. A third semiconductor region;
The first semiconductor region is disposed so as to continuously or intermittently surround the outside of the third semiconductor region via the first semiconductor region when viewed in a plan view, and from one main surface of the substrate to the first semiconductor region. A fourth semiconductor region of the second conductivity type extending therein;
The semiconductor device is disposed so as to fill at least a part between the plurality of third semiconductor regions or between the plurality of portions of the third semiconductor region, and has a higher impurity concentration than the first semiconductor region. A fifth semiconductor region of the first conductivity type, the first electrode being in Schottky contact with the fifth semiconductor region, being in ohmic contact with the third semiconductor region, and being in contact with the third semiconductor region. 4 is formed on one main surface of the substrate so as not to contact the semiconductor region,
The semiconductor device having a Schottky barrier, wherein the second electrode is electrically connected to the second semiconductor region.
前記第1の電極は前記第4の半導体領域よりも内側において前記第1の半導体領域に接触していることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the first electrode is in contact with the first semiconductor region inside the fourth semiconductor region. 前記第5の半導体領域は前記第3の半導体領域の深さ以下の深さに形成されていることを特徴とする請求項1又は2記載の半導体装置。The semiconductor device according to claim 1, wherein the fifth semiconductor region is formed at a depth equal to or less than a depth of the third semiconductor region. 前記第3及び第5の半導体領域の深さは、前記第1の半導体領域の厚みの1/6以上であることを特徴とする請求項1又は2又は3記載の半導体装置。4. The semiconductor device according to claim 1, wherein a depth of the third and fifth semiconductor regions is equal to or more than 6 of a thickness of the first semiconductor region. 5. 前記複数の第3の半導体領域の相互間又は前記第3の半導体領域の複数の部分の相互間隔は、定格の逆方向電圧を前記第1及び第2の電極間に印加した時に空乏層によって埋められるように決定されていることを特徴とする請求項1又は2又は3又は4記載の半導体装置。The distance between the plurality of third semiconductor regions or the distance between the plurality of portions of the third semiconductor region is filled with a depletion layer when a rated reverse voltage is applied between the first and second electrodes. The semiconductor device according to claim 1, 2, 3, or 4, wherein the value is determined so as to be determined.
JP2002163852A 2002-06-05 2002-06-05 Semiconductor device having Schottky barrier Pending JP2004014662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163852A JP2004014662A (en) 2002-06-05 2002-06-05 Semiconductor device having Schottky barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163852A JP2004014662A (en) 2002-06-05 2002-06-05 Semiconductor device having Schottky barrier

Publications (2)

Publication Number Publication Date
JP2004014662A true JP2004014662A (en) 2004-01-15
JP2004014662A5 JP2004014662A5 (en) 2005-10-06

Family

ID=30432167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163852A Pending JP2004014662A (en) 2002-06-05 2002-06-05 Semiconductor device having Schottky barrier

Country Status (1)

Country Link
JP (1) JP2004014662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087483A (en) * 2008-09-08 2010-04-15 Mitsubishi Electric Corp Semiconductor device
JP2012142590A (en) * 2005-12-27 2012-07-26 Qspeed Semiconductor Inc Ultrafast recovery diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142590A (en) * 2005-12-27 2012-07-26 Qspeed Semiconductor Inc Ultrafast recovery diode
JP2010087483A (en) * 2008-09-08 2010-04-15 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP3287269B2 (en) Diode and manufacturing method thereof
JP5366297B2 (en) Semiconductor device
US7183575B2 (en) High reverse voltage silicon carbide diode and method of manufacturing the same high reverse voltage silicon carbide diode
JP4282972B2 (en) High voltage diode
JP6454443B2 (en) Flat gate commutation thyristor
JP2012023199A (en) Schottky barrier diode
JP4006879B2 (en) Schottky barrier diode and manufacturing method thereof
JP4680330B2 (en) Silicon Carbide Field Controlled Bipolar Switch
US20150287840A1 (en) Semiconductor device
JP3971670B2 (en) Semiconductor device
US20170110596A1 (en) Semiconductor device
JP4623259B2 (en) Semiconductor device having Schottky barrier
JP2006049455A (en) Trench type insulated gate semiconductor device
JP2005229071A (en) Schottky barrier diode
JP3987957B2 (en) Semiconductor device and manufacturing method thereof
JP2017201724A (en) Schottky barrier diode
JP4416288B2 (en) Reverse conduction thyristor
JP2008251925A (en) diode
JP3655834B2 (en) Semiconductor device
JP3914852B2 (en) Diode element and transistor element
JP3489567B2 (en) Semiconductor element
JP2004273647A (en) Semiconductor device and manufacturing method thereof
JP3482959B2 (en) Semiconductor element
JP2004014662A (en) Semiconductor device having Schottky barrier
JP3947921B2 (en) Semiconductor device having Schottky barrier

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061011