[go: up one dir, main page]

JP2004014340A - Electrode material, lithium ion battery using it and manufacturing method of electrode material - Google Patents

Electrode material, lithium ion battery using it and manufacturing method of electrode material Download PDF

Info

Publication number
JP2004014340A
JP2004014340A JP2002167163A JP2002167163A JP2004014340A JP 2004014340 A JP2004014340 A JP 2004014340A JP 2002167163 A JP2002167163 A JP 2002167163A JP 2002167163 A JP2002167163 A JP 2002167163A JP 2004014340 A JP2004014340 A JP 2004014340A
Authority
JP
Japan
Prior art keywords
electrode material
conductive substance
primary particles
ion battery
electronic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002167163A
Other languages
Japanese (ja)
Other versions
JP4043852B2 (en
Inventor
Koji Ono
大野 宏次
Mitsumasa Saito
斉藤 光正
Kikuo Okuyama
奥山 喜久夫
Lenggoro Wuled
ウレット・レンゴロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2002167163A priority Critical patent/JP4043852B2/en
Publication of JP2004014340A publication Critical patent/JP2004014340A/en
Application granted granted Critical
Publication of JP4043852B2 publication Critical patent/JP4043852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material capable of obtaining a high discharge capacity, stable charge-discharge cycle performance, a high filling property, a high output and the like by using an inexpensive element abundant as a resource, to provide a lithium ion battery using it and to provide a manufacturing method of the electrode material. <P>SOLUTION: This electrode material is characterized by forming each secondary particle 3 by collecting a plurality of primary particles 1 expressed by a formula Li<SB>x</SB>A<SB>y</SB>B<SB>z</SB>O<SB>4</SB>(wherein A is at least one kind selected from Cr, Mn, Fe, Co, Ni and Cu; B is at least one kind selected from Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y and a rare-earth elements; 0≤x<2; 0<y<1.5; and 0≤z<1.5), and by interlaying three-dimensional mesh-like electron conducting substances 2 among the plurality of primary particles 1, 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電極材料及びそれを用いた二次電池並びに電極材料の製造方法に関し、特に、電池用の電極材料、さらにはリチウムイオン電池用の正極材料に用いて好適な電極材料及びそれを用いたリチウムイオン電池並びに電極材料の製造方法に関するものである。
【0002】
【従来の技術】
近年、小型化、軽量化、高容量化が期待される電池として、リチウムイオン電池等の非水電解液系の二次電池が提案され、実用に供されている。
このリチウムイオン電池は、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等の正極活物質を正極材料として用いたもので、小型でありながら起電力が4Vを超えるという優れた特徴がある。
一方、リチウムイオン電池用の正極材料として、資源的に豊富で安価であるFeが注目されている。例えば、LiFePOで示されるリン酸化合物は、金属Liに対して3.3V程度の電位を有することから、充放電可能な正極材料として用いることが可能である。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のリチウムイオン電池では、用いる正極材料に様々な問題点があった。
例えば、LiCoOは、Coの埋蔵量が少なく高価であるという問題点の他、Coの毒性等の問題点が指摘されている。
また、LiNiOは、優れた充放電特性を有するものの決して安価ではなく、また、高温での安定性、定比からの組成ずれによる急激な特性低下等、問題点も多い。
また、LiMnは、高温でMnが溶出するという問題点や、Mn3+のヤーン・テラー歪によるサイクル劣化の問題点等が指摘されている。
【0004】
一方、LiFePOは、人体や環境に対する毒性の問題が無いという優れた点はあるものの、LiCoO等のリチウム化合物に比べて、起電力や高容量化の点でいまだ不十分である。
このように、これまでの各種正極材料は、上述した様な様々な問題点を有する上に、電池の充放電時に流せる電流密度が低く、そのため高出力化が困難であるという共通の問題点があり、実用化を妨げている一因になっている。
【0005】
本発明は、上記の課題を解決するためになされたものであって、安価で資源的に豊富な元素を用い、高い放電容量、安定した充放電サイクル性能、高い充填性、高出力等を実現することが可能な電極材料及びそれを用いたリチウムイオン電池並びに電極材料の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明者等は、鋭意研究を重ねた結果、正極材料として用いられるリチウム化合物の電子導電性が低いことが、充放電時に流せる電流密度が低く、高出力化が困難である原因の一つであると考え、正極材料として用いられるリチウム化合物の電子導電性を高めるために、リチウム化合物からなる1次粒子を複数個集合させて2次粒子とし、かつ、これらの1次粒子間に炭素等の電子導電性物質を介在させれば、電子導電性の優れた複合正極材料が得られることを見出した。
【0007】
この技術的思想について更に説明すると、LiCoO、LiNiO、LiMn、LiFe1−xPO(ただし、MはCo、Mn、Ni)等のLi化合物をリチウムイオン電池の正極材料に用いた場合、電池の充電によって正極材料からLiが脱離され、逆に放電時には正極材料にLiが添加される。このLiの脱離、添加は粒子の表面から起こるが、同時に電極材料内ではCo、Ni、Mn、Fe等の遷移金属イオンの還元と酸化が起こる。
【0008】
すなわち、正極材料の表面の反応点においては、正極材料、電解質からのLi、電子の三者の存在が必要であるが、従来のリチウムイオン電池では、材料自体の電子導電性が低く、電子の供給が追いつかないことが高出力化を妨げている一因になっているので、材料内部に電子導電性を有する物質を含有させることで電子の供給能力を高めることができれば、電池の高出力化が可能になる。
特に、LiFe1−xPO系材料の場合は材料自体の電子導電性が低いので、本発明による効果は極めて高いものとなる。
【0009】
次に、本発明の電極材料及びそれを用いたリチウムイオン電池並びに電極材料の製造方法の特徴を示す。
すなわち、本発明の電極材料は、式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)からなる1次粒子を複数個集合して2次粒子とし、かつ、これら1次粒子間に電子導電性物質を介在させてなることを特徴とする。
【0010】
前記電子導電性物質は、炭素であることが好ましい。
前記2次粒子中の前記電子導電性物質の含有量は、0.1〜30重量%であることが好ましい。
【0011】
本発明のリチウムイオン電池は、本発明の電極材料を用いた正電極を備えてなることを特徴とする。
【0012】
本発明の電極材料の製造方法は、式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)で示される物質からなる1次粒子を複数個集合して2次粒子とし、かつ、これら1次粒子間に電子導電性物質を介在させてなる電極材料の製造方法であって、Liと、A(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種)と、B(但し、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種)と、Pと、電子導電性物質または電子導電性物質の前駆体とを含む溶液または懸濁液を噴霧し、加熱することを特徴とする。
【0013】
前記電子導電性物質は、炭素単体であることが好ましい。
前記電子導電性物質の前駆体は、有機化合物であることが好ましい。
【0014】
【発明の実施の形態】
本発明の電極材料及びそれを用いたリチウムイオン電池並びに電極材料の製造方法の一実施の形態について説明する。
本実施形態の電極材料は、式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)からなる1次粒子を複数個集合して2次粒子とし、かつ、これら1次粒子間に電子導電性物質を介在させたことを特徴とするものである。
【0015】
この電極材料は、電子導電性物質にて被覆された1次粒子が複数個集合して2次粒子となっていることが好ましく、2次粒子を構成する1次粒子のうち外側に表出している部分も電子導電性物質にて被覆されていることが好ましい。また、1次粒子同士は、電子導電性物質を介して接合されていることが好ましい。
ここで接合されているとは、1次粒子同士が単なる凝集体の状態で2次粒子となっているのではなく、本材料を用いて電極を形成する際に、少なくとも2次粒子が1つの粒子として挙動する程度に強固に結びついていることをいう。この2次粒子においては、電子導電性物質は3次元網目状になっていることが好ましい。
【0016】
図1は、本実施形態の電極材料の一例を示す断面図であり、上記の式からなる1次粒子1が複数個集合し、これらの1次粒子1、1、…同士が3次元網目状とされた薄層状の電子導電性物質層2により接合され、全体形状が球状、多角形状等の2次粒子3とされている。
【0017】
Aについては、Mn、Fe、Co、Niが、また、Bについては、Mg、Ca、Sr、Ti、Zn、Alが、高い放電電位、豊富な資源量、安全性等の点から好ましい。
ここで、希土類元素としては、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luが挙げられる。
また、電子導電性物質としては、化学的安定性、安全性及びコストの点から炭素が最も好ましいが、炭素以外では、金属が好ましく、特にAu、Pt、Ag、Pd、Ru、Rh、Ir等の貴金属が好ましい。これらのなかでも好ましいのはAgである。
【0018】
ここで、1次粒子の平均粒径は0.001〜20μmであることが好ましく、より好ましくは0.05〜2μmである。
その理由は、平均粒径が0.001μmより小さいと、充放電による体積変化で結晶構造が破壊される虞があるからであり、また、平均粒径が20μmより大きいと、粒子内部への電子の供給量が不足し、利用効率が低下するからである。
【0019】
また、電子導電性物質層2の厚みは0.001〜1μmであることが好ましく、より好ましくは0.01〜0.2μmである。
その理由は、厚みが0.001μmより薄いと、電子導電性が十分でなく、電子の供給量が不足するからであり、また、厚みが1μmより厚いと、電極材料中の活物質の割合が減少し、活物質が有効に利用されないからである。
【0020】
また、2次粒子の平均粒径は0.01〜200μmであることが好ましく、より好ましくは0.1〜50μmである。
その理由は、平均粒径が0.01μmより小さいと、電極材料合剤を作製する際に、多くの結合剤を必要とし、その結果、電極材料合剤中の活物質の割合が低下し、電極材料合剤の導電性も低下するからであり、また、平均粒径が200μより大きいと、電極材料合剤内に空隙が生じ易いからである。
【0021】
この2次粒子の形状は、球状であることが好ましい。なぜならば、最密充填し易いために、単位体積当たりの正極材料の充填量が多くなり、同じ容量でも電池体積を小さくすることができるからである。
また、一つの2次粒子内に含まれる電子導電性物質の含有量は、0.1〜30重量%が好ましく、さらに好ましくは、1〜20重量%である。電子導電性物質の含有量が0.1重量%より少ないと、電子導電性が十分発現しない虞があり、また、30重量%より多いと、必要な導電性を得る量以上に電子導電性物質が含有され、粒子中の正極活物質の重量及び体積密度が低下するからである。
【0022】
この2次粒子に含まれる電子導電性物質は、他の成分と化合物を形成するのではない。また、この電子導電性物質は、式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)で示される1次粒子の外側に存在するものであり、上記の式の1次粒子と、電子導電性物質とを、単に混合させたものとは大きく異なる。
この電子導電性物質は、2次粒子中に均一に存在することが好ましく、また、1次粒子同士の間に網目状に存在していることが好ましい。
【0023】
この電極材料をリチウムイオン電池の正電極材料として用いれば、得られたリチウムイオン電池は、高い放電容量、安定した充放電サイクル性能、高い充填性、高出力等を有するものとなる。
【0024】
本実施形態の電極材料の製造方法は、Liと、A(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種)と、B(但し、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種)と、Pと、電子導電性物質または電子導電性物質の前駆体とを含む溶液または懸濁液を噴霧し、加熱する。
【0025】
Liとしては、例えば、LiCl、LiCHCOO、LiOH等のLi塩を用いることができる。また、Feとしては、例えば、FeCl、FeBr、Fe(CHCOO)等のFe塩を用いることができる。また、Mn、Co、Ni等としては、例えば、MnCl、Mn(CHCOO)、NiCl等の塩を用いることができる。また、Alとしては、例えば、AlCl等の塩を用いることができる。また、Pとしては、例えば、HPO、NHPO、(NHHPO等を用いることができる。
特に、噴霧前に反応・凝集を起こさない均一な混合原料とするには、各金属成分を塩化物とし、PとしてHPOを用いることが好ましい。
【0026】
電子導電性物質としては、炭素の他、金属、特にAu、Pt、Ag、Pd、Ru、Rh、Ir等の貴金属が好適に用いられる。なかでも好ましいのはAgである。
ここで、電子導電性物質の前駆体とは、加熱することにより電子導電性物質となるものであり、電子導電性物質の前駆体としては、有機化合物の他、金属塩、金属のアルコキシド、金属の錯体等が好適に用いられる。
【0027】
上述した炭素としては、炭素単体、あるいは炭素化合物が用いられる。
炭素単体としては、例えば、カーボンブラック、アセチレンブラック、グラファイト等を用いることができるが、カーボンブラック、アセチレンブラックのいずれかが好ましい。これら炭素単体の粒子の一次粒子径としては、1〜1000nmが好ましく、さらには10nm〜200nmが好ましい。
【0028】
これらの原料を溶媒中に溶解あるいは分散させて、均一な溶液あるいは懸濁液とし、この溶液あるいは懸濁液を不活性雰囲気下または還元性雰囲気下に噴霧するとともに加熱する。前記溶媒としては、例えば、水、アルコール類、ケトン類等を用いることができるが、使い易さ、安全性の点から水が好ましい。
この溶液あるいは懸濁液中の原料成分の濃度は、噴霧できればよく、特に限定されるものではないが、良好な噴霧状態を得るためには1〜30重量%が好ましい。
【0029】
噴霧の際の液滴の粒径は0.05〜500μmとすることが好ましい。噴霧時の加熱温度は、使用する原料により異なるが、好ましくは500〜1000℃、より好ましくは650〜900℃である。なぜならば、加熱温度が500℃より低いと、分解・反応が十分進行せず、結晶性も低くなってしまい、非晶質化してしまう可能性があるからであり、また、加熱温度が1000℃より高いと、生成物が融解し、ガラス化する虞があるからである。
噴霧、加熱する際の雰囲気としては、特に、AがFeの場合は、N、Ar等の不活性雰囲気が好ましく、より酸化を抑えたい時は、H等の還元性ガスを含むような還元性雰囲気が好ましい。
【0030】
本実施形態の製造方法では、各成分の原料が溶液中あるいは懸濁液中に均一に分散された状態で、微小な液滴として噴霧され、その状態で加熱されるため、瞬時に熱分解反応が起こり、式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)で示される物質からなる1次粒子間に電子導電性物質を介在させてなる2次粒子が形成される。
【0031】
この際、溶液中あるいは懸濁液中に均一に分散されていた電子導電性物質または電子導電性物質の前駆体も液滴中に均一に分散して存在するため、2次粒子が生成する際に、その2次粒子中に均一に存在した状態で取り込まれ、1次粒子間に電子導電性物質が介在した2次粒子が得られる。また、1次粒子同士が電子導電性物質を介して接合されると共に、個々の1次粒子が電子導電性物質により被覆され、2次粒子の外部も電子導電性物質により被覆される。
また、取り込まれる電子導電性物質または電子導電性物質の前駆体は互いに引き合い、また、電子導電性物質の前駆体は加熱時に電子導電性物質に変化するため、電子導電性物質が2次粒子中に網目状の構造を形成して存在する。
【0032】
この場合、各原料成分が溶媒中に均一に分散し混合され、良好な噴霧状態が得られるのであれば、各成分が溶媒に溶解しなくても良いが、電子導電性物質以外の原料成分については、溶媒に溶解するものである方が、より好ましい。
また、電子導電性物質または電子導電性物質の前駆体も溶媒に溶解するものであれば、溶媒に溶解することにより各成分が分子レベルで均一に混合されるため、組成のズレやバラツキのない粒子状物質が得られ、好ましい。
【0033】
電子導電性物質として炭素単体を用いる場合、例えば、カーボンブラック、アセチレンブラック、グラファイト等を用いることができるが、特には、カーボンブラック、アセチレンブラックのいずれかが好ましい。
【0034】
また、電子導電性物質の前駆体として炭素化合物を用いる場合、有機化合物を用いることができる。有機化合物としては、加熱時に揮発しないものであればよく、特に限定されない。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸(塩)、ポリビニルブチラール、ポリビニルピロリドン、または、これらの共重合体が好適に用いられる。
また、例えば、糖アルコール、糖エステル、セルロース等の糖類、あるいはポリグリセリン、ポリグリセリンエステル、ソルビタンエステル、ポリオキシエチレンソルビタン、各種水溶性有機界面活性剤等を用いることができる。
また、リン酸エステル、リン酸エステル塩等を用いれば、炭素成分と同時にリン成分として用いることができる。
【0035】
電子導電性物質として炭素成分を用いる場合に、その前駆体として有機化合物を用いた場合には、溶媒に可溶な有機化合物を使用すると、他の成分のみでなく炭素成分も溶液中にて分子レベルで均一に分散し混合されるため、2次粒子が生成する際に、この2次粒子中に、より均一に炭素粒子が存在することとなり、より良好な網目状の構造が形成される。したがって、有機化合物としては、溶媒に可溶なものが好ましく、特に、溶媒が水の場合には水溶性の有機化合物が好ましい。
【0036】
本実施形態の電極材料によれば、式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)からなる1次粒子を複数個集合して2次粒子とし、かつ、これら1次粒子間に電子導電性物質を介在させたので、高い放電容量、安定した充放電サイクル性能、高い充填性、高出力等を実現することができる。
また、用いる元素も安価で資源的に豊富なものであるから、安価なリチウムイオン電池を提供することができる。
【0037】
本実施形態のリチウムイオン電池によれば、本実施形態の電極材料を用いて正極としたので、高い放電容量、安定した充放電サイクル性能、高い充填性、高出力等を有するリチウムイオン電池を提供することができる。
【0038】
本実施形態の電極材料の製造方法によれば、Liと、A(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種)と、B(但し、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種)と、Pと、電子導電性物質または電子導電性物質の前駆体とを含む溶液または懸濁液を噴霧し、加熱するので、微小な液滴の状態で反応を行わせることができ、粒径が0.01〜50μmの2次粒子を生成することができ、さらに、球状の粒子を形成することができる。
【0039】
また、平均粒径が0.001〜20μmの1次粒子同士を厚みが1〜1000nmの電子導電性物質により接合することにより、複数の1次粒子間に網目状に電子導電性物質が存在する2次粒子を容易に作製することができる。
【0040】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
例えば、本実施例では、電極材料自体の挙動をデータに反映させるため、負極に金属Liを用いたが、炭素材料、Li合金、LiTi12等の負極材料を用いてもかまわない。また電解液とセパレータの代わりに固体電解質を用いても良い。
【0041】
(実施例1)
LiCl、FeCl及びHPOを、これらの物質量比が1:1:1、かつ、濃度が0.1mol/kgとなるように純水に溶解し、水溶液Aとした。
次いで、この水溶液A1000gと、アセチレンブラック2.4gを混合し、その後、攪拌機で2時間撹拌し、アセチレンブラックを均一に分散させた。次いで、この分散液を超音波霧化器を用いて霧状にした後、Nガスをキャリアガスとして700℃の熱処理炉内に導入し、熱分解を行った。その後、この熱分解物を回収し、粒径が0.2〜5μmの球状の電極材料粉末(A:2次粒子)を得た。
この電極材料粉末(A)のLiFePO/C比は重量比で80/12であった。
【0042】
(実施例2)
実施例1の水溶液A1000gと、ショ糖5.7gを混合し、均一な水溶液Bとした。次いで、この水溶液Bを超音波霧化器を用いて霧状にした後、Nガスをキャリアガスとして700℃の熱処理炉内に導入し、熱分解を行った。その後、この熱分解物を回収し、粒径が0.2〜5μmの球状の電極材料粉末(B:2次粒子)を得た。
ここで、ショ糖(C122211)を12Cと見なすと、この電極材料粉末(B)のLiFePO/C比は重量比で80/12であった。
【0043】
(比較例)
原料溶液中に炭素あるいは炭素源となるショ糖を添加しない他は実施例1と同様にして、電極材料粉末(C)を得た。
【0044】
(リチウムイオン電池の作製)
得られた粉末(A)92mgと、バインダーとしてポリテトラフルオロエチレン(PTFE)8mgを混練、圧延し、電極材料合剤フィルム(A)を得た。 同様に、得られた粉末(B)92mgと、バインダーとしてポリテトラフルオロエチレン(PTFE)8mgを混練、圧延し、電極材料合剤フィルム(B)を得た。
また、得られた粉末(C)80mgと、導電助剤としてアセチレンブラック12mgと、バインダーとしてポリテトラフルオロエチレン(PTFE)8mgを混練、圧延し、電極材料合剤フィルム(C)を得た。
【0045】
これらのフィルム(A)〜(C)をステンレスメッシュ集電体上に圧着後、面積2cmの円板状に打ち抜き、実施例1、2及び比較例の正極とした。
得られた正極を真空乾燥後、乾燥Ar雰囲気下で、HS標準セル(宝泉株式会社製)を用いて実施例1、2及び比較例の電池を作製した。
負極には金属Liを、セパレーターには多孔質ポリプロピレン膜を、電解液には1MのLiPF溶液(溶媒:炭酸エチレン/炭酸ジエチル=1/1)を、用いた。
【0046】
(電池充放電試験)
実施例1、2及び比較例の電池に対して、電池充放電試験を行った。
充放電試験は、カットオフ電圧:3〜4V、電流密度:0.5mAcm−2の定電流で室温で行った。
初期充放電特性を図2に、充放電サイクル試験結果を図3に、それぞれ示す。この電池充放電試験の結果によれば、電流密度:0.5mAcm−2の高出力においても、本実施例の電極材料は約150mAhg−1の高い初期容量と優れたサイクル特性が得られている。
【0047】
【発明の効果】
本発明の電極材料によれば、式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)からなる1次粒子を複数個集合して2次粒子とし、かつ、これら1次粒子間に電子導電性物質を介在させたので、高い放電容量、安定した充放電サイクル性能、高い充填性、高出力等を実現することができる。
また、用いる元素も安価で資源的に豊富なものであるから、安価なリチウムイオン電池を提供することができる。
【0048】
本発明のリチウムイオン電池によれば、本発明の電極材料を用いた正電極を備えたので、高い放電容量、安定した充放電サイクル性能、高い充填性、高出力等を有するリチウムイオン電池を提供することができる。
【0049】
本発明の電極材料の製造方法によれば、Liと、A(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種)と、B(但し、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種)と、Pと、電子導電性物質または電子導電性物質の前駆体とを含む溶液または懸濁液を噴霧し、加熱するので、微小な液滴の状態で反応を行わせることができ、平均粒径が0.01〜200μmの2次粒子を生成することができ、さらに、球状の粒子を形成することができる。
また、1次粒子同士を電子導電性物質により接合することで、複数の1次粒子間に網目状に電子導電性物質が存在する2次粒子を容易に作製することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の電極材料の一例を示す断面図である。
【図2】本発明の実施例1、2及び比較例の初期充放電特性を示す図である。
【図3】本発明の実施例1、2及び比較例の充放電サイクル試験結果を示す図である。
【符号の説明】
1 1次粒子
2 電子導電性物質層
3 2次粒子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode material, a secondary battery using the same, and a method for producing the electrode material, and particularly, an electrode material suitable for a battery electrode material, and further a positive electrode material for a lithium ion battery, and an electrode material suitable for the same. The present invention relates to a method for producing a lithium ion battery and an electrode material.
[0002]
[Prior art]
2. Description of the Related Art In recent years, nonaqueous electrolyte secondary batteries such as lithium ion batteries have been proposed and put to practical use as batteries expected to be reduced in size, weight, and capacity.
This lithium ion battery is made of lithium cobalt oxide (LiCoO 2 ), Lithium nickelate (LiNiO) 2 ), Lithium manganate (LiMn) 2 O 4 ) Is used as a positive electrode material, and has an excellent feature that the electromotive force exceeds 4 V despite its small size.
On the other hand, as a positive electrode material for a lithium ion battery, Fe, which is abundant in resources and inexpensive, has attracted attention. For example, LiFePO 4 Since the phosphoric acid compound represented by has a potential of about 3.3 V with respect to metal Li, it can be used as a chargeable and dischargeable positive electrode material.
[0003]
[Problems to be solved by the invention]
However, the conventional lithium ion battery has various problems in the cathode material used.
For example, LiCoO 2 It is pointed out that, in addition to the problem that the reserve amount of Co is small and expensive, there are also problems such as toxicity of Co.
Also, LiNiO 2 Although they have excellent charge / discharge characteristics, they are not inexpensive, and have many problems such as stability at high temperatures and rapid deterioration of characteristics due to composition deviation from a stoichiometric ratio.
LiMn 2 O 4 Is a problem that Mn is eluted at a high temperature, 3+ The problem of cycle deterioration due to the Jahn-Teller distortion is pointed out.
[0004]
On the other hand, LiFePO 4 Has the advantage that there is no problem of toxicity to the human body and the environment, but LiCoO 2 And the like, are still insufficient in terms of electromotive force and high capacity.
As described above, the conventional various positive electrode materials have various problems as described above, and also have a common problem that the current density that can be passed at the time of charging and discharging the battery is low, so that it is difficult to increase the output. It is one of the factors that hinders practical application.
[0005]
The present invention has been made to solve the above-described problems, and realizes high discharge capacity, stable charge / discharge cycle performance, high filling property, high output, and the like by using inexpensive and resource-rich elements. It is an object of the present invention to provide an electrode material that can be used, a lithium ion battery using the same, and a method for manufacturing the electrode material.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have conducted intensive studies and as a result, it has been found that the lithium compound used as a positive electrode material has a low electronic conductivity, a low current density that can flow during charging and discharging, and a high output. Considering that this is one of the causes of difficulty, in order to increase the electronic conductivity of the lithium compound used as the positive electrode material, a plurality of primary particles made of the lithium compound are aggregated to form secondary particles, and It has been found that a composite positive electrode material having excellent electronic conductivity can be obtained by interposing an electronic conductive substance such as carbon between the primary particles.
[0007]
To further explain this technical idea, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFe 1-x M x PO 4 (Where M is Co, Mn, Ni) when a lithium compound such as Li is used for the positive electrode material of the lithium ion battery, the lithium is charged from the positive electrode material by charging the battery. + Is desorbed, and conversely, during discharge, Li + Is added. This Li + Desorption and addition occur from the surface of the particles, but at the same time, reduction and oxidation of transition metal ions such as Co, Ni, Mn, and Fe occur in the electrode material.
[0008]
That is, at the reaction point on the surface of the positive electrode material, Li + In the conventional lithium-ion battery, the electronic conductivity of the material itself is low, and the inability to keep up with the supply of electrons is one of the factors that hinders high output. Therefore, if the ability to supply electrons can be increased by including a substance having electron conductivity in the material, it is possible to increase the output of the battery.
In particular, LiFe 1-x M x PO 4 In the case of a system material, since the electronic conductivity of the material itself is low, the effect of the present invention is extremely high.
[0009]
Next, characteristics of the electrode material of the present invention, a lithium ion battery using the same, and a method of manufacturing the electrode material will be described.
That is, the electrode material of the present invention has the formula Li x A y B z PO 4 (However, A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Secondary particles obtained by assembling a plurality of primary particles consisting of at least one selected from Sc, Y and rare earth elements, 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) And an electronic conductive substance interposed between the primary particles.
[0010]
Preferably, the electronic conductive material is carbon.
The content of the electron conductive material in the secondary particles is preferably 0.1 to 30% by weight.
[0011]
A lithium ion battery according to the present invention includes a positive electrode using the electrode material according to the present invention.
[0012]
The production method of the electrode material of the present invention is represented by the formula Li x A y B z PO 4 (However, A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, A plurality of primary particles made of a material represented by at least one selected from Sc, Y and rare earth elements and represented by 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) are collected. A method for producing an electrode material in which secondary particles are used as secondary particles and an electronic conductive substance is interposed between these primary particles, wherein Li, A (where A is Cr, Mn, Fe, Co, Ni , Cu, at least one selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and a rare earth element. ), P, an electron conductive substance or a precursor of the electron conductive substance. No solution or suspension is sprayed, characterized by heating.
[0013]
It is preferable that the electron conductive substance is carbon alone.
The precursor of the electronic conductive substance is preferably an organic compound.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the electrode material of the present invention, a lithium ion battery using the same, and a method for manufacturing the electrode material will be described.
The electrode material of the present embodiment has the formula Li x A y B z PO 4 (However, A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Secondary particles obtained by assembling a plurality of primary particles consisting of at least one selected from Sc, Y and rare earth elements, 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) And an electronic conductive substance is interposed between the primary particles.
[0015]
This electrode material is preferably a secondary particle formed by assembling a plurality of primary particles coated with an electronic conductive substance, and is preferably exposed to the outside of the primary particles constituting the secondary particles. It is also preferable that the portion where the electrode is present is covered with an electronic conductive material. Further, it is preferable that the primary particles are joined via an electronic conductive substance.
Here, the term “joined” means that the primary particles are not merely secondary particles in a state of an aggregate, but at least one secondary particle is formed when forming an electrode using the present material. It means that they are tightly bound to the extent that they behave as particles. In the secondary particles, it is preferable that the electron conductive substance has a three-dimensional network shape.
[0016]
FIG. 1 is a cross-sectional view showing an example of the electrode material of the present embodiment, in which a plurality of primary particles 1 represented by the above formulas are aggregated, and these primary particles 1, 1,. And the secondary particles 3 having a spherical or polygonal shape as a whole.
[0017]
For A, Mn, Fe, Co, and Ni are preferable, and for B, Mg, Ca, Sr, Ti, Zn, and Al are preferable in terms of high discharge potential, abundant resource amount, safety, and the like.
Here, examples of the rare earth element include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
As the electron conductive material, carbon is most preferable in terms of chemical stability, safety and cost, but other than carbon, metal is preferable, and particularly, Au, Pt, Ag, Pd, Ru, Rh, Ir, etc. Is preferred. Among these, Ag is preferred.
[0018]
Here, the average particle size of the primary particles is preferably from 0.001 to 20 μm, and more preferably from 0.05 to 2 μm.
The reason for this is that if the average particle size is smaller than 0.001 μm, the crystal structure may be destroyed due to volume change due to charge and discharge. This is because the supply amount of uranium is insufficient, and the utilization efficiency is reduced.
[0019]
The thickness of the electron conductive material layer 2 is preferably 0.001 to 1 μm, and more preferably 0.01 to 0.2 μm.
The reason is that if the thickness is less than 0.001 μm, the electron conductivity is insufficient and the supply amount of electrons is insufficient, and if the thickness is more than 1 μm, the ratio of the active material in the electrode material is reduced. This is because the active material is not effectively used.
[0020]
Further, the average particle size of the secondary particles is preferably from 0.01 to 200 μm, and more preferably from 0.1 to 50 μm.
The reason is that if the average particle size is smaller than 0.01 μm, a large amount of binder is required when preparing the electrode material mixture, and as a result, the ratio of the active material in the electrode material mixture decreases, This is because the conductivity of the electrode material mixture also decreases, and if the average particle diameter is larger than 200 μm, voids are easily generated in the electrode material mixture.
[0021]
The shape of the secondary particles is preferably spherical. This is because the close-packing is easy, so that the filling amount of the positive electrode material per unit volume increases, and the battery volume can be reduced even with the same capacity.
Further, the content of the electronic conductive substance contained in one secondary particle is preferably 0.1 to 30% by weight, more preferably 1 to 20% by weight. If the content of the electronic conductive material is less than 0.1% by weight, the electronic conductivity may not be sufficiently exhibited. If the content is more than 30% by weight, the electronic conductive material may be more than the amount required to obtain the required conductivity. Is contained, and the weight and the volume density of the positive electrode active material in the particles are reduced.
[0022]
The electron conductive substance contained in the secondary particles does not form a compound with other components. Also, this electronically conductive material has the formula Li x A y B z PO 4 (However, A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, at least one selected from rare earth elements, present outside the primary particles represented by 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) It is significantly different from a simple mixture of the primary particles of the above formula and an electronic conductive substance.
It is preferable that the electron conductive substance is uniformly present in the secondary particles, and is preferably present in a network between the primary particles.
[0023]
If this electrode material is used as a positive electrode material of a lithium ion battery, the obtained lithium ion battery has high discharge capacity, stable charge / discharge cycle performance, high filling property, high output, and the like.
[0024]
The manufacturing method of the electrode material according to the present embodiment includes Li, A (where A is at least one selected from Cr, Mn, Fe, Co, Ni and Cu), and B (where B is Mg and Ca). , Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, at least one element selected from rare earth elements), P, and an electronic conductive material or an electronic conductive material. The solution or suspension containing the precursor is sprayed and heated.
[0025]
Examples of Li include LiCl, LiCH 3 Li salts such as COO and LiOH can be used. Further, as Fe, for example, FeCl 2 , FeBr 2 , Fe (CH 3 COO) 2 And the like can be used. Further, as Mn, Co, Ni, etc., for example, MnCl 2 , Mn (CH 3 COO) 2 , NiCl 2 And the like. As Al, for example, AlCl 3 And the like. As P, for example, H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 Etc. can be used.
In particular, in order to obtain a uniform mixed raw material that does not cause reaction and aggregation before spraying, each metal component is chloride, and P is H 3 PO 4 It is preferable to use
[0026]
As the electron conductive material, besides carbon, metals, particularly noble metals such as Au, Pt, Ag, Pd, Ru, Rh, and Ir are preferably used. Among them, Ag is preferable.
Here, the precursor of the electron conductive substance is a substance that becomes an electron conductive substance by heating, and the precursor of the electron conductive substance includes, in addition to an organic compound, a metal salt, a metal alkoxide, and a metal. And the like are preferably used.
[0027]
As the above-mentioned carbon, simple carbon or a carbon compound is used.
As the simple carbon, for example, carbon black, acetylene black, graphite and the like can be used, and any of carbon black and acetylene black is preferable. The primary particle diameter of these carbon particles is preferably from 1 to 1000 nm, more preferably from 10 to 200 nm.
[0028]
These materials are dissolved or dispersed in a solvent to form a uniform solution or suspension, and the solution or suspension is sprayed and heated under an inert atmosphere or a reducing atmosphere. As the solvent, for example, water, alcohols, ketones, and the like can be used, but water is preferable in terms of ease of use and safety.
The concentration of the raw material components in this solution or suspension is not particularly limited as long as it can be sprayed, but is preferably 1 to 30% by weight in order to obtain a good spray state.
[0029]
The particle size of the droplets at the time of spraying is preferably 0.05 to 500 μm. The heating temperature at the time of spraying varies depending on the raw material used, but is preferably 500 to 1000C, more preferably 650 to 900C. This is because if the heating temperature is lower than 500 ° C., decomposition / reaction does not proceed sufficiently, the crystallinity is lowered, and there is a possibility of becoming amorphous. If it is higher, the product may be melted and vitrified.
As an atmosphere for spraying and heating, especially when A is Fe, N 2 , Ar or the like is preferable. 2 A reducing atmosphere containing a reducing gas such as
[0030]
In the production method of the present embodiment, the raw material of each component is sprayed as fine droplets in a state of being uniformly dispersed in a solution or suspension and heated in that state, so that the thermal decomposition reaction is instantaneous. Occurs and the formula Li x A y B z PO 4 (However, A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, At least one selected from the group consisting of Sc, Y, and rare-earth elements, and electronic conductivity between primary particles made of a material represented by 0 ≦ x <2, 0 <y <1.5, and 0 ≦ z <1.5) Secondary particles formed by interposing a substance are formed.
[0031]
At this time, since the electron conductive substance or the precursor of the electron conductive substance, which has been uniformly dispersed in the solution or suspension, is also uniformly dispersed in the droplet, the secondary particles may be generated. Then, the particles are taken in a state where they are uniformly present in the secondary particles, and secondary particles having an electron conductive substance interposed between the primary particles are obtained. Further, the primary particles are joined to each other via the electronic conductive material, the individual primary particles are coated with the electronic conductive material, and the outside of the secondary particles is also coated with the electronic conductive material.
In addition, the incorporated electronic conductive substance or the precursor of the electronic conductive substance attracts each other, and the precursor of the electronic conductive substance changes into an electronic conductive substance when heated, so that the electronic conductive substance is contained in the secondary particles. In the form of a network.
[0032]
In this case, each raw material component is uniformly dispersed and mixed in the solvent, and if a good spray state is obtained, each component may not be dissolved in the solvent. Is more preferably soluble in a solvent.
In addition, as long as the electronic conductive substance or the precursor of the electronic conductive substance is also soluble in the solvent, each component is uniformly mixed at the molecular level by dissolving in the solvent, so that there is no deviation or variation in composition. Particulate matter is obtained and is preferred.
[0033]
When carbon alone is used as the electron conductive substance, for example, carbon black, acetylene black, graphite, or the like can be used. In particular, any one of carbon black and acetylene black is preferable.
[0034]
In the case where a carbon compound is used as a precursor of the electron conductive substance, an organic compound can be used. The organic compound is not particularly limited as long as it does not volatilize during heating. For example, polyethylene glycol, polypropylene glycol, polyethylene imine, polyvinyl alcohol, polyacrylic acid (salt), polyvinyl butyral, polyvinyl pyrrolidone, or a copolymer thereof is preferably used.
Further, for example, sugars such as sugar alcohols, sugar esters, and cellulose, or polyglycerin, polyglycerin esters, sorbitan esters, polyoxyethylene sorbitan, and various water-soluble organic surfactants can be used.
Further, if a phosphoric acid ester, a phosphoric acid ester salt, or the like is used, it can be used as a phosphorus component simultaneously with a carbon component.
[0035]
When a carbon component is used as the electron conductive material and an organic compound is used as a precursor thereof, when an organic compound that is soluble in a solvent is used, not only the other components but also the carbon component is dissolved in the solution. Since the particles are uniformly dispersed and mixed at the level, when the secondary particles are generated, the carbon particles are more uniformly present in the secondary particles, and a better network structure is formed. Therefore, the organic compound is preferably a compound soluble in a solvent, and particularly preferably a water-soluble organic compound when the solvent is water.
[0036]
According to the electrode material of the present embodiment, the formula Li x A y B z PO 4 (However, A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Secondary particles obtained by assembling a plurality of primary particles consisting of at least one selected from Sc, Y and rare earth elements, 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) In addition, since an electronic conductive substance is interposed between the primary particles, high discharge capacity, stable charge / discharge cycle performance, high filling property, high output, and the like can be realized.
In addition, since the elements to be used are inexpensive and abundant in resources, an inexpensive lithium ion battery can be provided.
[0037]
According to the lithium ion battery of the present embodiment, since the positive electrode is formed using the electrode material of the present embodiment, a lithium ion battery having high discharge capacity, stable charge / discharge cycle performance, high filling property, high output, and the like is provided. can do.
[0038]
According to the electrode material manufacturing method of the present embodiment, Li, A (where A is at least one selected from Cr, Mn, Fe, Co, Ni, and Cu), and B (where B is Mg , Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, at least one element selected from the group consisting of rare earth elements), P, and an electron conductive material or electron conductivity. Since the solution or suspension containing the precursor of the substance is sprayed and heated, the reaction can be performed in the form of fine droplets, and secondary particles having a particle size of 0.01 to 50 μm are generated. In addition, spherical particles can be formed.
[0039]
In addition, by joining primary particles having an average particle diameter of 0.001 to 20 μm with an electronic conductive substance having a thickness of 1 to 1000 nm, an electronic conductive substance exists in a network between a plurality of primary particles. Secondary particles can be easily produced.
[0040]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
For example, in this example, metal Li was used for the negative electrode in order to reflect the behavior of the electrode material itself in the data. 4 Ti 5 O 12 And the like. Further, a solid electrolyte may be used instead of the electrolytic solution and the separator.
[0041]
(Example 1)
LiCl, FeCl 2 And H 3 PO 4 Was dissolved in pure water so that the ratio of these substances was 1: 1: 1 and the concentration was 0.1 mol / kg, to obtain an aqueous solution A.
Next, 1000 g of this aqueous solution A and 2.4 g of acetylene black were mixed, and thereafter, the mixture was stirred with a stirrer for 2 hours to uniformly disperse acetylene black. Next, this dispersion was atomized using an ultrasonic atomizer, 2 The gas was introduced as a carrier gas into a heat treatment furnace at 700 ° C. to perform thermal decomposition. Thereafter, the pyrolyzate was recovered to obtain a spherical electrode material powder (A: secondary particles) having a particle size of 0.2 to 5 μm.
LiFePO of this electrode material powder (A) 4 The / C ratio was 80/12 by weight.
[0042]
(Example 2)
1000 g of the aqueous solution A of Example 1 and 5.7 g of sucrose were mixed to obtain a uniform aqueous solution B. Next, the aqueous solution B was atomized using an ultrasonic atomizer, 2 The gas was introduced as a carrier gas into a heat treatment furnace at 700 ° C. to perform thermal decomposition. Thereafter, the pyrolysis product was recovered to obtain a spherical electrode material powder (B: secondary particles) having a particle size of 0.2 to 5 μm.
Here, sucrose (C 12 H 22 O 11 ) Is regarded as 12C, this electrode material powder (B) LiFePO 4 The / C ratio was 80/12 by weight.
[0043]
(Comparative example)
An electrode material powder (C) was obtained in the same manner as in Example 1 except that carbon or sucrose as a carbon source was not added to the raw material solution.
[0044]
(Production of lithium ion battery)
92 mg of the obtained powder (A) and 8 mg of polytetrafluoroethylene (PTFE) as a binder were kneaded and rolled to obtain an electrode material mixture film (A). Similarly, 92 mg of the obtained powder (B) and 8 mg of polytetrafluoroethylene (PTFE) as a binder were kneaded and rolled to obtain an electrode material mixture film (B).
Further, 80 mg of the obtained powder (C), 12 mg of acetylene black as a conductive additive, and 8 mg of polytetrafluoroethylene (PTFE) as a binder were kneaded and rolled to obtain an electrode material mixture film (C).
[0045]
After pressing these films (A) to (C) on a stainless steel mesh current collector, the area is 2 cm. 2 And the positive electrodes of Examples 1, 2 and Comparative Example were punched out.
After vacuum drying the obtained positive electrode, batteries of Examples 1 and 2 and Comparative Example were produced using an HS standard cell (manufactured by Hosen Co., Ltd.) under a dry Ar atmosphere.
Metal Li for negative electrode, porous polypropylene membrane for separator, 1M LiPF for electrolyte 6 A solution (solvent: ethylene carbonate / diethyl carbonate = 1/1) was used.
[0046]
(Battery charge / discharge test)
A battery charge / discharge test was performed on the batteries of Examples 1 and 2 and the comparative example.
In the charge / discharge test, cutoff voltage: 3 to 4 V, current density: 0.5 mAcm -2 At a constant current of room temperature.
FIG. 2 shows the initial charge / discharge characteristics, and FIG. 3 shows the results of the charge / discharge cycle test. According to the result of the battery charge / discharge test, the current density was 0.5 mAcm -2 At a high output of about 150 mAhg -1 High initial capacity and excellent cycle characteristics.
[0047]
【The invention's effect】
According to the electrode material of the present invention, the formula Li x A y B z PO 4 (However, A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Secondary particles obtained by assembling a plurality of primary particles consisting of at least one selected from Sc, Y and rare earth elements, 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) In addition, since an electronic conductive substance is interposed between the primary particles, high discharge capacity, stable charge / discharge cycle performance, high filling property, high output, and the like can be realized.
In addition, since the elements to be used are inexpensive and abundant in resources, an inexpensive lithium ion battery can be provided.
[0048]
According to the lithium ion battery of the present invention, since a positive electrode using the electrode material of the present invention is provided, a lithium ion battery having high discharge capacity, stable charge / discharge cycle performance, high filling properties, high output, and the like is provided. can do.
[0049]
According to the method for manufacturing an electrode material of the present invention, Li, A (where A is at least one selected from Cr, Mn, Fe, Co, Ni, and Cu), and B (where B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, at least one element selected from rare earth elements), P, and an electronic conductive substance or an electronic conductive substance The solution or suspension containing the precursor is sprayed and heated, so that the reaction can be performed in the form of fine droplets, and secondary particles having an average particle size of 0.01 to 200 μm are generated. In addition, spherical particles can be formed.
In addition, by joining the primary particles with the electronic conductive material, secondary particles in which the electronic conductive material exists in a network between a plurality of primary particles can be easily produced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of an electrode material according to an embodiment of the present invention.
FIG. 2 is a diagram showing initial charge / discharge characteristics of Examples 1 and 2 of the present invention and a comparative example.
FIG. 3 is a diagram showing the results of a charge / discharge cycle test of Examples 1 and 2 of the present invention and a comparative example.
[Explanation of symbols]
1 Primary particles
2 Electronic conductive material layer
3 Secondary particles

Claims (7)

式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)からなる1次粒子を複数個集合して2次粒子とし、かつ、これら1次粒子間に電子導電性物質を介在させてなることを特徴とする電極材料。Formula Li x A y B z PO 4 (where A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, and B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al , Ga, In, Si, Ge, Sc, Y, at least one selected from rare earth elements, 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) Characterized in that a plurality of are aggregated to form secondary particles, and an electronic conductive substance is interposed between the primary particles. 前記電子導電性物質は、炭素であることを特徴とする請求項1記載の電極材料。The electrode material according to claim 1, wherein the electronic conductive substance is carbon. 前記2次粒子中の前記電子導電性物質の含有量は、0.1〜30重量%であることを特徴とする請求項1または2記載の電極材料。3. The electrode material according to claim 1, wherein the content of the electron conductive substance in the secondary particles is 0.1 to 30% by weight. 4. 請求項1、2または3記載の電極材料を用いた正電極を備えてなることを特徴とするリチウムイオン電池。A lithium-ion battery comprising a positive electrode using the electrode material according to claim 1. 式LiPO(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種、0≦x<2、0<y<1.5、0≦z<1.5)からなる1次粒子を複数個集合して2次粒子とし、かつ、これら1次粒子間に電子導電性物質を介在させてなる電極材料の製造方法であって、
Liと、A(但し、AはCr、Mn、Fe、Co、Ni、Cuから選択された少なくとも1種)と、B(但し、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素から選択された少なくとも1種)と、Pと、電子導電性物質または電子導電性物質の前駆体とを含む溶液または懸濁液を噴霧し、加熱することを特徴とする電極材料の製造方法。
Formula Li x A y B z PO 4 (where A is at least one selected from Cr, Mn, Fe, Co, Ni, Cu, and B is Mg, Ca, Sr, Ba, Ti, Zn, B, Al , Ga, In, Si, Ge, Sc, Y, at least one selected from rare earth elements, 0 ≦ x <2, 0 <y <1.5, 0 ≦ z <1.5) A method of producing an electrode material comprising:
Li, A (where A is at least one selected from Cr, Mn, Fe, Co, Ni and Cu), and B (where B is Mg, Ca, Sr, Ba, Ti, Zn, B, A solution or suspension containing at least one selected from the group consisting of Al, Ga, In, Si, Ge, Sc, Y, and a rare earth element), P, and an electronic conductive substance or a precursor of the electronic conductive substance. A method for producing an electrode material, which comprises spraying and heating.
前記電子導電性物質は、炭素単体であることを特徴とする請求項5記載の電極材料の製造方法。The method for manufacturing an electrode material according to claim 5, wherein the electron conductive substance is carbon alone. 前記電子導電性物質の前駆体は、有機化合物であることを特徴とする請求項5記載の電極材料の製造方法。The method according to claim 5, wherein the precursor of the electronic conductive substance is an organic compound.
JP2002167163A 2002-06-07 2002-06-07 Method for producing electrode material Expired - Fee Related JP4043852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167163A JP4043852B2 (en) 2002-06-07 2002-06-07 Method for producing electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167163A JP4043852B2 (en) 2002-06-07 2002-06-07 Method for producing electrode material

Publications (2)

Publication Number Publication Date
JP2004014340A true JP2004014340A (en) 2004-01-15
JP4043852B2 JP4043852B2 (en) 2008-02-06

Family

ID=30434493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167163A Expired - Fee Related JP4043852B2 (en) 2002-06-07 2002-06-07 Method for producing electrode material

Country Status (1)

Country Link
JP (1) JP4043852B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
JP2006032241A (en) * 2004-07-21 2006-02-02 Mitsui Mining Co Ltd Positive electrode material for lithium ion secondary cell, its manufacturing method, and lithium ion secondary cell
WO2008081944A1 (en) 2006-12-28 2008-07-10 Gs Yuasa Corporation Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
JP2009070666A (en) * 2007-09-12 2009-04-02 Univ Of Fukui Method for producing lithium iron phosphate powder for electrode
JP2009140876A (en) * 2007-12-10 2009-06-25 Sumitomo Osaka Cement Co Ltd Electrode material, method for manufacturing the same, electrode, and battery
WO2010026627A1 (en) 2008-09-03 2010-03-11 住友大阪セメント株式会社 Method for producing electrode material, electrode material, electrode, and battery
JP2012048890A (en) * 2010-08-25 2012-03-08 Ohara Inc All-solid type lithium ion battery
JP2012104290A (en) * 2010-11-08 2012-05-31 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
WO2013115013A1 (en) 2012-01-31 2013-08-08 住友大阪セメント株式会社 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP2013191516A (en) * 2012-03-15 2013-09-26 Sumitomo Osaka Cement Co Ltd Positive electrode material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN103493261A (en) * 2011-04-18 2014-01-01 日本碍子株式会社 Positive electrode active material for lithium secondary battery
JP2014007090A (en) * 2012-06-26 2014-01-16 Taiheiyo Cement Corp Method for producing secondary battery positive electrode active material
WO2014115670A1 (en) 2013-01-23 2014-07-31 東レ株式会社 Positive electrode active material/graphene composite particles, and positive electrode material for lithium ion battery
JP2015143189A (en) * 2015-04-23 2015-08-06 日亜化学工業株式会社 Olivine-type lithium transition metal oxide and manufacturing method therefor
JP2015176684A (en) * 2014-03-14 2015-10-05 太平洋セメント株式会社 Method for manufacturing olivine type silicate compound
US20160240856A1 (en) * 2013-10-02 2016-08-18 Umicore Carbon Coated Electrochemically Active Powder
US20170047581A1 (en) * 2014-02-11 2017-02-16 Batelle Memorial Institute Additives to enhance electrode wetting and performance and methods of making electrodes comprising the same
US9793544B2 (en) 2015-01-30 2017-10-17 Sumitomo Osaka Cement Co., Ltd. Method of manufacturing positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
US9966595B2 (en) 2016-03-28 2018-05-08 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery, electrode for lithium-ion secondary battery, and lithium-ion secondary battery
EP2430690B1 (en) * 2009-05-11 2019-11-06 Johnson Matthey PLC Composite material containing a mixed lithium-metal oxide
US10566622B2 (en) 2017-09-28 2020-02-18 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery and method for manufacturing the same, cathode for lithium-ion secondary battery, and lithium-ion secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396798B2 (en) 2008-09-30 2014-01-22 Tdk株式会社 Active material, positive electrode and lithium ion secondary battery using the same
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
WO2014115669A1 (en) 2013-01-23 2014-07-31 東レ株式会社 Positive electrode active material/graphene composite particles, positive electrode material for lithium ion cell, and method for manufacturing positive electrode active material/graphene composite particles
CA2911440C (en) * 2013-05-23 2021-08-24 Toray Industries, Inc. Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
CN109216801B (en) * 2018-08-17 2021-05-28 山东科技大学 A method for improving the capacity of 1.55V nano-sized lithium titanate battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
JP2006032241A (en) * 2004-07-21 2006-02-02 Mitsui Mining Co Ltd Positive electrode material for lithium ion secondary cell, its manufacturing method, and lithium ion secondary cell
US8771877B2 (en) 2006-12-28 2014-07-08 Gs Yuasa International Ltd. Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for producing the same
WO2008081944A1 (en) 2006-12-28 2008-07-10 Gs Yuasa Corporation Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
JP2009070666A (en) * 2007-09-12 2009-04-02 Univ Of Fukui Method for producing lithium iron phosphate powder for electrode
JP2009140876A (en) * 2007-12-10 2009-06-25 Sumitomo Osaka Cement Co Ltd Electrode material, method for manufacturing the same, electrode, and battery
US8658316B2 (en) 2007-12-10 2014-02-25 Sumitomo Osaka Cement Co., Ltd. Electrode material, method for producing the same, electrode and battery
US9391330B2 (en) 2007-12-10 2016-07-12 Sumitomo Osaka Cement Co., Ltd. Electrode material, method for producing the same, electrode and battery
WO2010026627A1 (en) 2008-09-03 2010-03-11 住友大阪セメント株式会社 Method for producing electrode material, electrode material, electrode, and battery
US8580155B2 (en) 2008-09-03 2013-11-12 Sumitomo Osaka Cement Co., Ltd. Method for producing electrode material, electrode material, electrode and battery
EP2343760A4 (en) * 2008-09-03 2012-11-14 Sumitomo Osaka Cement Co Ltd Method for producing electrode material, electrode material, electrode, and battery
EP2430690B1 (en) * 2009-05-11 2019-11-06 Johnson Matthey PLC Composite material containing a mixed lithium-metal oxide
JP2012048890A (en) * 2010-08-25 2012-03-08 Ohara Inc All-solid type lithium ion battery
JP2012104290A (en) * 2010-11-08 2012-05-31 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN103493261A (en) * 2011-04-18 2014-01-01 日本碍子株式会社 Positive electrode active material for lithium secondary battery
EP2701223A4 (en) * 2011-04-18 2014-10-08 Ngk Insulators Ltd Positive electrode active material for lithium secondary battery
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
US9748563B2 (en) 2012-01-31 2017-08-29 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode plate, lithium ion battery, manufacturing method for electrode material, and manufacturing method for electrode plate
WO2013115013A1 (en) 2012-01-31 2013-08-08 住友大阪セメント株式会社 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP2013191516A (en) * 2012-03-15 2013-09-26 Sumitomo Osaka Cement Co Ltd Positive electrode material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014007090A (en) * 2012-06-26 2014-01-16 Taiheiyo Cement Corp Method for producing secondary battery positive electrode active material
JPWO2014115670A1 (en) * 2013-01-23 2017-01-26 東レ株式会社 Positive electrode active material-graphene composite particles and positive electrode material for lithium ion battery
WO2014115670A1 (en) 2013-01-23 2014-07-31 東レ株式会社 Positive electrode active material/graphene composite particles, and positive electrode material for lithium ion battery
US20160240856A1 (en) * 2013-10-02 2016-08-18 Umicore Carbon Coated Electrochemically Active Powder
US20170047581A1 (en) * 2014-02-11 2017-02-16 Batelle Memorial Institute Additives to enhance electrode wetting and performance and methods of making electrodes comprising the same
JP2015176684A (en) * 2014-03-14 2015-10-05 太平洋セメント株式会社 Method for manufacturing olivine type silicate compound
US9793544B2 (en) 2015-01-30 2017-10-17 Sumitomo Osaka Cement Co., Ltd. Method of manufacturing positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015143189A (en) * 2015-04-23 2015-08-06 日亜化学工業株式会社 Olivine-type lithium transition metal oxide and manufacturing method therefor
US9966595B2 (en) 2016-03-28 2018-05-08 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery, electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US10566622B2 (en) 2017-09-28 2020-02-18 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery and method for manufacturing the same, cathode for lithium-ion secondary battery, and lithium-ion secondary battery

Also Published As

Publication number Publication date
JP4043852B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP4043852B2 (en) Method for producing electrode material
CN103270628B (en) Electrode material and manufacture method thereof
CA3034495C (en) Cathode material including agglomerated particles, electrode including the cathode material, and lithium ion secondary battery including the electrode
JP4522683B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JP2004265806A (en) Lithium metal composite oxide particle, manufacturing method thereof, electrode structure containing the composite oxide, manufacturing method of the electrode structure and lithium secondary battery having the electrode structure
JP2007250417A (en) Electrode material, its manufacturing method and lithium ion battery
KR20140101640A (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
CN101647139A (en) Positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
JP2001148248A (en) Manufacturing method of negative electrode material and a manufacturing method of secondary battery
JP6156537B1 (en) Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6960578B2 (en) Negative electrode material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP2007035358A (en) Positive electrode active material, method for producing the same, and lithium ion secondary battery
JP4536561B2 (en) Method for producing electrode material
CN102511095A (en) Manganese phosphates and related electrode active materials
JP2018163762A (en) Electrode material for lithium ion secondary battery, method for manufacturing the same, electrode for lithium ion secondary battery and lithium ion secondary battery
JP4252331B2 (en) Method for producing positive electrode active material for lithium ion battery
JP4043853B2 (en) Method for producing electrode material
JP2004296367A (en) Lithium metal phosphate compound particulate and its manufacturing method
JP5790745B2 (en) ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP6725022B1 (en) Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN100490221C (en) Composite doped modified lithium-ion battery anode material and its manufacture method
JP4522682B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JP2006261061A (en) Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material
JP2011071064A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
JP2002042812A (en) Positive active material for lithium secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees