JP2003520582A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2003520582A5 JP2003520582A5 JP2001548221A JP2001548221A JP2003520582A5 JP 2003520582 A5 JP2003520582 A5 JP 2003520582A5 JP 2001548221 A JP2001548221 A JP 2001548221A JP 2001548221 A JP2001548221 A JP 2001548221A JP 2003520582 A5 JP2003520582 A5 JP 2003520582A5
- Authority
- JP
- Japan
- Prior art keywords
- shows
- disc
- microfluidic
- microstructure
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 12
- 150000007523 nucleic acids Chemical class 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 238000001962 electrophoresis Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 230000001580 bacterial Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002523 gelfiltration Methods 0.000 description 3
- 230000002209 hydrophobic Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000012264 purified product Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 210000004027 cells Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000000717 retained Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 210000001736 Capillaries Anatomy 0.000 description 1
- 210000000170 Cell Membrane Anatomy 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 230000002934 lysing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Description
【特許請求の範囲】
【請求項1】 a)核酸テンプレート精製の段階:
b)サーモサイクリング反応の段階:および
c)段階b)の生成物の精製の段階
を含み、段階が微小流体ディスクで連続して行なわれることを特徴とする、一連の段階を行なう方法。
【請求項2】 微小流体ディスクを通した流体の流動をディスクの回転により行なうことができる、請求項1に記載の方法。
【請求項3】 核酸テンプレートがプラスミドである、請求項1または2に記載の方法。
【請求項4】 サーモサイクリング反応b)が核酸シークエンシング反応である、請求項1から3のいずれかに記載の方法。
【請求項5】 更に:
d)段階c)で得られた精製産物の分離の段階;
を含む、請求項4に記載の方法。
【請求項6】 段階a)を核酸テンプレートを微小流体ディスクに含まれる微小構造中の精製カラムを通過させることにより行なう、請求項1から5のいずれかに記載の方法。
【請求項7】 段階c)を微小流体ディスクに含まれる微小構造中のゲル濾過カラムを通過させることにより行なう、請求項1から6のいずれかに記載の方法。
【請求項8】 段階d)がシークエンシング反応の生産物の電気泳動的分離である、請求項5から7のいずれかに記載の方法。
【請求項9】 a)テンプレート核酸を含む細胞の培養を融解試薬で処理し、細胞質膜を融解させる;
b)段階a)の融解物を微小流体ディスクの微小構造に入れ、ここで各微小構造はテンプレート核酸を精製するための手段を含む第1チャンバー、サーモサイクリング反応のための手段を含む第2チャンバー、およびサーモサイクリング反応の生成物を精製するための手段を含む第3チャンバーを含む:そして
c)分析のために精製産物を回収する
ことを含む、テンプレート核酸における核酸シークエンシング反応を行なう方法。
【請求項10】 a)少なくとも一つの入口;接続先
b)テンプレート核酸を精製するための手段を含む第1チャンバー;接続先
c)サーモサイクリング反応のための手段を含む第2チャンバー;接続先
d)サーモサイクリング反応の産物を精製するための手段を含む第3チャンバー
を含むことを特徴とする、流体用の微小構造。
【請求項11】 更に:
e)第3チャンバーに接続した分離マトリックスを通した電位を適用するための手段を含む第4チャンバー
を含む、請求項10に記載の流体用の微小構造。
【請求項12】 テンプレート核酸のサーモサイクリング反応をを行なうための装置であり、微小流体ディスクを含み、該ディスクは請求項10または11に記載の流体用の複数の放射状に広がる微小構造を含む装置。
[Claims]
1. a) Step of nucleic acid template purification:
b) a step of thermocycling reaction: and c) a step of purifying the product of step b), characterized in that the steps are carried out successively on a microfluidic disk, wherein
2. The method according to claim 1, wherein the flow of the fluid through the microfluidic disc can be performed by rotation of the disc.
3. The method according to claim 1, wherein the nucleic acid template is a plasmid.
4. The method according to claim 1, wherein the thermocycling reaction b) is a nucleic acid sequencing reaction.
5. Further:
d) a step of separating the purified product obtained in step c);
5. The method of claim 4, comprising:
6. The method according to claim 1, wherein step a) is carried out by passing the nucleic acid template through a purification column in a microstructure contained in a microfluidic disk.
7. The method according to claim 1, wherein step c) is carried out by passing through a gel filtration column in a microstructure contained in a microfluidic disk.
8. The method according to claim 5, wherein step d) is an electrophoretic separation of the products of a sequencing reaction.
9. a) treating the culture of cells containing the template nucleic acid with a lysis reagent to melt the cytoplasmic membrane;
b) placing the melt of step a) in microstructures of a microfluidic disc, wherein each microstructure comprises a first chamber containing means for purifying the template nucleic acid, a second chamber containing means for a thermocycling reaction And a third chamber comprising means for purifying the product of the thermocycling reaction: and c) a method of performing a nucleic acid sequencing reaction on a template nucleic acid, comprising recovering the purified product for analysis.
10. a) at least one inlet; a destination b) a first chamber containing means for purifying the template nucleic acid; a destination c) a second chamber containing means for a thermocycling reaction; a destination d. A) microstructure for a fluid, characterized in that it comprises a third chamber containing means for purifying the product of the thermocycling reaction.
11. Further:
11. The microstructure for a fluid of claim 10 , comprising e) a fourth chamber including means for applying an electrical potential through a separation matrix connected to the third chamber.
12. An apparatus for performing a thermocycling reaction of a template nucleic acid, comprising a microfluidic disc, wherein the disc comprises a plurality of radially extending microstructures for a fluid according to claim 10 or 11. .
次いで、プラスミド質をアガロースゲル電気泳動を用いて評価し、その量を分光光度法により決定でき、両方の技術とも当業者によく知られている。水中にまたは次段階(すなわち、PCRまたはサイクルシークエンシングのような直接シークエンシング反応)に適合できる希釈緩衝液中にプラスミドを得ることが有利である。 Then, a plasmid quality was evaluated using agarose gel electrophoresis, the amount can be determined spectrophotometrically, both techniques well known to those skilled in the art. It is advantageous to obtain the plasmid in water or in a dilution buffer compatible with the next step (ie a direct sequencing reaction such as PCR or cycle sequencing).
マイクロマシンを用いるシリコン構造上でのカオトロープ存在下でのDNAの単離法が公開されている(Christel, L. A., K. Petersen, et al. (1999). “Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration.” J Biomech Eng 121(1):22-7)。米国特許第5,882,496号は、加熱反応チャンバー、電気泳動装置およびサーモニューマティック(thermopneumatic)センサー−アクチュエーター、化学前濃縮物、および濾過または制御流動装置の表面領域を増加させるための多孔性シリコン構造の製作および使用を記載している。特に、このような高表面領域または特異的孔サイズ多孔性シリコン構造は、小規模スケールでこのようなプロセスを使用する適用において、吸着、蒸発、脱着、縮合ならびに液体およびガスの流れを明白に増加させるために有用である。 A method for isolating DNA in the presence of a chaotrope on a silicon structure using a micromachine has been published (Christel, LA, K. Petersen, et al. (1999). “Rapid, automated nucleic acid probe assays using silicon microstructures”). for nucleic acid concentration. "J Biomech Eng 121 (1): 22-7). U.S. Patent No. 5,882,496 describes a heated reaction chamber, an electrophoresis device and a thermopneumatic sensor-actuator, a chemical pre-concentrate, and a porosity to increase the surface area of a filtration or controlled flow device. Describes the fabrication and use of silicon structures. In particular, such high surface areas or specific pore size porous silicon structures can significantly increase adsorption, evaporation, desorption, condensation and liquid and gas flow in applications using such processes on a small scale. Useful to let.
回転可能な、通常、プラスティックでできたディスクから形成されるマイクロチャネルに基づく微量分析システムは、しばしば、“遠心ローター”、“チップ上の試験(lab on a chip)”または“CDデバイス”としばしば呼ばれる。このようなディスクは、少量の流体の分析および分離の実行に使用できる。酵素アッセイを行なう目的でプラスティックディスクのチャネルを通して液体を移動させる原理は、例えば、Duffy, D. C., H. L. Gillis, et al. (1999). “Microfabricated centrifugal microfluidic systems: characterizatoin and multiple enzymatic assays.” Analytical Chemistry 71(20):4669-4678に記載されている。適当なプラスティックディスクの一つのタイプは、コンパクトディスクまたはCDと呼ばれるものである。 Microanalytical systems based on microchannels formed from rotatable, usually plastic discs, are often referred to as "centrifuge rotors", "lab on a chip" or "CD devices". Called. Such discs may be used to perform analysis and separation of small amounts of fluid. The principle of moving a liquid through the channels of a plastic disc for the purpose of performing an enzyme assay is described, for example, in Duffy, DC, HL Gillis, et al. (1999). “Microfabricated centrifugal microfluidic systems: characterizatoin and multiple enzymatic assays.” Analytical Chemistry 71 (20): 4669-4678. One type of suitable plastic disc is what is called a compact disc or CD.
本発明は、テンプレート単離、サイクルシークエンシングおよびCDデバイスへのクリーンアップの段階の統合のための装置、およびこの装置の使用法に関する。特に、本発明は多数のサンプルの取り扱いを可能にし、したがって、自動化を非常に単純化し、試薬の消費およびしたがって全費用を削減し、必要な装置のサイズを減少させる、一つの密閉デバイスに関する。今日まで、一つの封入された構造内で、クリーン・アップされたシークエンシング反応の獲得を介した、DNAテンプレート細菌コロニーの単離を可能にする類似の統合レベルの装置の報告はない。 The present invention relates to an apparatus for the integration of the steps of template isolation, cycle sequencing and cleanup into a CD device, and to the use of this apparatus. In particular, the present invention enables the handling of large numbers of samples, therefore, greatly simplifying the automation, consumption and thus reducing the overall cost of the reagents, makes reducing the size of required apparatus, and a sealing device. To date, there has been no report of a similar integrated level of equipment that allows the isolation of DNA-templated bacterial colonies via the acquisition of a cleaned-up sequencing reaction within one encapsulated structure.
第1の態様の好ましい実施態様において、微小流体ディスクを通した流体の流れを、ディスクの回転により行なうことができる。ディスクを約250rpm(低速)から15,000rpm(高速)の範囲の種々の速度で回転(または回転)できる。方法の任意の特定の段階でのディスクを通した流体の正確な流れを達成するために必要な実際の速度は:
−微小流体ディスク上における構造の位置(すなわち、構造がディスクの中心から遠いほど、構造がディスクの中心にああるのと同じ遠心力を達成するために必要なrpmが低い);
−液体が通過すべき構造の物理的寸法;
−液体の粘性;および
−構造における表面の化学的および物理的特性
を含む多くの因子に依存する。
In a preferred embodiment of the first aspect, the flow of the fluid through the microfluidic disc can be effected by rotation of the disc. The disc from about 250 rpm (low speed) ∎ You can at 15,000rpm rotated at various speeds in the range of (Fast) (or rotation). The actual speed required to achieve accurate flow of fluid through the disc at any particular stage of the method is:
The position of the structure on the microfluidic disk (ie, the further the structure is from the center of the disk, the lower the rpm required to achieve the same centrifugal force as the structure is at the center of the disk);
The physical dimensions of the structure through which the liquid must pass;
It depends on a number of factors, including the viscosity of the liquid; and the chemical and physical properties of the surface in the structure.
図面の簡単な説明
本発明を、添付の図面の手段により実施態様の非限定的例により説明し、ここで:
図1aは微小流体ディスクにおけるその配向を示す本発明の流体の微小構造のプランにおける模式図を示す(一部示す);
図1bは、本発明の流体のための一つの微小構造のプランの模式図を示す;
図1cは、図1bのマイクロチャネルの廃棄制御構造(34)の拡大図を示し、ここで、aは微小流体ディスクが低速で回転した場合の液体の経路を示し、bは微小流体ディスクが高速で回転した場合の液体の経路を示す;
図1dは、図1bに示す微小構造のサンプル調製マイクロチャンネル構造(すなわち、(13)−(22)の部分)と電気泳動構造((23)−(28)の部分)の間の領域(36)の拡大図を示す;
図1eは、微小流体ディスク上に配置された本発明の流体のための微小構造の別の態様を示す;
図2は本発明の微小流体ディスク上のウェルの二つの可能性能ある構造を示す。
BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described by way of non-limiting examples of embodiments by means of the accompanying drawings, in which:
FIG. 1a shows a schematic diagram (partially shown) of a fluid microstructure plan of the invention showing its orientation in a microfluidic disc;
FIG. 1b shows a schematic diagram of one microstructure plan for the fluid of the present invention;
FIG. 1c shows an enlarged view of the microchannel discard control structure (34) of FIG. 1b, where a shows the path of the liquid when the microfluidic disc rotates at a low speed and b shows the microfluidic disc at a high speed. Shows the path of the liquid when rotated at;
FIG. 1d shows the region (36) between the sample preparation microchannel structure of the microstructure shown in FIG. 1b (i.e., (13)-(22)) and the electrophoretic structure ((23)-(28)). ) Shows an enlarged view;
FIG. 1e shows another embodiment of a microstructure for a fluid of the invention disposed on a microfluidic disk;
FIG. 2 shows two possible configurations of a well on a microfluidic disk of the present invention.
疎水性ブレーキを、例えば、オーバーヘッドペン(パーマネント・インク)(Snowman pen, Japan)でマーキングすることにより、マイクロチャネル構造に導入できる。疎水性ブレーキの目的は、流体を望ましくない方向に誘導する毛管作用の防止である。疎水性ブレーキは、遠心力により、すなわち、ディスクを高速で回転させることにより打開できる。 Hydrophobic brake, for example, by marking with an overhead pen (permanent ink) (Snowman pen, Japan), can be introduced into the microphone Rochaneru structure. The purpose of the hydrophobic brake is to prevent capillary action, which directs fluid in undesirable directions. The hydrophobic brake can be broken by centrifugal force, that is, by rotating the disc at high speed.
図1aはまた微小流体ディスクの外側端(4)に向かって位置決めされたウェル(12)を示す。このウェルは、サンプルの入口(5)への添加の前にサンプル調製に使用できる。例えば、使用する核酸テンプレートが細菌コロニー由来である場合、細菌コロニーを最初に、例えば、ピペッティングロボットにより取りだし、固体液体培地の表面から、それを約10μlの等張液に懸濁させる。懸濁液をついで微小流体ディスクのウェル(12)に入れる。細菌細胞をついで微小流体ディスクを回転させることによりペレット化でき、上清を傾捨し得る。ペレットをついで溶液Iに再懸濁し、続いて回転し、溶液IIおよびIIIに連続して再懸濁する。沈殿ゲノムDNAおよびタンパク質を回転によりペレット化し、プラスミド含有上清をさらに処理する(下記参照)。 FIG. 1a also shows the well (12) positioned towards the outer edge (4) of the microfluidic disc. This well can be used for sample preparation before addition to the sample inlet (5). For example, if the nucleic acid template used is derived from a bacterial colony, the bacterial colony is first removed, for example, by a pipetting robot, and suspended from the surface of the solid liquid medium in about 10 μl of isotonic solution. The suspension is then placed in the wells (12) of a microfluidic disk. Bacterial cells can then be pelleted by spinning the microfluidic disc and the supernatant decanted. The pellet is then resuspended in solution I, followed by rotation and successive resuspension in solutions II and III. The precipitated genomic DNA and protein are pelleted by spinning, and the plasmid-containing supernatant is further processed (see below).
図1eの本発明の微小構造の他の実施態様において、チャンバー(23)−(25)、(27)および(28)として図1bに記載された電気泳動構造およびチャネル(26)が無い。この態様において、サーモサイクリング反応の精製産物(すなわち、チャンバー(16)からの溶出液)をウェル(29)に別の電気泳動デバイスへの移動のために保持する。この態様において、生成物は約サブマイクロリットル容量で得られ、これは更なる分析のための別の構造に移動するための液体(例えば、ホルムアミドまたは水)の添加により希釈できる。 In another embodiment of the inventive microstructure of FIG. 1e, the electrophoretic structures and channels (26) described in FIG. 1b as chambers (23)-(25), (27) and (28) are missing. In this embodiment, the purified product of the thermocycling reaction (ie, the eluate from chamber (16)) is retained in well (29) for transfer to another electrophoresis device. In this embodiment, the product is obtained in about a sub-microliter volume , which can be diluted by the addition of a liquid (eg, formamide or water) to transfer to another structure for further analysis.
13.反応混合物をサーモサイクリングチャンバーから、遠心力によりおよびゲル濾過チャンバーを通して排出する。ゲル濾過チャンバーは、微小構造中の深いおよび浅いセクションの間に捕捉された単分散(ふるった)Sephadex G-50 DNAグレードビーズを含む。非包含ターミネーターおよびまた塩が保持される。残りの配列ラダーは、最終“ピックアップ”ウェルに続き、必要な場合、より多くの水を添加し、液体取り扱いを助け、蒸発を減少させる。
14.クリーン・アップ反応物を、ピペッティングロボットによりピックアップウェルから取りだし、マイクロタイタープレートに入れ、MegaBACEによる更なる処理のために5−10μlに希釈する。
13. The reaction mixture is drained from the thermocycling chamber by centrifugal force and through a gel filtration chamber. The gel filtration chamber contains monodisperse (sieved) Sephadex G-50 DNA grade beads captured between deep and shallow sections in the microstructure. Non-inclusive terminators and also salts are retained. The remaining sequence ladder follows the final "pick-up" well, adding more water, if necessary, to aid liquid handling and reduce evaporation.
14. The clean-up reaction is removed from the pickup well by a pipetting robot, placed in a microtiter plate, and diluted to 5-10 μl for further processing by MegaBACE.
【図面の簡単な説明】
【図1a】 微小流体ディスクにおけるその配向を示す本発明の流体の微小構造のプランにおける模式図を示す(一部示す);
【図1b】 本発明の流体のための一つの微小構造のプランの模式図を示す;
【図1c】 図1bのマイクロチャネルの廃棄制御構造(34)の拡大図を示し、ここで、aは微小流体ディスクが低速で回転した場合の液体の経路を示し、bは微小流体ディスクが高速で回転した場合の液体の経路を示す;
【図1d】 図1bに示す微小構造のサンプル調製マイクロチャンネル構造(すなわち、(13)−(22)の部分)と電気泳動構造((23)−(28)の部分)の間の領域(36)の拡大図を示す;
【図1e】 微小流体ディスク上に配置された本発明の流体のための微小構造の別の態様を示す;
【図2】 本発明の微小流体ディスク上のウェルの二つの可能性能ある構造を示す。
[Brief description of the drawings]
FIG. 1a shows a schematic representation (partially shown) of a plan of the fluid microstructure of the invention showing its orientation in the microfluidic disc;
FIG. 1b shows a schematic diagram of one microstructure plan for the fluid of the present invention;
FIG. 1c shows an enlarged view of the microchannel discard control structure (34) of FIG. 1b, where a shows the path of the liquid when the microfluidic disc rotates at low speed and b shows the microfluidic disc at high speed. Shows the path of the liquid when rotated at;
FIG. 1d shows the region (36) between the sample preparation microchannel structure of the microstructure shown in FIG. 1b (ie, part (13)-(22)) and the electrophoretic structure (part (23)-(28)). ) Shows an enlarged view;
FIG. 1e illustrates another embodiment of a microstructure for a fluid of the present invention disposed on a microfluidic disk;
FIG. 2 shows two possible configurations of a well on a microfluidic disk of the present invention.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPPCT/EP99/10347 | 1999-12-23 | ||
PCT/EP1999/010347 WO2000040750A1 (en) | 1998-12-30 | 1999-12-23 | Method for sequencing dna using a microfluidic device |
EP99/10347 | 1999-12-23 | ||
GBGB0011425.6A GB0011425D0 (en) | 1999-12-23 | 2000-05-12 | Integrated microfluidic disc |
GB0011425.6 | 2000-05-12 | ||
PCT/EP2000/013014 WO2001047638A2 (en) | 1999-12-23 | 2000-12-20 | Integrated microfluidic disc |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003520582A JP2003520582A (en) | 2003-07-08 |
JP2003520582A5 true JP2003520582A5 (en) | 2007-12-20 |
JP4791670B2 JP4791670B2 (en) | 2011-10-12 |
Family
ID=26070393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001548221A Expired - Fee Related JP4791670B2 (en) | 1999-12-23 | 2000-12-20 | Integrated microfluidic disk |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4791670B2 (en) |
AT (1) | ATE329691T1 (en) |
AU (1) | AU3537001A (en) |
DE (1) | DE60028819T2 (en) |
WO (1) | WO2001047638A2 (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7014815B1 (en) | 1998-10-30 | 2006-03-21 | Burstein Technologies, Inc. | Trackable optical discs with concurrently readable nonoperational features |
EP1284818B1 (en) * | 2000-05-15 | 2006-11-22 | Tecan Trading AG | Bidirectional flow centrifugal microfluidic devices |
US7087203B2 (en) | 2000-11-17 | 2006-08-08 | Nagaoka & Co., Ltd. | Methods and apparatus for blood typing with optical bio-disc |
US7026131B2 (en) | 2000-11-17 | 2006-04-11 | Nagaoka & Co., Ltd. | Methods and apparatus for blood typing with optical bio-discs |
US7079468B2 (en) | 2000-12-08 | 2006-07-18 | Burstein Technologies, Inc. | Optical discs for measuring analytes |
US7054258B2 (en) | 2000-12-08 | 2006-05-30 | Nagaoka & Co., Ltd. | Optical disc assemblies for performing assays |
US7091034B2 (en) | 2000-12-15 | 2006-08-15 | Burstein Technologies, Inc. | Detection system for disk-based laboratory and improved optical bio-disc including same |
EP1384076B1 (en) | 2001-03-19 | 2012-07-25 | Gyros Patent Ab | Characterization of reaction variables |
US7429354B2 (en) | 2001-03-19 | 2008-09-30 | Gyros Patent Ab | Structural units that define fluidic functions |
US6726820B1 (en) | 2001-09-19 | 2004-04-27 | Applera Corporation | Method of separating biomolecule-containing samples with a microdevice with integrated memory |
US20080288178A1 (en) | 2001-08-24 | 2008-11-20 | Applera Corporation | Sequencing system with memory |
US6919058B2 (en) | 2001-08-28 | 2005-07-19 | Gyros Ab | Retaining microfluidic microcavity and other microfluidic structures |
EP2269736B1 (en) | 2001-08-28 | 2013-04-24 | Gyros Patent Ab | Retaining microfluidic microcavity and other microfluidic structures |
US7189368B2 (en) | 2001-09-17 | 2007-03-13 | Gyros Patent Ab | Functional unit enabling controlled flow in a microfluidic device |
US6532997B1 (en) * | 2001-12-28 | 2003-03-18 | 3M Innovative Properties Company | Sample processing device with integral electrophoresis channels |
WO2003059484A1 (en) * | 2001-12-28 | 2003-07-24 | Hitachi, Ltd. | Extractor, chemical analyzer, and chemical analyzing method |
JP4895504B2 (en) * | 2002-04-30 | 2012-03-14 | ユィロス・パテント・アクチボラグ | Centralized microfluidic device (EA) |
US7005265B1 (en) | 2002-06-20 | 2006-02-28 | Wenhong Fan | Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays |
JP2004354364A (en) * | 2002-12-02 | 2004-12-16 | Nec Corp | Fine particle manipulating unit, chip mounted with the same and detector, and method for separating, capturing and detecting protein |
US7390464B2 (en) | 2003-06-19 | 2008-06-24 | Burstein Technologies, Inc. | Fluidic circuits for sample preparation including bio-discs and methods relating thereto |
US7238269B2 (en) * | 2003-07-01 | 2007-07-03 | 3M Innovative Properties Company | Sample processing device with unvented channel |
US7776272B2 (en) | 2003-10-03 | 2010-08-17 | Gyros Patent Ab | Liquid router |
US7837947B2 (en) | 2003-12-12 | 2010-11-23 | 3M Innovative Properties Company | Sample mixing on a microfluidic device |
SE0400181D0 (en) * | 2004-01-29 | 2004-01-29 | Gyros Ab | Segmented porous and preloaded microscale devices |
US7187286B2 (en) | 2004-03-19 | 2007-03-06 | Applera Corporation | Methods and systems for using RFID in biological field |
TWI295730B (en) * | 2004-11-25 | 2008-04-11 | Ind Tech Res Inst | Microfluidic chip for sample assay and method thereof |
EP1874469A4 (en) | 2005-04-14 | 2014-02-26 | Gyros Patent Ab | MICROFLUIDIC DEVICE COMPRISING DIGITIFORM VALVES |
US10816563B2 (en) | 2005-05-25 | 2020-10-27 | Boehringer Ingelheim Vetmedica Gmbh | System for operating a system for the integrated and automated analysis of DNA or protein |
DK1883474T3 (en) | 2005-05-25 | 2021-06-21 | Boehringer Ingelheim Vetmedica Gmbh | SYSTEM FOR INTEGRATED AND AUTOMATED DNA OR PROTEIN ANALYSIS AND METHOD FOR OPERATING SUCH A SYSTEM |
WO2009079051A2 (en) * | 2007-09-19 | 2009-06-25 | Nanogen, Inc. | Counter-centrifugal force device |
US20130149710A1 (en) | 2010-09-07 | 2013-06-13 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Microdroplet-manipulation systems and methods for automated execution of molecular biological protocols |
US9993819B2 (en) | 2014-12-30 | 2018-06-12 | Stmicroelectronics S.R.L. | Apparatus for actuating and reading a centrifugal microfluidic disk for biological and biochemical analyses, and use of the apparatus |
US10953403B2 (en) | 2016-10-07 | 2021-03-23 | Boehringer Ingelheim Vetmedica Gmbh | Method and analysis system for testing a sample |
JP6963605B2 (en) | 2016-10-07 | 2021-11-10 | ベーリンガー インゲルハイム フェトメディカ ゲーエムベーハーBoehringer Ingelheim Vetmedica GmbH | Analytical devices and methods for inspecting samples |
WO2019152563A1 (en) | 2018-01-30 | 2019-08-08 | Life Technologies Corporation | Instruments, devices and consumables for use in a workflow of a smart molecular analysis system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585069A (en) * | 1994-11-10 | 1996-12-17 | David Sarnoff Research Center, Inc. | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
CA2236451A1 (en) * | 1995-11-03 | 1997-05-09 | Zygmunt M. Andrevski | Assay system and method for conducting assays |
DE69634490T2 (en) * | 1995-12-05 | 2006-03-02 | Tecan Trading Ag | APPARATUS AND METHOD FOR MOVING FLUIDS BY CENTRIFUGAL ACCELERATION IN AUTOMATIC LABORATORY TREATMENT |
CN1249816A (en) * | 1997-02-28 | 2000-04-05 | 伯斯坦恩实验室股份有限公司 | Labaratory in disk |
US6013513A (en) * | 1997-10-30 | 2000-01-11 | Motorola, Inc. | Molecular detection apparatus |
GB9828785D0 (en) * | 1998-12-30 | 1999-02-17 | Amersham Pharm Biotech Ab | Sequencing systems |
JP3623479B2 (en) * | 1999-06-22 | 2005-02-23 | テカン トレーディング アーゲー | Apparatus and method for performing miniaturized in vitro amplification assays |
-
2000
- 2000-12-20 JP JP2001548221A patent/JP4791670B2/en not_active Expired - Fee Related
- 2000-12-20 AU AU35370/01A patent/AU3537001A/en not_active Abandoned
- 2000-12-20 DE DE60028819T patent/DE60028819T2/en not_active Expired - Lifetime
- 2000-12-20 WO PCT/EP2000/013014 patent/WO2001047638A2/en active IP Right Grant
- 2000-12-20 AT AT00991793T patent/ATE329691T1/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003520582A5 (en) | ||
JP4791670B2 (en) | Integrated microfluidic disk | |
US6884395B2 (en) | Integrated microfluidic disc | |
US9644623B2 (en) | Fluid control structures in microfluidic devices | |
US6852851B1 (en) | DNA isolation method | |
Chen et al. | Continuous flow microfluidic device for cell separation, cell lysis and DNA purification | |
US7871827B2 (en) | Methods and devices for removal of organic molecules from biological mixtures using anion exchange | |
US7347976B2 (en) | Methods and devices for removal of organic molecules from biological mixtures using a hydrophilic solid support in a hydrophobic matrix | |
AU2011281183B2 (en) | Composite liquid cells | |
US20170144157A1 (en) | Nucleic Acid Purification | |
Zhang et al. | An all-in-one microfluidic device for parallel DNA extraction and gene analysis | |
CA2554452A1 (en) | A diagnostic system for carrying out a nucleic acid sequence amplification and detection process | |
WO2009125067A1 (en) | Microfluidic chip devices and their use | |
CN101613660B (en) | Methods and devices for detection and analysis of pathogens | |
Hu et al. | Rapid isolation of cfDNA from large-volume whole blood on a centrifugal microfluidic chip based on immiscible phase filtration | |
WO2018067955A1 (en) | Integration of porous monolithic structures within microfluidic systems | |
US20060057581A1 (en) | Microfabricated fluidic device for fragmentation | |
WO2014065758A1 (en) | A method of isolating nucleic acids in an aqueous sample using microfluidic device | |
Yobas et al. | Nucleic acid extraction, amplification, and detection on Si-based microfluidic platforms | |
Malic et al. | Current state of intellectual property in microfluidic nucleic acid analysis | |
EP1242186B1 (en) | Method for processing a nucleic acid template using an integrated microfluidic disc | |
Verma et al. | Micro/nanofluidic devices for DNA/RNA detection and separation | |
Mohamed et al. | Development and characterization of on-chip biopolymer membranes | |
AYI et al. | FRONTIERS IN HUMAN GENETICS | |
Chen et al. | Integrated Microfluidic Chips for Whole Blood Pretreatment |