JP2003340795A - Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser display - Google Patents
Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser displayInfo
- Publication number
- JP2003340795A JP2003340795A JP2002144981A JP2002144981A JP2003340795A JP 2003340795 A JP2003340795 A JP 2003340795A JP 2002144981 A JP2002144981 A JP 2002144981A JP 2002144981 A JP2002144981 A JP 2002144981A JP 2003340795 A JP2003340795 A JP 2003340795A
- Authority
- JP
- Japan
- Prior art keywords
- side electrode
- substrate
- supporting portion
- height
- mems element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00642—Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
- B81C1/0065—Mechanical properties
- B81C1/00666—Treatments for controlling internal stress or strain in MEMS structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/04—Optical MEMS
- B81B2201/047—Optical MEMS not provided for in B81B2201/042 - B81B2201/045
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/05—Type of movement
- B81B2203/053—Translation according to an axis perpendicular to the substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0161—Controlling physical properties of the material
- B81C2201/0163—Controlling internal stress of deposited layers
- B81C2201/0169—Controlling internal stress of deposited layers by post-annealing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、静電駆動型のME
MS素子とその製造方法、光学MEMS素子、光変調素
子、GLVデバイス、及びレーザディスプレイに関す
る。TECHNICAL FIELD The present invention relates to an electrostatic drive type ME.
The present invention relates to an MS element and its manufacturing method, an optical MEMS element, a light modulation element, a GLV device, and a laser display.
【0002】[0002]
【従来の技術】微細技術の進展に伴い、いわゆるマイク
ロマシン(MEMS:Micro Electro M
echanical Systems、超小型電気的・
機械的複合体)素子、及びMEMS素子を組み込んだ小
型機器が、注目されている。MEMS素子は、シリコン
基板、ガラス基板等の基板上に微細構造体として形成さ
れ、機械的駆動力を出力する駆動体と、駆動体を制御す
る半導体集積回路等とを電気的に、更に機械的に結合さ
せた素子である。MEMS素子の基本的な特徴は、機械
的構造として構成されている駆動体が素子の一部に組み
込まれていることであって、駆動体の駆動は、電極間の
クローン引力などを応用して電気的に行われる。2. Description of the Related Art With the progress of fine technology, a so-called micro machine (MEMS: Micro Electro M) has been developed.
electrical Systems, ultra-small electrical
Attention has been focused on small devices incorporating mechanical composite devices and MEMS devices. The MEMS element is formed as a fine structure on a substrate such as a silicon substrate or a glass substrate, and electrically and mechanically connects a driving body that outputs a mechanical driving force and a semiconductor integrated circuit that controls the driving body. Is a device that is coupled to. A basic feature of the MEMS device is that a driving body configured as a mechanical structure is incorporated in a part of the device, and the driving body is driven by applying a clonal attractive force between electrodes. It is done electrically.
【0003】図16は、所謂両持ち梁方式の静電駆動型
のMEMSデバイスの概念構成を示す。このMEMS素
子は1は、基板2と、基板2上に形成した基板側電極3
と、基板側電極に対向して平行に配置された駆動側電極
4を有するビーム6と、このビーム6の両端を支持する
支持部7とを備えて成る。ビーム6と基板側電極3と
は、その間の空隙8によって電気的に絶縁されている。
基板2は、例えば、図示するシリコン(Si)やガリウ
ム砒素(GaAs)などの半導体基板9上に絶縁膜10
を形成した基板や、ガラス基板のような絶縁性基板など
の所要基板が用いられる。基板側電極3は、不純物をド
ーピングした多結晶シリコン膜、金属膜(例えばタング
ステン(W)蒸着膜)などで形成される。基板側電極3
を含む基板2上の全面に絶縁膜11が形成され、この絶
縁膜11に対向してビーム6が配置される。ビーム6
は、例えばシリコン窒化膜(SiN膜)等の絶縁膜5
と、その上面に形成された膜厚100nm程度の例えば
Al膜からなる駆動側電極4とから構成される。FIG. 16 shows a conceptual structure of a so-called double-supported beam type electrostatically driven MEMS device. The MEMS device 1 includes a substrate 2 and a substrate-side electrode 3 formed on the substrate 2.
And a beam 6 having a driving-side electrode 4 arranged in parallel to face the substrate-side electrode, and a supporting portion 7 for supporting both ends of the beam 6. The beam 6 and the substrate-side electrode 3 are electrically insulated by the gap 8 therebetween.
The substrate 2 is composed of, for example, a semiconductor substrate 9 such as silicon (Si) or gallium arsenide (GaAs) shown in FIG.
A required substrate such as a substrate on which is formed or an insulating substrate such as a glass substrate is used. The substrate-side electrode 3 is formed of a polycrystalline silicon film doped with impurities, a metal film (for example, a tungsten (W) vapor deposition film), or the like. Substrate side electrode 3
An insulating film 11 is formed on the entire surface of the substrate 2 including, and the beam 6 is arranged so as to face the insulating film 11. Beam 6
Is an insulating film 5 such as a silicon nitride film (SiN film).
And a drive-side electrode 4 formed on the upper surface thereof, for example, an Al film having a film thickness of about 100 nm.
【0004】図19は、かかるMEMS素子1の製造工
程を示す。先ず、図19Aに示すように、基板、例えば
半導体基板9の表面上に絶縁膜10を形成した基板を用
意し、この基板2上に導電膜を堆積しパターニングして
基板側電極3を形成し、次いで全面に絶縁膜11を堆積
する。次に、図19Bに示すように、犠牲層となる例え
ば多結晶シリコン膜を堆積しパターニングして多結晶シ
リコン膜による犠牲層12を形成する。このパターニン
グによって、後述するビームの支持部を形成すべき部分
には開口13〔13A,13B〕が形成される。次に、
図19Cに示すように、犠牲層12上及び開口13〔1
3A,13B〕内に臨む基板2上にわたって絶縁膜、例
えばシリコン窒化膜5と駆動側電極となる例えばAl膜
を積層し、所定のビーム形状にパターニングする。次
に、図19Dに示す最終段階で、犠牲層12を選択的に
除去し、MEMS駆動部分であるビーム6を形成する。
ビーム6は、SiN膜5とAl膜による駆動電極4から
なる2層膜構造で形成され、空隙8を挟んで基板2に対
向して配されると共に、その両端がビーム6に連続して
一体に形成された同じ2層膜構造による支持部7〔7
A,7B〕にて支持される。犠牲層12の材料は、基板
側電極3、絶縁膜11や、ビーム6とのエッチング選択
性が高いものが選択され、犠牲層12の除去に際してH
F蒸気や、XeF2ガス等によりガスエッチングするこ
とが有効である。犠牲層12を酸化膜で形成し、希フッ
酸溶液によりウェットエッチングする方法も採用され
る。このようにして、両持ち梁方式の静電駆動型のME
MS素子1を得る。FIG. 19 shows a manufacturing process of the MEMS element 1. First, as shown in FIG. 19A, a substrate, for example, a substrate in which an insulating film 10 is formed on the surface of a semiconductor substrate 9 is prepared, and a conductive film is deposited on this substrate 2 and patterned to form a substrate-side electrode 3. Then, the insulating film 11 is deposited on the entire surface. Next, as shown in FIG. 19B, for example, a polycrystalline silicon film to be a sacrificial layer is deposited and patterned to form a sacrificial layer 12 of the polycrystalline silicon film. By this patterning, openings 13 [13A, 13B] are formed in the portions where the beam supporting portions to be described later are to be formed. next,
As shown in FIG. 19C, the sacrificial layer 12 and the opening 13 [1
3A, 13B], an insulating film, for example, a silicon nitride film 5 and an Al film, which serves as a driving side electrode, are stacked over the substrate 2 and patterned into a predetermined beam shape. Next, in the final step shown in FIG. 19D, the sacrificial layer 12 is selectively removed to form the beam 6 that is the MEMS driving portion.
The beam 6 is formed in a two-layer film structure composed of a drive electrode 4 made of a SiN film 5 and an Al film, and is arranged so as to face the substrate 2 with a gap 8 in between, and both ends of the beam 6 are continuous and integrated with the beam 6. The supporting portion 7 [7 having the same two-layer film structure formed on the
A, 7B]. As the material of the sacrificial layer 12, a material having a high etching selectivity with respect to the substrate-side electrode 3, the insulating film 11 and the beam 6 is selected.
Gas etching with F vapor or XeF 2 gas is effective. A method of forming the sacrificial layer 12 with an oxide film and performing wet etching with a dilute hydrofluoric acid solution is also used. In this way, the both end beam type electrostatically driven ME
The MS element 1 is obtained.
【0005】このような両持ち梁形態のMEMSデバイ
スにおいて、機械特性を決定するのは、振動板であるビ
ーム6の物理的な大きさにより決定される。ビーム6の
幅、厚さは、プロセスで決定されるが、支持部7A及び
7B間の間隔などは、構造に起因する重要な因子であ
る。In such a double-supported beam type MEMS device, the mechanical characteristics are determined by the physical size of the beam 6, which is a diaphragm. The width and thickness of the beam 6 are determined by the process, and the distance between the supporting portions 7A and 7B is an important factor due to the structure.
【0006】このMEMS素子1では、基板側電極3と
駆動側電極4に与える電位に応じて、ビーム6が基板側
電極3との間の静電引力又は静電反発により変位し、例
えばビーム6が基板側電極3に対して平行状態と凹み状
態に変位する。In the MEMS element 1, the beam 6 is displaced by electrostatic attraction or electrostatic repulsion between the substrate-side electrode 3 and the driving-side electrode 4, depending on the potential applied to the substrate-side electrode 3 and the driving-side electrode 4. Are displaced into a parallel state and a concave state with respect to the substrate side electrode 3.
【0007】MEMS素子1は、駆動側電極4を光反射
膜として表面に光が照射されたとき、ビーム6の駆動位
置に応じて、その光の反射方向が異なることを利用し一
方向の反射光を検出してスイッチ機能を持たせた、光ス
イッチとして適用できる。また、MEMS素子1は、光
強度を変調させる光変調素子として適用できる。光の反
射を利用するときは、ビーム6を振動させて単位時間当
たりの一方向の反射量で光強度を変調する。この光変調
素子は、いわゆる時間変調である。光の回折を利用する
ときは、共通の基板側電極3に対して複数のビームを並
列配置して光変調素子を構成し、共通の基板側電極3に
対する例えば1つ置きのビームの近接、離間の動作によ
り、光反射膜を兼ねる駆動側電極4の高さを変化させ、
光の回折によって駆動側電極4で反射する光の強度を変
調する。この光変調素子は、いわゆる空間変調である。The MEMS element 1 reflects in one direction by utilizing the fact that when the surface of the driving electrode 4 is used as a light reflecting film to irradiate the surface with light, the reflecting direction of the light varies depending on the driving position of the beam 6. It can be applied as an optical switch that detects light and has a switch function. Further, the MEMS element 1 can be applied as a light modulation element that modulates the light intensity. When utilizing the reflection of light, the beam 6 is vibrated to modulate the light intensity by the amount of reflection in one direction per unit time. This light modulation element is what is called time modulation. When utilizing the diffraction of light, a plurality of beams are arranged in parallel with respect to the common substrate side electrode 3 to form a light modulation element, and for example, every other beam is approached or separated from the common substrate side electrode 3. Changes the height of the driving side electrode 4 which also functions as a light reflecting film,
The intensity of light reflected by the driving-side electrode 4 is modulated by the diffraction of light. This light modulation element is what is called spatial modulation.
【0008】図20は、SLM(シリコンライトマシー
ン)社がレーザディスプレイ用光強度変換素子、つまり
光変換器として開発したGLV(Grating Li
ght Valve)デバイスの構成を示す。GLVデ
バイス21は、図20Aに示すように、ガラス基板等の
絶縁基板22上にタングステン、チタンなどの高融点金
属およびそれらの窒化膜、またはポリシリコン薄膜によ
る共通の基板側電極23が形成され、この基板側電極2
3に交叉して両持ち梁構造の6つのビーム26〔2
61 、262 、263 、264 、265 、266 〕が並
列配置されてなる。基板側電極23及びビーム26の構
成は、図20Bに示すように、例えばSiN膜によるブ
リッジ部材25の基板側電極23と平衡する面上に膜厚
100nm程度のAl膜による反射膜兼駆動側電極24
が形成されてなる。ブリッジ部材25と、その上に設け
られた反射膜兼駆動側電極24とからなるビーム26
は、リボンと通称されている部位である。FIG. 20 shows a GLV (Grating Lig) developed by SLM (Silicon Light Machine) as a light intensity conversion element for a laser display, that is, a light converter.
ght Valve) The structure of a device is shown. In the GLV device 21, as shown in FIG. 20A, a common substrate-side electrode 23 made of a refractory metal such as tungsten or titanium and a nitride film thereof or a polysilicon thin film is formed on an insulating substrate 22 such as a glass substrate. This substrate side electrode 2
6 beams 26 [2
6 1 , 26 2 , 26 3 , 26 4 , 26 5 , 26 6 ] are arranged in parallel. As shown in FIG. 20B, the configuration of the substrate-side electrode 23 and the beam 26 is, for example, a reflective film / driving-side electrode made of an Al film having a film thickness of about 100 nm on the surface of the bridge member 25 made of SiN film in equilibrium with the substrate-side electrode 23. 24
Are formed. A beam 26 including a bridge member 25 and a reflecting film / driving side electrode 24 provided thereon.
Is a part commonly called a ribbon.
【0009】GLVデバイス21では、基板側電極23
と反射膜兼駆動側電極24との間に微小電圧を印加する
と、前述した静電現象によってビーム26が基板側電極
23に向かって近接し、また電圧の印加を停止すると離
間して元の状態に戻る。そして、基板側電極23に対す
る複数のビーム26の近接、離間の動作(即ち、1つ置
きのビームの近接、離間の動作)により、反射膜兼駆動
側電極24の高さを交互に変化させ、光の回折によって
(6つのビーム26全体に対して1つの光スポットが照
射される)、駆動側電極24で反射する光の強度を変調
することができる。In the GLV device 21, the substrate side electrode 23
When a minute voltage is applied between the substrate and the reflecting film / driving side electrode 24, the beam 26 approaches the substrate side electrode 23 due to the electrostatic phenomenon described above, and when the voltage application is stopped, the beam 26 separates from the original state. Return to. Then, the height of the reflective film / driving side electrode 24 is alternately changed by the operation of approaching and separating the plurality of beams 26 with respect to the substrate side electrode 23 (that is, the operation of approaching and spacing apart every other beam), The intensity of the light reflected by the driving-side electrode 24 can be modulated by diffracting the light (one light spot is irradiated on the entire six beams 26).
【0010】[0010]
【発明が解決しようとする課題】ところで、上述した両
持ち梁方式のMEMS素子では、駆動するビーム6の残
留応力の緩和がしばしば問題となることが指摘される。
図16の構造のMEMS素子1を用いて説明する。犠牲
層12を除去する前までは、犠牲層12を含めた多層構
造となっており、各膜の間の力学平衡のみにより振動体
であるビーム6の形状が支配されている。例えば、Al
/SiNの2層膜構造のビーム6の場合、図17に示す
ように、犠牲層12の除去後に支持部(いわゆる支柱)
7A及び7B間でビーム6が上向きの円弧を描くように
変形する(実線図示)傾向をもつことが知られている。
また、この状態(犠牲層12の除去された状態)で、ア
ニールを施すと。今度は下向きに円弧を描くように反る
(破線図示)ことが容易に理解できる。By the way, it is pointed out that relaxation of residual stress of the driving beam 6 is often a problem in the above-mentioned double-supported beam type MEMS element.
Description will be given using the MEMS element 1 having the structure of FIG. Before the sacrificial layer 12 is removed, the structure has a multi-layer structure including the sacrificial layer 12, and the shape of the beam 6, which is a vibrating body, is governed only by the mechanical equilibrium between the films. For example, Al
In the case of the beam 6 having a two-layer structure of / SiN, as shown in FIG. 17, after the sacrifice layer 12 is removed, the supporting portion (so-called support)
It is known that the beam 6 between 7A and 7B has a tendency to be deformed so as to draw an upward arc (illustrated by a solid line).
Further, in this state (state in which the sacrificial layer 12 is removed), annealing is performed. This time, it is easy to understand that it is curved so as to draw a downward arc (illustrated by a broken line).
【0011】しかるに、このようなビームの反りは、M
EMSデバイスでは支持部において全てを吸収すること
になる。そこで、両持ち梁方式のMEMS素子において
は、しばしば図18に示すように、ビーム6の両端の夫
々に支柱15を2つずつ(計4つ)形成し、MEMS素
子にとって重要となる、ビーム6の相対位置を固定する
ことが行われている。ここで、外側の支柱15Aをアン
カー、内側の支柱15Bをポスト、等と名づけることも
ある。However, such a beam warp is M
In the EMS device, the support part absorbs everything. Therefore, in a double-supported beam type MEMS element, as shown in FIG. 18, often two columns 15 (four in total) are formed at each end of the beam 6, which is important for the MEMS element. The relative position of is fixed. Here, the outer strut 15A may be named an anchor, the inner strut 15B may be named a post, and the like.
【0012】しかしながら、このような内部歪みを蓄積
したMEMS素子は、高信頼性をもって使用することが
困難である。例えば、複数のビームを有する場合の各ビ
ーム形状が均一にならず、性能的に劣ってしまう。ま
た、図17に示すように、支持部7〔7A,7B〕での
応力局所集中により、形状歪みや、著しい場合は支持部
7近傍にクラックなどの破壊が進行することがある。However, it is difficult to use the MEMS element having such accumulated internal strain with high reliability. For example, in the case of having a plurality of beams, each beam shape is not uniform, resulting in poor performance. Further, as shown in FIG. 17, due to the local concentration of stress in the supporting portions 7 [7A, 7B], shape distortion and, if significant, fracture such as cracks may progress in the vicinity of the supporting portions 7.
【0013】本発明は、上述の点に鑑み、ビームの平坦
化、またビーム形状の安定化、均一化を図った静電駆動
型MEMS素子とその製造方法、光学MEMS素子、光
変調素子、GLVデバイス、及びレーザディスプレイを
提供するものである。In view of the above points, the present invention provides an electrostatically driven MEMS device for flattening a beam, stabilizing and uniformizing a beam shape, a method for manufacturing the same, an optical MEMS device, a light modulator, and a GLV. A device and a laser display are provided.
【0014】[0014]
【課題を解決するための手段】本発明に係る静電駆動型
MEMS素子は、基板側電極と、基板側電極に対向して
配置され、駆動側電極を有して両端部分が支持されたビ
ームとを備え、ビームの両端部分に夫々少なくとも2つ
の支持部を有し、この支持部のうち、内側に位置する支
持部の高さが外側に位置する支持部の高さより低く設定
された構成とする。ビームは、駆動側電極と基板側電極
との間に働く静電引力又は静電反発力により駆動するも
のである。ビームに関しては、以下同様である。SUMMARY OF THE INVENTION An electrostatic drive type MEMS element according to the present invention is a beam which is arranged to face a substrate side electrode and a substrate side electrode, and which has a drive side electrode and is supported at both ends. And at least two supporting portions respectively at both end portions of the beam, of which the height of the supporting portion located inside is set lower than the height of the supporting portion located outside. To do. The beam is driven by an electrostatic attractive force or electrostatic repulsive force that acts between the driving side electrode and the substrate side electrode. The same applies to the beam.
【0015】本発明の静電駆動型MEMS素子では、初
期状態(いわゆる仮完成の状態)のときに、ビームが外
側の支持部だけに支持され内側の支持部には支持されて
いないので、ビームは外側の支持部との間で歪みが緩和
される。その後の、例えば素子性能の均一化等を目的と
した熱処理工程を経ても、ビームそのものに残留応力等
が発生することがない。ビームの歪みが緩和された状態
で、ビームを1回目の駆動で内側の支持部に接合又は当
接することにより、ビームが平坦化され、或いはビーム
形状の安定化、均一化が図れる。In the electrostatic drive type MEMS element of the present invention, in the initial state (so-called provisionally completed state), the beam is supported only by the outer support portion and not by the inner support portion. The strain is relaxed between the outer support and the outer support. Residual stress or the like does not occur in the beam itself even after the subsequent heat treatment process for the purpose of, for example, uniforming the element performance. The beam is flattened, or the beam shape is stabilized and made uniform by joining or abutting the beam to the inner supporting portion by the first driving in a state where the distortion of the beam is relaxed.
【0016】本発明に係る静電駆動型MEMS素子の製
造方法は、基板側電極を形成した基板上に、互いに相対
向して夫々外側の支持部とこの外側の支持部より高さが
低い内側の支持部を形成する工程と、支持部を埋め込み
且つ外側の支持部の表面が臨むように犠牲層を形成する
工程と、犠牲層上に前記外側の支持部の表面に接合する
ように駆動側電極を有するビームを形成する工程と、犠
牲層を除去し、基板側電極とビームとの間に空隙を形成
すると共に、ビームが内側の支持部と接触しない状態を
形成する工程とを有する。また、本発明に係る静電駆動
型MEMS素子の製造方法は、基板側電極を形成した基
板上に互いに相対向する内側の支持部を形成する工程
と、基板上に、内側の支持部を埋込み且つ該両内側の支
持部の外側まで延長し、内側の支持部の高さより厚い膜
厚の犠牲層を形成する工程と、犠牲層の上面及び側面、
さらに基板上に延長して同一の材料層を形成し、該材料
層をパターニングして駆動側電極を有するビームとこの
ビームに連続した外側の支持部とを形成する工程と、犠
牲層を除去し、基板側電極とビームとの間の空間を形成
する共に、ビームが内側の支持部と接触しない状態を形
成する工程とを有する。In the method of manufacturing an electrostatic drive type MEMS device according to the present invention, an outer support portion and an inner support portion having a height lower than that of the outer support portion are provided on a substrate having a substrate-side electrode and face each other. The step of forming the supporting part, the step of forming the sacrificial layer so that the supporting part is embedded and the surface of the outer supporting part faces, and the driving side so as to be bonded to the surface of the outer supporting part on the sacrificial layer. The method includes a step of forming a beam having electrodes, a step of removing the sacrificial layer, forming a gap between the substrate-side electrode and the beam, and forming a state in which the beam does not come into contact with the inner supporting portion. Further, the method of manufacturing an electrostatic drive type MEMS device according to the present invention includes a step of forming inner supporting portions facing each other on a substrate on which a substrate-side electrode is formed, and embedding the inner supporting portion on the substrate. And a step of forming a sacrificial layer having a thickness greater than the height of the inner supporting portion by extending to the outside of the inner supporting portions, and the upper and side surfaces of the sacrificial layer,
Further, a step of extending the same material layer on the substrate, patterning the material layer to form a beam having a driving side electrode and an outer supporting portion continuous to the beam, and removing the sacrificial layer Forming a space between the substrate-side electrode and the beam, and forming a state in which the beam does not contact the inner supporting portion.
【0017】本発明の静電駆動型MEMS素子の製造方
法によれば、ビームが平坦化され、或いはビーム形状が
安定化、均一化されたMEMS素子を製造することがで
きる。According to the method of manufacturing an electrostatic drive type MEMS element of the present invention, it is possible to manufacture a MEMS element in which the beam is flattened or the beam shape is stabilized and uniformed.
【0018】本発明に係る光学MEMS素子は、基板側
電極と、基板側電極に対向して配置され、駆動側電極を
有して両端部分が支持されたビームとを備え、ビームの
両端部分に夫々少なくとも2つの支持部を有し、この支
持部のうち、内側に位置する支持部の高さが外側に位置
する支持部の高さより低く設定された構成とする。An optical MEMS element according to the present invention comprises a substrate-side electrode and a beam which is arranged so as to face the substrate-side electrode and which has a driving-side electrode and whose both ends are supported. Each has at least two supporting portions, and the height of the supporting portion located inside of the supporting portions is set lower than the height of the supporting portion located outside of the supporting portion.
【0019】本発明の光学MEMS素子では、初期状態
(いわゆる仮完成の状態)のときに、ビームが外側の支
持部だけに支持され内側の支持部には支持されていなの
で、上述と同様に、ビームは外側の支持部との間で歪み
が緩和され、その後の熱処理工程を経てもビームに残留
応力が発生しない。その後、ビームの1回目の駆動でビ
ームが内側の支持部に接合又は当接することにより、ビ
ームが平坦化され、或いはビーム形状の安定化、均一化
が図られ、光学MEMS素子の信頼性が向上する。In the optical MEMS element of the present invention, in the initial state (so-called temporary completed state), the beam is supported only by the outer supporting portion and is supported by the inner supporting portion, so that the same as above. The distortion of the beam is relaxed between the beam and the outer supporting portion, and no residual stress is generated in the beam even after the subsequent heat treatment process. After that, when the beam is first driven, the beam is joined to or abutted on the inner supporting portion, so that the beam is flattened, or the beam shape is stabilized and uniformed, and the reliability of the optical MEMS element is improved. To do.
【0020】本発明に係る光変調素子は、基板側電極
と、基板側電極に対向して配置され、駆動側電極を有し
て両端部分が支持されたビームとを備え、ビームの両端
部分に夫々少なくとも2つの支持部を有し、この支持部
のうち、内側に位置する支持部の高さが外側に位置する
支持部の高さより低く設定された構成とする。An optical modulator according to the present invention comprises a substrate-side electrode and a beam which is arranged so as to face the substrate-side electrode and which has a driving-side electrode and whose both ends are supported. Each has at least two supporting portions, and the height of the supporting portion located inside of the supporting portions is set lower than the height of the supporting portion located outside of the supporting portion.
【0021】本発明の光変調素子では、初期状態(いわ
ゆる仮完成の状態)のときに、ビームが外側の支持部だ
けに支持され内側の支持部には支持されていなので、上
述と同様に、ビームは外側の支持部との間で歪みが緩和
され、その後の熱処理工程を経てもビームに残留応力が
発生しない。その後、ビームの1回目の駆動でビームが
内側の支持部に接合又は当接することにより、ビームが
平坦化され、或いはビーム形状の安定化、均一化が図ら
れる。従って、光変調素子の信頼性が向上する。In the light modulating element of the present invention, in the initial state (so-called provisionally completed state), the beam is supported only by the outer supporting portion and is supported by the inner supporting portion. The distortion of the beam is relaxed between the beam and the outer supporting portion, and no residual stress is generated in the beam even after the subsequent heat treatment process. After that, the beam is flattened or the shape of the beam is stabilized and made uniform by joining or abutting the beam to the inner supporting portion by the first driving of the beam. Therefore, the reliability of the light modulation element is improved.
【0022】本発明に係るGLVデバイスは、共通の基
板側電極と、共通の基板側電極に対向して相互に独立に
並列配置され、反射膜兼駆動側電極を有して両端部分が
支持された複数のビームとを備え、各ビームの両端部分
に夫々少なくとも2つの支持部を有し、この支持部のう
ち、内側に位置する支持部の高さが外側に位置する支持
部の高さより低く設定された構成とする。In the GLV device according to the present invention, a common substrate-side electrode and a common substrate-side electrode are arranged in parallel independently of each other and have a reflective film and a driving-side electrode and both end portions are supported. A plurality of beams, each of which has at least two supporting portions at both end portions, and the height of the supporting portion located inside is lower than the height of the supporting portion located outside. Use the set configuration.
【0023】本発明のGLVデバイスでは、初期状態
(いわゆる仮完成の状態)のときに、ビームが外側の支
持部だけに支持され内側の支持部には支持されていなの
で、上述と同様に、ビームは外側の支持部との間で歪み
が緩和され、その後の熱処理工程を経てもビームに残留
応力が発生しない。その後、ビームの1回目の駆動でビ
ームが内側の支持部に接合又は当接することにより、ビ
ームが平坦化され、或いはビーム形状の安定化、均一化
され、ダークレベルの均一性が向上し、GLVデバイス
の信頼性が向上する。In the GLV device of the present invention, in the initial state (so-called provisionally completed state), the beam is supported only by the outer support portion and by the inner support portion. The strain is relaxed between the outer supporting portion and the outer supporting portion, and no residual stress is generated in the beam even after the subsequent heat treatment process. After that, when the beam is first driven, the beam is joined to or abuts on the inner supporting portion, so that the beam is flattened, or the beam shape is stabilized and uniformed, and the uniformity of the dark level is improved. Improves device reliability.
【0024】本発明に係るレーザディスプレイは、レー
ザ光源と、このレーザ光源から出射されたレーザ光の光
軸上に配置され、レーザ光の光強度を変調するGLVデ
バイスとを有するレーザディスプレイであって、GLV
デバイスが、共通の基板側電極と、共通の基板側電極に
対向して相互に独立に並列配置され、反射膜兼駆動側電
極を有して両端部分が支持された複数のビームとを備
え、各ビームの両端部分に夫々少なくとも2つの支持部
を有し、この支持部のうち、内側に位置する支持部の高
さが外側に位置する支持部の高さより低く設定された構
成とする。A laser display according to the present invention is a laser display having a laser light source and a GLV device arranged on the optical axis of the laser light emitted from the laser light source and modulating the light intensity of the laser light. , GLV
The device includes a common substrate-side electrode, and a plurality of beams that are arranged in parallel independently of each other so as to face the common substrate-side electrode, have a reflecting film and a driving-side electrode, and are supported at both ends thereof. At least two support portions are provided at both end portions of each beam, and the height of the support portion located on the inner side of the support portions is set lower than the height of the support portion located on the outer side.
【0025】本発明のレーザディスプレイでは、レーザ
光の光強度を変調するGLVデバイスにおいて、初期状
態(いわゆる仮完成の状態)のときに、ビームが外側の
支持部だけに支持され内側の支持部には支持されていな
ので、上述と同様に、ビームは外側の支持部との間で歪
みが緩和され、その後の熱処理工程を経てもビームに残
留応力が発生せず、その後、ビームの1回目の駆動でビ
ームが内側の支持部に接合又は当接し、ビーム画平坦化
され、或いはビーム形状の安定化、均一化され、ダーク
レベルの均一性が向上する。従って、レーザディスプレ
イの信頼性が向上する。In the laser display of the present invention, in the GLV device for modulating the light intensity of the laser beam, in the initial state (so-called temporary completion state), the beam is supported only on the outer supporting portion and on the inner supporting portion. As described above, the beam is strain-relieved between itself and the outer supporting portion, and no residual stress is generated in the beam even after the subsequent heat treatment process. The beam joins or abuts the inner supporting portion to flatten the beam image or stabilize and uniformize the beam shape, thereby improving the uniformity of the dark level. Therefore, the reliability of the laser display is improved.
【0026】[0026]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0027】図1は、本発明に係る静電駆動型MEMS
素子の代表的な一実施の形態を示す。本実施の形態に係
るMEMS素子31は、基板32上に基板側電極33を
形成し、この基板側電極33を含む基板32上の全面に
絶縁膜34を形成し、この絶縁膜34上に基板側電極3
3を挟んで互いに対向するように対をなした複数の支持
部35〔35A,35B,35C,35D〕を形成し、
基板側電極33に空隙50を介して対向するように両端
部分を支持部35に支持された静電駆動型のビーム36
を配置して構成される。FIG. 1 shows an electrostatically driven MEMS according to the present invention.
1 illustrates a representative embodiment of a device. The MEMS element 31 according to the present embodiment has a substrate-side electrode 33 formed on a substrate 32, an insulating film 34 formed on the entire surface of the substrate 32 including the substrate-side electrode 33, and a substrate on the insulating film 34. Side electrode 3
A plurality of supporting portions 35 [35A, 35B, 35C, 35D] are formed so as to be opposed to each other with 3 in between,
An electrostatically driven beam 36 having both end portions supported by a support portion 35 so as to face the substrate-side electrode 33 via a gap 50.
It is configured by arranging.
【0028】本実施の形態では、特に、支持部35のう
ち、外側に位置する支持部(支柱:アンカーという)3
5Aと35Dを高く形成し、内側に位置する支持部(支
柱:ポストという)35Bと35Cを、外側の支持部3
5A,35Dの高さt2 に比較して低い高さt1 となる
ように形成し、初期状態、すなわち仮完成の状態におい
て、ビーム36の両端部分が外側の支持部35Aと35
Dにて支持され、内側の支持部35Bと35Cにはビー
ム36が接触しないように構成される。ビーム36は、
いわゆる両持ち梁式に構成される。なお、MEMS素子
31の駆動を制御する半導体集積回路等は、同一基板3
2上に組み込まれていても、電気的に接続されたICチ
ップ上に搭載されていてもよい。In the present embodiment, in particular, of the support portions 35, the support portions (posts: anchors) 3 located on the outer side.
5A and 35D are formed to be high, and support portions (posts called posts) 35B and 35C located inside are formed on the outside support portion 3
5A and 35D are formed to have a height t 1 lower than the height t 2 , and in the initial state, that is, in the temporarily completed state, both end portions of the beam 36 have outer support portions 35A and 35A.
The beam 36 is supported by D and is configured so that the beam 36 does not contact the inner supporting portions 35B and 35C. Beam 36
It is configured as a so-called double-supported beam type. The semiconductor integrated circuit or the like for controlling the driving of the MEMS element 31 is the same substrate 3
2 may be incorporated, or it may be mounted on an IC chip electrically connected.
【0029】基板32は、シリコン(Si)やガリウム
砒素(GaAs)などの半導体基板上に絶縁膜を形成し
た基板、ガラス基板のような絶縁性基板等の所要の基板
が用いられる。本例では、シリコン単結晶基板39上に
シリコン酸化膜(SiO2 膜)40を形成した基板32
を用いた。基板側電極33は、不純物ドーピングした多
結晶シリコン膜、金属(例えばタングステン(W)蒸着
膜)等で形成される。基板側電極33を覆う絶縁膜34
は、例えばシリコン酸化膜(SiO2 膜)で形成され
る。ビーム36は、例えばシリコン窒化膜(SiN
膜)、シリコン酸化膜(SiO 2 膜)等の絶縁膜、本例
では弾性定数などの物性値がビームの機械的駆動に対し
て適切なシリコン窒化膜38と、その上の駆動側電極3
7との積層膜で形成される。駆動側電極38としては、
Ag膜、アルミニウムAlを主成分とするAl膜、或い
はチタンTi,タングステンW,モリブデンMo,タン
タルTa等のいずれかの高融点金属、等を用いることが
できる。本例では膜厚100nm程度の例えばAl膜か
らなる駆動側電極37が用いられる。The substrate 32 is made of silicon (Si) or gallium.
Form an insulating film on a semiconductor substrate such as arsenic (GaAs)
Required substrate such as insulating substrate such as transparent substrate and glass substrate
Is used. In this example, on the silicon single crystal substrate 39
Silicon oxide film (SiO2Substrate 32 on which film 40 is formed
Was used. The substrate-side electrode 33 is made of impurities
Crystal silicon film, metal (eg tungsten (W) deposition)
Film) or the like. Insulating film 34 covering the substrate-side electrode 33
Is, for example, a silicon oxide film (SiO2Formed)
It The beam 36 is, for example, a silicon nitride film (SiN
Film), silicon oxide film (SiO 2Insulating film such as film), this example
Then, the physical properties such as elastic constants are
Appropriate silicon nitride film 38 and the driving side electrode 3 thereon
7 and a laminated film. As the driving side electrode 38,
Ag film, Al film mainly composed of aluminum Al, or
Is titanium Ti, tungsten W, molybdenum Mo, tan
It is possible to use any refractory metal such as Tal Ta.
it can. In this example, it is an Al film having a film thickness of about 100 nm.
The driving side electrode 37 is used.
【0030】支持部35は、例えば表面を酸化したポリ
シリコン膜、或いはシリコン窒化膜、シリコン酸化膜等
の適切な絶縁膜等で形成することができる。支持部35
は、上から見た形状がビーム36の接合、ないしは当接
によってビーム36が歪みを生じさせるような極端な形
状でなければ、例えば丸形、矩形、その他の形状でも良
い。The supporting portion 35 can be formed of, for example, a polysilicon film whose surface is oxidized, or an appropriate insulating film such as a silicon nitride film or a silicon oxide film. Support part 35
The shape may be, for example, a round shape, a rectangular shape, or any other shape as long as the shape viewed from above is not an extreme shape in which the beam 36 is distorted by the joining or abutting of the beam 36.
【0031】図3〜図6は、上述の静電駆動形MEMS
素子31の製造方法の一実施の形態を示す。先ず、図3
Aに示すように、所要の基板、本例ではシリコン単結晶
基板39上にシリコン酸化膜(SiO2 膜)40を形成
した基板32を用意し、このシリコン酸化膜40上にフ
ォトリソグラフィー技術を用いて例えば不純物ドーピン
グした多結晶シリコン膜、金属等による基板側電極33
を形成する。次いで、基板側電極33を含む基板32の
全面上に所要の膜厚の絶縁膜、本例ではシリコン酸化膜
(SiO2 膜)34を形成し、このシリコン酸化膜34
上に基板側電極33の両端外側に対応する位置に互いに
相対向して1対の第1の支持部、即ち内側の支柱(いわ
ゆるポスト)35B及び35Cの形状に対応する材料層
を形成する。本例では材料層として多結晶シリコン膜4
2を用い、フォトリソグラフィー技術を用いて支柱35
B及び35Cの形状にパターニングし、支柱形状の多結
晶シリコン膜42を形成する。3 to 6 show the above electrostatically driven MEMS.
An embodiment of a method for manufacturing the element 31 will be described. First, FIG.
As shown in A, a substrate 32 in which a silicon oxide film (SiO 2 film) 40 is formed on a required substrate, in this example, a silicon single crystal substrate 39, is prepared, and a photolithography technique is used on the silicon oxide film 40. Substrate-side electrode 33 made of, for example, an impurity-doped polycrystalline silicon film or metal
To form. Next, an insulating film having a desired film thickness, in this example, a silicon oxide film (SiO 2 film) 34 is formed on the entire surface of the substrate 32 including the substrate-side electrode 33.
On the upper side, material layers corresponding to the shape of a pair of first supporting portions, that is, inner pillars (so-called posts) 35B and 35C are formed at positions corresponding to the outer sides of both ends of the substrate-side electrode 33 so as to face each other. In this example, the polycrystalline silicon film 4 is used as the material layer.
2, using the photolithography technique, the support 35
Patterning is performed in the shapes of B and 35C to form a pillar-shaped polycrystalline silicon film 42.
【0032】次に、図3Bに示すように、支柱形状の多
結晶シリコン膜42の表面を熱酸化し、最終的に多結晶
シリコン膜42に表面酸化膜43を有した高さt1 の支
柱35B及び35Cを形成する。Next, as shown in FIG. 3B, the surface of the pillar-shaped polycrystalline silicon film 42 is thermally oxidized, and finally the pillar having a height t 1 having the surface oxide film 43 on the polycrystalline silicon film 42. 35B and 35C are formed.
【0033】次に、図4Cに示すように、第2の支持
部、即ち内側の支柱35B及び35Cの高さt1 より高
い外側の支柱(いわゆるアンカー)となるべき材料層を
堆積する。本例では材料層として、内側の支柱35B及
び35Cの高さt1 より厚い所要の膜厚の多結晶シリコ
ン膜44を堆積する。Next, as shown in FIG. 4C, a material layer to be the second support portion, that is, an outer pillar (so-called anchor) higher than the height t 1 of the inner pillars 35B and 35C is deposited. In this example, as the material layer, a polycrystalline silicon film 44 having a required film thickness thicker than the height t 1 of the inner pillars 35B and 35C is deposited.
【0034】次に、図4Dに示すように、多結晶シリコ
ン膜44をフォトリソグラフィー技術を用いて外側の支
柱35A及び35Dの形状にパターニングし、内側の支
柱35B及び35Cの外側に夫々支柱形状の多結晶シリ
コン膜44を形成する。次いで、支柱形状の多結晶シリ
コン膜44の表面を熱酸化し、最終的に多結晶シリコン
膜44に表面酸化膜45を有してなり、内側の支柱35
B及び35Cの高さt 1 よりも高い、高さt2 (t2 >
t1 )の支柱35A及び35Dを形成する。Next, as shown in FIG. 4D, polycrystalline silicon
The film 44 is supported on the outer side by using photolithography technology.
Pattern the pillars 35A and 35D into the shape of the inner support
The pillar-shaped polycrystalline silicon is provided outside the pillars 35B and 35C, respectively.
The con film 44 is formed. Next, the pillar-shaped polycrystalline silicon
The surface of the con film 44 is thermally oxidized and finally polycrystalline silicon
The film 44 has a surface oxide film 45, and the inner column 35
Height t of B and 35C 1Higher than, height t2(T2>
t1) Support columns 35A and 35D are formed.
【0035】次に、図5Eに示すように、内側及び外側
の支柱35B,35C及び35A,35Dを埋め込むよ
うに全面に、その後に除去される犠牲層47を堆積した
後、エッチバックして、又はCMP(Chemical
Mechanical Polish:化学機研磨)
して犠牲層47をその表面が外側の支柱35A及び35
Dの表面と同一面となるように平坦化する。次いで、外
側の支柱35A及び35Dの表面に接合するように犠牲
層47の表面上にビームとなる材料層を堆積し、この材
料層をビーム形状にパターニングしてビーム36を形成
する。本例では材料層としてシリコン窒化膜(SiN
膜)38とその上のAl膜37とからなる2層膜を堆積
し、パターニングしてAl膜37を駆動側電極とする静
電駆動型のビーム36を形成する。犠牲層47の材料
は、基板側電極33や、ビーム36とのエッチング選択
性の高いものが選択され、本例では上述のように多結晶
シリコン膜を使用している。Next, as shown in FIG. 5E, a sacrificial layer 47 to be subsequently removed is deposited on the entire surface so as to fill the inner and outer columns 35B, 35C and 35A, 35D, and then etched back. Or CMP (Chemical
Mechanical Polish: Chemical mechanical polishing)
Then, the sacrificial layer 47 is attached to the pillars 35A and
It is flattened so that it is flush with the surface of D. Then, a material layer to be a beam is deposited on the surface of the sacrificial layer 47 so as to be bonded to the surfaces of the outer columns 35A and 35D, and this material layer is patterned into a beam shape to form the beam 36. In this example, a silicon nitride film (SiN
A two-layer film consisting of a film 38 and an Al film 37 thereon is deposited and patterned to form an electrostatically driven beam 36 using the Al film 37 as a driving side electrode. The material of the sacrificial layer 47 is selected to have high etching selectivity with respect to the substrate-side electrode 33 and the beam 36. In this example, the polycrystalline silicon film is used as described above.
【0036】次に、図5Fに示すように、犠牲層47を
選択的に除去する。本例では犠牲層47として多結晶シ
リコン膜を使用しているので、フッ酸(HF)蒸気や、
XeF2 ガスなどのよりガスエッチングすることが有効
である。なお、犠牲層47として、例えばシリコン酸化
膜を使用するような場合には、希フッ酸溶液によりウェ
ットエッチングする方法も採用される。この犠牲層47
の選択除去は、図6の平面図及び図7の断面図で示すよ
うに、例えばビーム36が複数配列するように形成され
るとき、その隣り合うビーム36の間の隙間48からエ
ッチングガス49或いはエッチング液が導入されてエッ
チング除去される。なお、図5Fは図6のAーA線上の
断面図に相当し、図7は図6のBーB線上の断面に相当
する。このようにして、仮完成のMEMS素子31を得
る。即ち、基板側電極33と空隙50を介して対向する
ように配置された、駆動側電極37を有するビーム36
の両端が外側の支柱35A及び35Dに接合され、内側
の支柱35B及び35Cにはビーム36が接触しない状
態とした、目的の仮完成のMEMS素子31が得られ
る。Next, as shown in FIG. 5F, the sacrificial layer 47 is selectively removed. In this example, since the polycrystalline silicon film is used as the sacrificial layer 47, hydrofluoric acid (HF) vapor,
Gas etching is more effective than XeF 2 gas. When a silicon oxide film is used as the sacrificial layer 47, a method of wet etching with a dilute hydrofluoric acid solution is also used. This sacrificial layer 47
As shown in the plan view of FIG. 6 and the cross-sectional view of FIG. 7, for example, when the beams 36 are formed so as to be arranged in plural, the etching gas 49 or the etching gas 49 from the gap 48 between the adjacent beams 36 or An etching solution is introduced and removed by etching. 5F corresponds to the cross-sectional view taken along the line AA of FIG. 6, and FIG. 7 corresponds to the cross-sectional view taken along the line BB of FIG. In this way, the temporarily completed MEMS element 31 is obtained. That is, the beam 36 having the driving-side electrode 37, which is arranged so as to face the substrate-side electrode 33 via the gap 50.
Both ends of the column are joined to the outer columns 35A and 35D, and the beam 36 does not contact the inner columns 35B and 35C.
【0037】上述の本実施の形態にかかる仮完成をした
MEMS素子31において、そのビーム36は、外側の
支柱35A及び35Dとの間で、歪みが緩和されてい
る。例えば、素子特性の均一化などの目的でエージング
などの熱処理工程を経ることとなっても、現在接合して
いる外側の支柱35A及び35Dとの間で、構造緩和が
行われ、振動板となるビーム36そのものに残留応力等
が発生することがない。このMEMS素子31の使用を
開始する際には、第1回目の電場を基板側電極33とビ
ーム36の駆動側電極37間に印加する。ビーム36は
クーロン力で下方に引き寄せられるが、このとき、ビー
ム36が内側の支柱35B及び35Cに当接する。この
ときの電場をαとする。ビーム36が内側の支柱35B
及び35Dに当接した状態でビーム36を振動させるた
めの振動電場Xが基板側電極33と駆動側電極37間に
印加される。ビーム36は、内側の支柱35B及び35
Cの当接面を基準に振動することになる。In the temporarily completed MEMS element 31 according to this embodiment described above, the beam 36 has its strain relaxed between the outer columns 35A and 35D. For example, even if a heat treatment process such as aging is performed for the purpose of making the element characteristics uniform, the structure is relaxed between the outer columns 35A and 35D that are currently joined to form a vibration plate. Residual stress or the like does not occur in the beam 36 itself. When the use of the MEMS element 31 is started, the first electric field is applied between the substrate side electrode 33 and the driving side electrode 37 of the beam 36. The beam 36 is pulled downward by the Coulomb force, but at this time, the beam 36 comes into contact with the inner columns 35B and 35C. Let the electric field at this time be α. Beam 36 with inner support 35B
And 35D, an oscillating electric field X for vibrating the beam 36 is applied between the substrate-side electrode 33 and the driving-side electrode 37. Beam 36 includes inner struts 35B and 35
It vibrates on the basis of the contact surface of C.
【0038】本実施の形態に係るMEMS素子31は、
2通りの使用方法がある。1つ目の使用方法は、第1回
目の電場αを印加してビーム36を内側の支柱35B及
び35Cに当接することにより、ビーム36と内側の支
柱35B及び35Cが接合し、以後、電場αをオフして
も(いわゆる素子31の停止時)、ビーム36と内側の
支柱35B及び35Cとが離れず、接合状態が維持され
続ける場合である。つまり、MEMS素子31は、ビー
ム36が内側の支柱35B及び35Cに接合した図2の
形態を維持した状態で使用される。このように、第1回
目の電場αでビーム36と内側の支柱35B及び35C
を接合させるには、両者の界面状態をコントロールし、
例えば互いの当接面を鏡面にすれば、当接した後は分子
間力で接合し離れ難くなる。2つ目の使用方法は、ビー
ム36を内側の支柱35B及び35Cに接合させず、電
場αの印加でビーム36を支柱35B及び35Cに当接
し、電場αをオフしたとき、ビーム36が支柱35B及
び35Cより離間して図1の状態に戻る場合である。ビ
ーム36を、使用時に支柱35B及び35Cに当接さ
せ、非使用時に支柱35B及び35Cより離間させるに
は、両者の界面状態をコントロールし、例えば一方ある
いは両方の当接面を粗い面にすれば離れ易くなる。The MEMS element 31 according to the present embodiment is
There are two ways to use it. The first method of use is to apply the first electric field α to bring the beam 36 into contact with the inner columns 35B and 35C, thereby joining the beam 36 and the inner columns 35B and 35C. This is a case where the beam 36 and the inner columns 35B and 35C are not separated from each other even when the switch is turned off (when the so-called element 31 is stopped), and the bonded state is continuously maintained. That is, the MEMS element 31 is used in a state in which the beam 36 is maintained in the form of FIG. 2 in which the beam 36 is joined to the inner columns 35B and 35C. In this way, the beam 36 and the inner columns 35B and 35C are subjected to the first electric field α.
In order to join the
For example, if the abutting surfaces of the two are mirror-finished, it becomes difficult for them to be separated by the intermolecular force after the abutting. The second usage is that the beam 36 is not joined to the inner columns 35B and 35C, but the beam 36 is brought into contact with the columns 35B and 35C by the application of the electric field α and the electric field α is turned off. And 35C and the case of returning to the state of FIG. In order to bring the beam 36 into contact with the struts 35B and 35C when in use and separate it from the struts 35B and 35C when not in use, the interface state between them should be controlled, for example, by making one or both abutting surfaces rough. It becomes easy to separate.
【0039】MEMS素子31を動作する場合には、上
記両使用方法で駆動電場が異なる。非使用状態(停止
時)において図1の構成を採るMEMS素子31の場
合、ビーム36の駆動側電極37と基板側電極33間
に、駆動電圧X+α(X>0)を印加して駆動する。当
接電圧αによりビーム36が支柱35B及び35Cに当
接し、振動電圧Xにより支柱35B及び35Cの当接面
を基準に基板側電極33側へのビーム36が振動する。
一方、非使用状態(停止時)において図2の構成を採る
MEMS素子31の場合、ビーム36の駆動側電極37
と基板側電極33との間に、駆動電圧(いわゆる振動電
圧)Xを印加して駆動する。この場合、Xの値の選び方
は、基板側電極33方向への引力だけでなく、斥力が作
用するような極性に設定することもできるようになる。When the MEMS element 31 is operated, the driving electric field is different depending on the above two usage methods. In the non-use state (at the time of stop), the MEMS element 31 having the configuration of FIG. 1 is driven by applying the drive voltage X + α (X> 0) between the drive side electrode 37 of the beam 36 and the substrate side electrode 33. The contact voltage α causes the beam 36 to contact the columns 35B and 35C, and the vibration voltage X causes the beam 36 to vibrate toward the substrate-side electrode 33 with reference to the contact surfaces of the columns 35B and 35C.
On the other hand, in the case of the MEMS element 31 having the configuration of FIG. 2 in the non-use state (at the time of stop), the drive side electrode 37 of the beam 36.
A driving voltage (so-called vibration voltage) X is applied between the substrate and the substrate-side electrode 33 for driving. In this case, the value of X can be selected not only by the attractive force toward the substrate-side electrode 33 but also by the polarity such that the repulsive force acts.
【0040】上述の本実施の形態に係るMEMS素子3
1によれば、仮完成の状態でビーム36が内側の支柱3
5B及び35Cに接合、もしくは当接せず、使用状態で
ビーム36を内側の支柱35B及び35Cに接合、もし
くは当接させる構成であるので、ビーム36が内側の支
柱35B及び35Cに接していない状態のとき、ビーム
36の加工時の歪みが緩和され、使用時の内側の支柱3
5B及び35Cに接合、もしくは当接した状態でビーム
36は、平らになる。つまり、ビーム36が図1の状態
で自由に歪んだ後、支柱35B及び35Cに接合、もし
くは当接するので、ビーム36は歪みが緩和された状態
で内側の支柱35B,35Cに支持される。本実施の形
態では、複数のビーム36が配置されている場合に、各
ビーム36のビーム形状を均一にすることができる。M
EMS素子31においては、ビーム36の残留応力によ
る素子特性の劣化を回避することができ、より信頼性の
高い静電駆動型のMEMS素子を提供することができ
る。The MEMS element 3 according to the above-mentioned present embodiment
According to 1, the beam 36 has the inner support column 3 in the temporarily completed state.
5B and 35C are not joined or abutted, and the beam 36 is joined or abutted to the inner columns 35B and 35C in a use state. Therefore, the beam 36 is not in contact with the inner columns 35B and 35C. At this time, the distortion of the beam 36 during processing is relaxed, and the inner support column 3 during use
The beam 36 is flattened when it is joined to or abutted on 5B and 35C. That is, after the beam 36 is freely distorted in the state shown in FIG. 1, the beam 36 is joined to or abuts on the support columns 35B and 35C, so that the beam 36 is supported by the inner support columns 35B and 35C in a state where the distortion is relaxed. In the present embodiment, when a plurality of beams 36 are arranged, the beam shape of each beam 36 can be made uniform. M
In the EMS element 31, it is possible to avoid deterioration of element characteristics due to residual stress of the beam 36, and it is possible to provide a more reliable electrostatic drive type MEMS element.
【0041】MEMS素子においては、ビームと支持部
の界面に揺らぎが存在する。ビームと支持部面の高さの
均一性は、製造工程で決定され、成膜工程での膜厚均一
性や加工ばらつき、さらには、結晶グレインの分布な
ど、多数のパラメータで揺らぎ量が決められる。支柱構
造の場合、そのビームと接続する上部と基板と接続する
下部の2か所に揺らぎの要因を有している。ビームと支
持部の界面に存在していた揺らぎパラメータの数を減ら
すことで、揺らぎ要因を減らすことが出来る。上述の本
実施の形態では、歪みが緩和されたビームを内側の支柱
に接合又は当接すう構成であるので、ビームの振動基準
位置(つまり内側の支柱との界面)に存在していた揺ら
ぎが著しく低減され、つまり揺らぎが均一になり、ME
MS素子の特性が向上する。In the MEMS element, fluctuations exist at the interface between the beam and the supporting portion. The uniformity of the height of the beam and the supporting surface is determined in the manufacturing process, and the fluctuation amount is determined by a number of parameters such as film thickness uniformity and processing variation in the film forming process, and the distribution of crystal grains. . In the case of a pillar structure, there are fluctuation factors at two places, an upper part connected to the beam and a lower part connected to the substrate. By reducing the number of fluctuation parameters existing at the interface between the beam and the supporting portion, the fluctuation factor can be reduced. In the above-described present embodiment, since the beam whose strain has been relaxed is joined or abutted to the inner column, the fluctuation existing at the vibration reference position of the beam (that is, the interface with the inner column) is eliminated. Significantly reduced, that is, the fluctuation is uniform, and ME
The characteristics of the MS element are improved.
【0042】上述のように、機械的な振動を利用するM
EMS素子において、ビームとそれを支持する支柱との
間などに、製造工程に依存する構造歪みが残留すること
は、素子性能の観点で非常に問題である。本実施の形態
では、犠牲層の除去工程を経て、ビームが機械的に開放
された後に、ビームと支柱の相対位置を加工精度の範囲
内で固定することができる。具体的には、従来のバルク
体の状態で行っていたビームと支柱との接合を本実施の
形態では犠牲層を除去した後に行っている。これによっ
て、上述した効果が得られる。尚、ビームと内側の支柱
とは物理的に当接させても良いし、電場駆動される際に
電気的の行っても良い。As mentioned above, M which utilizes mechanical vibration
In the EMS device, residual structural strain depending on the manufacturing process, such as between the beam and the supporting column, is a serious problem from the viewpoint of device performance. In the present embodiment, after the beam is mechanically opened through the sacrificial layer removing step, the relative positions of the beam and the column can be fixed within the range of processing accuracy. Specifically, in the present embodiment, the beam and the pillar are bonded to each other, which has been performed in the conventional bulk body state, after the sacrifice layer is removed in the present embodiment. As a result, the effects described above are obtained. The beam and the inner support may be brought into physical contact with each other, or may be electrically operated when driven by an electric field.
【0043】上述の構成において、図2のビーム36が
支柱35B及び35Cに接合した状態で固定されたME
MS素子31の場合、例えば温暖場所から寒冷場所へ行
くと環境が冷えるので支柱35で支持されたビーム36
に内在しているストレスの量が変わり、温暖場所で一旦
緩和したビーム36が歪んでしまう虞がある。この為、
環境に合わせて待機モードを付け、駆動を電圧X+αで
行い、駆動電圧X+αが完全オフしたときがビーム36
を支柱35B及び35Cがら離して待機状態にする構
成、即ち図1の構成(図1の状態と図2の状態を繰り返
す構成)とした方が、加工時に生じた歪みの緩和と、環
境で生じた歪みの緩和とができ、より好ましい。In the above structure, the ME fixed to the beam 36 of FIG. 2 in a state of being joined to the columns 35B and 35C.
In the case of the MS element 31, for example, since the environment cools when going from a warm place to a cold place, the beam 36 supported by the column 35 is used.
There is a possibility that the amount of stress inherent in the beam changes, and the beam 36 once relaxed in a warm place is distorted. Therefore,
The beam 36 is output when the standby mode is set according to the environment, the drive is performed at the voltage X + α, and the drive voltage X + α is completely turned off.
The structure in which the columns are separated from the columns 35B and 35C to be in the standby state, that is, the structure in FIG. 1 (the structure in which the state in FIG. 1 and the state in FIG. 2 are repeated) relaxes the strain generated during processing and occurs in the environment. It is more preferable because the strain can be relaxed.
【0044】図8〜図11は、本発明に係るMEMS素
子の他の実施の形態を示す。図8のMEMS素子61
は、支柱35を6つ設け、仮完成において、そのうち
の、左右夫々の外側のアンカーとなる各2つの支柱35
A,35A′と支柱35D,35D′をビーム36に接
合し、内側のポストとなる支柱35B及び35Cからビ
ーム36を離すように構成した場合である。その他の構
成は、図1と同様であるので、図1と対応する部分には
同一符号を付して重複説明を省略する。本実施の形態に
係るMEMS素子61においても、図1、図2と同様の
使用方法を採りることができ、前述したMEMS素子3
1と同様の作用、効果を奏する。8 to 11 show another embodiment of the MEMS device according to the present invention. The MEMS element 61 of FIG.
Is provided with six struts 35, and in the temporary completion, two struts 35 each serving as an outer anchor on each of the left and right sides.
This is a case where the A, 35A 'and the struts 35D, 35D' are joined to the beam 36, and the beam 36 is separated from the struts 35B, 35C to be the inner posts. Since other configurations are the same as those in FIG. 1, parts corresponding to those in FIG. Also in the MEMS element 61 according to the present embodiment, the same usage as in FIGS. 1 and 2 can be adopted, and the MEMS element 3 described above is used.
The same action and effect as 1 are achieved.
【0045】図9のMEMS素子62は、支柱35を6
つ設け、仮完成において、そのうちの、左右夫々の外側
のアンカーとなる支柱35Aと35Dをビーム36に接
合し、内側のポストとなる各2つの支柱35B,35
B′と支柱35D,35D′からビーム36を離すよう
に構成した場合である。その他の構成は、図1と同様で
あるので、図1と対応する部分には同一符号を付して重
複説明を省略する。本実施の形態に係るMEMS素子6
2においても、図1、図2と同様の使用方法を採りるこ
とができ、前述したMEMS素子31と同様の作用、効
果を奏する。The MEMS element 62 of FIG.
In the provisional completion, the columns 35A and 35D, which are the left and right outer anchors, are joined to the beam 36, and the two columns 35B and 35 are the inner posts.
This is the case in which the beam 36 is separated from B'and the columns 35D and 35D '. Since other configurations are the same as those in FIG. 1, parts corresponding to those in FIG. MEMS element 6 according to the present embodiment
Also in 2, it is possible to adopt the same method of use as in FIG. 1 and FIG. 2, and to obtain the same operation and effect as the above-described MEMS element 31.
【0046】図10のMEMS素子63は、支柱35を
6つ設け、仮完成において、そのうちの、左右夫々の外
側のアンカーとなる支柱35Aと35Dをビーム36に
接合し、内側のポストとなる各2つの支柱35B,35
B′と支柱35C,35C′を夫々順次内側に行くに従
って高さが低くなるように(t1 >t1 ′)形成して、
この支柱35B,35B′と支柱35C,35C′から
ビーム36を離すように構成した場合である。その他の
構成は、図1と同様であるので、図1と対応する部分に
は同一符号を付して重複説明を省略する。本実施の形態
に係るMEMS素子63においても、図1、図2と同様
の使用方法を採りることができ、前述したMEMS素子
31と同様の作用、効果を奏する。The MEMS element 63 of FIG. 10 is provided with six columns 35, and when provisionally completed, columns 35A and 35D, which are the anchors on the left and right sides, are joined to the beam 36 to form the inner posts. Two columns 35B, 35
B 'and struts 35C, 35C' so that the height decreases toward the respective sequential inward (t 1> t 1 ') is formed,
This is a case in which the beam 36 is separated from the columns 35B and 35B 'and the columns 35C and 35C'. Since other configurations are the same as those in FIG. 1, parts corresponding to those in FIG. The MEMS element 63 according to the present embodiment can also be used in the same manner as in FIGS. 1 and 2, and can achieve the same actions and effects as those of the MEMS element 31 described above.
【0047】図11のMEMS素子64は、仮完成にお
いて、ポストとなる内側の支柱35B及び35Cから離
れるように基板側電極3と対向する前述と同様の2層膜
構造のビーム36を有すると共に、ビーム36より之と
一体に延長して、支柱35B及び35Cの外側に位置す
る高さt2 の支柱部分66A,66Dとこれより絶縁膜
34上に所定長さにわたって形成した延長部67A.6
7Dを形成して構成した場合である。この構成では各外
側の支柱部分66Aと絶縁膜34上の延長部67A、支
柱部分66Dと絶縁膜34上の延長部67Dで、夫々ア
ンカーとなる支柱68A及び68Dが構成される。その
他の構成は、図1と同様であるので、図1と対応する部
分には同一符号を付して重複説明を省略する。本実施の
形態に係るMEMS素子63においても、図1、図2と
同様の使用方法を採りることができ、前述したMEMS
素子31と同様の作用、効果を奏する。The MEMS element 64 of FIG. 11 has a beam 36 of the same two-layer film structure as described above, which faces the substrate-side electrode 3 so as to be separated from the posts 35B and 35C on the inner side, which are post-finished. Strut portions 66A and 66D having a height t 2 located outside the columns 35B and 35C and extending from the beam 36, and extension portions 67A. 6
This is a case where 7D is formed and configured. In this configuration, the pillars 66A on the outer side and the extension 67A on the insulating film 34, and the pillar 66D and the extension 67D on the insulating film 34 form pillars 68A and 68D serving as anchors, respectively. Since other configurations are the same as those in FIG. 1, parts corresponding to those in FIG. The MEMS element 63 according to the present embodiment can also be used in the same manner as in FIG. 1 and FIG.
The same action and effect as the element 31 are obtained.
【0048】上述の図8から図10のMEMS素子6
1,62,63に関しては、大きな張力を有するビーム
を使用するMEMS素子の場合、支柱の組み合わせとし
て、図8から図10に示したような組み合わせが選定さ
れる。これらの選択は、ビームに要請される平坦度と、
ビーム/支柱/基板間の密着性のトレードオフにより、
最適なものが選定されるべきものである。一方、図11
のMEMS素子64においては、外側の支柱を基板との
密着層により兼ねることにより、製造工程を簡略化する
ことが出来る構造である。The MEMS device 6 of FIGS. 8 to 10 described above.
With respect to 1, 62 and 63, in the case of a MEMS element using a beam having a large tension, a combination as shown in FIGS. 8 to 10 is selected as a combination of columns. These choices depend on the flatness required of the beam,
Due to the trade-off of adhesion between beam / support / substrate
The optimum one should be selected. On the other hand, FIG.
In the MEMS device 64, the structure in which the manufacturing process can be simplified by using the outer support pillar also as the adhesion layer with the substrate.
【0049】図12〜図13は、上述の静電駆動型ME
MS素子64の製造方法の実施の形態を示す。先ず、図
12Aに示すように、所要の基板、本例ではシリコン単
結晶基板39上にシリコン酸化膜(SiO2 膜)40を
形成した基板32を用意し、このシリコン酸化膜40上
にフォトリソグラフィー技術を用いて例えば不純物ドー
ピングした多結晶シリコン膜、金属等による基板側電極
33を形成する。次いで、基板側電極33を含む基板3
2の全面上に所要の膜厚の絶縁膜、本例ではシリコン酸
化膜(SiO2 膜)34を形成し、このシリコン酸化膜
34上に基板側電極33の両端の外側に対応する位置に
互いに相対向して1対のポストとなる内側の支柱35B
及び35Cを形成する。本例では、前述と同様に、多結
晶シリコン膜42を用い、フォトリソグラフィー技術を
用いて支柱35B及び35Cの形状にパターニングし、
支柱形状の多結晶シリコン膜42を形成する。次いで、
支柱形状の多結晶シリコン膜42の表面を熱酸化し、最
終的に多結晶シリコン膜42に表面酸化膜43を有した
高さt1 の内側の支柱35B及び35Cを形成する。12 to 13 show the above electrostatically driven ME.
An embodiment of a method for manufacturing the MS element 64 will be described. First, as shown in FIG. 12A, a required substrate, in this example, a substrate 32 in which a silicon oxide film (SiO 2 film) 40 is formed on a silicon single crystal substrate 39 is prepared, and photolithography is performed on the silicon oxide film 40. A substrate-side electrode 33 made of, for example, an impurity-doped polycrystalline silicon film or a metal is formed by using a technique. Next, the substrate 3 including the substrate-side electrode 33
An insulating film having a required film thickness, which is a silicon oxide film (SiO 2 film) 34 in this example, is formed on the entire surface of No. 2 and is formed on the silicon oxide film 34 at positions corresponding to the outer sides of both ends of the substrate side electrode 33. Inner columns 35B facing each other to form a pair of posts
And 35C are formed. In this example, similarly to the above, using the polycrystalline silicon film 42, patterning into the shapes of the pillars 35B and 35C by using the photolithography technique,
A pillar-shaped polycrystalline silicon film 42 is formed. Then
The polycrystalline surface of the silicon film 42 of the pillar shape is thermally oxidized to form a final polycrystalline silicon film 42 on the surface oxide film 43 height t 1 having an inner post 35B and 35C.
【0050】次に、図12Bに示すように、絶縁膜34
上に支柱35B及び35Cを含んで支柱35B及び34
5Cの外側に至るようにパターニングされ、支柱35B
及び35Cの高さt1 よりも厚い膜厚t2 の犠牲層47
を形成する。Next, as shown in FIG. 12B, the insulating film 34
Supports 35B and 34 including support 35B and 35C on top
5C is patterned to reach the outside of the pillar 5B.
And the sacrificial layer 47 having a film thickness t 2 thicker than the height t 1 of 35C.
To form.
【0051】次に、図13Cに示すように、犠牲層47
の上面及び側面、更に絶縁膜34の上面を含む全面にビ
ームとなる例えばシリコン窒化膜(SiN膜)38とそ
の上のAl膜37とからなる2層膜を堆積し、パターニ
ングしてAl膜37を駆動側電極とする静電駆動型のビ
ーム36を形成する。このとき、同時にビーム36の両
端にこれと一体の夫々支柱部分66A,67Aと絶縁膜
34上を這う延長部67A,67Dからなる高さt2 の
外側の支柱68A及び68Dが形成される。Next, as shown in FIG. 13C, the sacrificial layer 47.
A two-layer film, for example, a silicon nitride film (SiN film) 38 serving as a beam and an Al film 37 formed thereon is deposited and patterned on the entire surface including the upper surface and side surfaces of the Al film 37 and the upper surface of the insulating film 34, and the Al film 37 is patterned. To form an electrostatically driven beam 36 having a drive side electrode. At this time, at the same time, the outer columns 68A and 68D having a height t 2 are formed at both ends of the beam 36 and are composed of the column portions 66A and 67A which are integral with the beam 36 and the extension portions 67A and 67D which crawl on the insulating film 34.
【0052】次に、図13Dに示すように、犠牲層47
を例えばフッ酸(HF)蒸気や、XeF2 ガスなどによ
りガスエッチングして除去し、目的とする仮完成のME
MS素子64を得る。Next, as shown in FIG. 13D, the sacrificial layer 47.
Is removed by gas etching with, for example, hydrofluoric acid (HF) vapor or XeF 2 gas.
The MS element 64 is obtained.
【0053】上述の本実施の形態に係るMEMS素子を
光学MEMS素子に適用した場合には、ビーム形状が安
定したビーム36、即ち平坦化したビーム36を形成す
ることができるので、安定したオン、オフ制御できる光
スイッチ、高周波スイッチ、光強度を変調する光変調素
子などの光素子としての性能の向上を図ることができ
る。高周波スイッチは、ミリ波、マイクロ波の伝送配線
スイッチ等に応用される。この高周波スイッチでは、入
力部と出力部間にスイッチ板としてのMEMS素子を配
置し、このMEMS素子を上下動作させて入力部と出力
部に電気的に接触、非接触させて、導通、非導通が得る
ように構成される。MEMS素子は機械的に動くので、
非常に小さなスイッチを構成することができる。When the MEMS element according to this embodiment described above is applied to an optical MEMS element, a beam 36 having a stable beam shape, that is, a flattened beam 36 can be formed, so that a stable ON, It is possible to improve the performance as an optical element such as an optical switch that can be turned off, a high frequency switch, and an optical modulator that modulates the light intensity. The high frequency switch is applied to millimeter-wave and microwave transmission wiring switches and the like. In this high-frequency switch, a MEMS element serving as a switch plate is arranged between the input section and the output section, and the MEMS element is vertically moved to electrically contact or non-contact the input section and the output section to conduct or non-conduct. Is configured to obtain. Since the MEMS element moves mechanically,
Very small switches can be constructed.
【0054】上述の本実施の形態に係るMEMS素子
は、液体や気体等の微小流体の駆動装置の駆動部分に適
用することができる。例えば、MEMS素子のビームを
ダイアフラムとして用い、このビーム上に液体や気体な
どの微小流体を収容するチャンバーを配置し、チャンバ
ーにノズル部を設け、MEMS素子の駆動により、チャ
ンバー内に供給された液体や気体などの微小流体をノズ
ル部より出射する装置を構成することができる。The MEMS element according to the present embodiment described above can be applied to a driving portion of a driving device for a microfluid such as liquid or gas. For example, a beam of a MEMS element is used as a diaphragm, a chamber for accommodating a microfluid such as a liquid or a gas is arranged on the beam, a nozzle portion is provided in the chamber, and a liquid supplied into the chamber is driven by the MEMS element. It is possible to configure a device that ejects a microfluid such as a gas or a gas from the nozzle portion.
【0055】図14は、本発明に係るGLVデバイスの
実施の形態を示す。本実施の形態に係るGLVデバイス
71は、基板側電極72上に形成した共通の基板側電極
73に対して、前述の図1、図2で説明したと同様に、
高さの異なる支柱75A,75D及び支柱75B,75
Cを有し、仮完成の状態では外側の支柱75A及び75
Dにビームが接合し、内側の支柱75B及び75Cから
ビームが離間している複数本例では6つのビーム76
〔761 、762 、763 、764 、765 、766 〕
を並列配置して構成される。本実施の形態のGLV71
は、前述と同様に、基板側電極73に対する1つ置きの
ビーム76の近接、離間の動作により、光反射膜を兼ね
る駆動側電極77の高さを交互に変化させ、光の回折に
よって駆動側電極77で反射する光の強度を変調する。FIG. 14 shows an embodiment of a GLV device according to the present invention. The GLV device 71 according to the present embodiment is similar to the common substrate-side electrode 73 formed on the substrate-side electrode 72 in the same manner as described above with reference to FIGS. 1 and 2.
Supports 75A, 75D and supports 75B, 75 with different heights
C, and in the state of temporary completion, the outer columns 75A and 75
The beam is joined to D, and the beam is separated from the inner columns 75B and 75C.
[76 1 , 76 2 , 76 3 , 76 4 , 76 5 , 76 6 ]
Are arranged in parallel. GLV71 of the present embodiment
In the same manner as described above, the height of the drive-side electrode 77 that also functions as a light-reflecting film is alternately changed by the operation of approaching and separating every other beam 76 from the substrate-side electrode 73, and the drive-side is driven by the diffraction of light. The intensity of light reflected by the electrode 77 is modulated.
【0056】本実施の形態に係るGLVデバイス71に
よれば、各ビーム76の形状を均一にすることができ、
ダークレベルの均一性が向上し、高性能のGLVデバイ
スを提供することができる。According to the GLV device 71 according to this embodiment, the shapes of the beams 76 can be made uniform.
It is possible to provide a high performance GLV device with improved dark level uniformity.
【0057】図15は、上述の本実施の形態のMEMS
素子を適用した光変調素子としてのGLVデバイスを用
いた光学装置の一実施の形態を示す。本例ではレーザデ
ィスプレイに適用した場合である。本実施の形態に係る
レーザディスプレイ81は、例えば、大型スクリーン用
プロジェクタ、特にデジタル画像のプロジェクタとし
て、或いはコンピュータ画像投影装置として用いられ
る。FIG. 15 shows the MEMS according to the present embodiment described above.
An embodiment of an optical apparatus using a GLV device as a light modulation element to which the element is applied is shown. In this example, it is applied to a laser display. The laser display 81 according to the present embodiment is used, for example, as a large screen projector, especially as a digital image projector, or as a computer image projection device.
【0058】レーザディスプレイ81は、図15に示す
ように、赤(R)、緑(G)、青(B)の各色のレーザ
光源82R,82G,82Bと、各レーザ光源に対し
て、それぞれ光軸上に順次、設けられたミラー74R,
84G,84B、各色照明光学系(レンズ群)86R,
86G,86B、及び光変調素子として機能するGLV
デバイス88R,88G,88Bとを備えている。レー
ザ光源82R,82G,82Bは、それぞれ例えば、R
(波長642nm、光出力薬3W)、G(波長532n
m、光出力約2W)、B(波長457nm、光出力約
1.5W)のレーザを射出する。As shown in FIG. 15, the laser display 81 includes laser light sources 82R, 82G, and 82B of red (R), green (G), and blue (B) colors, and lights for the respective laser light sources. Mirrors 74R, which are sequentially provided on the axis,
84G, 84B, each color illumination optical system (lens group) 86R,
86G, 86B, and GLV functioning as an optical modulator
The devices 88R, 88G, and 88B are provided. The laser light sources 82R, 82G, 82B are, for example, R
(Wavelength 642nm, light output medicine 3W), G (wavelength 532n
m, light output about 2 W), and B (wavelength 457 nm, light output about 1.5 W).
【0059】更に、レーザディスプレイ81は、GLV
デバイス88R,88G,88Bによりそれぞれ光強度
が変調された赤色(R)レーザ光、緑色(G)レーザ
光、及び青色(B)レーザ光を合成する色合成フィルタ
90、空間フィルタ92、ディフューザ94、ミラー8
6、ガルバノスキャナ98、投影光学系(レンズ群)1
00、及びスクリーン102を備えている。色合成フィ
ルタ90は、例えばダイクロイックミラーで構成され
る。Further, the laser display 81 is a GLV.
A color synthesizing filter 90, a spatial filter 92, a diffuser 94 for synthesizing the red (R) laser light, the green (G) laser light, and the blue (B) laser light whose light intensities are respectively modulated by the devices 88R, 88G, and 88B. Mirror 8
6, galvano scanner 98, projection optical system (lens group) 1
00 and a screen 102. The color synthesis filter 90 is composed of, for example, a dichroic mirror.
【0060】本実施の形態のレーザディスプレイ81
は、レーザ光源82R,82G,82Bから射出された
RGB各レーザ光が、それぞれミラー84R,84G,
84Bを経て各色照明光学系86R,86G,86Bか
ら各GLVデバイス88R,88G,88Bに入射す
る。各レーザ光は、色分類された画像信号であり、GL
Vデバイス88R,88G,88Bに同期入力されるよ
うになっている。更に、各レーザ光は、GLVデバイス
88R,88G,88Bによって回折されることにより
空間変調され、これら3色の回折光が色合成フィルタ9
0によって合成され、続いて空間フィルタ92によって
信号成分のみが取り出される。次いで、このRGBの画
像信号は、ディフューザ84によってレーザスペックル
が提言され、ミラー96を経て、画像信号と同期するガ
ルバノスキャナ98により空間に展開され、投影光学系
100によってスクリーン102上にフルカラー画像と
して投影される。Laser display 81 of the present embodiment
R, G, and B laser beams emitted from the laser light sources 82R, 82G, and 82B are mirrors 84R, 84G, and
After passing through 84B, they enter the respective GLV devices 88R, 88G and 88B from the respective color illumination optical systems 86R, 86G and 86B. Each laser light is a color-classified image signal, and GL
The V devices 88R, 88G, and 88B are synchronously input. Further, the respective laser lights are spatially modulated by being diffracted by the GLV devices 88R, 88G, 88B, and the diffracted lights of these three colors are combined by the color synthesis filter 9.
0, and then the spatial filter 92 extracts only the signal component. Next, laser speckles are recommended for the RGB image signals by the diffuser 84, the mirror image is passed through the mirror 96, the galvano scanner 98 synchronized with the image signals is developed into space, and the projection optical system 100 forms a full-color image on the screen 102. Projected.
【0061】本実施の形態のレーザディスプレイ81で
は、光変調素子として図14に示す構成のGLVデバイ
ス88R,88G,88Bを備えるので、ダークレベル
の均一性が得られ、従来の光変調素子を用いたレーザデ
ィスプレイに比べて、品質が向上する。Since the laser display 81 of the present embodiment is provided with the GLV devices 88R, 88G and 88B having the structure shown in FIG. 14 as the light modulation element, the dark level uniformity can be obtained and the conventional light modulation element can be used. The quality is improved compared to the conventional laser display.
【0062】本実施の形態のレーザディスプレイ81で
は、各色のレーザ光源82に対応して、GLVデバイス
88R,88G,88Bを備えているが、本発明に係る
GLVデバイスは、これ以外の構成を有する各種のディ
スプレイについても適用可能である。例えば、光源を白
色とする一方で、RGBそれぞれの波長の光のみを反射
して(それ以外の光は回折する)各色を表示するように
ビームの幅が異なる光変調素子88R,88G,88B
が1画素を構成するようにしてもよい。また、RGBの
画像データからなる画像情報に同期したカラーホイール
を通してGLVデバイス88に、単一の光源からの白色
光を入射させるようにすることもできる。更に、例え
ば、単一のGLVデバイス88を用いて、RGBのLE
D(発光ダイオード)からの光を回折し、画素毎の色の
情報を再生するように構成すれば、簡単なハンディタイ
プのカラーディスプレイとなる。The laser display 81 of the present embodiment is provided with GLV devices 88R, 88G and 88B corresponding to the laser light sources 82 of the respective colors, but the GLV device according to the present invention has a configuration other than this. It is also applicable to various displays. For example, while the light source is white, the light modulation elements 88R, 88G, and 88B having different beam widths are provided so that only the lights of the respective wavelengths of RGB are reflected (the other lights are diffracted) to display the respective colors.
May form one pixel. Further, white light from a single light source can be made incident on the GLV device 88 through a color wheel synchronized with image information composed of RGB image data. Further, for example, using a single GLV device 88, RGB LE
If the light from the D (light emitting diode) is diffracted and the color information for each pixel is reproduced, a simple handy type color display can be obtained.
【0063】また、本発明に係るGLVデバイスは、本
実施の形態のレーザディスプレイのようなプロジェクタ
類だけでなく、光通信におけるWDM(Wavelen
gth Division Multplexing:
波長多重)電送用の各種デバイス、MUX(Multi
plexer:パラレルーシリアル変換器/分配化装
置)、あるいはOADM(Optical Add/D
rop Multiplexer)、OXC(Opti
cal Cross Connect)等の光スイッチ
として用いることもできる。更に、例えばディジタル画
像等を直画できる微細描画装置、半導体露光装置や、プ
リンタエンジンなど、その他の光学装置にも適用でき
る。Further, the GLV device according to the present invention is not limited to projectors such as the laser display of the present embodiment, but also WDM (Wavelen) in optical communication.
gth Division Multiplexing:
Various devices for wavelength multiplexing) transmission, MUX (Multi)
Plexer: Parallel-to-serial converter / distributor, or OADM (Optical Add / D)
rop Multiplexer), OXC (Opti
It can also be used as an optical switch such as a cal cross connect). Further, it can be applied to other optical devices such as a fine drawing device capable of directly drawing a digital image, a semiconductor exposure device, a printer engine, and the like.
【0064】また、本実施の形態のレーザディスプレイ
81では、GLVデバイス88R,88G,88Bを用
いて空間変調を行うレーザディスプレイについて説明し
たが、本発明に係るGLVデバイスは、位相、光強度な
どの干渉・回折により変調可能な情報のスイッチングを
行うことができ、これらを利用した光学装置に応用する
ことが可能である。Further, in the laser display 81 of the present embodiment, the laser display in which the spatial modulation is performed by using the GLV devices 88R, 88G and 88B has been described. However, the GLV device according to the present invention has a phase, a light intensity and the like. Information that can be modulated by interference / diffraction can be switched, and it can be applied to an optical device using these.
【0065】上述した本実施の形態に係るMEMS素子
を、光スイッチ、光変調素子、GLデバイス、レーザデ
ィスプレイ等に応用するビーム(リボン)表面を光反射
面と兼ねる光学MEMS素子に適用した場合、その表面
の基板に対する平行性をビーム表面全体について確保で
きることにより、光利用率を改善することが出来る。When the MEMS element according to this embodiment described above is applied to an optical MEMS element whose beam (ribbon) surface which is applied to an optical switch, an optical modulator, a GL device, a laser display and the like also serves as a light reflecting surface, The light utilization factor can be improved by ensuring that the surface is parallel to the substrate for the entire beam surface.
【0066】[0066]
【発明の効果】本発明に係る静電駆動型MEMS素子に
よれば、製造過程で積層構造に蓄積されたきた歪みが緩
和され、ビームが内側の支持部に接合又は当接した状態
でビームの平坦化がなされ、或いはビーム形状が安定
化、均一化されるので、MEMS素子としての性能を向
上することができる。本発明に係る静電駆動型MEMS
素子の製造方法によれば、上述のMEMS素子を精度良
く且つ容易に製造することができる。According to the electrostatic drive type MEMS element of the present invention, the strain accumulated in the laminated structure during the manufacturing process is alleviated, and the beam of the beam is bonded in the state of being bonded to or abutted on the inner supporting portion. Since the flattening is performed or the beam shape is stabilized and made uniform, the performance as the MEMS element can be improved. Electrostatic drive type MEMS according to the present invention
According to the element manufacturing method, the above-described MEMS element can be manufactured accurately and easily.
【0067】本発明の静電駆動型MEMS素子を光学M
EMS素子に適用したときは、そのビームの平坦化がな
され、或いはビーム形状の安定化、均一化されるので、
光学MEMS素子としての性能の向上を図ることができ
る。本発明の静電駆動型MEMS素子を光の反射或いは
回折を利用した光変調素子に適用したときは、そのビー
ムの平坦化がなされ、或いはビーム形状の安定化、均一
化されるので、光変調素子としての性能の向上を図るこ
とができる。The electrostatic drive type MEMS element of the present invention is used as an optical element M.
When applied to an EMS element, the beam is flattened, or the beam shape is stabilized and uniformed.
The performance as an optical MEMS element can be improved. When the electrostatic drive type MEMS device of the present invention is applied to a light modulation device utilizing reflection or diffraction of light, the beam is flattened, or the beam shape is stabilized and uniformed. The performance as an element can be improved.
【0068】本発明の光変調素子でGLVデバイスを構
成するときは、ダークレベルの均一性が向上し、性能の
向上したGLVデバイスを提供することができる。本発
明のGLVデバイスをレーザディスプレイに組み込むと
きは、性能の向上したレーザディスプレイを提供するこ
とができる。When a GLV device is constituted by the light modulation element of the present invention, it is possible to provide a GLV device having improved dark level uniformity and improved performance. When incorporating the GLV device of the present invention into a laser display, a laser display with improved performance can be provided.
【図1】本発明に係る静電駆動型MEMS素子の一実施
の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of an electrostatic drive type MEMS device according to the present invention.
【図2】図1の静電駆動型MEMS素子の1つの使用状
態を示す構成図である。2 is a configuration diagram showing one usage state of the electrostatic drive type MEMS element of FIG. 1. FIG.
【図3】A〜B 本発明に係る静電駆動型MEMS素子
の製造方法の一実施の形態を示す工程図(その1)であ
る。3A to 3B are process drawings (No. 1) showing an embodiment of a method of manufacturing an electrostatic drive type MEMS device according to the present invention.
【図4】C〜D 本発明に係る静電駆動型MEMS素子
の製造方法の一実施の形態を示す工程図(その2)であ
る。4A to 4D are process diagrams (2) showing the embodiment of the method of manufacturing the electrostatic drive type MEMS device according to the present invention.
【図5】E〜F 本発明に係る静電駆動型MEMS素子
の製造方法の一実施の形態を示す工程図(その3)であ
る。5A to 5F are process diagrams (No. 3) showing the embodiment of the method of manufacturing the electrostatic drive type MEMS device according to the present invention.
【図6】本実施の形態に係るMEMS素子の説明に供す
る要部の平面図である。FIG. 6 is a plan view of an essential part for explaining the MEMS element according to the present embodiment.
【図7】本実施の形態に係るMEMS素子の説明に供す
る要部の断面図である。FIG. 7 is a cross-sectional view of an essential part for explaining the MEMS element according to the present embodiment.
【図8】本発明に係る静電駆動型MEMS素子の他の実
施の形態を示す構成図である。FIG. 8 is a configuration diagram showing another embodiment of the electrostatic drive type MEMS element according to the present invention.
【図9】本発明に係る静電駆動型MEMS素子の他の実
施の形態を示す構成図である。FIG. 9 is a configuration diagram showing another embodiment of the electrostatically driven MEMS device according to the present invention.
【図10】本発明に係る静電駆動型MEMS素子の他の
実施の形態を示す構成図である。FIG. 10 is a configuration diagram showing another embodiment of the electrostatic drive type MEMS element according to the present invention.
【図11】本発明に係る静電駆動型MEMS素子の他の
実施の形態を示す構成図である。FIG. 11 is a configuration diagram showing another embodiment of the electrostatically driven MEMS device according to the present invention.
【図12】A〜B 図11の静電駆動型MEMS素子の
製造方法の実施の形態を示す工程図(その1)である。12A to 12C are process diagrams (No. 1) showing the embodiment of the method for manufacturing the electrostatic drive type MEMS device of FIGS.
【図13】C〜D 図11の静電駆動型MEMS素子の
製造方法の実施の形態を示す工程図(その2)である。13A to 13D are process diagrams (No. 2) showing the embodiment of the method for manufacturing the electrostatic drive type MEMS device of FIGS.
【図14】A 本発明に係るGLVデバイスの実施の形
態を示す構成図である。B 図14Aの断面図である。FIG. 14 A is a configuration diagram showing an embodiment of a GLV device according to the present invention. B is a cross-sectional view of FIG. 14A.
【図15】本発明に係るレーザディスプレイの実施の形
態を示す構成図である。FIG. 15 is a configuration diagram showing an embodiment of a laser display according to the present invention.
【図16】従来の静電駆動型MEMS素子の例を示す構
成図である。FIG. 16 is a configuration diagram showing an example of a conventional electrostatic drive type MEMS element.
【図17】従来の静電駆動型MEMS素子の課題の説明
に供する断面図である。FIG. 17 is a cross-sectional view for explaining a problem of a conventional electrostatic drive type MEMS device.
【図18】静電駆動型MEMS素子の比較例を示す構成
図である。FIG. 18 is a configuration diagram showing a comparative example of an electrostatic drive type MEMS device.
【図19】A〜D 図16の従来の静電駆動型MEMS
素子の製造方法を示す工程図である。19 is a conventional electrostatic drive type MEMS of FIGS.
FIG. 7 is a process drawing that shows the manufacturing method of the element.
【図20】従来のGLVデバイスを示す構成図である。FIG. 20 is a configuration diagram showing a conventional GLV device.
3161、62、63、64・・・MEMS素子、32
・・・基板、33・・・基板側電極、34・・・絶縁
膜、35〔35A,35B,35C,35D〕・・・支
持部、36・・・ビーム、37・・・駆動側電極、38
・・・絶縁膜、42、44・・・多結晶シリコン膜、4
3、45・・・表面熱酸化膜、47・・・犠牲層、50
・・・空隙、71・・・GLVデバイス、72・・・基
板、73・・・基板側電極、76〔761 、762 、7
63 、764 、765 、766 〕・・・ビーム、77・
・・駆動側電極、78・・・絶縁膜、81・・・レーザ
ディスプレイ、82〔82R,82G,82B〕・・・
レーザ光源、84〔84R,84G,84B〕、96・
・・ミラー、86〔86R,86G,86B〕・・・照
明光学系、88〔88R,88G,88B〕・・・GL
Vデバイス、90・・・色合成フィルタ(ダイクイック
ミラー)、92・・・空間フィルタ、94・・・ディフ
ューザ、96・・・ミラー、98・・・ガルバノスキャ
ナ、100・・・投影光学系、102・・・スクリーン3161, 62, 63, 64 ... MEMS element, 32
... Substrate, 33 ... Substrate side electrode, 34 ... Insulating film, 35 [35A, 35B, 35C, 35D] ... Support part, 36 ... Beam, 37 ... Drive side electrode, 38
... Insulating film, 42, 44 ... Polycrystalline silicon film, 4
3, 45 ... Surface thermal oxide film, 47 ... Sacrificial layer, 50
... Void, 71 ... GLV device, 72 ... Substrate, 73 ... Substrate side electrode, 76 [76 1 , 76 2 , 7
6 3 , 76 4 , 76 5 , 76 6 ] ... beam, 77 ...
..Drive side electrodes, 78 ... Insulating film, 81 ... Laser display, 82 [82R, 82G, 82B] ...
Laser light source, 84 [84R, 84G, 84B], 96.
..Mirror, 86 [86R, 86G, 86B] ... Illumination optical system, 88 [88R, 88G, 88B] ... GL
V device, 90 ... Color synthesis filter (die quick mirror), 92 ... Spatial filter, 94 ... Diffuser, 96 ... Mirror, 98 ... Galvano scanner, 100 ... Projection optical system, 102 ... screen
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01S 3/101 H01S 3/101 H02N 1/00 H02N 1/00 Fターム(参考) 2H041 AA23 AB38 AC06 AZ01 AZ08 5F072 FF08 JJ01 KK05 MM03 MM07 MM12 RR03 TT13 YY20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01S 3/101 H01S 3/101 H02N 1/00 H02N 1/00 F term (reference) 2H041 AA23 AB38 AC06 AZ01 AZ08 5F072 FF08 JJ01 KK05 MM03 MM07 MM12 RR03 TT13 YY20
Claims (10)
て両端部分が支持されたビームとを備え、 前記ビームの両端部分に夫々少なくとも2つの支持部を
有し、該支持部のうち、内側の支持部の高さが外側の支
持部の高さより低く設定されて成ることを特徴とする静
電駆動型MEMS素子。1. A substrate-side electrode, and a beam which is disposed so as to face the substrate-side electrode and has a driving-side electrode and whose both ends are supported, and at least two supports are provided at both ends of the beam. An electrostatic drive type MEMS element, characterized in that a height of an inner supporting portion of the supporting portion is set lower than a height of an outer supporting portion of the supporting portion.
ームが前記内側の支持部に接合されて成ることを特徴と
する請求項1記載の静電駆動型MEMS素子。2. The electrostatic drive type MEMS device according to claim 1, wherein the beam is bonded to the inner supporting portion by the first driving of the beam.
部に当接し、非動作時には前記ビームが前記内側の支持
部から離間するように構成されて成ることを特徴とする
請求項1記載の静電駆動型MEMS素子。3. The static discharge device according to claim 1, wherein the beam abuts on the inner support portion during operation, and the beam separates from the inner support portion during non-operation. Electric drive type MEMS device.
部に当接させる当接電位を基準とした動作電位が前記ビ
ームに印加されることを特徴とする請求項3記載の静電
駆動型MEMS素子。4. The electrostatically driven type according to claim 3, wherein an operating potential based on a contact potential with which the beam is brought into contact with the inner supporting portion is applied to the beam during operation. MEMS device.
相対向して夫々外側の支持部と該外側の支持部より高さ
が低い内側の支持部を形成する工程と、 前記支持部を埋め込み且つ前記外側の支持部の表面が臨
むように犠牲層を形成する工程と、 前記犠牲層上に前記外側の支持部の表面に接合するよう
に駆動側電極を有するビームを形成する工程と、 前記犠牲層を除去し、前記基板側電極と前記ビームとの
間に空隙を形成すると共に、前記ビームが前記内側の支
持部と接触しない状態を形成する工程とを有することを
特徴とする静電駆動型MEMS素子の製造方法。5. A step of forming, on a substrate on which a substrate-side electrode is formed, an outer supporting portion and an inner supporting portion having a height lower than that of the outer supporting portion, the supporting portions being opposed to each other, respectively. Forming a sacrificial layer so as to be embedded and exposed to the surface of the outer supporting portion; and forming a beam having a driving side electrode on the sacrificial layer so as to be bonded to the surface of the outer supporting portion, Removing the sacrificial layer, forming a gap between the electrode on the substrate side and the beam, and forming a state in which the beam does not come into contact with the inner supporting portion. Drive-type MEMS device manufacturing method.
対向する内側の支持部を形成する工程と、 前記基板上に、前記内側の支持部を埋込み且つ該両内側
の支持部の外側まで延長し、前記内側の支持部の高さよ
り厚い膜厚の犠牲層を形成する工程と、 前記犠牲層の上面及び側面、さらに前記基板上に延長し
て同一の材料層を形成し、該材料層をパターニングして
駆動側電極を有するビームと該ビームに連続した外側の
支持部とを形成する工程と、 前記犠牲層を除去し、前記基板側電極と前記ビームとの
間に空隙を形成する共に、前記ビームが前記内側の支持
部と接触しない状態を形成する工程とを有することを特
徴とする静電駆動型MEMS素子の製造方法。6. A step of forming inner supporting portions facing each other on a substrate on which a substrate-side electrode is formed; and embedding the inner supporting portions on the substrate and extending to the outside of both inner supporting portions. Forming a sacrificial layer having a thickness larger than the height of the inner supporting part, and extending the sacrificial layer on the upper surface and the side surface of the sacrificial layer, and further on the substrate to form the same material layer. Patterning to form a beam having a driving-side electrode and an outer supporting portion continuous with the beam, and removing the sacrificial layer to form an air gap between the substrate-side electrode and the beam. And a step of forming a state in which the beam does not come into contact with the inner supporting portion, the method of manufacturing an electrostatic drive type MEMS element.
て両端部分が支持されたビームとを備え、 前記ビームの両端部分に夫々少なくとも2つの支持部を
有し、該支持部のうち、内側の支持部の高さが外側の支
持部の高さより低く設定されて成ることを特徴とする光
学MEMS素子。7. A substrate-side electrode, and a beam that is disposed so as to face the substrate-side electrode and has a driving-side electrode and both ends thereof are supported, and at least two supports are provided at both ends of the beam. An optical MEMS element having a portion, in which the height of the inner supporting portion is set lower than the height of the outer supporting portion.
て両端部分が支持されたビームとを備え、 前記ビームの両端部分に夫々少なくとも2つの支持部を
有し、該支持部のうち、内側の支持部の高さが外側の支
持部の高さより低く設定されて成ることを特徴とする光
変調素子。8. A substrate-side electrode, and a beam that is disposed so as to face the substrate-side electrode and has a driving-side electrode and both ends thereof are supported, and at least two supports are provided at both ends of the beam. A light modulation element, characterized in that it has a portion, and the height of the inner supporting portion of the supporting portion is set lower than the height of the outer supporting portion.
され、反射膜兼駆動側電極を有して両端部分が支持され
た複数のビームとを備え、 前記各ビームの両端部分に夫々少なくとも2つの支持部
を有し、該支持部のうち、内側の支持部の高さが外側の
支持部の高さより低く設定されて成ることを特徴とする
GLVデバイス。9. A common substrate-side electrode, and a plurality of beams which are arranged in parallel independently of each other so as to face the common substrate-side electrode and which have a reflective film / driving side electrode and whose both ends are supported. And at least two supporting portions at both ends of each beam, wherein the height of the inner supporting portion is lower than the height of the outer supporting portion. GLV device.
されたレーザ光の光軸上に配置され、レーザ光の光強度
を変調するGLVデバイスとを有するレーザディスプレ
イであって、 前記GLVデバイスが、 共通の基板側電極と、 前記共通の基板側電極に対向して相互に独立に並列配置
され、反射膜兼駆動側電極を有して両端部分が支持され
た複数のビームとを備え、 前記各ビームの両端部分に夫々少なくとも2つの支持部
を有し、該支持部のうち、内側の支持部の高さが外側の
支持部の高さより低く設定されて成ることを特徴とする
レーザディスプレイ。10. A laser display having a laser light source and a GLV device arranged on the optical axis of the laser light emitted from the laser light source and modulating the light intensity of the laser light, wherein the GLV device comprises: A common substrate-side electrode, and a plurality of beams that are arranged in parallel independently of each other so as to face the common substrate-side electrode and have a reflective film / driving-side electrode and both end portions thereof are supported; A laser display characterized in that at least two supporting portions are provided at both end portions of the beam, and the height of the inner supporting portion is set lower than the height of the outer supporting portion among the supporting portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002144981A JP2003340795A (en) | 2002-05-20 | 2002-05-20 | Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002144981A JP2003340795A (en) | 2002-05-20 | 2002-05-20 | Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser display |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003340795A true JP2003340795A (en) | 2003-12-02 |
Family
ID=29766299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002144981A Pending JP2003340795A (en) | 2002-05-20 | 2002-05-20 | Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003340795A (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005197415A (en) * | 2004-01-06 | 2005-07-21 | Sony Corp | Semiconductor device and leak control circuit |
JP2006099104A (en) * | 2004-09-27 | 2006-04-13 | Idc Llc | Method for forming a pre-structure for a MEMS system |
JP2007038394A (en) * | 2005-06-30 | 2007-02-15 | Semiconductor Energy Lab Co Ltd | Microstructure, micromachine, organic transistor, electronic device, and manufacturing methods thereof |
CN1314576C (en) * | 2005-05-25 | 2007-05-09 | 西北工业大学 | A miniature flat electrostatic driver and its manufacturing method |
JP2007312553A (en) * | 2006-05-20 | 2007-11-29 | Nikon Corp | Micro actuator, optical device, and display |
JP2009503565A (en) * | 2005-07-22 | 2009-01-29 | クアルコム,インコーポレイテッド | Support structure for MEMS device and method thereof |
JP2009118682A (en) * | 2007-11-08 | 2009-05-28 | Nikon Corp | Micro actuator, micro actuator array, micro actuator arrangement, optical device, display, aligner, and method of manufacturing device |
US7554714B2 (en) | 2004-09-27 | 2009-06-30 | Idc, Llc | Device and method for manipulation of thermal response in a modulator |
US7564612B2 (en) | 2004-09-27 | 2009-07-21 | Idc, Llc | Photonic MEMS and structures |
US7612933B2 (en) | 2008-03-27 | 2009-11-03 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device with spacing layer |
US7612932B2 (en) | 2004-09-27 | 2009-11-03 | Idc, Llc | Microelectromechanical device with optical function separated from mechanical and electrical function |
US7630119B2 (en) | 2004-09-27 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Apparatus and method for reducing slippage between structures in an interferometric modulator |
US7630121B2 (en) | 2007-07-02 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US7629197B2 (en) | 2006-10-18 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Spatial light modulator |
US7643202B2 (en) | 2007-05-09 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Microelectromechanical system having a dielectric movable membrane and a mirror |
US7643199B2 (en) | 2007-06-19 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | High aperture-ratio top-reflective AM-iMod displays |
US7649671B2 (en) | 2006-06-01 | 2010-01-19 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device with electrostatic actuation and release |
US7684106B2 (en) | 2006-11-02 | 2010-03-23 | Qualcomm Mems Technologies, Inc. | Compatible MEMS switch architecture |
US7704772B2 (en) | 2004-05-04 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Method of manufacture for microelectromechanical devices |
US7715079B2 (en) | 2007-12-07 | 2010-05-11 | Qualcomm Mems Technologies, Inc. | MEMS devices requiring no mechanical support |
US7715085B2 (en) | 2007-05-09 | 2010-05-11 | Qualcomm Mems Technologies, Inc. | Electromechanical system having a dielectric movable membrane and a mirror |
US7746539B2 (en) | 2008-06-25 | 2010-06-29 | Qualcomm Mems Technologies, Inc. | Method for packing a display device and the device obtained thereof |
US7768690B2 (en) | 2008-06-25 | 2010-08-03 | Qualcomm Mems Technologies, Inc. | Backlight displays |
US7773286B2 (en) | 2007-09-14 | 2010-08-10 | Qualcomm Mems Technologies, Inc. | Periodic dimple array |
US7782517B2 (en) | 2007-06-21 | 2010-08-24 | Qualcomm Mems Technologies, Inc. | Infrared and dual mode displays |
US7787173B2 (en) | 2004-09-27 | 2010-08-31 | Qualcomm Mems Technologies, Inc. | System and method for multi-level brightness in interferometric modulation |
US7835061B2 (en) | 2006-06-28 | 2010-11-16 | Qualcomm Mems Technologies, Inc. | Support structures for free-standing electromechanical devices |
US7839557B2 (en) | 2004-09-27 | 2010-11-23 | Qualcomm Mems Technologies, Inc. | Method and device for multistate interferometric light modulation |
US7847999B2 (en) | 2007-09-14 | 2010-12-07 | Qualcomm Mems Technologies, Inc. | Interferometric modulator display devices |
US7884989B2 (en) | 2005-05-27 | 2011-02-08 | Qualcomm Mems Technologies, Inc. | White interferometric modulators and methods for forming the same |
US7889415B2 (en) | 2004-09-27 | 2011-02-15 | Qualcomm Mems Technologies, Inc. | Device having a conductive light absorbing mask and method for fabricating same |
US7898723B2 (en) | 2008-04-02 | 2011-03-01 | Qualcomm Mems Technologies, Inc. | Microelectromechanical systems display element with photovoltaic structure |
US7936497B2 (en) | 2004-09-27 | 2011-05-03 | Qualcomm Mems Technologies, Inc. | MEMS device having deformable membrane characterized by mechanical persistence |
US7944604B2 (en) | 2008-03-07 | 2011-05-17 | Qualcomm Mems Technologies, Inc. | Interferometric modulator in transmission mode |
US7944599B2 (en) | 2004-09-27 | 2011-05-17 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US7952787B2 (en) | 2006-06-30 | 2011-05-31 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
US7969638B2 (en) | 2008-04-10 | 2011-06-28 | Qualcomm Mems Technologies, Inc. | Device having thin black mask and method of fabricating the same |
US7982700B2 (en) | 2004-09-27 | 2011-07-19 | Qualcomm Mems Technologies, Inc. | Conductive bus structure for interferometric modulator array |
JP2011153845A (en) * | 2010-01-26 | 2011-08-11 | Seiko Epson Corp | Thermal photodetector, thermal photodetector device, electronic instrument, and method of manufacturing thermal photodetector |
JP2011153853A (en) * | 2010-01-26 | 2011-08-11 | Seiko Epson Corp | Thermal photodetector, thermal photodetector device, electronic instrument, and method of manufacturing thermal photodetector |
US7999993B2 (en) | 2004-09-27 | 2011-08-16 | Qualcomm Mems Technologies, Inc. | Reflective display device having viewable display on both sides |
US8008736B2 (en) | 2004-09-27 | 2011-08-30 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device |
US8023167B2 (en) | 2008-06-25 | 2011-09-20 | Qualcomm Mems Technologies, Inc. | Backlight displays |
US8054527B2 (en) | 2007-10-23 | 2011-11-08 | Qualcomm Mems Technologies, Inc. | Adjustably transmissive MEMS-based devices |
US8053850B2 (en) | 2005-06-30 | 2011-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Minute structure, micromachine, organic transistor, electric appliance, and manufacturing method thereof |
US8058549B2 (en) | 2007-10-19 | 2011-11-15 | Qualcomm Mems Technologies, Inc. | Photovoltaic devices with integrated color interferometric film stacks |
US8064124B2 (en) | 2006-01-18 | 2011-11-22 | Qualcomm Mems Technologies, Inc. | Silicon-rich silicon nitrides as etch stops in MEMS manufacture |
US8081373B2 (en) | 2007-07-31 | 2011-12-20 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing color shift of interferometric modulators |
US8115987B2 (en) | 2007-02-01 | 2012-02-14 | Qualcomm Mems Technologies, Inc. | Modulating the intensity of light from an interferometric reflector |
US8115988B2 (en) | 2004-07-29 | 2012-02-14 | Qualcomm Mems Technologies, Inc. | System and method for micro-electromechanical operation of an interferometric modulator |
US8164821B2 (en) | 2008-02-22 | 2012-04-24 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device with thermal expansion balancing layer or stiffening layer |
US8226836B2 (en) | 2004-09-27 | 2012-07-24 | Qualcomm Mems Technologies, Inc. | Mirror and mirror layer for optical modulator and method |
US8270056B2 (en) | 2009-03-23 | 2012-09-18 | Qualcomm Mems Technologies, Inc. | Display device with openings between sub-pixels and method of making same |
US8270062B2 (en) | 2009-09-17 | 2012-09-18 | Qualcomm Mems Technologies, Inc. | Display device with at least one movable stop element |
US8284475B2 (en) | 2007-05-11 | 2012-10-09 | Qualcomm Mems Technologies, Inc. | Methods of fabricating MEMS with spacers between plates and devices formed by same |
US8298847B2 (en) | 2005-08-19 | 2012-10-30 | Qualcomm Mems Technologies, Inc. | MEMS devices having support structures with substantially vertical sidewalls and methods for fabricating the same |
US8368124B2 (en) | 2002-09-20 | 2013-02-05 | Qualcomm Mems Technologies, Inc. | Electromechanical devices having etch barrier layers |
US8394656B2 (en) | 2005-12-29 | 2013-03-12 | Qualcomm Mems Technologies, Inc. | Method of creating MEMS device cavities by a non-etching process |
US8659816B2 (en) | 2011-04-25 | 2014-02-25 | Qualcomm Mems Technologies, Inc. | Mechanical layer and methods of making the same |
US8736939B2 (en) | 2011-11-04 | 2014-05-27 | Qualcomm Mems Technologies, Inc. | Matching layer thin-films for an electromechanical systems reflective display device |
US8797628B2 (en) | 2007-10-19 | 2014-08-05 | Qualcomm Memstechnologies, Inc. | Display with integrated photovoltaic device |
US8797632B2 (en) | 2010-08-17 | 2014-08-05 | Qualcomm Mems Technologies, Inc. | Actuation and calibration of charge neutral electrode of a display device |
US8885244B2 (en) | 2004-09-27 | 2014-11-11 | Qualcomm Mems Technologies, Inc. | Display device |
US8941631B2 (en) | 2007-11-16 | 2015-01-27 | Qualcomm Mems Technologies, Inc. | Simultaneous light collection and illumination on an active display |
US8963159B2 (en) | 2011-04-04 | 2015-02-24 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
US8971675B2 (en) | 2006-01-13 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
US8979349B2 (en) | 2009-05-29 | 2015-03-17 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US9057872B2 (en) | 2010-08-31 | 2015-06-16 | Qualcomm Mems Technologies, Inc. | Dielectric enhanced mirror for IMOD display |
US9134527B2 (en) | 2011-04-04 | 2015-09-15 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
FR3030476A1 (en) * | 2014-12-23 | 2016-06-24 | Thales Sa | RF CAPACITIVE MEMS FOR HIGH POWER APPLICATIONS |
-
2002
- 2002-05-20 JP JP2002144981A patent/JP2003340795A/en active Pending
Cited By (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8368124B2 (en) | 2002-09-20 | 2013-02-05 | Qualcomm Mems Technologies, Inc. | Electromechanical devices having etch barrier layers |
JP2005197415A (en) * | 2004-01-06 | 2005-07-21 | Sony Corp | Semiconductor device and leak control circuit |
US7704772B2 (en) | 2004-05-04 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Method of manufacture for microelectromechanical devices |
US8115988B2 (en) | 2004-07-29 | 2012-02-14 | Qualcomm Mems Technologies, Inc. | System and method for micro-electromechanical operation of an interferometric modulator |
US9086564B2 (en) | 2004-09-27 | 2015-07-21 | Qualcomm Mems Technologies, Inc. | Conductive bus structure for interferometric modulator array |
US8970939B2 (en) | 2004-09-27 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Method and device for multistate interferometric light modulation |
US9097885B2 (en) | 2004-09-27 | 2015-08-04 | Qualcomm Mems Technologies, Inc. | Device having a conductive light absorbing mask and method for fabricating same |
US7554714B2 (en) | 2004-09-27 | 2009-06-30 | Idc, Llc | Device and method for manipulation of thermal response in a modulator |
US7564612B2 (en) | 2004-09-27 | 2009-07-21 | Idc, Llc | Photonic MEMS and structures |
US7948671B2 (en) | 2004-09-27 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | Apparatus and method for reducing slippage between structures in an interferometric modulator |
US7612932B2 (en) | 2004-09-27 | 2009-11-03 | Idc, Llc | Microelectromechanical device with optical function separated from mechanical and electrical function |
US7630119B2 (en) | 2004-09-27 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Apparatus and method for reducing slippage between structures in an interferometric modulator |
US9001412B2 (en) | 2004-09-27 | 2015-04-07 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US8081370B2 (en) | 2004-09-27 | 2011-12-20 | Qualcomm Mems Technologies, Inc. | Support structures for electromechanical systems and methods of fabricating the same |
US8213075B2 (en) | 2004-09-27 | 2012-07-03 | Qualcomm Mems Technologies, Inc. | Method and device for multistate interferometric light modulation |
US8226836B2 (en) | 2004-09-27 | 2012-07-24 | Qualcomm Mems Technologies, Inc. | Mirror and mirror layer for optical modulator and method |
US7944599B2 (en) | 2004-09-27 | 2011-05-17 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US8289613B2 (en) | 2004-09-27 | 2012-10-16 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US8405899B2 (en) | 2004-09-27 | 2013-03-26 | Qualcomm Mems Technologies, Inc | Photonic MEMS and structures |
US8008736B2 (en) | 2004-09-27 | 2011-08-30 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device |
US7999993B2 (en) | 2004-09-27 | 2011-08-16 | Qualcomm Mems Technologies, Inc. | Reflective display device having viewable display on both sides |
US7936497B2 (en) | 2004-09-27 | 2011-05-03 | Qualcomm Mems Technologies, Inc. | MEMS device having deformable membrane characterized by mechanical persistence |
US8638491B2 (en) | 2004-09-27 | 2014-01-28 | Qualcomm Mems Technologies, Inc. | Device having a conductive light absorbing mask and method for fabricating same |
US8885244B2 (en) | 2004-09-27 | 2014-11-11 | Qualcomm Mems Technologies, Inc. | Display device |
US7889415B2 (en) | 2004-09-27 | 2011-02-15 | Qualcomm Mems Technologies, Inc. | Device having a conductive light absorbing mask and method for fabricating same |
US7787173B2 (en) | 2004-09-27 | 2010-08-31 | Qualcomm Mems Technologies, Inc. | System and method for multi-level brightness in interferometric modulation |
JP2006099104A (en) * | 2004-09-27 | 2006-04-13 | Idc Llc | Method for forming a pre-structure for a MEMS system |
US7839557B2 (en) | 2004-09-27 | 2010-11-23 | Qualcomm Mems Technologies, Inc. | Method and device for multistate interferometric light modulation |
US7982700B2 (en) | 2004-09-27 | 2011-07-19 | Qualcomm Mems Technologies, Inc. | Conductive bus structure for interferometric modulator array |
CN1314576C (en) * | 2005-05-25 | 2007-05-09 | 西北工业大学 | A miniature flat electrostatic driver and its manufacturing method |
US7884989B2 (en) | 2005-05-27 | 2011-02-08 | Qualcomm Mems Technologies, Inc. | White interferometric modulators and methods for forming the same |
JP4587320B2 (en) * | 2005-06-30 | 2010-11-24 | 株式会社半導体エネルギー研究所 | Microstructure, micromachine, and manufacturing method thereof |
JP2007038394A (en) * | 2005-06-30 | 2007-02-15 | Semiconductor Energy Lab Co Ltd | Microstructure, micromachine, organic transistor, electronic device, and manufacturing methods thereof |
US8686405B2 (en) | 2005-06-30 | 2014-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Minute structure, micromachine, organic transistor, electric appliance, and manufacturing method thereof |
US8053850B2 (en) | 2005-06-30 | 2011-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Minute structure, micromachine, organic transistor, electric appliance, and manufacturing method thereof |
JP2009503565A (en) * | 2005-07-22 | 2009-01-29 | クアルコム,インコーポレイテッド | Support structure for MEMS device and method thereof |
US8298847B2 (en) | 2005-08-19 | 2012-10-30 | Qualcomm Mems Technologies, Inc. | MEMS devices having support structures with substantially vertical sidewalls and methods for fabricating the same |
US8394656B2 (en) | 2005-12-29 | 2013-03-12 | Qualcomm Mems Technologies, Inc. | Method of creating MEMS device cavities by a non-etching process |
US8971675B2 (en) | 2006-01-13 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
US8064124B2 (en) | 2006-01-18 | 2011-11-22 | Qualcomm Mems Technologies, Inc. | Silicon-rich silicon nitrides as etch stops in MEMS manufacture |
JP2007312553A (en) * | 2006-05-20 | 2007-11-29 | Nikon Corp | Micro actuator, optical device, and display |
US7649671B2 (en) | 2006-06-01 | 2010-01-19 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device with electrostatic actuation and release |
US7835061B2 (en) | 2006-06-28 | 2010-11-16 | Qualcomm Mems Technologies, Inc. | Support structures for free-standing electromechanical devices |
US8102590B2 (en) | 2006-06-30 | 2012-01-24 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
US8964280B2 (en) | 2006-06-30 | 2015-02-24 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
US7952787B2 (en) | 2006-06-30 | 2011-05-31 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
US7629197B2 (en) | 2006-10-18 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Spatial light modulator |
US7684106B2 (en) | 2006-11-02 | 2010-03-23 | Qualcomm Mems Technologies, Inc. | Compatible MEMS switch architecture |
US8115987B2 (en) | 2007-02-01 | 2012-02-14 | Qualcomm Mems Technologies, Inc. | Modulating the intensity of light from an interferometric reflector |
US7643202B2 (en) | 2007-05-09 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Microelectromechanical system having a dielectric movable membrane and a mirror |
US7715085B2 (en) | 2007-05-09 | 2010-05-11 | Qualcomm Mems Technologies, Inc. | Electromechanical system having a dielectric movable membrane and a mirror |
US8098417B2 (en) | 2007-05-09 | 2012-01-17 | Qualcomm Mems Technologies, Inc. | Electromechanical system having a dielectric movable membrane |
US8284475B2 (en) | 2007-05-11 | 2012-10-09 | Qualcomm Mems Technologies, Inc. | Methods of fabricating MEMS with spacers between plates and devices formed by same |
US8830557B2 (en) | 2007-05-11 | 2014-09-09 | Qualcomm Mems Technologies, Inc. | Methods of fabricating MEMS with spacers between plates and devices formed by same |
US7643199B2 (en) | 2007-06-19 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | High aperture-ratio top-reflective AM-iMod displays |
US7782517B2 (en) | 2007-06-21 | 2010-08-24 | Qualcomm Mems Technologies, Inc. | Infrared and dual mode displays |
US7920319B2 (en) | 2007-07-02 | 2011-04-05 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US7630121B2 (en) | 2007-07-02 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
US8736949B2 (en) | 2007-07-31 | 2014-05-27 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing color shift of interferometric modulators |
US8081373B2 (en) | 2007-07-31 | 2011-12-20 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing color shift of interferometric modulators |
US7847999B2 (en) | 2007-09-14 | 2010-12-07 | Qualcomm Mems Technologies, Inc. | Interferometric modulator display devices |
US7773286B2 (en) | 2007-09-14 | 2010-08-10 | Qualcomm Mems Technologies, Inc. | Periodic dimple array |
US8797628B2 (en) | 2007-10-19 | 2014-08-05 | Qualcomm Memstechnologies, Inc. | Display with integrated photovoltaic device |
US8058549B2 (en) | 2007-10-19 | 2011-11-15 | Qualcomm Mems Technologies, Inc. | Photovoltaic devices with integrated color interferometric film stacks |
US8054527B2 (en) | 2007-10-23 | 2011-11-08 | Qualcomm Mems Technologies, Inc. | Adjustably transmissive MEMS-based devices |
JP2009118682A (en) * | 2007-11-08 | 2009-05-28 | Nikon Corp | Micro actuator, micro actuator array, micro actuator arrangement, optical device, display, aligner, and method of manufacturing device |
US8941631B2 (en) | 2007-11-16 | 2015-01-27 | Qualcomm Mems Technologies, Inc. | Simultaneous light collection and illumination on an active display |
US7715079B2 (en) | 2007-12-07 | 2010-05-11 | Qualcomm Mems Technologies, Inc. | MEMS devices requiring no mechanical support |
US8164821B2 (en) | 2008-02-22 | 2012-04-24 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device with thermal expansion balancing layer or stiffening layer |
US7944604B2 (en) | 2008-03-07 | 2011-05-17 | Qualcomm Mems Technologies, Inc. | Interferometric modulator in transmission mode |
US8693084B2 (en) | 2008-03-07 | 2014-04-08 | Qualcomm Mems Technologies, Inc. | Interferometric modulator in transmission mode |
US8174752B2 (en) | 2008-03-07 | 2012-05-08 | Qualcomm Mems Technologies, Inc. | Interferometric modulator in transmission mode |
US8068269B2 (en) | 2008-03-27 | 2011-11-29 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device with spacing layer |
US7612933B2 (en) | 2008-03-27 | 2009-11-03 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device with spacing layer |
US7898723B2 (en) | 2008-04-02 | 2011-03-01 | Qualcomm Mems Technologies, Inc. | Microelectromechanical systems display element with photovoltaic structure |
US7969638B2 (en) | 2008-04-10 | 2011-06-28 | Qualcomm Mems Technologies, Inc. | Device having thin black mask and method of fabricating the same |
US8023167B2 (en) | 2008-06-25 | 2011-09-20 | Qualcomm Mems Technologies, Inc. | Backlight displays |
US7746539B2 (en) | 2008-06-25 | 2010-06-29 | Qualcomm Mems Technologies, Inc. | Method for packing a display device and the device obtained thereof |
US7768690B2 (en) | 2008-06-25 | 2010-08-03 | Qualcomm Mems Technologies, Inc. | Backlight displays |
US8270056B2 (en) | 2009-03-23 | 2012-09-18 | Qualcomm Mems Technologies, Inc. | Display device with openings between sub-pixels and method of making same |
US8979349B2 (en) | 2009-05-29 | 2015-03-17 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US9121979B2 (en) | 2009-05-29 | 2015-09-01 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US8270062B2 (en) | 2009-09-17 | 2012-09-18 | Qualcomm Mems Technologies, Inc. | Display device with at least one movable stop element |
JP2011153845A (en) * | 2010-01-26 | 2011-08-11 | Seiko Epson Corp | Thermal photodetector, thermal photodetector device, electronic instrument, and method of manufacturing thermal photodetector |
US8851748B2 (en) | 2010-01-26 | 2014-10-07 | Seiko Epson Corporation | Thermal detector, thermal detector device, electronic instrument, and method of manufacturing thermal detector |
JP2011153853A (en) * | 2010-01-26 | 2011-08-11 | Seiko Epson Corp | Thermal photodetector, thermal photodetector device, electronic instrument, and method of manufacturing thermal photodetector |
US8797632B2 (en) | 2010-08-17 | 2014-08-05 | Qualcomm Mems Technologies, Inc. | Actuation and calibration of charge neutral electrode of a display device |
US9057872B2 (en) | 2010-08-31 | 2015-06-16 | Qualcomm Mems Technologies, Inc. | Dielectric enhanced mirror for IMOD display |
US8963159B2 (en) | 2011-04-04 | 2015-02-24 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
US9134527B2 (en) | 2011-04-04 | 2015-09-15 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
US8659816B2 (en) | 2011-04-25 | 2014-02-25 | Qualcomm Mems Technologies, Inc. | Mechanical layer and methods of making the same |
US9081188B2 (en) | 2011-11-04 | 2015-07-14 | Qualcomm Mems Technologies, Inc. | Matching layer thin-films for an electromechanical systems reflective display device |
US8736939B2 (en) | 2011-11-04 | 2014-05-27 | Qualcomm Mems Technologies, Inc. | Matching layer thin-films for an electromechanical systems reflective display device |
FR3030476A1 (en) * | 2014-12-23 | 2016-06-24 | Thales Sa | RF CAPACITIVE MEMS FOR HIGH POWER APPLICATIONS |
WO2016102650A1 (en) * | 2014-12-23 | 2016-06-30 | Thales | Capacitive rf mems intended for high-power applications |
US10770640B2 (en) | 2014-12-23 | 2020-09-08 | Thales | Capacitive RF MEMS intended for high-power applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003340795A (en) | Electrostatic drive type mems element and manufacturing method therefor, optical mems element, optical modulator, glv device and laser display | |
JP3852306B2 (en) | Method for manufacturing MEMS element, method for manufacturing GLV device, and method for manufacturing laser display | |
JP3760810B2 (en) | Light modulation element, GLV device, and laser display | |
JP2003200394A (en) | Electrostatic drive type micro electro mechanical system element and manufacture method therefor, optical mems element, optical modulator, grating light valve device and laser display | |
JP4581453B2 (en) | MEMS element, optical MEMS element, diffractive optical MEMS element, and laser display | |
KR100974480B1 (en) | MEMS element and its manufacturing method, optical modulation element, LED device and its manufacturing method and laser display | |
US8159740B2 (en) | Fabrication of a high fill ratio silicon spatial light modulator | |
US20090002805A1 (en) | Projection display system including a high fill ratio silicon spatial light modulator | |
US7227594B2 (en) | Display device using optical modulator equipped with lens system having improved numerical aperture | |
US7595927B2 (en) | Spatial light modulator with sub-wavelength structure | |
US7796321B2 (en) | Mirror device | |
JP2004102150A (en) | Optical mems element, its manufacturing method, glv device, and laser display | |
JP4338421B2 (en) | Light modulation element, light modulation element array including light modulation element, and image display device | |
JPH11249037A (en) | Spatial optical modulator and display optical device using same | |
JP2002357777A (en) | Light modulation device and method of manufacturing the same | |
US12253667B2 (en) | High contrast spatial light modulator | |
JP4649914B2 (en) | Microelectromechanical element, optical microelectromechanical element, light modulation element, manufacturing method thereof, and laser display | |
JP2006128796A (en) | Micro electromechanical element, optical micro electromechanical element, optical modulation element, laser display, filter, communication apparatus and micro fluid ejector | |
JP2005342803A (en) | Mems element, its manufacturing method, optical mems element, optical modulator, glv device and laser display | |
JP2006068843A (en) | Micro electromechanical element, optical micro electromechanical element, light modulation element and laser display | |
KR0185926B1 (en) | Fine mirror display device and manufacturing method | |
JPH07120688A (en) | Light deflector, and image display device using this light deflector | |
JP2000241723A (en) | Light control device, method of manufacturing the same, and display device | |
KR20070010866A (en) | Forward Scanning Display Device | |
JP2002350750A (en) | Control method for optical modulating element and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080623 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080916 |