JP2003334729A - Main spindle device of work machine, load detector used for the device, measuring method, and preload adjusting method - Google Patents
Main spindle device of work machine, load detector used for the device, measuring method, and preload adjusting methodInfo
- Publication number
- JP2003334729A JP2003334729A JP2002137863A JP2002137863A JP2003334729A JP 2003334729 A JP2003334729 A JP 2003334729A JP 2002137863 A JP2002137863 A JP 2002137863A JP 2002137863 A JP2002137863 A JP 2002137863A JP 2003334729 A JP2003334729 A JP 2003334729A
- Authority
- JP
- Japan
- Prior art keywords
- strain
- bearing
- axial force
- stress concentration
- gauge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 230000036316 preload Effects 0.000 title claims description 33
- 230000002093 peripheral effect Effects 0.000 claims description 45
- 238000005259 measurement Methods 0.000 claims description 34
- 238000010586 diagram Methods 0.000 claims description 28
- 238000012937 correction Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 description 20
- 125000006850 spacer group Chemical group 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000002620 method output Methods 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 102220057728 rs151235720 Human genes 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Rolling Contact Bearings (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Machine Tool Sensing Apparatuses (AREA)
- Machine Tool Units (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マシニングセンタ
等工作機械の主軸装置及び該装置の予圧調整方法、軸荷
重測定方法、更には軸荷重検出器として適用される発明
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle device for a machine tool such as a machining center, a preload adjusting method for the device, an axial load measuring method, and an invention applied as an axial load detector.
【0002】[0002]
【従来の技術】従来より、主軸の支持剛性を広範囲な回
転数域に亙って良好に保つために、主軸を回転可能に支
持するアンギュラ軸受の予圧調整を主軸回転数等主軸作
動状況に応じて行う主軸装置は既に種々提案されてい
る。かかる構成を有する立型マシニングセンタの工作機
械の主軸装置の概略的な構造を図15に示す。2. Description of the Related Art Conventionally, in order to maintain good support rigidity of a spindle over a wide range of rotational speeds, the preload adjustment of an angular bearing that rotatably supports the spindle is adjusted according to the spindle operating conditions such as the spindle rotational speed. Various spindle devices to be used have already been proposed. FIG. 15 shows a schematic structure of a spindle device of a machine tool for a vertical machining center having such a configuration.
【0003】図において1は回転自在にケーシング10
1内に収容された主軸で、該主軸を回転自在に軸支する
第1アンギュラ軸受部2Aがケーシング101内周上側
に配置され、又第2のアンギュラ軸受部2Bはケーシン
グ101内周下側に配置されている。In FIG. 1, reference numeral 1 denotes a casing 10 which is rotatable.
In the main shaft housed in 1, a first angular bearing portion 2A that rotatably supports the main shaft is arranged on the upper side of the inner circumference of the casing 101, and a second angular bearing portion 2B is on the lower side of the inner circumference of the casing 101. It is arranged.
【0004】そして、前記第1アンギュラ軸受部2A
は、アンギュラ軸受本体20Aと、アンギュラ軸受本体
20Aの内輪側に配置され主軸外周面に嵌合するリング
状内スペーサ106と、アンギュラ軸受本体20Aの外
輪の間に配置されケーシング101 の内周面に嵌合す
るリング状外スペーサ107 と、前記内スペーサ10
6と外スペーサ107 と間にリング断面矩形状の係合部
108を設けるとともに、該係合部108の下側に油圧
通路110と連通するリング状予圧油室5を形成する。Then, the first angular bearing portion 2A
Is between the angular bearing main body 20A, the ring-shaped inner spacer 106 arranged on the inner ring side of the angular bearing main body 20A and fitted on the outer peripheral surface of the main shaft, and the inner peripheral surface of the casing 101 arranged between the outer ring of the angular bearing main body 20A. The ring-shaped outer spacer 107 to be fitted and the inner spacer 10
An engaging portion 108 having a rectangular ring cross section is provided between the outer spacer 6 and the outer spacer 107, and a ring-shaped preload oil chamber 5 communicating with the hydraulic passage 110 is formed below the engaging portion 108.
【0005】又前記第2アンギュラ軸受部2Bは、アン
ギュラ軸受本体20Bと、内周側でアンギュラ軸受本体
20Bを嵌入させ、該内周側で主軸1外周面に嵌合し、
一方外周側でケーシング101 の内周面に嵌合するリ
ング状スペーサ109を備え前記スペーサ109の上面
で前記第1アンギュラ軸受部2Aのスペーサ下面を支持
させている。又前記ケーシング101下面と第2アンギ
ュラ軸受部2Bのスペーサ109下面にはリング板状の
軸受押さえカバー3’が、ボルト112によりケーシン
グ101と一体的に固定配置され、該カバー3’に主軸
1の軸力が負荷且つ支持されるように構成されている。In the second angular bearing portion 2B, the angular bearing main body 20B and the angular bearing main body 20B are fitted on the inner peripheral side, and the outer peripheral surface of the main shaft 1 is fitted on the inner peripheral side.
On the other hand, the outer peripheral side is provided with a ring-shaped spacer 109 fitted to the inner peripheral surface of the casing 101, and the upper surface of the spacer 109 supports the spacer lower surface of the first angular bearing portion 2A. On the lower surface of the casing 101 and the lower surface of the spacer 109 of the second angular bearing portion 2B, a ring plate-shaped bearing pressing cover 3'is fixedly arranged integrally with the casing 101 by bolts 112, and the cover 3'is fixed to the main shaft 1. The axial force is configured to be loaded and supported.
【0006】そして前記リング状予圧油室(以下予圧負
荷エリア5という)に供給する油圧を調整することによ
って、第1及び第2アンギュラ軸受部2A、2B の予
圧条件を主軸1の回転速度等に応じて細かく制御可能に
構成されている。By adjusting the hydraulic pressure supplied to the ring-shaped preloading oil chamber (hereinafter referred to as preloading area 5), the preloading conditions of the first and second angular bearing portions 2A, 2B are set to the rotation speed of the main shaft 1 or the like. It is configured so that it can be finely controlled.
【0007】より具体的に説明すると工作機械の主軸1
は生産性と加工面粗度向上のため、回転速度が高い程有
利となる。高速化の鍵となる技術は前記上下1対のアン
ギュラ軸受部2A、2B間の予圧設定量を含めた軸受荷
重P1、P2の制御であり、これが過大では主軸のPV値
上昇で焼付き、過小では軸受剛性が不足して振れ回る。
アンギュラ軸受部2A、2Bの軸受荷重P1、P2は、予
圧負荷エリア5に予圧pを負荷することで与えられる。
ここで、予圧pを負荷すると軸方向荷重P(=p×A、
A:予圧を受ける全横断面積)が発生し、この荷重Pは
軸受荷重P1、P2と軸受押えカバー荷重Fに分散され、
これらの関係はP1=P2=(P―F)/2である。More specifically, the spindle 1 of the machine tool 1
In order to improve productivity and surface roughness, the higher the rotation speed, the more advantageous. The key technology for speeding up is control of the bearing loads P 1 and P 2 including the preload setting amount between the pair of upper and lower angular bearings 2A and 2B. If this is excessive, seizure will occur due to an increase in the PV value of the spindle. If it is too small, the bearing rigidity will be insufficient and it will run around.
The bearing loads P 1 and P 2 of the angular bearing portions 2A and 2B are given by applying a preload p to the preload loading area 5.
Here, when the preload p is applied, the axial load P (= p × A,
(A: total cross-sectional area subjected to preload) is generated, and this load P is distributed to the bearing loads P 1 and P 2 and the bearing retainer cover load F,
These relationships are P 1 = P 2 = (P−F) / 2.
【0008】主軸1の回転がない状態であれば軸受荷重
P1、P2は主軸1をハンマリング等の方法で確認出来る
ため、適性な荷重設定ができる。しかし、主軸1が回転
すると遠心力や熱膨張差(回転速度の増加と共に主軸の
温度も60℃程度まで上昇することが想定される)によ
りアンギュラ軸受部2A、2Bの軸受荷重P1、P2が変
化するため、予圧負荷エリア5の予圧pを調整して軸受
荷重P1、P2を適正状態に制御する必要があるが、現状
では主軸回転中の軸受荷重P1、P2を把握する技術がな
いため、経験にたより予圧負荷エリア5への油圧制御に
よる予圧調整で運転(主軸回転)を行っているのが実情
であり、主軸1の高速化を図る上で問題となっている。When the spindle 1 is not rotating, the bearing loads P 1 and P 2 can be confirmed by a method such as hammering the spindle 1, so that an appropriate load can be set. However, when the main shaft 1 rotates, the bearing loads P 1 and P 2 of the angular bearing portions 2A and 2B are caused by centrifugal force and thermal expansion difference (it is assumed that the temperature of the main shaft also rises to about 60 ° C as the rotational speed increases). Therefore, it is necessary to adjust the preload p in the preload area 5 to control the bearing loads P 1 and P 2 in an appropriate state, but at present, the bearing loads P 1 and P 2 during the spindle rotation are grasped. Due to lack of technology, it is the actual situation that the operation (spindle rotation) is performed by preload adjustment by hydraulic control to the preload area 5 based on experience, which is a problem in achieving higher speed of the spindle 1.
【0009】一方、主軸1の回転中に軸受押えカバー
3’に作用する軸方向荷重(以下、軸力と称する)Fを
何らかの方法で求めることが出来れば、軸受荷重P1、
P2はP 1、P2=(P―F)/2の関係式より求めるこ
とが出来る(ここで、予圧による軸方向の荷重Pは予圧
pを予圧負荷エリアに印加される油圧を検知する圧力計
などを介して容易に計測出来る)ので、従来より軸受押
えカバー3’に作用する軸力Fを求める方法が検討され
てきた。On the other hand, the bearing retainer cover is provided while the main shaft 1 is rotating.
Axial load (hereinafter referred to as axial force) F acting on 3 '
If it can be obtained by some method, bearing load P1,
P2Is P 1, P2= (P−F) / 2
(Here, the axial load P due to preload is the preload
p is a pressure gauge that detects the hydraulic pressure applied to the preload area
It can be easily measured via
A method for obtaining the axial force F acting on the cover 3'has been studied.
Came.
【0010】その一つとして図16(A)に示す様に、
現状構造の軸受押えカバー3’の下面の内周側に温度セ
ンサ120と近接させてひずみゲージ121を貼付して
運転時のひずみ計測を行い、その値を事前に実験室等で
求めた“軸力Fとひずみの較正線図“に当てはめて求め
る方法(軸受押えカバーを荷重検出器とする方法)があ
る。As one of them, as shown in FIG.
The strain gauge 121 is attached to the inner surface of the lower surface of the bearing retainer cover 3'of the current structure in close proximity to the temperature sensor 120 to measure strain during operation, and the value is obtained in advance in a laboratory or the like. There is a method (a method in which the bearing retainer cover is used as a load detector) by applying it to the force F and strain calibration diagram ".
【0011】かかる手順を図16(B)に示す。同図は
ひずみと温度の計測値に基づく軸力推定のフロー図であ
る。先ず実験室の試験による均一温度負荷試験機データ
より温度Tと温度ドリフトεo関係を示す線図及び軸力
負荷試験データよりひずみεと軸力Fとの関係を示す線
図を作成してマップに取り込んでおく。(S1)
次に実際の実機データより、前記温度センサとひずみゲ
ージにより実機温度計測値Tと実機ひずみ計測値εmを
取り込んでマップよりの温度Tと温度ドリフトεo関係
を示す線図に基づき温度ドリフトεoの除去(εm−ε
o)を行う。(S2)
次にマップよりひずみεと軸力Fとの関係を示す線図よ
り
F=1/α1(εm−εo)±β
を求め、推定軸力とする。(S3)Such a procedure is shown in FIG. This figure is a flowchart of axial force estimation based on measured values of strain and temperature. First, a diagram showing the relationship between temperature T and temperature drift εo from uniform temperature load tester data from laboratory tests and a diagram showing the relationship between strain ε and axial force F from axial force load test data were created and made into a map. Capture it. (S 1 ) Next, based on the actual data of the actual machine, the actual temperature measurement value T and the actual strain measurement value εm are taken in by the temperature sensor and the strain gauge, and the temperature T based on the map and the temperature drift based on the diagram showing the relationship of the temperature εo Removal of drift εo (εm-ε
o) (S 2 ) Next, F = 1 / α1 (εm−εo) ± β is obtained from the diagram showing the relationship between the strain ε and the axial force F from the map, and is set as the estimated axial force. (S 3 )
【0012】[0012]
【発明が解決しようとする課題】しかしながら、前記図
16による推定軸力Fによる出力ひずみは図17(C)
に示す軸力と計測ひずみの関係を示すグラフ図より明ら
かなように、(計測ひずみεm/軸力F)=20μs/
300kgf程度と小さく、また、温度T変化による出力
ひずみεmo(温度ドリフトひずみ)は図18(C)の温
度Tとひずみεmoの関係を示すグラフ図に示す様に曲線
的に変化しながら、主軸の温度上昇が5℃→65℃の場
合に、εmo /T=80μs/60℃程度あり、そして
昇降温時のひずみ計測値の計測変動幅は最大で±5μs
程度生じるため、これらから推定される温度変化による
ひずみの再現性を考慮した軸力計測誤差(昇降温時のひ
ずみ計測値の最大幅の±5μsのみの考慮)は図19の
図17及び図18の軸力負荷試験結果及び温度負荷試験
により求めた軸力較正線図に示す様に少なくとも±68
kgf(=(300kgf/20)×5))程度が予想され、
計測誤差が大きすぎて軸力計測法として成立しないと考
えられていた。また、軸力計測誤差を生じさせる一因と
して、温度ドリフトひずみが温度変化に対して曲線的に
変化するため、温度補正が難しいことも挙げられた。However, the output strain due to the estimated axial force F shown in FIG. 16 is shown in FIG. 17 (C).
As is apparent from the graph showing the relationship between the axial force and the measured strain shown in (1), (measured strain εm / axial force F) = 20 μs /
It is as small as 300 kgf, and the output strain εmo (temperature drift strain) due to the change in temperature T changes in the main axis while changing in a curve as shown in the graph showing the relationship between temperature T and strain εmo in FIG. When the temperature rise is from 5 ° C to 65 ° C, there is about εmo / T = 80μs / 60 ° C, and the variation range of the strain measurement value during temperature increase / decrease is ± 5μs at maximum.
As a result, the axial force measurement error (considering only ± 5 μs of the maximum width of the strain measurement value during temperature increase / decrease) considering the reproducibility of strain due to temperature change estimated from these is shown in FIGS. 17 and 18. As shown in the axial force load test results and the axial force calibration diagram obtained by the temperature load test, at least ± 68
kgf (= (300kgf / 20) × 5)) is expected,
It was thought that the measurement error was too large to be established as an axial force measurement method. It was also mentioned that one of the causes of the axial force measurement error is that the temperature drift strain changes in a curve with respect to the temperature change, which makes it difficult to correct the temperature.
【0013】尚、図17及び図18の(A)は軸受押え
カバーの軸力付勢方向とひずみゲージの配置位置を示
す。(B)は1ゲージ法の電圧/出力の流れ方向とひず
み出力の例を示し、1つのひずみゲージと3つの固定抵
抗によりブリッジ回路を形成する。17A and 18A show the axial force urging direction of the bearing pressing cover and the position of the strain gauge. (B) shows an example of the voltage / output flow direction and strain output of the 1-gauge method, and one strain gauge and three fixed resistors form a bridge circuit.
【0014】本発明の目的は、かかる従来技術の課題に
鑑み、軸受押えカバーに改良を加えると共にひずみ計測
法に4ゲージ法を採用して、軸受押えカバーに作用する
軸力Fを精度良く計測する発明を提供することにある。In view of the problems of the prior art, an object of the present invention is to improve the bearing retainer cover and adopt the 4-gauge method for strain measurement to accurately measure the axial force F acting on the bearing retainer cover. The invention is to provide.
【0015】[0015]
【課題を解決するための手段】本発明は、主軸と該主軸
を回転自在に支持する軸受部とこれらを収容するケーシ
ングとを備え、前記軸受部をケーシング側に固定された
板状の軸受押えカバーにより支持された工作機械の主軸
装置としても又、工作機械の主軸を回転自在に支持する
軸受部に作用する軸方向荷重を検出する板状の軸方向荷
重検出器としても適用されるもので、例えば後者におい
て、前記軸受部受圧面反対側の、非受圧面側の軸受部軸
方向荷重が作用する作用部位の周方向対称位置に複数の
応力集中穴を設け、該軸受部の軸方向荷重を検出するた
めのひずみゲージを前記応力集中穴の周方向と半径方向
に配設したことを特徴とする。この場合、前記応力集中
穴が2の倍数(偶数)であり、該応力集中穴の周方向と
半径方向に配設されるひずみゲージが4の倍数である軸
方向荷重検出器において、前記4の倍数のひずみゲージ
の周方向ひずみ出力と半径方向ひずみ出力を交互に組合
わせてひずみゲージブリッジ回路を構成するのがよく、
又前記荷重検出器を軸受部の外周側に位置するケーシン
グに固定させるとともに、前記軸受部受圧面側のケーシ
ング固定手段に沿う円周線上に複数の凸部加工を施した
ことを特徴とする。更には前記応力集中穴のひずみ計測
部近傍の少なくとも1に温度センサが取付けられている
のも要件である。According to the present invention, there is provided a plate-shaped bearing retainer having a main shaft, a bearing portion rotatably supporting the main shaft, and a casing accommodating the bearing portion, the bearing portion being fixed to the casing side. It is also applied as a spindle device of a machine tool supported by a cover, and as a plate-shaped axial load detector that detects an axial load acting on a bearing portion that rotatably supports a spindle of a machine tool. , For example, in the latter case, a plurality of stress concentration holes are provided at circumferentially symmetrical positions of a portion of the non-pressure receiving surface side opposite to the bearing portion pressure receiving surface where an axial load of the bearing portion acts, and the axial load of the bearing portion is provided. Strain gauges for detecting are arranged in the circumferential direction and the radial direction of the stress concentration hole. In this case, in the axial load detector in which the stress concentration holes are a multiple (even number) of 2 and the strain gauges arranged in the circumferential direction and the radial direction of the stress concentration holes are a multiple of 4, Strain gauge bridge circuits are often constructed by alternately combining circumferential strain outputs and radial strain outputs of multiple strain gauges.
Further, the load detector is fixed to a casing located on the outer peripheral side of the bearing portion, and a plurality of convex portions are formed on a circumferential line along the casing fixing means on the pressure receiving surface side of the bearing portion. Furthermore, it is a requirement that a temperature sensor is attached to at least one of the stress concentration holes near the strain measuring portion.
【0016】そして本発明は工作機械の主軸を回転自在
に支持する軸受部の軸方向荷重(以下、軸力と称する)
をひずみ計測値より推定する軸力測定方法において、前
記軸受部の軸力を受圧する板状受圧体の受圧面と反対側
の面の周方向対称位置に複数の応力集中部を設け、該応
力集中部夫々に、主軸に対し周方向と半径方向の少なく
とも2点ずつ4の倍数のひずみゲージを配設し、該4の
倍数のひずみゲージをブリッジ回路の4ゲージ法を採用
して出力させるとともに、該ひずみ計測部近傍には、少
なくとも1個の温度センサを取付け、前記受圧体の温度
をひずみと同時に計測し、ひずみ計測値に対し温度補正
を行うことを特徴とし、好ましくは前記受圧体を応力集
中部の外周側で固定支持させるとともに、該固定支持部
の受圧面側に凸部加工を施した状態で軸力計測を行うこ
とを特徴とする。Further, according to the present invention, an axial load (hereinafter referred to as an axial force) of a bearing portion that rotatably supports a main shaft of a machine tool.
In the axial force measuring method for estimating from the strain measurement value, a plurality of stress concentrating portions are provided at circumferentially symmetrical positions of the surface opposite to the pressure receiving surface of the plate-shaped pressure receiving body that receives the axial force of the bearing portion, and the stress Strain gauges of multiples of 4 are arranged in each of the concentrated portions at least two points in the circumferential direction and the radial direction with respect to the main axis, and the strain gauges of multiples of 4 are output by adopting the 4-gauge method of the bridge circuit. At least one temperature sensor is attached in the vicinity of the strain measuring section, the temperature of the pressure receiving body is measured at the same time as the strain, and temperature correction is performed on the strain measurement value. It is characterized in that the axial force is measured while being fixedly supported on the outer peripheral side of the stress concentrating portion and the pressure receiving surface side of the fixed supporting portion is provided with a convex portion.
【0017】又本発明は、主軸を上側軸受と下側軸受で
回転自在に支持し、両軸受間に設けた予圧負荷エリアに
予圧を負荷することで発生する軸方向荷重(以下軸力と
いう)を軸受押えカバーに設けたひずみゲージで計測し
て軸力推定を行い、該推定された軸力に基づいて予圧負
荷エリアの予圧を調整して両軸受の軸受荷重を適正状態
に制御する予圧調整方法に適用する場合に、前記軸力を
受圧する板状受圧体の受圧面と反対側の非受圧面の周方
向対称位置に複数の応力集中部を設け、該応力集中部夫
々に、主軸に対し周方向と半径方向の少なくとも2点ず
つ4の倍数のひずみゲージを配設し、該4の倍数のひず
みゲージをブリッジ回路の4ゲージ法を採用して出力さ
せさせるとともに、該ひずみ計測部近傍には、少なくと
も1個の温度センサを取付け、前記受圧体の温度をひず
みと同時に計測し、ひずみ計測値に対し温度補正を行っ
て得たひずみ計測値を事前に取得した軸力較正線図(軸
力F〜ひずみ関係線図)に照合して軸受部の軸力を推定
し、該推定値に基づいて予圧負荷エリアの予圧を調整し
て両軸受の軸受荷重を適正状態に制御するように構成さ
れる。Further, according to the present invention, the main shaft is rotatably supported by the upper bearing and the lower bearing, and an axial load (hereinafter referred to as an axial force) generated by applying a preload to a preload area provided between the two bearings. Is measured with a strain gauge provided on the bearing retainer cover to estimate the axial force, and the preload in the preload area is adjusted based on the estimated axial force to adjust the bearing load of both bearings to a proper state. When applied to the method, a plurality of stress concentrating portions are provided at circumferentially symmetrical positions of the pressure-receiving surface of the plate-shaped pressure-receiving body that receives the axial force, and the non-pressure-receiving surface on the side opposite to the pressure-receiving surface. On the other hand, a strain gauge of a multiple of 4 is arranged at least at two points in the circumferential direction and the radial direction, and the strain gauge of a multiple of 4 is output by using the 4-gauge method of the bridge circuit, and the vicinity of the strain measuring section. Has at least one temperature sensor Attached, the temperature of the pressure receiving body is measured at the same time as the strain, and the strain measurement value obtained by performing temperature correction on the strain measurement value is acquired in advance. Axial force calibration diagram (axial force F-strain relationship diagram) To estimate the axial force of the bearing portion, adjust the preload in the preload area based on the estimated value, and control the bearing load of both bearings to an appropriate state.
【0018】以下本発明を具体的に説明する。軸受押え
カバー3に作用する軸力Fを精度良く計測するために
は、軸力Fに対してひずみ出力が大きく、且つ温度
変化に対してひずみ出力の幅(誤差)が少ないこと及び
温度補正が容易に出来ることが重要となる。上記目的
を達成するために、
(1)軸力Fに対してひずみ出力を大きくするための”
軸受押えカバー3の形状を改良する“。
(2)ひずみ出力を拡大し、且つ温度変化に対してひず
み出力の幅(誤差)を小さくするために”ひずみ出力の
方法として4ゲージ法を採用する“。
(3)ひずみゲージの温度補正を可能にするためにひず
み計測と同時に“温度計測を行う“。ことを要旨とす
る。The present invention will be specifically described below. In order to accurately measure the axial force F acting on the bearing retainer cover 3, the strain output is large with respect to the axial force F, and the width (error) of the strain output is small with respect to the temperature change, and the temperature correction is required. It is important that it can be done easily. In order to achieve the above purpose, (1) To increase the strain output with respect to the axial force F
Improving the shape of the bearing retainer cover 3 "(2) Expanding the strain output and reducing the width (error) of the strain output with respect to temperature changes" The 4 gauge method is adopted as the strain output method. “(3)“ Measure temperature simultaneously with strain measurement ”to enable temperature compensation of the strain gauge.
【0019】そして本発明の工作機械主軸の軸方向荷重
検出器(軸受押えカバー型荷重検出器)は以下の具体的
構成を有するのがよい。
(1)軸受押えカバー型荷重検出器4には、軸受の剛性
に影響しない範囲でフランジ面側に固定ボルト穴中心円
周線上に凸加工部41を施す。
(2)軸受押えカバー4の反フランジ面側の内周縁部に
は2個ないし4個の応力集中穴加工(符号42)を施
す。
(3)軸方向荷重を検出するためのひずみゲージ43a
〜43dの取付けは、軸受押えカバーの内周縁部の応力
集中穴42の内面周方向と内周縁一般部の半径方向に、
2点ずつ(合計4点)或いは4点ずつ(合計8点)行
う。
(4)それらひずみゲージからの出力方法は、周方向ひ
ずみ出力εθ1、εθ2(或いはεθ1、εθ2、εθ3、
εθ4)と半径方向ひずみ出力εr1、εr2(或いはε
r1、εr2、εr3、εr4)を交互にくみ合わせて、合
計のひずみ出力が“εθ1−εr1+εθ2−εr2”(或
いは“{(εθ1+εθ3)−(εr1+εr3)+(εθ2+
εθ4)−(εr2+εr4)}/2)”になる様にひず
みゲージブリッジ回路を組んだ4ゲージ法を採用する。
(5)軸受押えカバー型荷重検出器4のひずみ計測部近
傍には、少なくとも1個の熱電対等の温度センサ44を
取付け、軸受押えカバー型荷重検出器4の温度をひずみ
と同時に計測し、ひずみ計測値に対し温度補正を行う。
なお、軸受押えカバー型荷重検出器に作用する軸力F
は、実機計測で得られるひずみ値と温度を事前に取得し
た軸力較正線図(軸力F〜ひずみ関係線図)に照合して
求める。The axial load detector (bearing pressing cover type load detector) of the machine tool spindle of the present invention preferably has the following specific configuration. (1) The bearing retainer cover type load detector 4 is provided with a convex portion 41 on the flange surface side on the circumferential line of the center of the fixing bolt hole within the range that does not affect the rigidity of the bearing. (2) Two to four stress concentration holes (reference numeral 42) are formed on the inner peripheral edge of the bearing pressing cover 4 on the side opposite to the flange surface. (3) Strain gauge 43a for detecting axial load
The mounting of ~ 43d is carried out in the circumferential direction of the inner surface of the stress concentration hole 42 in the inner peripheral edge of the bearing pressing cover and in the radial direction of the general inner peripheral edge.
Do 2 points each (total 4 points) or 4 points each (total 8 points). (4) The output method from these strain gauges is the circumferential strain output εθ 1 , εθ 2 (or εθ 1 , εθ 2 , εθ 3 ,
εθ 4 ) and radial strain output εr 1 , εr 2 (or ε
r 1 , εr 2 , εr 3 , εr 4 ) are alternately combined and the total strain output is “εθ 1 −εr 1 + εθ 2 −εr 2 ” (or “{(εθ 1 + εθ 3 )-( εr 1 + εr 3 ) + (εθ 2 +
Adopt a 4-gauge method in which a strain gauge bridge circuit is assembled so that εθ 4 )-(εr 2 + εr 4 )} / 2) ”. (5) Near the strain measuring section of the bearing retainer cover type load detector 4 At least one temperature sensor 44, such as a thermocouple, is attached to the bearing, and the temperature of the bearing retainer cover type load detector 4 is measured at the same time as the strain, and the strain measurement value is temperature-corrected. Axial force F acting on the detector
Is obtained by collating the strain value and temperature obtained by actual machine measurement with the axial force calibration diagram (axial force F to strain relationship diagram) obtained in advance.
【0020】より具体的にその手順を説明すると以下の
通りである。
(1) 軸受押えカバー型荷重検出器4には、フランジ
面(受圧面)側に固定ボルト穴中心円周線上に凸加工部
41を設けると共に、反フランジ面(非受圧面)側の内
周縁部には2個(或いは4個)の応力集中穴42加工を
行う。
(2) 軸方向荷重を検出するためのひずみゲージ43
の取付けは、軸受押えカバー型荷重検出器4の内周縁部
の応力集中穴42周方向と半径方向に少なくとも2点ず
つ(或いは4点ずつ)行い、それらひずみゲージ43か
らの出力計測方法として、周方向ひずみ出力εθ1、ε
θ2(或いはεθ1、εθ2、εθ3、εθ4)と半径方向
ひずみ出力εr1、εr2(或いはεr1、εr2、ε
r3、εr4)を交互に組合わせて、合計のひずみ出力が
“εθ1−εr1+εθ2−εr2”(或いは“{(εθ1+
εθ3)−(εr1+εr3)+(εθ2+εθ4)−(εr2
+εr4)}/2)”になる様にひずみゲージブリッジ回
路を組んだ4ゲージ法を採用する。
(3)改良型軸受け押えカバー4のひずみ計測部近傍に
は熱電対等の温度センサ44を取付け、少なくとも1点
の温度計測はひずみ計測と同時に行う。The procedure will be described more specifically as follows. (1) The bearing retainer cover type load detector 4 is provided with a convex portion 41 on the center line of the fixing bolt hole on the flange surface (pressure receiving surface) side and the inner peripheral edge on the non-flange surface (non-pressure receiving surface) side. Two (or four) stress concentration holes 42 are processed in the portion. (2) Strain gauge 43 for detecting axial load
Is attached at least two points (or four points each) in the circumferential direction and the radial direction of the stress concentration hole 42 in the inner peripheral edge portion of the bearing pressing cover type load detector 4, and as an output measuring method from the strain gauges 43, Circumferential strain output εθ 1 , ε
θ 2 (or εθ 1 , εθ 2 , εθ 3 , εθ 4 ) and radial strain outputs εr 1 and εr 2 (or εr 1 , εr 2 and ε)
r 3 and εr 4 ) are alternately combined so that the total strain output is “εθ 1 −εr 1 + εθ 2 −εr 2 ” (or “{(εθ 1 +
εθ 3 ) − (εr 1 + εr 3 ) + (εθ 2 + εθ 4 ) − (εr 2
+ εr 4 )} / 2) ”is adopted so that a strain gauge bridge circuit is assembled. (3) A temperature sensor 44 such as a thermocouple is provided near the strain measuring section of the improved bearing retainer cover 4. Attach and measure at least one temperature at the same time as strain measurement.
【0021】そしてかかる構成及び手順によれば、
(1)軸受押えカバー3のフランジ面側のボルト穴49
中心円周線上に、軸受剛性に影響がない程度に凸加工部
41を設けることで、ボルト112による固定状態が緩
やかになり、軸力Fに対し軸受押えカバーに発生するひ
ずみが増大する。また、ひずみ計測部である反フランジ
面側の内周縁部に穴加工42を施すことで応力集中部を
作り出すことが出来、軸力Fに対して発生するひずみを
拡大することが出来る。
(2)ひずみ出力の方法として、軸受押えカバー型荷重
検出器4の内周縁部の応力集中穴42の周方向ひずみゲ
ージ43a、43cと半径方向ひずみゲージ43b、4
3dを交互に組み合わせて4ゲージ法でゲージブリッジ
回路を組むことで、周方向ひずみと半径方向ひずみは
正、負で符号が異なるため、4ゲージ法による出力e04
{e04=(E/4)*(εθ1−εr1+εθ2−εr2)}
は一般的計測法である1ゲージ法出力e01{e01=
(E/4)*(εθ1)}に比べて実験では2.6倍程度
に増大できる。
(3)また、4ゲージ法を採用することで、それぞれの
ひずみゲージの温度ドリフトが相殺し合うので、温度ド
リフトを小さく出来る。
軸受押えカバー型荷重検出器4の温度計測をひずみ計測
と同時に行うことで、ひずみゲージの温度ドリフトの補
正ができ、温度による計測誤差を小さくできる。According to such a configuration and procedure, (1) the bolt hole 49 on the flange surface side of the bearing pressing cover 3
By providing the convex processing portion 41 on the central circumferential line to such an extent that the bearing rigidity is not affected, the fixing state by the bolt 112 becomes gradual, and the strain generated in the bearing pressing cover with respect to the axial force F increases. In addition, a hole 42 is formed in the inner peripheral edge portion on the side of the non-flange surface, which is the strain measuring portion, so that a stress concentration portion can be created, and the strain generated with respect to the axial force F can be increased. (2) As the strain output method, the circumferential strain gauges 43a and 43c and the radial strain gauges 43b and 4 of the stress concentration hole 42 at the inner peripheral edge of the bearing pressing cover type load detector 4 are used.
By combining 3d alternately and forming a gauge bridge circuit by the 4-gauge method, since the circumferential strain and the radial strain are positive and negative and have different signs, the output by the 4-gauge method e 04
{E 04 = (E / 4) * (εθ 1 −εr 1 + εθ 2 −εr 2 )}
Is a 1-gauge method output e 01 {e 01 =
It can be increased about 2.6 times in the experiment as compared with (E / 4 ) * (εθ 1 )}. (3) Further, by adopting the 4-gauge method, the temperature drifts of the respective strain gauges cancel each other, so that the temperature drift can be reduced. By performing the temperature measurement of the bearing pressing cover type load detector 4 simultaneously with the strain measurement, the temperature drift of the strain gauge can be corrected and the measurement error due to the temperature can be reduced.
【0022】[0022]
【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples.
【0023】本発明の実施例に係る軸受押えカバー型荷
重検出器を用いた主軸軸力の推定例を図1乃至図6にも
とづいて説明する。図1は、本発明の第1実施形態に係
る軸受押えカバー型荷重検出器の側面断面図、図2は前
記軸受押えカバー型荷重検出器の図1の矢視A−Aのフ
ランジ側を示す上面図、図3は図1の矢視B−Bの反フ
ランジ側を示す下面図で、図4は前記軸受押えカバー型
荷重検出器の内周縁部の拡大立体図である。An example of estimating the spindle axial force using the bearing pressing cover type load detector according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG. 1 is a side sectional view of a bearing retainer cover type load detector according to a first embodiment of the present invention, and FIG. 2 shows a flange side of the bearing retainer cover type load detector taken along the line AA in FIG. 1 is a top view, FIG. 3 is a bottom view showing the side opposite to the flange taken along the line BB of FIG. 1, and FIG. 4 is an enlarged three-dimensional view of the inner peripheral edge of the bearing retainer cover type load detector.
【0024】図1〜図3において、4はリング板状の軸
受押えカバー3に設けられた荷重検出器で外周囲側の6
0°位置に6つのボルト穴49が周方向に均等に穿孔さ
れている。又図1、図2に示すように、軸受押えカバー
3のフランジ面(上面)側には、前記ボルト穴49中心
を結ぶ仮想円周上に30°単位ずつ外周端より中心側に
向け台形状で、ボルト穴49より大なる形状を有する1
2箇所の凸加工部41を設けた。また、図1、図3に示
すように、反フランジ面側の内周縁部には、180°対
称位置にある2つ凸加工部41の位置と対応させて18
0度の対角位置に内周縁部にφ6mmの応力集中穴42を
2個穿設した。In FIGS. 1 to 3, reference numeral 4 denotes a load detector provided on the bearing holding cover 3 in the form of a ring plate.
Six bolt holes 49 are evenly formed in the circumferential direction at the 0 ° position. Further, as shown in FIGS. 1 and 2, on the flange surface (upper surface) side of the bearing pressing cover 3, a trapezoidal shape is provided in units of 30 ° on the virtual circumference connecting the centers of the bolt holes 49 from the outer peripheral end toward the center. And has a shape larger than the bolt hole 49.
Two convex processing parts 41 were provided. In addition, as shown in FIGS. 1 and 3, the inner peripheral edge portion on the side opposite to the flange surface is made to correspond to the position of the two convex processed portions 41 at the 180 ° symmetrical position by 18
Two stress concentration holes 42 having a diameter of 6 mm were formed in the inner peripheral edge portion at a diagonal position of 0 degree.
【0025】軸力Fを検出するためにのひずみゲージは
図1、図3、図4に示すように、反フランジ面側の内周
縁部のφ6mmの応力集中穴42夫々の内周部の周方向、
言い換えれば主軸軸線方向と平行な周面に沿って汎用の
周方向ひずみゲ−ジ43a、43cを2枚、応力集中穴
42夫々の内周対称位置に貼着する。また応力集中穴4
2の近傍の反フランジ面側の内周縁部の半径方向に沿っ
て汎用の半径方向ひずみゲージ43b、43dを2枚取
付けた。A strain gauge for detecting the axial force F is, as shown in FIGS. 1, 3 and 4, a circumference of the inner peripheral portion of each of the stress concentration holes 42 of φ6 mm in the inner peripheral edge portion on the side opposite to the flange surface. direction,
In other words, two general-purpose circumferential strain gauges 43a and 43c are attached to the inner circumferential symmetrical positions of the stress concentration holes 42 along the circumferential surface parallel to the spindle axis direction. Also stress concentration holes 4
Two general-purpose radial strain gauges 43b and 43d were attached along the radial direction of the inner peripheral edge portion on the side opposite to the flange surface in the vicinity of 2.
【0026】図5は前記軸受押えカバー型荷重検出器の
ひずみゲージブリッジ回路図で、ひずみ計測は、これら
4枚の周方向/半径方向ひずみゲ−ジの抵抗(Rg1、
Rg2、Rg3、Rg4)を周方向ひずみゲージ43
a、43cと半径方向ひずみゲージ43b、43dが交
互に入る様に4ゲージ法でブリッジ回路を組んで、ひず
み出力が得られる様にした。尚、図中Eはブリッジ電
圧、eoはブリッジ回路よりの出力電圧である。FIG. 5 is a strain gauge bridge circuit diagram of the bearing pressing cover type load detector. Strain measurement is performed by measuring the resistance (Rg1, Rg1,
Rg2, Rg3, Rg4) to the circumferential strain gauge 43
The strain gauge output was obtained by forming a bridge circuit by the 4-gauge method so that a and 43c and radial strain gauges 43b and 43d were alternately inserted. In the figure, E is the bridge voltage and e o is the output voltage from the bridge circuit.
【0027】即ち、前記ブリッジ回路は、軸受押えカバ
ー3の内周縁部の応力集中穴42の周方向ひずみゲージ
43a、43cと半径方向ひずみゲージ43b、43d
を交互に組み合わせて4ゲージ法でゲージブリッジ回路
を組むことで、図6に示すように、周方向ひずみと半径
方向ひずみは正、負で符号が異なるため、4ゲージ法に
よる出力e04{e04=(E/4)*(εθ1−εr1+εθ
2−εr2)}は一般的計測法である1ゲージ法出力e01
{e01=(E/4)*(εθ1)}に比べて2.6倍程度
に増大できる。That is, in the bridge circuit, the circumferential strain gauges 43a and 43c and the radial strain gauges 43b and 43d of the stress concentration hole 42 in the inner peripheral edge portion of the bearing pressing cover 3 are used.
By alternately combining and forming a gauge bridge circuit by the 4-gauge method, as shown in FIG. 6, the circumferential strain and the radial strain have positive and negative signs, so that the output by the 4-gauge method e 04 {e 04 = (E / 4) * (εθ 1 −εr 1 + εθ
2 −εr 2 )} is the 1 gauge method output e 01 which is a general measurement method.
It can be increased about 2.6 times compared to {e 01 = (E / 4 ) * (εθ 1 )}.
【0028】また、4ゲージ法を採用することで、それ
ぞれのひずみゲージの温度ドリフトが相殺し合うので、
温度ドリフトを小さく出来るとともに、更に、応力集中
穴42を挟んで半径方向のひずみゲージの近傍に熱伝対
44a、44bを取付けて、温度計測も同時に行える様
にしたためひずみゲージの温度ドリフトの補正ができ、
温度による計測誤差を小さくできる。By adopting the 4-gauge method, the temperature drifts of the respective strain gauges cancel each other out.
The temperature drift can be reduced, and further, the thermocouples 44a and 44b are attached near the strain gauge in the radial direction with the stress concentration hole 42 interposed therebetween so that the temperature can be measured at the same time. Therefore, the temperature drift of the strain gauge can be corrected. You can
Measurement error due to temperature can be reduced.
【0029】図6は、前記軸受押えカバー型荷重検出器
4を用いた測定装置を示し、図中左方は、軸受押さえカ
バー3側の4つのひずみゲージと2つの温度センサ(熱
電対)で、4つのひずみゲージによりブリッジ回路を構
成する。又図中右方は計測室57内の構成をしめし、前
記ブリッジ回路に印加させる電圧およびブリッジ回路よ
りの出力を測定してひずみ測定を行うひずみ測定器5
4、温度センサよりの温度測定を行う温度測定器55、
前記ひずみ出力と温度出力に基づいて軸力の推定を行う
パソコン56からなる。FIG. 6 shows a measuring apparatus using the bearing retainer cover type load detector 4, and the left side of the figure shows four strain gauges on the bearing retainer cover 3 side and two temperature sensors (thermocouples). A bridge circuit is composed of four strain gauges. The right side of the figure shows the configuration inside the measuring chamber 57, and the strain measuring instrument 5 for measuring strain by measuring the voltage applied to the bridge circuit and the output from the bridge circuit 5
4. Temperature measuring device 55 for measuring the temperature from the temperature sensor,
The personal computer 56 estimates the axial force based on the strain output and the temperature output.
【0030】かかる実施例の作用を順を追って説明す
る。前記した本実施例の軸受押えカバー型荷重検出器4
は、図15に示す工作機械の主軸装置の軸受押えカバー
3’の代りとして組み込まれ、運転中にこの荷重検出器
4を用いて軸力Fを計測し、軸受荷重P1、P2と予圧に
よる軸方向力Pと軸受け押えカバーに作用する軸力Fの
関係が“P1=P2=(P―F)/2”であることを利用
して、最終的には適切な軸受荷重P1 、P2が得られる
様に予圧(p)調整するために用いる。The operation of this embodiment will be described step by step. The bearing retainer cover type load detector 4 of the present embodiment described above.
Is incorporated in place of the bearing retainer cover 3'of the main spindle device of the machine tool shown in FIG. 15, the axial force F is measured using this load detector 4 during operation, and the bearing loads P 1 , P 2 and preload By utilizing the fact that the relationship between the axial force P due to and the axial force F acting on the bearing retainer cover is “P 1 = P 2 = (P−F) / 2”, finally an appropriate bearing load P Used to adjust the preload (p) so that 1 and P 2 can be obtained.
【0031】本発明の軸受押えカバー型荷重検出器の効
果を確認するために、実機大モデルを製作して軸力負荷
試験及び温度負荷試験を行った。図7は本発明の実施形
態に適用される軸受押えカバー型荷重検出器の軸力負荷
試験要領図で、(A)は全体図である。図7(A)にお
いて、51、52、53はいずれも軸力負荷力治具で、
リング状ベースの荷重受け台51に、下部フランジを有
する円筒ケーシング状治具52が設置してある。又ケー
シング状治具52の内周には主軸若しくはスペーサに対
応する円筒状治具53が上下一対のアンギュラ軸受部2
A、2Bを介して上下且つ回転自在に配置されており、
前記円筒状治具の上面よりF=0〜500kgfの荷重
が精密万能試験機で、軸力負荷されるようになってい
る。図7(B)は軸受押えカバー型荷重検出器4の寸法
と4つのひずみゲージ43a〜43dの位置を示してあ
る。In order to confirm the effect of the bearing retainer cover type load detector of the present invention, an actual machine large model was manufactured and subjected to an axial load test and a temperature load test. FIG. 7 is an axial load test procedure diagram of the bearing retainer cover type load detector applied to the embodiment of the present invention, and (A) is an overall view. In FIG. 7 (A), reference numerals 51, 52 and 53 are all axial load force jigs.
A cylindrical casing-shaped jig 52 having a lower flange is installed on a load receiving base 51 of a ring-shaped base. On the inner circumference of the casing-shaped jig 52, a cylindrical jig 53 corresponding to a main shaft or a spacer is provided as a pair of upper and lower angular bearing portions 2.
It is arranged rotatably up and down through A and 2B,
A load of F = 0 to 500 kgf is applied from the upper surface of the cylindrical jig by a precision universal testing machine so that an axial force is applied. FIG. 7B shows the dimensions of the bearing retainer cover type load detector 4 and the positions of the four strain gauges 43a to 43d.
【0032】かかる装置において、軸受押えカバー型荷
重検出器4をケーシング状治具52の下面にボルト11
2で固定し(49はボルト穴)、主軸若しくはスペーサ
に対応する円筒状治具53を下面側より支持する。そし
て精密万能試験機で最大500kgfまでの軸方向荷重を
円筒状治具53上面より負荷を行い、その時のひずみを
計測した。その結果を図8に示す。In such a device, the bearing retainer cover type load detector 4 is attached to the lower surface of the casing jig 52 by the bolt 11.
It is fixed by 2 (49 is a bolt hole), and the cylindrical jig 53 corresponding to the main shaft or the spacer is supported from the lower surface side. Then, an axial load of up to 500 kgf was applied from the upper surface of the cylindrical jig 53 with a precision universal tester, and the strain at that time was measured. The result is shown in FIG.
【0033】図8は、図7に基づいて試験された軸受押
えカバー型荷重検出器の軸力負荷試験結果例のその1で
(A)は荷重検出器の軸力付勢方向と、ひずみゲージの
配置位置を示し、図3と同様なために、その詳細な説明
は省略する。(B)は4ゲージ法の電圧/出力の流れ方
向とひずみ出力の例を示し、図5に示すブリッジ回路で
構成される。(C)は軸力と計測ひずみの関係を示すグ
ラフ図で、300kgfの軸力負荷によるひずみ出力εm4
は108μsが得られ、従来法による計測値(εθm0
=20μs/300kgf)に比べて5.5倍程度(≒ε
m4/εθm0=108μs /20μs)高い値が得ら
れた。FIG. 8 is a first example of an axial load test result of the bearing retainer cover type load detector tested based on FIG. 7, and (A) shows the axial direction of the load detector and the strain gauge. The arrangement position is shown, and since it is similar to FIG. 3, its detailed description is omitted. FIG. 5B shows an example of voltage / output flow direction and strain output in the 4-gauge method, which is configured by the bridge circuit shown in FIG. (C) is a graph showing the relationship between axial force and measured strain. Strain output ε m4 due to axial load of 300 kgf
Is 108 μs, which is the value measured by the conventional method (εθm0
= 20 μs / 300 kgf) about 5.5 times (≈ε
m4 / εθ m0 = 108 μs / 20 μs) A high value was obtained.
【0034】更に、このひずみ出力増大に対する内訳を
確認するために、軸受押えカバー型荷重検出器4の内周
縁部のφ6mmの応力集中穴42内面部の周方向ひずみε
θm 1、内周縁部の一般部の周方向ひずみεθm01及び
半径方向ひずみεrm1を個別に1ゲージ法で計測して
みた。それらの結果を図9に示す。Furthermore, in order to confirm the details of this increase in strain output, the circumferential strain ε of the inner surface of the φ6 mm stress concentration hole 42 of the bearing pressing cover type load detector 4 is confirmed.
theta m 1, and the circumferential strain Ipushironshita m01 and radial strain .epsilon.r m1 of the general portion of the inner peripheral edge portion try to measure individually 1 gauge method. The results are shown in FIG.
【0035】図9は、図7に基づいて試験された軸受押
えカバー型荷重検出器の軸力負荷試験結果例のその2で
(A)は荷重検出器の軸力付勢方向と、応力集中穴42
と周方向及び半径方向のひずみゲージの配置位置を示
し、図3と同様なために、その詳細な説明は省略する。
尚、430は応力集中穴42以外の場所に設けた一般部
の周方向ひずみゲージである。更に、一般部の半径方向
ひずみゲージは図13に示す位置に設けてある。図9
(B)は1ゲージ法の電圧/出力の流れ方向とひずみ出
力の例を示し、図17(B)に示す固定抵抗124との
組み合わせによるブリッジ回路で構成される。図9
(C)は軸力と計測ひずみの関係を示すグラフ図で応力
集中穴42の周方向ひずみ部及び一般部の周方向と半径
方向のひずみを夫々示す。内周縁部のφ6mmの応力集中
穴42内面部の周方向ひずみεθm1は48μs/30
0kgf、内周縁部の一般部の周方向ひずみεθm01は3
0μs/300kgf、内周縁部の一般部の半径方向ひず
みεrm1は−9μs/300kgfが得られ、これらのこ
とより本発明によるひずみ増大効果は、軸受押えカバー
のフランジ面側に凸部加工を施すことで1.5倍(=ε
θm01/εθm0=30μs /20μs)、内周縁部に
φ6mmの応力集中穴42を加工することで1.6倍(=
εθm 1/εθm01=48μs /30μs)、また図7
に示すように応力集中穴42を加工したものについて更
に4ゲージ法を採用することで2.3倍(=εm4/ε
θm1=108μs /48μs)あることを確認した。FIG. 9 is a second example of the axial load test results of the bearing retainer cover type load detector tested based on FIG. 7, (A) shows the axial direction of the load detector and the stress concentration. Hole 42
And the arrangement positions of the strain gauges in the circumferential direction and the radial direction are shown. Since they are the same as in FIG.
Incidentally, 43 0 is the circumferential direction strain gauge general portion provided in a location other than the stress concentration hole 42. Further, the radial strain gauge of the general portion is provided at the position shown in FIG. Figure 9
17B shows an example of the voltage / output flow direction and strain output in the 1-gauge method, which is configured by a bridge circuit in combination with the fixed resistor 124 shown in FIG. 17B. Figure 9
(C) is a graph showing the relationship between the axial force and the measured strain, and shows the circumferential strain portion of the stress concentration hole 42 and the strain in the circumferential portion and the radial portion of the general portion, respectively. The circumferential strain εθ m1 of the inner surface of the stress concentrating hole 42 of φ6 mm is 48 μs / 30.
0 kgf, circumferential strain Ipushironshita m01 of the general portion of the inner peripheral edge portion 3
0 μs / 300 kgf, and radial strain εr m1 of the general portion of the inner peripheral edge portion is −9 μs / 300 kgf. From these facts, the strain increasing effect according to the present invention is obtained by forming a convex portion on the flange surface side of the bearing retainer cover. 1.5 times (= ε
θ m01 / εθ m0 = 30μs / 20μs), 1.6 times by processing the stress concentration hole 42 of φ6mm the inner peripheral edge portion (=
εθ m 1 / εθ m01 = 48μs / 30μs), and FIG. 7
As shown in Fig. 3, the stress concentration hole 42 is machined and the 4-gauge method is further adopted to obtain 2.3 times (= ε m4 / ε
θ m1 = 108 μs / 48 μs).
【0036】次に本発明の軸受押えカバー型荷重検出器
4の温度負荷試験要領を図10に示す。図10は、本発
明の実施形態に適用される軸受押えカバー型荷重検出器
の温度負荷試験要領図で(A)は荷重検出器のひずみゲ
ージの配置位置と加熱炉内の収容状態を示す。(B)は
前記加熱炉内に収容したひずみゲージの4ゲージ法に基
づく電圧/出力の流れ方向とひずみ出力の例を示す。
(A)において、軸受押えカバー型荷重検出器4の単体
を加熱炉50に入れて、10℃〜65℃間で昇降温さ
せ、その時のひずみ(温度ドリフト)計測を行った。そ
の結果を図11に示す。Next, FIG. 10 shows a temperature load test procedure of the bearing retainer cover type load detector 4 of the present invention. FIG. 10 is a temperature load test procedure diagram of the bearing retainer cover type load detector applied to the embodiment of the present invention. FIG. 10A shows the arrangement position of the strain gauge of the load detector and the accommodation state in the heating furnace. (B) shows an example of voltage / output flow direction and strain output based on the 4-gauge method of the strain gauge housed in the heating furnace.
In (A), the single body of the bearing pressing cover type load detector 4 was put in the heating furnace 50, and the temperature was raised and lowered between 10 ° C. and 65 ° C., and the strain (temperature drift) at that time was measured. The result is shown in FIG.
【0037】図11は図10に基づいて加熱炉内で10
℃〜65℃間で昇降温試験された軸受押えカバー型荷重
検出器の温度負荷試験結果の温度ドリフト例を示す。ひ
ずみ出力は温度変化に対し、昇降温で±2.5μs程度
の幅をもった直線関係を示していることが理解できる。
従って温度ドリフトひずみが温度変化に対し直線関係を
示すことより温度補正が容易であり、また温度変化に対
するひずみ計測誤差は±2.5μs程度見ておけば良い
ことが知見された。FIG. 11 is a schematic view of a heating furnace in accordance with FIG.
The example of the temperature drift of the temperature load test result of the bearing retainer cover type load detector which temperature-rising test was carried out between ℃ -65 ℃ is shown. It can be understood that the strain output shows a linear relationship having a width of about ± 2.5 μs as the temperature rises and falls when the temperature changes.
Therefore, it was found that temperature correction is easy because the temperature drift strain shows a linear relationship with the temperature change, and the strain measurement error with respect to the temperature change should be observed at about ± 2.5 μs.
【0038】更に、これらの試験結果に基づいて、本発
明の軸受押えカバー型荷重検出器の軸力較正線図を作成
し、計測精度を推定してみた。それらの結果を図12に
示す。図12は、図9及び図10の軸力負荷試験結果及
び温度負荷試験により求めた軸力較正線図で計測ひずみ
より軸力負荷力推定例を示すグラフ図である。本グラフ
図より軸受押えカバー型荷重検出器の計測誤差は±11
kgf程度が考えられ、従来法(±68kgf程度)に比べて
計測精度は大幅に向上することが確認された。Further, based on these test results, an axial force calibration diagram of the bearing retainer cover type load detector of the present invention was prepared and the measurement accuracy was estimated. The results are shown in FIG. FIG. 12 is a graph showing an example of axial force load force estimation from measured strain in the axial force load test results of FIG. 9 and FIG. 10 and the axial force calibration diagram obtained by the temperature load test. From this graph, the measurement error of the bearing retainer cover type load detector is ± 11.
It has been confirmed that kgf is considered, and the measurement accuracy is significantly improved compared to the conventional method (about ± 68 kgf).
【0039】なお、軸受押えカバー型荷重検出器は上記
のひずみゲージを4枚使用したものの他に、図13に示
す様な内周縁部の4箇所に応力集中穴42を加工し、そ
の穴内面の周方向と内周縁部一般部の半径方向にゲージ
を8枚取付けた方法も考えられる。その時のひずみゲー
ジブリッジ回路は図14に示す通りとなる。In addition to the above-mentioned four strain gauges, the bearing retainer cover type load detector also has stress concentration holes 42 formed at four locations on the inner peripheral edge as shown in FIG. A method in which eight gauges are attached in the circumferential direction and in the radial direction of the inner peripheral edge general portion is also conceivable. The strain gauge bridge circuit at that time is as shown in FIG.
【0040】即ち、図13に示すように本発明の第2実
施形態は、ひずみゲージを8枚使用した場合の軸受押え
カバー型荷重検出器の構成を示す側面断面図と平面図
で、4はリング板状の軸受押えカバー型荷重検出器で外
周囲側の60°位置に6つのボルト穴49が周方向に均
等に穿孔されている。又図2と同様に、軸受押えカバー
3のフランジ面(上面)側には、前記ボルト穴49中心
を結ぶ仮想円周上に30°単位ずつ外周端より中心側に
向け台形状で、ボルト穴49のより大なる形状を有する
12箇所の凸加工部41を設けた。また、図13下段は
図3対応図で、反フランジ面側の内周縁部には、90度
の対角位置に内周縁部にφ6mmの応力集中穴42を4個
加工した。That is, as shown in FIG. 13, the second embodiment of the present invention is a side sectional view and a plan view showing the structure of a bearing retainer cover type load detector when eight strain gauges are used. The ring-plate-shaped bearing retainer cover type load detector has six bolt holes 49 evenly formed in the circumferential direction at 60 ° positions on the outer peripheral side. Further, similar to FIG. 2, on the flange surface (upper surface) side of the bearing pressing cover 3, trapezoidal bolt holes are formed in units of 30 ° on the virtual circumference connecting the centers of the bolt holes 49 toward the center from the outer peripheral end. Twelve convex processing portions 41 having a larger shape of 49 were provided. The lower part of FIG. 13 corresponds to FIG. 3, and four stress concentration holes 42 of φ6 mm are formed in the inner peripheral edge portion on the side opposite to the flange surface at diagonal positions of 90 degrees.
【0041】軸力Fを検出するためにのひずみゲージは
図13下段に示すように、反フランジ面側の内周縁部の
φ6mmの応力集中穴42夫々の内周部の周方向1側に周
方向ひずみゲ−ジ43aA、43aB、43cA、43
cBを4枚、応力集中穴42内の中心側周面位置に貼着
する。また応力集中穴42の近傍の反フランジ面側の内
周縁部の半径方向に沿って汎用の半径方向ひずみゲージ
43bA、43bB、43dA、43dBを4枚取付け
た。A strain gauge for detecting the axial force F is, as shown in the lower part of FIG. 13, circumferentially on the circumferential direction 1 side of the inner peripheral portion of each of the φ6 mm stress concentration holes 42 at the inner peripheral edge portion on the opposite flange surface side. Directional strain gauges 43aA, 43aB, 43cA, 43
Four pieces of cB are attached to the center side peripheral surface position in the stress concentration hole 42. Four general-purpose radial strain gauges 43bA, 43bB, 43dA, 43dB were attached along the radial direction of the inner peripheral edge portion on the side opposite to the flange surface near the stress concentration hole 42.
【0042】図14は前記軸受押えカバー型荷重検出器
のひずみゲージブリッジ回路図で、ひずみ計測は、これ
ら4枚の周方向/半径方向ひずみゲ−ジの抵抗(Rg1
〜Rg8)を周方向ひずみゲージ(43aA、43a
B)(43cA、43cB)と半径方向ひずみゲージ
(43bA、43bB)、(43dA、43dB)が夫
々各辺に直列接続される様に8ゲージ法でブリッジ回路
を組んで、ひずみ出力が得られる様にした。尚、図中E
はブリッジ電圧、eoはブリッジ回路よりの出力電圧で
ある。FIG. 14 is a strain gauge bridge circuit diagram of the bearing retainer cover type load detector. Strain measurement is performed by measuring the resistance (Rg1) of these four circumferential / radial strain gauges.
~ Rg8) circumferential strain gauge (43aA, 43a
B) (43cA, 43cB) and radial strain gauges (43bA, 43bB), (43dA, 43dB) are connected in series to each side so that a bridge circuit is assembled by the 8 gauge method to obtain strain output. I chose Incidentally, E in the figure
Is the bridge voltage and e o is the output voltage from the bridge circuit.
【0043】図13に戻り、更に、180°対称位置に
ある応力集中穴42を挟んで半径方向のひずみゲージの
近傍に熱伝対44a、44bを取付けて、温度計測も同
時に行える様にしてある。軸受押えカバー4の反フラン
ジ面側の内周縁部には2個ないし4個の応力集中穴42
加工4-2を施す。かかる実施例においても軸方向荷重
を検出するためのひずみゲージ43a〜43dの取付け
は、軸受押えカバーの内周縁部の応力集中穴42の内面
周方向と内周縁一般部の半径方向に、4点ずつ(合計8
点)行う。それらひずみゲージからの出力方法は、周方
向ひずみ出力εθ1、εθ2、εθ 3、εθ4と半径方向ひ
ずみ出力εr1、εr2、εr3、εr4を交互に組合わせ
て、合計のひずみ出力が
eo=(E/4)*εo
εo=
{(εθ1+εθ3)−(εr1+εr3)+(εθ2+ε
θ4)−(εr2+εr4)}/2)
になる様にひずみゲージブリッジ回路を組んだ4ゲージ
法を採用する。Returning to FIG. 13, further, at the 180 ° symmetrical position.
A strain gage in the radial direction across a stress concentration hole 42
Attach thermocouples 44a and 44b in the vicinity to measure temperature.
I am able to do it from time to time. Anti flan of bearing retainer cover 4
Two or four stress concentration holes 42 are formed in the inner peripheral edge of the surface
Process 4-2. Also in this embodiment, the axial load
Of strain gauges 43a to 43d for detecting
Is the inner surface of the stress concentration hole 42 at the inner peripheral edge of the bearing retainer cover.
Four points each in the circumferential direction and the radial direction of the inner peripheral edge general part (total 8
Do) The output method from those strain gauges is
Directional strain output εθ1, Εθ2, Εθ 3, ΕθFourAnd radial
Total output εr1, Εr2, Εr3, ΕrFourAlternate combinations
And the total strain output is
eo= (E / 4) * εo
εo =
{(Εθ1+ εθ3)-(Εr1+ εr3) + (Εθ2+ ε
θFour)-(Εr2+ εrFour)} / 2)
4 gauge with strain gauge bridge circuit
Adopt the law.
【0044】軸受押えカバー型荷重検出器4のひずみ計
測部近傍には、少なくとも1個の熱電対44を取付け、
軸受押えカバー型荷重検出器4の温度をひずみと同時に
計測し、ひずみ計測値に対し温度補正を行い、軸受押え
カバー型荷重検出器に作用する軸力Fは、実機計測で得
られるひずみ値と温度を事前に取得した軸力較正線図
(軸力F〜ひずみ関係線図)に照合して求めることは前
記実施例と同様である。At least one thermocouple 44 is attached near the strain measuring portion of the bearing retainer cover type load detector 4,
The temperature of the bearing retainer cover type load detector 4 is measured at the same time as the strain, the temperature is corrected for the strain measurement value, and the axial force F acting on the bearing retainer cover type load detector is equal to the strain value obtained by actual machine measurement. Obtaining the temperature by collating it with the axial force calibration diagram (axial force F-strain relationship diagram) acquired in advance is the same as in the above embodiment.
【発明の効果】以上記載のごとく本発明によれば、軸受
押えカバーに改良を加えると共にひずみ計測法に4ゲー
ジ法を採用して、軸受押えカバー3に作用する軸力Fを
精度良く計測出来る。具体的には軸受押えカバー3のフ
ランジ面側のボルト穴49中心円周線上に、軸受剛性に
影響がない程度に凸加工部41を設けることで、ボルト
112による固定状態が緩やかになり、軸力Fに対し軸
受押えカバー3に発生するひずみが増大する。また本発
明によれば、ひずみ計測部である反フランジ面側の内周
縁部に穴加工を施すことで応力集中部(応力集中穴4
2)を作り出すことが出来、軸力Fに対して発生するひ
ずみを拡大することが出来る。更に、ひずみ出力の方法
として、軸受押えカバー3の内周縁部の応力集中穴42
に周方向ひずみゲージと半径方向ひずみゲージを交互に
組み合わせて4ゲージ法でゲージブリッジ回路を組むこ
とで、周方向ひずみと半径方向ひずみは正、負で符号が
異なるため、4ゲージ法による出力は一般的計測法であ
る1ゲージ法出力に比べて大幅に増大できるとともに、
4ゲージ法を採用することで、それぞれのひずみゲージ
の温度ドリフトが相殺し合うので、温度ドリフトを小さ
く出来る。更に軸受押えカバー3の温度計測をひずみ計
測と同時に行うことで、ひずみゲージの温度ドリフトの
補正ができ、温度による計測誤差を小さくできる。As described above, according to the present invention, the bearing pressing cover is improved and the 4 gauge method is adopted as the strain measuring method, so that the axial force F acting on the bearing pressing cover 3 can be accurately measured. . Specifically, by providing the convex processing portion 41 on the center circumferential line of the bolt hole 49 on the flange surface side of the bearing pressing cover 3 to the extent that bearing rigidity is not affected, the fixing state by the bolt 112 becomes gentle, and The strain generated in the bearing pressing cover 3 with respect to the force F increases. Further, according to the present invention, the stress concentration portion (stress concentration hole 4
2) can be created, and the strain generated with respect to the axial force F can be expanded. Further, as a strain output method, the stress concentration hole 42 in the inner peripheral edge portion of the bearing pressing cover 3 is used.
By alternately combining circumferential strain gauges and radial strain gauges to form a gauge bridge circuit using the 4-gauge method, since the circumferential strain and the radial strain have different positive and negative signs, the output of the 4-gauge method is Compared with the 1 gauge method output which is a general measurement method, it can be greatly increased,
By adopting the 4-gauge method, the temperature drifts of the respective strain gauges cancel each other out, so that the temperature drift can be reduced. Further, by measuring the temperature of the bearing pressing cover 3 simultaneously with the strain measurement, the temperature drift of the strain gauge can be corrected and the measurement error due to the temperature can be reduced.
【図1】 本発明の第1実施形態に係る軸受押えカバー
型荷重検出器の側面断面図である。FIG. 1 is a side sectional view of a bearing retainer cover type load detector according to a first embodiment of the present invention.
【図2】 前記第1実施形態に係る軸受押えカバー型荷
重検出器の上面図で、図1の矢視A−Aのフランジ側を
示す。FIG. 2 is a top view of the bearing retainer cover type load detector according to the first embodiment, showing a flange side of arrow AA in FIG.
【図3】 前記第1実施形態に係る軸受押えカバー型荷
重検出器の下面図で、図1の矢視B−Bの反フランジ側
を示す。FIG. 3 is a bottom view of the bearing retainer cover type load detector according to the first embodiment, showing the side opposite to the flange taken along the line BB in FIG. 1.
【図4】 前記第1実施形態に係る軸受押えカバー型荷
重検出器の内周縁部の拡大立体図である。FIG. 4 is an enlarged three-dimensional view of an inner peripheral edge portion of the bearing retainer cover type load detector according to the first embodiment.
【図5】 前記第1実施形態に係る軸受押えカバー型荷
重検出器のひずみゲージブリッジ回路図である。FIG. 5 is a strain gauge bridge circuit diagram of the bearing retainer cover type load detector according to the first embodiment.
【図6】 本発明の実施形態に係る軸受押えカバー型荷
重検出器による軸方向荷重計測システム図である。FIG. 6 is a diagram showing an axial load measuring system using a bearing retainer cover type load detector according to an embodiment of the present invention.
【図7】 本発明の実施形態に適用される軸受押えカバ
ー型荷重検出器の軸力負荷試験要領図で、(A)は全体
図、(B)は軸受押えカバー型荷重検出器の寸法とひず
みゲージの位置を示してある。7A and 7B are axial force load test procedure diagrams of a bearing retainer cover type load detector applied to an embodiment of the present invention, where FIG. 7A is an overall view, and FIG. 7B is a dimension of the bearing retainer cover type load detector. The position of the strain gauge is shown.
【図8】 図7に基づいて試験された軸受押えカバー型
荷重検出器の軸力負荷試験結果例のその1で(A)は荷
重検出器の軸力付勢方向と、ひずみゲージの配置位置、
(B)は4ゲージ法の電圧/出力の流れ方向とひずみ出
力の例を示し、(C)は軸力と計測ひずみの関係を示す
グラフ図である。8 (A) is a first example of the axial load test result of the bearing retainer cover type load detector tested based on FIG. 7, and (A) shows the axial direction of the load detector and the position of the strain gauge. ,
(B) shows an example of the voltage / output flow direction and strain output of the 4-gauge method, and (C) is a graph showing the relationship between axial force and measured strain.
【図9】 図7に基づいて試験された軸受押えカバー型
荷重検出器の軸力負荷試験結果例のその2で(A)は荷
重検出器の軸力付勢方向と、応力集中穴と周方向及び半
径方向のひずみゲージの配置位置、(B)は1ゲージ法
の電圧/出力の流れ方向とひずみ出力の例を示し、
(C)は軸力と計測ひずみの関係を示すグラフ図で応力
集中穴の周方向ひずみ部及び一般部の周方向と半径方向
のひずみを示す。FIG. 9 (A) in Part 2 of the example of the axial load test of the bearing retainer cover type load detector tested based on FIG. 7 shows the axial direction of the load detector, the stress concentration hole and the circumference. Positions of strain gauges in the radial and radial directions, (B) shows an example of voltage / output flow direction and strain output of the 1 gauge method,
(C) is a graph showing the relationship between the axial force and the measured strain, and shows the strain in the circumferential direction strained portion of the stress concentration hole and the strain in the circumferential direction and the radial direction of the general portion.
【図10】 本発明の実施形態に適用される軸受押えカ
バー型荷重検出器の温度負荷試験要領図で(A)は荷重
検出器のひずみゲージの配置位置と加熱炉内の収容状態
を示し、(B)は前記加熱炉内に収容したひずみゲージ
の4ゲージ法に基づく電圧/出力の流れ方向とひずみ出
力の例を示す。FIG. 10 is a temperature load test procedure diagram of a bearing retainer cover type load detector applied to an embodiment of the present invention, in which (A) shows the arrangement position of the strain gauge of the load detector and the accommodation state in the heating furnace; (B) shows an example of voltage / output flow direction and strain output based on the 4-gauge method of the strain gauge housed in the heating furnace.
【図11】 図10に基づいて試験された軸受押えカバ
ー型荷重検出器の温度負荷試験結果例で、温度ドリフト
例を示す。FIG. 11 shows an example of temperature drift as an example of a temperature load test result of the bearing retainer cover type load detector tested based on FIG.
【図12】 図9及び図10の軸力負荷試験結果及び温
度負荷試験により求めた軸力較正線図で計測ひずみより
軸力負荷力推定例を示すグラフ図である。FIG. 12 is a graph showing an example of axial force load force estimation based on measured strain in the axial force load test diagrams of FIGS. 9 and 10 and the axial force calibration diagram obtained by the temperature load test.
【図13】 本発明の第2実施形態に係るひずみゲージ
を8枚使用した場合の軸受押えカバー型荷重検出器の構
成を示す側面断面図と平面図である。13A and 13B are a side sectional view and a plan view showing a configuration of a bearing retainer cover type load detector when eight strain gauges according to a second embodiment of the present invention are used.
【図14】 図13の第2実施形態に係る軸受押えカバ
ー型荷重検出器のゲージブリッジ回路図である。14 is a gauge bridge circuit diagram of the bearing retainer cover type load detector according to the second embodiment of FIG. 13. FIG.
【図15】 本発明が適用される工作機械の立型マシニ
ングセンタの主軸装置の主な構造を示す断面図である。FIG. 15 is a sectional view showing a main structure of a spindle device of a vertical machining center of a machine tool to which the present invention is applied.
【図16】 従来技術に係る主軸軸力の計測フロ−図を
示し、(A)は軸受押えカバーの軸力付勢方向と、ひず
みと温度の計測位置を示す。(B)はひずみと温度の計
測値に基づく軸力推定のフロー図である。FIG. 16 is a flowchart showing the measurement of the main shaft axial force according to the conventional technique, and FIG. 16 (A) shows the axial force urging direction of the bearing retainer cover and the strain and temperature measurement positions. (B) is a flowchart of axial force estimation based on measured values of strain and temperature.
【図17】 従来技術に基づく軸力負荷時のひずみ出力
例で、(A)は軸受押えカバーの軸力付勢方向とひずみ
ゲージの配置位置を示し、(B)は1ゲージ法の電圧/
出力の流れ方向とひずみ出力の例を示し、(C)は軸力
と計測ひずみの関係を示すグラフ図である。FIG. 17 is an example of strain output when an axial force is applied according to the prior art. (A) shows the axial force biasing direction of the bearing retainer cover and the position of the strain gauge, and (B) shows the voltage of 1 gauge method /
An example of the output flow direction and strain output is shown, and (C) is a graph showing the relationship between axial force and measured strain.
【図18】 従来技術に基づく温度負荷時のひずみ出力
例で、(A)は軸受押えカバーの軸力付勢方向とひずみ
ゲージの配置位置を示し、(B)は1ゲージ法の電圧/
出力の流れ方向とひずみ出力の例を示し、(C)は温度
と計ひずみの関係を示すグラフ図である。FIG. 18 is an example of strain output at the time of temperature load based on the prior art, (A) shows the axial force urging direction of the bearing retainer cover and the position of the strain gauge, and (B) shows the voltage of 1 gauge method /
An example of the output flow direction and strain output is shown, and (C) is a graph showing the relationship between temperature and total strain.
【図19】 従来技術に基づく図17及び図18の軸力
負荷試験結果及び温度負荷試験により求めた軸力較正線
図で計測ひずみより軸力負荷力を推定例を示すグラフ図
である。FIG. 19 is a graph showing an example of estimating the axial load force from the measured strain in the axial load test result and the axial force calibration diagram obtained by the temperature load test of FIGS. 17 and 18 based on the conventional technique.
1 主軸 2 アンギュラ軸受 3 軸受押えカバー 4 軸受押えカバー型荷重検出器 5 予圧負荷エリア 41 凸加工部 42 応力集中穴 43 ひずみゲージ(43a〜4d) 1 spindle 2 Angular bearing 3 Bearing retainer cover 4 Bearing retainer cover type load detector 5 Preload area 41 Convex part 42 stress concentration holes 43 strain gauges (43a-4d)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16C 19/52 F16C 41/00 41/00 G01L 5/12 G01L 5/12 B23Q 1/08 Z (72)発明者 川畠 竜 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 (72)発明者 水田 桂司 広島市西区観音新町四丁目6番22号 三菱 重工業株式会社広島研究所内 Fターム(参考) 2F051 AA11 AB09 AC04 BA01 3C029 CC01 EE02 3C048 EE02 EE07 3J101 AA01 AA54 AA62 BA77 FA22 FA25 FA26 FA41 GA31 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) F16C 19/52 F16C 41/00 41/00 G01L 5/12 G01L 5/12 B23Q 1/08 Z (72) Inventor Ryu Kawabata 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Keiji Mizuta 4-22 Kannon Shinmachi, Nishi-ku Hiroshima City Mitsubishi Heavy Industries Ltd. (Reference) 2F051 AA11 AB09 AC04 BA01 3C029 CC01 EE02 3C048 EE02 EE07 3J101 AA01 AA54 AA62 BA77 FA22 FA25 FA26 FA41 GA31
Claims (11)
部とこれらを収容するケーシングとを備え、前記軸受部
をケーシング側に固定された板状の軸受押えカバーによ
り支持された工作機械の主軸装置において、 前記軸受押えカバーの軸受部受圧面と反対側の、非受圧
面側の軸受部軸力作用周線上の対称位置に複数の応力集
中穴を設け、該軸受部の軸方向荷重を検出するためのひ
ずみゲージを前記応力集中穴の周方向と半径方向に配設
したことを特徴とする工作機械の主軸装置。1. A machine tool comprising a main shaft, a bearing portion for rotatably supporting the main shaft, and a casing accommodating the same, the bearing portion being supported by a plate-shaped bearing pressing cover fixed to the casing side. In the main spindle device, a plurality of stress concentration holes are provided at positions symmetrical to the bearing force receiving surface of the bearing pressing cover on the non-pressure receiving surface side on the bearing axial force acting peripheral line, and the axial load of the bearing portion is provided. A spindle device for a machine tool, wherein strain gauges for detection are arranged in a circumferential direction and a radial direction of the stress concentration hole.
り、該応力集中穴の周方向と半径方向に配設されるひず
みゲージが4の倍数である請求項1記載の工作機械の主
軸装置において、周方向ひずみ出力と半径方向ひずみ出
力を交互に組合わせてひずみゲージブリッジ回路を構成
したことを特徴とする工作機械の主軸装置。2. The machine tool according to claim 1, wherein the stress concentration holes are multiples (even numbers) of 2, and the strain gauges arranged in the circumferential direction and the radial direction of the stress concentration holes are multiples of 4. A spindle device for machine tools, characterized in that a strain gauge bridge circuit is configured by alternately combining circumferential strain output and radial strain output.
ケーシング固定手段に沿う円周線上に複数の凸部加工を
施したことを特徴とする請求項1記載の工作機械の主軸
装置。3. The spindle device for a machine tool according to claim 1, wherein a plurality of convex portions are formed on a circumferential line along the casing fixing means on the bearing portion pressure receiving surface side of the bearing retainer cover.
ずみ計測部近傍に少なくとも1の温度センサが取付けら
れている請求項1記載の工作機械の主軸装置。4. The spindle device for a machine tool according to claim 1, wherein at least one temperature sensor is mounted in the vicinity of the strain measuring portion of the stress concentration hole of the bearing pressing cover.
受部に作用する軸方向荷重を検出する板状の軸方向荷重
検出器において、 前記軸受部受圧面反対側の、非受圧面側の軸受部軸方向
荷重が作用する作用部位の周方向対称位置に複数の応力
集中穴を設け、該軸受部の軸方向荷重を検出するための
ひずみゲージを前記応力集中穴の周方向と半径方向に配
設したことを特徴とする軸方向荷重検出器。5. A plate-shaped axial load detector for detecting an axial load acting on a bearing portion that rotatably supports a main shaft of a machine tool, wherein a non-pressure receiving surface side opposite to the bearing portion pressure receiving surface is provided. A plurality of stress concentration holes are provided at symmetrical positions in the circumferential direction of the acting portion where the axial load of the bearing portion acts, and strain gauges for detecting the axial load of the bearing portion are provided in the circumferential direction and the radial direction of the stress concentration hole. An axial load detector characterized by being provided.
り、該応力集中穴の周方向と半径方向に配設されるひず
みゲージが4の倍数である請求項5記載の軸方向荷重検
出器において、 前記4の倍数のひずみゲージの周方向ひずみ出力と半径
方向ひずみ出力を交互に組合わせてひずみゲージブリッ
ジ回路を構成したことを特徴とする軸方向荷重検出器。6. The axial load according to claim 5, wherein the stress concentration holes are multiples (even numbers) of 2, and the strain gauges arranged in the circumferential direction and the radial direction of the stress concentration holes are multiples of 4. In the detector, an axial load detector characterized in that a strain gauge bridge circuit is configured by alternately combining circumferential strain outputs and radial strain outputs of the strain gauges in multiples of four.
するケーシングに固定させるとともに、前記軸受部受圧
面側のケーシング固定手段に沿う円周線上に複数の凸部
加工を施したことを特徴とする請求項5記載の軸方向荷
重検出器。7. The load detector is fixed to a casing located on the outer peripheral side of the bearing portion, and a plurality of convex portions are formed on a circumferential line along the casing fixing means on the bearing portion pressure receiving surface side. The axial load detector according to claim 5, which is characterized in that.
なくとも1に温度センサが取付けられている請求項5記
載の軸方向荷重検出器。8. The axial load detector according to claim 5, wherein a temperature sensor is attached to at least one of the stress concentration holes near a strain measuring portion.
受部の軸方向荷重(以下、軸力と称する)をひずみ計測
値より推定する軸力測定方法において、 前記軸受部の軸力を受圧する板状受圧体の受圧面と反対
側の面の周方向対称位置に複数の応力集中部を設け、該
応力集中部夫々に、主軸に対し周方向と半径方向の少な
くとも2点ずつ4の倍数のひずみゲージを配設し、該4
の倍数のひずみゲージをブリッジ回路の4ゲージ法を採
用して出力させるとともに、該ひずみ計測部近傍には、
少なくとも1個の温度センサを取付け、前記受圧体の温
度をひずみと同時に計測し、ひずみ計測値に対し温度補
正を行うことを特徴とする軸受部の軸力測定方法。9. An axial force measuring method for estimating an axial load (hereinafter referred to as an axial force) of a bearing portion that rotatably supports a main shaft of a machine tool from a strain measurement value, wherein the axial force of the bearing portion is received. A plurality of stress concentrating portions are provided at symmetrical positions in the circumferential direction on the surface opposite to the pressure receiving surface of the plate-shaped pressure receiving body, and each stress concentrating portion has a multiple of 4 at least two points in the circumferential direction and the radial direction with respect to the main axis. Strain gauge of
A strain gauge of a multiple of is output by adopting the 4-gauge method of the bridge circuit, and in the vicinity of the strain measuring section,
At least one temperature sensor is attached, the temperature of the pressure receiving body is measured at the same time as the strain, and temperature correction is performed on the strain measurement value.
定支持させるとともに、該固定支持部の受圧面側に凸部
加工を施した状態で軸力計測を行うことを特徴とする請
求項1記載の軸受部の軸力測定方法。10. The axial force measurement is performed while the pressure receiving body is fixed and supported on the outer peripheral side of the stress concentration portion, and the pressure receiving surface side of the fixed support portion is provided with a convex portion. 1. A method for measuring the axial force of a bearing portion according to 1.
に支持し、両軸受間に設けた予圧負荷エリアに予圧を負
荷することで発生する軸方向荷重(以下軸力という)を
軸受押えカバーに設けたひずみゲージで計測して軸力推
定を行い、該推定された軸力に基づいて予圧負荷エリア
の予圧を調整して両軸受の軸受荷重を適正状態に制御す
る予圧調整方法において、 前記軸力を受圧する板状受圧体の受圧面と反対側の非受
圧面の周方向対称位置に複数の応力集中部を設け、該応
力集中部夫々に、主軸に対し周方向と半径方向の少なく
とも2点ずつ4の倍数のひずみゲージを配設し、該4の
倍数のひずみゲージをブリッジ回路の4ゲージ法を採用
して出力させさせるとともに、該ひずみ計測部近傍に
は、少なくとも1個の温度センサを取付け、前記受圧体
の温度をひずみと同時に計測し、ひずみ計測値に対し温
度補正を行って得たひずみ計測値を事前に取得した軸力
較正線図(軸力〜ひずみ関係線図)に照合して軸受部の
軸力を推定し、該推定値に基づいて予圧負荷エリアの予
圧を調整して両軸受の軸受荷重を適正状態に制御するこ
とを特徴とする予圧調整方法。11. An axial load (hereinafter referred to as axial force) generated by rotatably supporting a main shaft with an upper bearing and a lower bearing and applying a preload to a preload area provided between the bearings. In the preload adjusting method for controlling the bearing load of both bearings by adjusting the preload of the preload load area based on the estimated axial force by measuring the axial force by measuring with the strain gauge provided in the cover, A plurality of stress concentrating portions are provided at circumferentially symmetrical positions of the non-pressure receiving surface opposite to the pressure receiving surface of the plate-shaped pressure receiving body that receives the axial force, and each of the stress concentrating portions has a circumferential direction and a radial direction with respect to the spindle. At least two strain gauges each having a multiple of 4 are provided, and the strain gauges having a multiple of 4 are output by adopting the 4-gauge method of the bridge circuit, and at least one strain gauge is provided near the strain measuring unit. Attach a temperature sensor, The temperature of the pressure body is measured at the same time as the strain, and the strain measurement value obtained by correcting the temperature of the strain measurement value is compared with the axial force calibration diagram (axial force-strain relationship diagram) that was acquired in advance. A preload adjusting method characterized by estimating the axial force of a part and adjusting the preload in the preload area based on the estimated value to control the bearing load of both bearings to an appropriate state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002137863A JP2003334729A (en) | 2002-05-14 | 2002-05-14 | Main spindle device of work machine, load detector used for the device, measuring method, and preload adjusting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002137863A JP2003334729A (en) | 2002-05-14 | 2002-05-14 | Main spindle device of work machine, load detector used for the device, measuring method, and preload adjusting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003334729A true JP2003334729A (en) | 2003-11-25 |
Family
ID=29699464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002137863A Withdrawn JP2003334729A (en) | 2002-05-14 | 2002-05-14 | Main spindle device of work machine, load detector used for the device, measuring method, and preload adjusting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003334729A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101033683B1 (en) | 2010-11-15 | 2011-05-12 | 김창호 | High speed spindle unit with piezo load sensor |
KR101127213B1 (en) | 2009-12-24 | 2012-03-29 | (재)대구기계부품연구원 | spindle apparatus having load sensor |
CN103063345A (en) * | 2012-12-19 | 2013-04-24 | 三一重工股份有限公司 | Shaft-pin-type force sensor and method for detecting radial force stressed on shaft pin |
JP2013255978A (en) * | 2012-06-14 | 2013-12-26 | Jtekt Corp | Thermal displacement compensation device |
CN105436992A (en) * | 2015-12-29 | 2016-03-30 | 中北大学 | Three-dimensional milling force measurement cutter system with embedded thin film sensors |
CN110732886A (en) * | 2019-11-19 | 2020-01-31 | 吉林大学 | portable dynamic loading and fine-tuning measuring device based on main shaft rotation precision |
CN114112389A (en) * | 2021-11-12 | 2022-03-01 | 中国航发沈阳发动机研究所 | Sliding bearing axial load test structure |
JP2022070010A (en) * | 2020-10-26 | 2022-05-12 | ミネベアミツミ株式会社 | Holding force sensor |
JP2022070011A (en) * | 2020-10-26 | 2022-05-12 | ミネベアミツミ株式会社 | Holding force sensor |
JP2022070012A (en) * | 2020-10-26 | 2022-05-12 | ミネベアミツミ株式会社 | Holding force sensor unit and annular adapter |
JP2023047505A (en) * | 2021-09-27 | 2023-04-06 | Ntn株式会社 | Bearing device and spindle device |
-
2002
- 2002-05-14 JP JP2002137863A patent/JP2003334729A/en not_active Withdrawn
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101127213B1 (en) | 2009-12-24 | 2012-03-29 | (재)대구기계부품연구원 | spindle apparatus having load sensor |
KR101033683B1 (en) | 2010-11-15 | 2011-05-12 | 김창호 | High speed spindle unit with piezo load sensor |
JP2013255978A (en) * | 2012-06-14 | 2013-12-26 | Jtekt Corp | Thermal displacement compensation device |
CN103063345A (en) * | 2012-12-19 | 2013-04-24 | 三一重工股份有限公司 | Shaft-pin-type force sensor and method for detecting radial force stressed on shaft pin |
CN105436992A (en) * | 2015-12-29 | 2016-03-30 | 中北大学 | Three-dimensional milling force measurement cutter system with embedded thin film sensors |
CN105436992B (en) * | 2015-12-29 | 2017-08-25 | 中北大学 | A kind of three-dimensional Milling Force measurement tooling system of embedded thin film sensor |
CN110732886A (en) * | 2019-11-19 | 2020-01-31 | 吉林大学 | portable dynamic loading and fine-tuning measuring device based on main shaft rotation precision |
JP2022070010A (en) * | 2020-10-26 | 2022-05-12 | ミネベアミツミ株式会社 | Holding force sensor |
JP2022070011A (en) * | 2020-10-26 | 2022-05-12 | ミネベアミツミ株式会社 | Holding force sensor |
JP2022070012A (en) * | 2020-10-26 | 2022-05-12 | ミネベアミツミ株式会社 | Holding force sensor unit and annular adapter |
JP7394735B2 (en) | 2020-10-26 | 2023-12-08 | ミネベアミツミ株式会社 | Holding force sensor unit and annular adapter |
JP7394734B2 (en) | 2020-10-26 | 2023-12-08 | ミネベアミツミ株式会社 | Holding force sensor |
JP7394733B2 (en) | 2020-10-26 | 2023-12-08 | ミネベアミツミ株式会社 | Holding force sensor |
JP2023047505A (en) * | 2021-09-27 | 2023-04-06 | Ntn株式会社 | Bearing device and spindle device |
CN114112389A (en) * | 2021-11-12 | 2022-03-01 | 中国航发沈阳发动机研究所 | Sliding bearing axial load test structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103323267B (en) | The multi dimension of tire testing machine measures main axle unit | |
TWI378232B (en) | ||
JP2003334729A (en) | Main spindle device of work machine, load detector used for the device, measuring method, and preload adjusting method | |
JP5843706B2 (en) | Calibration method for multi-component force detector in rolling resistance tester | |
JP5723402B2 (en) | Wheel force detection device | |
CN111238711B (en) | Rotor axial force testing method | |
JP5225370B2 (en) | Calibration method for multi-component force detector in rolling resistance tester | |
CN1969172A (en) | Deformation-sensing bearing comprising four stress gauges | |
KR20220038702A (en) | Methods and drivetrain test benches for detecting imbalance and/or misalignment | |
US20140165737A1 (en) | Method and measuring device for investigating a magnetic workpiece | |
CN102714133B (en) | Method and device for determining a deformation of a disk-shaped workpiece, particularly a mold wafer | |
JP5886665B2 (en) | Wheel force detection device | |
CN109642845A (en) | Wheel balance measurement device, the evaluation method of wheel balance measurement device, the bearing calibration of wheel balance measurement device, wheel balance measurement device correction program | |
JP7411405B2 (en) | Bearing devices, spindle devices, bearings, and spacers | |
JPH11153425A (en) | Method and apparatus for measuring bearing clearance of radial ball bearing | |
CN113566693B (en) | Radial clearance test device and test method for radial knuckle bearing | |
US3330634A (en) | Method of preload grinding of duplex ball bearings | |
JP6195768B2 (en) | Calibration method for wheel bearing with sensor | |
JP2009019948A (en) | Device and method for correcting rotation balance of rotator | |
JP2005133891A (en) | Preload measuring method and device for bearing | |
JP5780994B2 (en) | Multi-force measuring spindle unit for tire testing machine | |
JP5742392B2 (en) | Physical quantity measuring device for rotating machine, machine tool, and automobile | |
WO2023065214A1 (en) | Bearing seat for continuous casting machine and bearing assembly | |
JP2006292445A (en) | Rolling bearing unit with load measuring device | |
JP2010242921A (en) | Wheel bearing with sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050802 |