[go: up one dir, main page]

JP2003331922A - Cell - Google Patents

Cell

Info

Publication number
JP2003331922A
JP2003331922A JP2002142438A JP2002142438A JP2003331922A JP 2003331922 A JP2003331922 A JP 2003331922A JP 2002142438 A JP2002142438 A JP 2002142438A JP 2002142438 A JP2002142438 A JP 2002142438A JP 2003331922 A JP2003331922 A JP 2003331922A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002142438A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
賢一 鈴木
Masahiro Yamamoto
昌弘 山本
Yoshinori Atsumi
吉則 厚美
Kazuhiro Iwasa
和弘 岩佐
Yasuo Ota
康雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002142438A priority Critical patent/JP2003331922A/en
Publication of JP2003331922A publication Critical patent/JP2003331922A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell in which capacity can be increased. <P>SOLUTION: The potential of a positive electrode 12, against lithium metal when charging, is controlled so as to become 3.7 V or higher and 4.0 V or lower, and the potential of a negative electrode 14, against lithium metal when charging, is controlled so as to become 0.4 V or lower and 0.1 V or higher. The capacity is increased by reducing an utilization rate of the negative electrode 14 and by increasing an utilization rate of the positive electrode 12. The positive electrode 12 contains scaly graphite and amorphous carbon as conducting agent. It is recommendable to make the positive electrode 12 contain the scaly graphite by 3 to 7 mass%, and to make the mass ratio of scaly graphite to amorphous carbon 6:4 to 7:2. The capacity is increased by heightening the conductivity of the positive electrode 12. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極および負極と
共に電解質を備えた電池に関する。
TECHNICAL FIELD The present invention relates to a battery provided with an electrolyte in addition to a positive electrode and a negative electrode.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR(videotape
recorder),携帯電話あるいはラップトップコンピュー
タなどのポータブル電子機器が多く登場し、その小型化
および軽量化が図られている。それに伴い、これら電子
機器のポータブル電源として、電池、特に二次電池につ
いて、エネルギー密度を向上させるための研究開発が活
発に進められている。中でも、リチウムイオン二次電池
は、従来の非水系電解液二次電池である鉛電池あるいは
ニッケルカドミウム電池と比較して大きなエネルギー密
度が得られるため、非常に期待されている。
2. Description of the Related Art Recently, a camera-integrated VTR (videotape)
Many portable electronic devices such as recorders), mobile phones, and laptop computers have appeared, and their size and weight have been reduced. Along with this, research and development for improving the energy density of batteries, especially secondary batteries, have been actively promoted as portable power supplies for these electronic devices. Among them, the lithium ion secondary battery is highly expected because it can obtain a larger energy density than a lead battery or a nickel cadmium battery, which are conventional non-aqueous electrolyte secondary batteries.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、最近の
携帯型電子機器の高性能化・多機能化は目覚しく、これ
に伴ってリチウムイオン二次電池についても、更なる大
容量化が要求されている。
However, the recent advances in the performance and multifunction of portable electronic equipment are remarkable, and accordingly, the lithium ion secondary battery is required to have a larger capacity. .

【0004】図5は、一般的なリチウムイオン二次電池
の充電特性を表している。このように、電池電圧は、正
極電位と負極電位との差で表される。よって、電池の動
作電圧を3.6Vとする場合には、例えば、正極の設計
電圧を3.6V、負極の設計電圧を0Vとするか、また
は正極の設計電圧を4.0V、負極の設計電圧を0Vと
して3.6Vまで充電して使用するようにしている。
FIG. 5 shows the charging characteristics of a general lithium ion secondary battery. Thus, the battery voltage is represented by the difference between the positive electrode potential and the negative electrode potential. Therefore, when the operating voltage of the battery is set to 3.6 V, for example, the design voltage of the positive electrode is set to 3.6 V and the design voltage of the negative electrode is set to 0 V, or the design voltage of the positive electrode is set to 4.0 V and the design voltage of the negative electrode is set. The voltage is set to 0V and the battery is charged to 3.6V before use.

【0005】しかし、このような方法では、電池の容量
を大きくすることができなかった。なぜなら、図6は対
極にリチウム金属を用いた場合のLiNiO2 の容量を
表したものであるが、図6に示したように、充電電圧を
低くすると充電容量が減少し、さらに充放電効率も低下
してしまうからである。
However, the capacity of the battery cannot be increased by such a method. This is because FIG. 6 shows the capacity of LiNiO 2 when lithium metal is used for the counter electrode, but as shown in FIG. 6, when the charging voltage is lowered, the charging capacity decreases and the charging / discharging efficiency also increases. Because it will decrease.

【0006】また、リチウムイオン二次電池は、水溶液
に比べてイオン導電性の低い非水電解質を用いている
が、電極間距離を縮めると共に電極の作用面積を大きく
することによって、水溶液系電池に匹敵する大電流での
充放電を可能としている。しかし、ディスク状の正極と
負極とを電解質を介して対向配置した、いわゆるコイン
型電池の場合は、電極の作用面積を大きくすることがで
きないので、大電流における容量が十分に得られなかっ
た。
Further, the lithium ion secondary battery uses a non-aqueous electrolyte having a lower ionic conductivity than an aqueous solution, but by shortening the distance between the electrodes and increasing the working area of the electrode, it becomes an aqueous battery. It enables charging and discharging with a comparable large current. However, in the case of a so-called coin-type battery in which a disk-shaped positive electrode and a negative electrode are arranged so as to face each other with an electrolyte in between, a working area of the electrode cannot be increased, and therefore a sufficient capacity at a large current cannot be obtained.

【0007】本発明はかかる問題点に鑑みてなされたも
ので、その目的は、容量を大きくすることのできる電池
を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery whose capacity can be increased.

【0008】[0008]

【課題を解決するための手段】本発明による第1の電池
は、正極活物質を含む正極と、負極活物質を含む負極
と、電解質とを備えたものであって、正極は、正極活物
質として、リチウム・ニッケル複合酸化物およびリチウ
ム・マンガン複合酸化物のうちの少なくとも1種を含
み、正極の充電時におけるリチウム金属に対する電位
は、3.7V以上となり、かつ4.0Vよりも大きくな
らず、負極の充電時におけるリチウム金属に対する電位
は、0.4V以下となり、かつ0.1Vよりも小さくな
らないものである。
A first battery according to the present invention comprises a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an electrolyte, and the positive electrode is a positive electrode active material. As the potential of at least one of lithium-nickel composite oxide and lithium-manganese composite oxide, the potential with respect to lithium metal during charging of the positive electrode is 3.7 V or higher and does not become higher than 4.0 V. The potential of the negative electrode with respect to lithium metal during charging is 0.4 V or less and does not become smaller than 0.1 V.

【0009】本発明による第2の電池は、ディスク状の
正極と負極とが電解質を介して対向配置されたものであ
って、正極は、正極活物質としてリチウムと少なくとも
1種の遷移金属とを含む複合酸化物を含有すると共に、
導電剤として鱗片状黒鉛と無定形炭素とを含有し、鱗片
状黒鉛の正極における含有量は3質量%以上7質量%以
下であり、鱗片状黒鉛と無定形炭素との質量比は、鱗片
状黒鉛:無定形炭素=6:4〜7:2であるものであ
る。
In a second battery according to the present invention, a disk-shaped positive electrode and a negative electrode are arranged so as to face each other via an electrolyte, and the positive electrode contains lithium and at least one transition metal as a positive electrode active material. In addition to containing a complex oxide containing
It contains scaly graphite and amorphous carbon as a conductive agent, and the content of scaly graphite in the positive electrode is 3% by mass or more and 7% by mass or less, and the mass ratio of scaly graphite to amorphous carbon is scaly. Graphite: amorphous carbon = 6: 4 to 7: 2.

【0010】本発明による第1の電池では、正極の充電
時におけるリチウム金属に対する電位が3.7V以上と
なり、かつ4.0Vよりも大きくならず、負極の充電時
におけるリチウム金属に対する電位が0.4V以下とな
り、かつ0.1Vよりも小さくならないようにしたの
で、負極の利用率が低くなると共に正極の利用率が高く
なり、電池の容量が高まる。
In the first battery according to the present invention, the potential with respect to the lithium metal when the positive electrode is charged is 3.7 V or more and does not exceed 4.0 V, and the potential with respect to the lithium metal when the negative electrode is charged is 0. Since the voltage is set to 4 V or less and not lower than 0.1 V, the utilization factor of the negative electrode is reduced, the utilization factor of the positive electrode is increased, and the battery capacity is increased.

【0011】本発明による第2の電池では、正極が、導
電剤として鱗片状黒鉛と無定形炭素とを含有し、鱗片状
黒鉛の正極における含有量が3質量%以上7質量%以下
であり、鱗片状黒鉛と無定形炭素との質量比は、鱗片状
黒鉛:無定形炭素=6:4〜7:2であるようにしたの
で、正極の導電性が向上し、電池の容量が向上する。
In the second battery according to the present invention, the positive electrode contains scaly graphite and amorphous carbon as a conductive agent, and the content of the scaly graphite in the positive electrode is 3% by mass or more and 7% by mass or less, Since the mass ratio of the scaly graphite and the amorphous carbon was set to be scaly graphite: amorphous carbon = 6: 4 to 7: 2, the conductivity of the positive electrode is improved and the battery capacity is improved.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0013】[第1の実施の形態][First Embodiment]

【0014】図1は、本発明の第1の実施の形態に係る
二次電池の断面構造を表すものである。この二次電池は
いわゆるコイン型といわれるものであり、正極缶11内
に収容された円板状の正極12と負極缶13内に収容さ
れた円板状の負極14とが、セパレータ15を介して積
層されたものである。正極缶11および負極缶13の内
部は液状の電解質である電解液16により満たされてお
り、正極缶11および負極缶13の周縁部は絶縁ガスケ
ット17を介してかしめられることにより密閉されてい
る。
FIG. 1 shows a sectional structure of a secondary battery according to a first embodiment of the present invention. This secondary battery is of a so-called coin type, in which a disk-shaped positive electrode 12 housed in a positive electrode can 11 and a disk-shaped negative electrode 14 housed in a negative electrode can 13 are separated by a separator 15. Are stacked. The interiors of the positive electrode can 11 and the negative electrode can 13 are filled with an electrolytic solution 16 which is a liquid electrolyte, and the peripheral portions of the positive electrode can 11 and the negative electrode can 13 are sealed by being caulked with an insulating gasket 17.

【0015】正極缶11および負極缶13は、例えば、
ステンレスあるいはアルミニウムなどの金属によりそれ
ぞれ構成されている。正極缶11は正極12の集電体と
して機能し、負極缶13は負極14の集電体として機能
するようになっている。
The positive electrode can 11 and the negative electrode can 13 are, for example,
Each is made of metal such as stainless steel or aluminum. The positive electrode can 11 functions as a current collector for the positive electrode 12, and the negative electrode can 13 functions as a current collector for the negative electrode 14.

【0016】正極12は、例えば、正極活物質を含み、
必要に応じて導電剤と結着剤と共に構成されている。正
極活物質としては、リチウム・ニッケル複合酸化物およ
びリチウム・マンガン複合酸化物のうちの少なくとも1
種が挙げられる。リチウム・ニッケル複合酸化物は、リ
チウムとニッケルとを含む複合酸化物であり、例えばL
iNiO2 が用いられる。また、リチウム・マンガン複
合酸化物は、リチウムとマンガンとを含む複合酸化物で
あり、一般式Lix Mn2-y MIy 4 で表されるもの
が用いられる。なお、MIはマンガン(Mn)を除く遷
移金属,マグネシウム(Mg)およびアルミニウム(A
l)などからなる群のうちの少なくとも1種を表してい
る。xおよびyは電池の充放電状態によって異なり、通
常0.05≦x≦1.10、0≦y<1の範囲内の値で
ある。
The positive electrode 12 contains, for example, a positive electrode active material,
It is composed of a conductive agent and a binder as required. At least one of lithium-nickel composite oxide and lithium-manganese composite oxide is used as the positive electrode active material.
Seed. The lithium-nickel composite oxide is a composite oxide containing lithium and nickel, for example, L
iNiO 2 is used. Further, the lithium-manganese composite oxide is a composite oxide containing lithium and manganese represented by the general formula Li x Mn 2-y MI y O 4 is used. MI is a transition metal except manganese (Mn), magnesium (Mg) and aluminum (A
l) represents at least one of the group consisting of x and y vary depending on the charging / discharging state of the battery, and are usually values within the ranges of 0.05 ≦ x ≦ 1.10 and 0 ≦ y <1.

【0017】さらに、このようなリチウム・ニッケル複
合酸化物またはリチウム・マンガン複合酸化物に加え
て、一般式Liz MIIO2 で表される他のリチウム複合
酸化物を用いてもよい。なお、MIIは遷移金属のうちの
少なくとも1種を表している。zは電池の充放電状態に
よって異なり、通常0.05≦z≦1.10の範囲内の
値である。
Further, in addition to such a lithium-nickel composite oxide or a lithium-manganese composite oxide, another lithium composite oxide represented by the general formula Li z MIIO 2 may be used. MII represents at least one kind of transition metal. z varies depending on the charging / discharging state of the battery, and is usually a value within the range of 0.05 ≦ z ≦ 1.10.

【0018】導電剤としては、例えばグラファイト,カ
ーボンブラック,アセチレンブラックあるいは炭素繊維
などが用いられる。また、結着剤としては、例えばポリ
フッ化ビニリデン,ポリテトラフルオロエチレン,ヘキ
サフルオロプロピレン,ポリフッ化ビニリデンとヘキサ
フルオロプロピレンとの共重合体,スチレンブタジエン
ゴムなどが用いられる。
As the conductive agent, for example, graphite, carbon black, acetylene black or carbon fiber is used. Further, as the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, hexafluoropropylene, a copolymer of polyvinylidene fluoride and hexafluoropropylene, styrene-butadiene rubber, etc. are used.

【0019】負極14は、例えば、負極活物質としてリ
チウムを吸蔵および離脱することが可能な負極材料のう
ちのいずれか1種または2種以上を含んでおり、必要に
応じてポリフッ化ビニリデンなどの結着剤と共に構成さ
れている。リチウムを吸蔵・離脱可能な負極材料として
は、例えば、炭素質材料,金属化合物,ケイ素,ケイ素
化合物あるいは導電性ポリマが挙げられ、これらのいず
れか1種または2種以上が混合して用いられる。炭素質
材料としては、人造黒鉛,天然黒鉛,難黒鉛化性炭素あ
るいは易黒鉛化性炭素などが挙げられ、金属化合物とし
てはSnSiO 3 あるいはSnO2 などの酸化物が挙げ
られ、導電性ポリマとしてはポリアセチレンあるいはポ
リピロールなどが挙げられる。中でも、炭素質材料は、
充放電時に生じる結晶構造の変化が非常に少なく、高い
充放電容量を得ることができると共に、良好なサイクル
特性を得ることができるので好ましい。
The negative electrode 14 is, for example, a negative electrode active material.
A negative electrode material capable of occluding and releasing titanium.
It contains any one or more of the
Composed with a binder such as polyvinylidene fluoride depending on
Has been. As a negative electrode material capable of inserting and extracting lithium
Are, for example, carbonaceous materials, metal compounds, silicon, silicon
Compounds or conductive polymers can be mentioned, any of these
These are used alone or in combination of two or more. Carbonaceous
Materials include artificial graphite, natural graphite, and non-graphitizable carbon.
Rui or easily graphitizable carbon can be used as a metal compound.
Is SnSiO 3Or SnO2Oxides such as
The conductive polymer used is polyacetylene or polyethylene.
Examples include lipyrole. Among them, carbonaceous materials are
Very little change in crystal structure that occurs during charge and discharge and high
Charge and discharge capacity can be obtained and good cycle
It is preferable because the characteristics can be obtained.

【0020】セパレータ15は、正極12と負極14と
を隔離し、両極の接触による電流の短絡を防止しつつ、
リチウムイオンを通過させるものである。このセパレー
タ15は、例えば、ポリテトラフルオロエチレン,ポリ
プロピレンあるいはポリエチレンなどよりなる合成樹脂
製の多孔質膜、またはセラミック製の不織布などの無機
材料よりなる多孔質膜により構成されており、これら2
種以上の多孔質膜を積層した構造とされていてもよい。
The separator 15 separates the positive electrode 12 and the negative electrode 14 from each other and prevents current short circuit due to contact between both electrodes.
It passes lithium ions. The separator 15 is made of, for example, a synthetic resin porous film made of polytetrafluoroethylene, polypropylene, polyethylene or the like, or a porous film made of an inorganic material such as a ceramic non-woven fabric.
It may have a structure in which at least one kind of porous film is laminated.

【0021】電解液16は、溶媒に電解質塩としてリチ
ウム塩を溶解させたものであり、リチウム塩が電離する
ことによりイオン伝導性を示すようになっている。リチ
ウム塩としては、例えば、LiBF4 ,LiPF6 ,L
iAsF6 ,LiSbF6 ,LiCF3 SO3 ,LiC
3 SO3 ,LiClO4 ,LiN(Cn 2n+1
2 2 (nは1以上の整数である)等が挙げられ、こ
れらのうちのいずれか1種または2種以上が混合して用
いられる。
The electrolytic solution 16 is a lithium salt as an electrolyte salt in a solvent.
It is a solution of um salt and the lithium salt is ionized.
As a result, it exhibits ionic conductivity. Richi
Examples of the um salt include LiBFFour, LiPF6, L
iAsF6, LiSbF6, LiCF3SO3, LiC
H3SO3, LiClOFour, LiN (CnF2n + 1S
O 2)2(N is an integer of 1 or more) and the like.
Any one of them or a mixture of two or more of them
Can be

【0022】溶媒としては、例えば、環状の炭素エステ
ル化合物、鎖状炭酸エステル化合物、エステル化合物、
あるいはエーテル化合物などの非水溶媒が挙げられ、こ
れらのうちのいずれか1種または2種以上が混合して用
いられる。環状の炭素エステル化合物としては炭酸エチ
レン、炭酸プロピレン、炭酸ブチレンあるいは炭酸ビニ
レン等、水素をハロゲンやハロゲン化アクリル基で置換
した環状炭酸エステル化合物があり、鎖状炭酸エステル
化合物としては炭酸ジメチル、炭酸エチルメチル、炭酸
ジエチル、炭酸プロピルメチル、炭酸エチルプロピル,
炭酸ジプロピルあるいはこれら化合物の水素をハロゲン
で置換したもの等があり、エステル化合物としては酢酸
メチル、ギ酸メチル、プロピオン酸メチル等があり、さ
らに、エーテル化合物としてはジメトキシメタン、テト
ラヒドロフラン、1,3−ジオキサン等がある。
Examples of the solvent include cyclic carbon ester compounds, chain carbonic acid ester compounds, ester compounds,
Alternatively, a nonaqueous solvent such as an ether compound may be used, and any one of these may be used alone, or two or more of them may be mixed and used. Examples of the cyclic carbon ester compound include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like, and a cyclic carbonate compound in which hydrogen is replaced by a halogen or a halogenated acryl group. Examples of the chain carbonate compound include dimethyl carbonate and ethyl carbonate. Methyl, diethyl carbonate, propyl methyl carbonate, ethyl propyl carbonate,
There are dipropyl carbonate and those in which hydrogen of these compounds is replaced with halogen, ester compounds include methyl acetate, methyl formate and methyl propionate, and ether compounds include dimethoxymethane, tetrahydrofuran and 1,3-dioxane. Etc.

【0023】なお、電解液16に代えて、リチウム塩を
0.5〜2.0mol/lの濃度で溶解した電解液を高
分子化合物と混合・溶解・吸収させたゲル状の電解質を
用いてもよく、また、リチウム塩をポリオレフィン類、
ポリエステル類、ポリエーテル類、ポリアミド類、ポリ
ウレタン類、アルキド樹脂化合物、有機ポリシリコン類
等の高分子化合物に溶解させた固体状の電解質を用いて
もよい。
Instead of the electrolytic solution 16, a gel electrolyte prepared by mixing, dissolving, and absorbing an electrolytic solution in which a lithium salt is dissolved at a concentration of 0.5 to 2.0 mol / l with a polymer compound is used. Also, the lithium salt is a polyolefin,
A solid electrolyte dissolved in a polymer compound such as polyesters, polyethers, polyamides, polyurethanes, alkyd resin compounds and organic polysilicons may be used.

【0024】また、この二次電池では、正極12の充電
時におけるリチウム金属に対する電位が3.7V以上と
なり、かつ4.0Vよりも大きくならず、負極14の充
電時におけるリチウム金属に対する電位が0.4V以下
となり、かつ0.1Vよりも小さくならないように設定
されている。すなわち、通常は、負極14の電位が0と
なるまでリチウムを吸蔵させるが、この二次電池ではリ
チウムの負極14への吸蔵を途中で止めることによっ
て、負極14の利用率を下げ、負極14の電位を通常よ
り高めに設定している。これにより、本実施の形態で
は、正極12の電位を高くし、利用率を上げて、容量を
大きくするようになっている。更には、正極12の充電
時におけるリチウム金属に対する電位が3.75V以上
となり、かつ3.95Vよりも大きくならず、負極14
の充電時におけるリチウム金属に対する電位が0.35
V以下となり、かつ0.15Vよりも小さくならないよ
うに設定されることが好ましい。なお、負極14の利用
率とは、充電終了時における負極14の容量の、負極1
4の電位が0となるまで充電した場合の容量に対する割
合をいう。
Further, in this secondary battery, the potential of lithium metal when the positive electrode 12 is charged is 3.7 V or more and does not exceed 4.0 V, and the potential of lithium metal when the negative electrode 14 is charged is 0. The voltage is set to 0.4 V or less and not lower than 0.1 V. That is, normally, lithium is occluded until the potential of the negative electrode 14 becomes 0, but in this secondary battery, the utilization of the negative electrode 14 is reduced by stopping the absorption of lithium in the negative electrode 14 midway. The electric potential is set higher than usual. As a result, in the present embodiment, the potential of the positive electrode 12 is increased, the utilization factor is increased, and the capacity is increased. Furthermore, the potential of the positive electrode 12 with respect to the lithium metal during charging becomes 3.75 V or higher and does not become higher than 3.95 V, so that the negative electrode 14
The potential for lithium metal during charging is 0.35
The voltage is preferably set to V or less and not lower than 0.15V. The utilization rate of the negative electrode 14 is the capacity of the negative electrode 14 at the end of charging,
It refers to the ratio to the capacity when charged until the potential of 4 becomes 0.

【0025】このように負極14の利用率を下げるため
には、負極活物質として充電時の平均電圧が高い材料を
用いることが好ましい。また、正極活物質に対する負極
活物質の質量比(負極活物質質量/正極活物質質量)は
20/53以上32/29以下であることが好ましい。
このように調整することにより正極12および負極14
の電位を上述したように制御することができるからであ
る。
As described above, in order to reduce the utilization rate of the negative electrode 14, it is preferable to use a material having a high average voltage during charging as the negative electrode active material. The mass ratio of the negative electrode active material to the positive electrode active material (negative electrode active material mass / positive electrode active material mass) is preferably 20/53 or more and 32/29 or less.
By adjusting in this manner, the positive electrode 12 and the negative electrode 14
This is because the potential of can be controlled as described above.

【0026】この二次電池は、例えば、次のようにして
製造することができる。
This secondary battery can be manufactured, for example, as follows.

【0027】まず、例えば、上述した正極活物質と導電
剤と結着剤とを混合して正極合剤を調製したのち、この
正極合剤を圧縮成型してペレット形状とすることにより
正極12を作製する。また、正極活物質,導電剤および
バインダに加えて、N−メチル−2−ピロリドンなどの
溶剤を添加して混合することにより正極合剤を調製し、
この正極合剤を乾燥させたのち圧縮成型するようにして
もよい。その際、正極活物質はそのまま用いても、乾燥
させて用いてもどちらでもよいが、水と接触すると反応
し、正極活物質としての機能が損なわれるため、充分に
乾燥させることが好ましい。
First, for example, the positive electrode active material, the conductive agent, and the binder described above are mixed to prepare a positive electrode mixture, and then the positive electrode mixture is compression molded into a pellet shape to form the positive electrode 12. Create. Further, in addition to the positive electrode active material, the conductive agent and the binder, a solvent such as N-methyl-2-pyrrolidone is added and mixed to prepare a positive electrode mixture,
The positive electrode mixture may be dried and then compression molded. At that time, the positive electrode active material may be used as it is or may be dried and used, but it is preferable to sufficiently dry it because it reacts with water and the function as the positive electrode active material is impaired.

【0028】次いで、負極活物質としてリチウムを吸蔵
・離脱可能な負極材料と結着剤とを混合して負極合剤を
調整したのち、得られた負極合剤を圧縮成型してペレッ
ト形状とすることにより負極14を作製する。また、リ
チウムを吸蔵・離脱可能な負極材料および結着剤に加え
て、N−メチル−2−ピロリドンなどの溶剤を添加して
混合することにより負極合剤を調整し、この負極合剤を
乾燥させたのちに圧縮成型するようにしてもよい。
Next, a negative electrode material capable of occluding and releasing lithium as a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the obtained negative electrode mixture is compression molded into a pellet shape. Thus, the negative electrode 14 is manufactured. In addition, a negative electrode mixture is prepared by adding and mixing a solvent such as N-methyl-2-pyrrolidone in addition to a negative electrode material capable of inserting and extracting lithium and a binder, and drying the negative electrode mixture. You may make it compression-mold after making it.

【0029】そののち、例えば、正極12、セパレータ
15および負極14の順に積層して正極缶11の中に入
れ、電解液16を注入したのち、ガスケット17を介し
て正極缶11と負極缶13とをかしめる。これにより、
図1に示した二次電池が形成される。
After that, for example, the positive electrode 12, the separator 15 and the negative electrode 14 are laminated in this order and placed in the positive electrode can 11, and the electrolytic solution 16 is injected, and then the positive electrode can 11 and the negative electrode can 13 are inserted via the gasket 17. Crimp. This allows
The secondary battery shown in FIG. 1 is formed.

【0030】この二次電池は次のように作用する。This secondary battery operates as follows.

【0031】この二次電池では、充電を行うと、例え
ば、正極12からリチウムイオンが離脱し、電解液16
を介して負極14に吸蔵される。放電を行うと、例え
ば、負極14からリチウムイオンが離脱し、電解液16
を介して正極12に吸蔵される。その際、正極12の充
電時におけるリチウム金属に対する電位は3.7V以上
となり、かつ4.0Vよりも大きくならず、負極14の
充電時におけるリチウム金属に対する電位は0.4V以
下となり、かつ0.1Vよりも小さくならない。よっ
て、正極12の充電時の電位が高くなり、充電容量が高
まり、高容量の電池が得られる。また、負極14の利用
率が低くなり、急速充電しても負極14にリチウムが析
出する虞がない。
In this secondary battery, when charged, for example, lithium ions are released from the positive electrode 12 and the electrolyte 16
It is occluded in the negative electrode 14 via When discharged, for example, lithium ions are released from the negative electrode 14 and the electrolyte 16
It is occluded in the positive electrode 12 via At that time, the potential of the positive electrode 12 with respect to the lithium metal during charging is 3.7 V or higher and not higher than 4.0 V, the potential of the negative electrode 14 with respect to the lithium metal during charging becomes 0.4 V or lower, and 0. Not less than 1V. Therefore, the potential of the positive electrode 12 at the time of charging is increased, the charging capacity is increased, and a high capacity battery can be obtained. Further, the utilization factor of the negative electrode 14 becomes low, and there is no fear that lithium will be deposited on the negative electrode 14 even if it is rapidly charged.

【0032】このように本実施の形態の電池によれば、
正極12の充電時におけるリチウム金属に対する電位が
3.7V以上となり、かつ4.0Vよりも大きくなら
ず、負極14の充電時におけるリチウム金属に対する電
位が0.4V以下となり、かつ0.1Vよりも小さくな
らないようにしたので、充電容量が向上し、高容量の電
池が得られる。よって、機器の動作時間を長くすること
ができる。また、負極14の利用率を下げたことによ
り、急速充電が可能となる。
Thus, according to the battery of this embodiment,
The potential for lithium metal when the positive electrode 12 is charged is 3.7 V or more and does not exceed 4.0 V, and the potential for lithium metal when the negative electrode 14 is charged is 0.4 V or less and more than 0.1 V. Since it is not made small, the charging capacity is improved and a high capacity battery can be obtained. Therefore, the operating time of the device can be lengthened. Further, by reducing the utilization rate of the negative electrode 14, rapid charging becomes possible.

【0033】特に、正極活物質に対する負極活物質の質
量比(負極活物質質量/正極活物質質量)を20/53
以上32/29以下とすれば、負極14の利用率を下
げ、充電容量を高めることができる。
In particular, the mass ratio of the negative electrode active material to the positive electrode active material (negative electrode active material mass / positive electrode active material mass) is 20/53.
When the ratio is 32/29 or less, the utilization rate of the negative electrode 14 can be reduced and the charge capacity can be increased.

【0034】[第2の実施の形態]本発明の第2の実施
の形態は、ディスク状の正極と負極とが電解質を介して
対向配置された二次電池に関するものである。よって、
本実施の形態では、図1を参照して全体構成についての
説明は省略し、各構成要素について図1と同一の符号を
用いて説明する。
[Second Embodiment] The second embodiment of the present invention relates to a secondary battery in which a disk-shaped positive electrode and a negative electrode are opposed to each other with an electrolyte interposed therebetween. Therefore,
In the present embodiment, description of the entire configuration will be omitted with reference to FIG. 1, and each component will be described using the same symbols as in FIG.

【0035】正極12は、例えば正極活物質としてリチ
ウムと少なくとも1種の遷移金属とを含む複合酸化物を
含有しており、後述する導電剤と、必要に応じて結着剤
と共に構成されている。リチウムと少なくとも1種の遷
移金属とを含む複合酸化物としては、例えば、リチウム
・コバルト複合酸化物または第1の実施の形態で説明し
たリチウム・マンガン複合酸化物が用いられる。リチウ
ム・コバルト複合酸化物としては、例えばLiCoO2
が挙げられる。特に、一般式Lix Mn2-y MIy 4
で表されるリチウム・マンガン複合酸化物を用いるよう
にすれば、安全性に優れるので好ましい。
The positive electrode 12 contains, for example, a composite oxide containing lithium and at least one kind of transition metal as a positive electrode active material, and is composed of a conductive agent described later and, if necessary, a binder. . As the composite oxide containing lithium and at least one transition metal, for example, the lithium-cobalt composite oxide or the lithium-manganese composite oxide described in the first embodiment is used. Examples of the lithium-cobalt composite oxide include LiCoO 2
Is mentioned. In particular, the general formula Li x Mn 2-y MI y O 4
It is preferable to use the lithium-manganese composite oxide represented by the following because it is excellent in safety.

【0036】また、リチウム・コバルト複合酸化物また
はリチウム・マンガン複合酸化物に加えて、一般式Li
z MIIO2 で表される他のリチウム複合酸化物を含んで
いてもよい。なお、MIIは遷移金属のうちの少なくとも
1種を表している。zは電池の充放電状態によって異な
り、通常0.05≦z≦1.10の範囲内の値である。
In addition to the lithium-cobalt composite oxide or the lithium-manganese composite oxide, the general formula Li
Other lithium composite oxide represented by z MIIO 2 may be contained. MII represents at least one kind of transition metal. z varies depending on the charging / discharging state of the battery, and is usually a value within the range of 0.05 ≦ z ≦ 1.10.

【0037】正極12の導電剤としては、鱗片状黒鉛と
無定形炭素とを含むことが好ましい。鱗片状黒鉛の正極
12における含有量は3質量%以上7質量%以下であ
り、鱗片状黒鉛と無定形炭素との質量比は鱗片状黒鉛:
無定形炭素=6:4〜7:2であることが好ましい。さ
らに、鱗片状黒鉛の正極12における含有量は4.0質
量%以上6.3質量%以下であり、鱗片状黒鉛と無定形
炭素との質量比は鱗片状黒鉛:無定形炭素=4:2〜
6.3:2であることがより好ましい。正極12の導電
性を高めることができ、特に重負荷での放電容量を向上
させることができると共に、サイクル特性を向上させる
ことができるからである。また、鱗片状黒鉛としては、
例えば、平均粒子径が2μm以上40μm以下、更には
2μm以上6μm以下の黒鉛微粉末が好ましい。取り扱
いおよび加工を容易とすることができ、さらに正極12
の導電性も高めることができるからである。
The conductive agent for the positive electrode 12 preferably contains flake graphite and amorphous carbon. The content of the flake graphite in the positive electrode 12 is 3% by mass or more and 7% by mass or less, and the mass ratio of the flake graphite to the amorphous carbon is flake graphite:
Amorphous carbon is preferably 6: 4 to 7: 2. Further, the content of scaly graphite in the positive electrode 12 is 4.0% by mass or more and 6.3% by mass or less, and the mass ratio of scaly graphite to amorphous carbon is scaly graphite: amorphous carbon = 4: 2. ~
It is more preferably 6.3: 2. This is because it is possible to improve the conductivity of the positive electrode 12, improve the discharge capacity particularly under heavy load, and improve the cycle characteristics. Further, as the flake graphite,
For example, graphite fine powder having an average particle diameter of 2 μm or more and 40 μm or less, and further preferably 2 μm or more and 6 μm or less is preferable. It can be easily handled and processed, and further, the positive electrode 12
This is because the conductivity of can also be increased.

【0038】負極14は、例えば、第1の実施の形態と
同様の構成を有している。なお、負極活物質としては、
有機物を熱処理して得られた炭素質材料あるいは熱処理
による炭素化により自己焼結された炭素質材料を用いる
ことが好ましい。なぜなら、充放電時における体積変化
が小さく、かつ活物質充填量を増やせるからである。こ
のような炭素質材料としては、例えば、特開平09−3
06492号公報に開示されているメソフェーズカーボ
ンを原料とした仮焼温度の異なる2種類の炭素質材料を
混合し、造粒・成型したのち、不活性ガス中において焼
結処理を行ったものが挙げられる。
The negative electrode 14 has, for example, a structure similar to that of the first embodiment. As the negative electrode active material,
It is preferable to use a carbonaceous material obtained by heat-treating an organic substance or a carbonaceous material self-sintered by carbonization by heat treatment. This is because the volume change during charge / discharge is small and the active material filling amount can be increased. As such a carbonaceous material, for example, JP-A-09-3
The one disclosed in JP-A-06492 is one in which two kinds of carbonaceous materials having different calcination temperatures from mesophase carbon as raw materials are mixed, granulated and molded, and then sintered in an inert gas. To be

【0039】他の構成要素については、第1の実施の形
態と同様である。
Other components are the same as those in the first embodiment.

【0040】この二次電池は、第1の実施の形態と同様
にして製造することができる。
This secondary battery can be manufactured in the same manner as in the first embodiment.

【0041】この二次電池は、次のように作用する。This secondary battery operates as follows.

【0042】この二次電池では、正極12の導電剤とし
て鱗片状黒鉛と無定形炭素とを用い、その含有量を上述
したように調整したので、正極12の導電性が高くな
り、特に重負荷での放電容量を向上させることができる
と共に、サイクル特性を向上させることができる。
In this secondary battery, since flake graphite and amorphous carbon were used as the conductive agent of the positive electrode 12 and the contents thereof were adjusted as described above, the conductivity of the positive electrode 12 was increased, and particularly heavy load was applied. The discharge capacity can be improved and the cycle characteristics can be improved.

【0043】このように本実施の形態の電池によれば、
正極12が、導電剤として鱗片状黒鉛と無定形炭素とを
含有し、鱗片状黒鉛の正極12における含有量が3質量
%以上7質量%以下であり、鱗片状黒鉛と無定形炭素と
の質量比が鱗片状黒鉛:無定形炭素=6:4〜7:2と
なるようにしたので、正極12の導電性を高くすること
ができ、特に重負荷での放電容量を向上させることがで
きると共に、サイクル特性を向上させることができる。
したがって、メイン電源としての使用に堪えうるコイン
型電池を実現できる。
Thus, according to the battery of this embodiment,
The positive electrode 12 contains scaly graphite and amorphous carbon as a conductive agent, and the content of the scaly graphite in the positive electrode 12 is 3% by mass or more and 7% by mass or less, and the mass of scaly graphite and amorphous carbon. Since the ratio is flake graphite: amorphous carbon = 6: 4 to 7: 2, the conductivity of the positive electrode 12 can be increased, and in particular, the discharge capacity under heavy load can be improved. The cycle characteristics can be improved.
Therefore, it is possible to realize a coin-type battery that can be used as a main power source.

【0044】特に、鱗片状黒鉛の平均粒子径を2μm以
上40μm以下とすれば、取り扱いおよび加工を容易と
することができ、更に放電容量も向上させることができ
る。
In particular, when the average particle diameter of the flake graphite is 2 μm or more and 40 μm or less, handling and processing can be facilitated and the discharge capacity can be improved.

【0045】また、本実施の形態においても、第1の実
施の形態で説明したように正極12および負極14の充
電時におけるリチウム金属に対する電位を調節するよう
にしてもよい。このようにすれば、正極活物質としてリ
チウム・マンガン複合酸化物を用い、電池電圧を3.6
V程度とする場合においても、高い容量を得ることがで
きる。
Also in this embodiment, as described in the first embodiment, the potentials with respect to the lithium metal at the time of charging the positive electrode 12 and the negative electrode 14 may be adjusted. By doing so, the lithium-manganese composite oxide is used as the positive electrode active material, and the battery voltage is 3.6.
Even when the voltage is about V, a high capacity can be obtained.

【0046】[0046]

【実施例】更に、本発明の具体的な実施例について、図
1を参照し、同一の符号を用いて詳細に説明する。
EXAMPLES Further, specific examples of the present invention will be described in detail with reference to FIG.

【0047】(実施例1−1〜1−7)まず、正極活物
質としてLiNiO2 を用い、このLiNiO2 90質
量部と、導電剤であるグラファイト5質量部および無定
形炭素2質量部と、結着剤であるポリフッ化ビニリデン
3質量部とを混合して正極合剤を調整した。続いて、こ
の正極合剤を加圧成型して、正極12を作製した。
(Examples 1-1 to 1-7) First, LiNiO 2 was used as the positive electrode active material, 90 parts by mass of this LiNiO 2 , 5 parts by mass of graphite as a conductive agent and 2 parts by mass of amorphous carbon, A positive electrode mixture was prepared by mixing 3 parts by mass of polyvinylidene fluoride as a binder. Subsequently, the positive electrode mixture was pressure-molded to produce the positive electrode 12.

【0048】また、負極活物質として特開平09−30
6492号公報に開示されているメソフェーズカーボン
を原料とした仮焼温度の異なる2種類の炭素質材料を混
合し、造粒・成型したのち、不活性ガス中において焼結
処理を行い、負極14を形成した。
Further, as a negative electrode active material, Japanese Patent Laid-Open No. 09-30
The two types of carbonaceous materials having different calcination temperatures, which are made from mesophase carbon as disclosed in Japanese Patent No. 6492, are mixed, granulated and molded, and then sintered in an inert gas to form the negative electrode 14. Formed.

【0049】その際、実施例1−1〜1−7で、表1に
示したように正極活物質の質量と負極活物質の質量とを
変化させ、設計正極電位および設計負極電位を調整し
た。なお、設計正極電位および設計負極電位というの
は、充電終了時におけるリチウム金属に対する正極12
または負極14の電位である。
At that time, in Examples 1-1 to 1-7, the mass of the positive electrode active material and the mass of the negative electrode active material were changed as shown in Table 1 to adjust the designed positive electrode potential and the designed negative electrode potential. . The designed positive electrode potential and the designed negative electrode potential are the positive electrode 12 with respect to the lithium metal at the end of charging.
Alternatively, it is the potential of the negative electrode 14.

【0050】[0050]

【表1】 [Table 1]

【0051】そののち、厚さ50μmの微孔性ポリプロ
ピレンフィルムからなるセパレータ15を用意し、正極
12,セパレータ15および負極14を順に積層し、正
極缶11内に挿入した後、電解液16を注入した。電解
液16には、炭酸プロピレンと炭酸メチルエチルとを炭
酸プロピレン:炭酸メチルエチル=1:1の質量比で混
合した溶媒に電解質塩としてLiPF6 を1.0mol
/lの含有量で溶解させたものを用いた。その後、ガス
ケット17を介して正極缶11と負極缶13とをかしめ
て封止し、図1に示したような直径20mm、高さ2.
5mmのコイン型の二次電池を作製した。
After that, a separator 15 made of a microporous polypropylene film having a thickness of 50 μm is prepared, the positive electrode 12, the separator 15 and the negative electrode 14 are laminated in this order, and after being inserted into the positive electrode can 11, the electrolytic solution 16 is injected. did. In the electrolytic solution 16, 1.0 mol of LiPF 6 as an electrolyte salt was added to a solvent in which propylene carbonate and methyl ethyl carbonate were mixed at a mass ratio of propylene carbonate: methyl ethyl carbonate = 1: 1.
What was melt | dissolved by the content of / l was used. After that, the positive electrode can 11 and the negative electrode can 13 are caulked and sealed via a gasket 17, and the diameter is 20 mm and the height is 2. as shown in FIG.
A 5 mm coin type secondary battery was produced.

【0052】得られた実施例1−1〜1−7の二次電池
について放電容量を調べた。その際、充放電の条件は、
5mAの電流で3.6Vで24時間、定電圧定電流充電
を行ったのち、充電時と同じ電流で2.0Vまで定電流
放電する条件とした。得られた結果を表1および図2に
示す。
The discharge capacities of the obtained secondary batteries of Examples 1-1 to 1-7 were examined. At that time, the charging and discharging conditions are
A constant-voltage constant-current charge was performed at a current of 5 mA at 3.6 V for 24 hours, and then a constant-current discharge was performed up to 2.0 V at the same current as the charging. The obtained results are shown in Table 1 and FIG.

【0053】表1および図2から分かるように、設計負
極電位を高くするに従って放電容量は大きくなり極大値
を示したのち小さくなる傾向が見られた。すなわち、負
極14の充電時におけるリチウム金属に対する電位が
0.4V以下となり、かつ0.1Vよりも小さくならな
いようにすれば、更には0.35V以下となり、かつ
0.15Vよりも小さくならないようにすれば、放電容
量を向上させることができることが分かった。
As can be seen from Table 1 and FIG. 2, there was a tendency that the discharge capacity increased as the designed negative electrode potential increased, showed a maximum value, and then decreased. That is, if the potential of the negative electrode 14 with respect to the lithium metal during charging is 0.4 V or less and not less than 0.1 V, it is further 0.35 V or less and not less than 0.15 V. It was found that the discharge capacity can be improved by doing so.

【0054】また、正極活物質に対する負極活物質の質
量比を20/53以上32/29以下、更には24/4
6以上31/30以下とすれば好ましいことも分かっ
た。
The mass ratio of the negative electrode active material to the positive electrode active material is 20/53 or more and 32/29 or less, and further 24/4.
It was also found that 6 or more and 31/30 or less is preferable.

【0055】(実施例2)まず、正極活物質としてLi
CoO2 を用いたことを除き、実施例1−1〜1−7と
同様の材料を用いて正極合剤を調整した。このとき、L
iCoO2 の混合量は93〜87質量部の範囲で変化さ
せると共に、グラファイトの混合量は2〜8質量部の範
囲で変化させ、無定形炭素は2質量部、ポリフッ化ビニ
リデンは3質量部とした。また、グラファイトの平均粒
子径は6μmとした。続いて、この正極合剤を500m
gの質量で充填し、予備成形した。そののち、集電体と
して機能するアルミニウム製エキスパンドメタルを載
せ、さらに加圧成型して、外径15.5mm、高さ0.
7mmの正極12を作製した。
Example 2 First, Li was used as a positive electrode active material.
A positive electrode mixture was prepared using the same materials as in Examples 1-1 to 1-7 except that CoO 2 was used. At this time, L
The mixing amount of iCoO 2 was changed in the range of 93 to 87 parts by mass, the mixing amount of graphite was changed in the range of 2 to 8 parts by mass, the amorphous carbon was 2 parts by mass, and the polyvinylidene fluoride was 3 parts by mass. did. The average particle size of graphite was 6 μm. Subsequently, this positive electrode mixture is added to 500 m
It was filled with a mass of g and preformed. After that, an expanded metal made of aluminum, which functions as a current collector, is placed and further pressure-molded to have an outer diameter of 15.5 mm and a height of 0.
A 7 mm positive electrode 12 was produced.

【0056】また、実施例1−1〜1−7と同様にして
外径15.6mm、高さ0.8mm、質量180mgの
負極14を形成した。
Further, a negative electrode 14 having an outer diameter of 15.6 mm, a height of 0.8 mm and a mass of 180 mg was formed in the same manner as in Examples 1-1 to 1-7.

【0057】そののち、実施例1−1〜1−7と同様に
して二次電池を作製した。
After that, a secondary battery was manufactured in the same manner as in Examples 1-1 to 1-7.

【0058】得られた二次電池について、それぞれ放電
容量および放電末期における閉路電圧(Closed Circuit
Voltage;CCV)換算抵抗を調べた。このとき、充放
電の条件は、放電電流0.1mA,終止電圧2V,充電
電圧3V,充電時間24時間とした。また、閉路電圧測
定条件は、100Ωの抵抗で5.0秒間とし、閉路電圧
換算抵抗値は、開路電圧(Open Circuit Voltage;OC
V)から閉路電圧を差し引いた値の閉路電圧に対する百
分率として求めた。得られた結果を図3および図4にそ
れぞれ示す。なお、図3において、放電容量比は、鱗片
状黒鉛の含有量が5質量部である場合の放電容量を1と
し、それに対する比率で表している。
Regarding the obtained secondary batteries, the discharge capacity and the closed circuit voltage at the end of discharge (Closed Circuit
Voltage; CCV) conversion resistance was examined. At this time, the charging / discharging conditions were a discharge current of 0.1 mA, a final voltage of 2 V, a charging voltage of 3 V, and a charging time of 24 hours. In addition, the closed circuit voltage measurement condition is a resistance of 100Ω for 5.0 seconds, and the closed circuit voltage conversion resistance value is an open circuit voltage (OC).
It was calculated as a percentage of the value obtained by subtracting the closed circuit voltage from V) with respect to the closed circuit voltage. The obtained results are shown in FIGS. 3 and 4, respectively. In FIG. 3, the discharge capacity ratio is expressed as a ratio with respect to the discharge capacity of 1 when the content of the flake graphite is 5 parts by mass.

【0059】図3から分かるように、放電容量は、鱗片
状黒鉛の配合比が大きくなるに従って単調増加し、5.
0質量%で極大値を示し、5.0質量%を超えると単調
減少していた。また、図4から分かるように、鱗片状黒
鉛の配合比が増加するのに伴って、放電末期における閉
路電圧換算抵抗値は低減していた。すなわち、鱗片状黒
鉛の正極12における含有量を3.0質量%以上7.0
質量%以下とし、鱗片状黒鉛と無定形炭素との質量比を
鱗片状黒鉛:無定形炭素=6:4〜7:2とすれば、放
電容量が大きくなると共に、導電性の向上により閉路電
圧換算抵抗値が低減してサイクル特性が改善されること
が分かった。また、鱗片状黒鉛の正極12における含有
量を4.0質量%以上6.3質量%以下とし、鱗片状黒
鉛と無定形炭素との質量比を鱗片状黒鉛:無定形炭素=
4:2〜6.3:2とすれば、より好ましいことが分か
った。
As can be seen from FIG. 3, the discharge capacity monotonically increases as the blending ratio of the flake graphite increases.
The maximum value was shown at 0% by mass, and monotonically decreased when it exceeded 5.0% by mass. Further, as can be seen from FIG. 4, the resistance value in terms of closed circuit voltage at the end of discharge decreased as the blending ratio of the flake graphite increased. That is, the content of the flake graphite in the positive electrode 12 is 3.0 mass% or more and 7.0.
If the mass ratio is less than or equal to mass% and the mass ratio of scaly graphite to amorphous carbon is scaly graphite: amorphous carbon = 6: 4 to 7: 2, the discharge capacity is increased and the closed circuit voltage is improved due to the improvement in conductivity. It was found that the reduced resistance value was reduced and the cycle characteristics were improved. Further, the content of the flake graphite in the positive electrode 12 is 4.0% by mass or more and 6.3% by mass or less, and the mass ratio of the flake graphite to the amorphous carbon is flake graphite: amorphous carbon =
It was found that the ratio of 4: 2 to 6.3: 2 was more preferable.

【0060】(実施例3−1〜3−7)正極12を作製
する際に、導電剤として、鱗片状黒鉛であるグラファイ
トを5質量部、および無定形炭素2質量部を用い、鱗片
状黒鉛であるグラファイトの平均粒子径を表2に示した
ように変化させたことを除き、実施例2と同様にしてコ
イン型二次電池を作製した。
(Examples 3-1 to 3-7) In producing the positive electrode 12, 5 parts by mass of graphite, which is flake graphite, and 2 parts by mass of amorphous carbon were used as a conductive agent, and flake graphite was used. A coin-type secondary battery was produced in the same manner as in Example 2 except that the average particle size of graphite was changed as shown in Table 2.

【0061】[0061]

【表2】 [Table 2]

【0062】得られた実施例3−1〜3−7の二次電池
について、実施例2と同様にして放電容量を調べると共
に内部抵抗値を調べた。得られた結果を表2に併せて示
す。なお、表2において、放電容量比は、鱗片状黒鉛の
含有量が5質量部である場合の放電容量を1とし、それ
に対する比率で表している。
Regarding the obtained secondary batteries of Examples 3-1 to 3-7, the discharge capacity and the internal resistance value were examined in the same manner as in Example 2. The obtained results are also shown in Table 2. In Table 2, the discharge capacity ratio is expressed as a ratio with respect to the discharge capacity of 1 when the content of the flake graphite is 5 parts by mass.

【0063】表2から分かるように、鱗片状黒鉛の平均
粒子径が大きくなるに従って、放電容量は増大し、極大
値を示したのち減少する傾向が見られた。また、内部抵
抗値は、放電容量とは逆に、鱗片状黒鉛の平均粒子径が
大きくなるに従って減少し、放電容量が極大値に達した
直後に極小値に達し、その後は上昇する傾向が見られ
た。したがって、鱗片状黒鉛の平均粒子径を2μm以上
40μm以下の範囲内、更には2μm以上6μm以下の
範囲内とすれば、放電容量を高めるとともに内部抵抗値
を減少させることができることが分かった。
As can be seen from Table 2, as the average particle size of the flake graphite increased, the discharge capacity increased, showed a maximum value, and then tended to decrease. In contrast to the discharge capacity, the internal resistance value decreases as the average particle size of the flake graphite increases, reaches a minimum value immediately after the discharge capacity reaches a maximum value, and then tends to increase. Was given. Therefore, it was found that the discharge capacity can be increased and the internal resistance value can be reduced when the average particle diameter of the flake graphite is within the range of 2 μm or more and 40 μm or less, and further within the range of 2 μm or more and 6 μm or less.

【0064】以上、実施の形態を挙げて本発明を説明し
たが、本発明は上記実施の形態に限定されるものではな
く、種々変形可能である。例えば、上記実施の形態で
は、コイン型の二次電池について一例を具体的に挙げて
説明したが、本発明の第1の実施の形態は正極および負
極を電解質およびセパレータなどを介して積層し、巻回
した電極構造を有するボタン型,筒型あるいは角型など
の他の形状を有する二次電池についても適用可能であ
る。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above-mentioned embodiments and can be variously modified. For example, in the above-described embodiment, the coin-type secondary battery has been specifically described as an example, but in the first embodiment of the present invention, the positive electrode and the negative electrode are laminated with the electrolyte and the separator interposed therebetween, It is also applicable to a secondary battery having another shape such as a button type, a cylinder type or a square type having a wound electrode structure.

【0065】更にまた、上記実施の形態および実施例で
は、二次電池を具体的に挙げて説明したが、一次電池な
どの他の電池についても同様に適用することができる。
Furthermore, in the above-mentioned embodiments and examples, the secondary battery is specifically described, but the present invention can be similarly applied to other batteries such as a primary battery.

【0066】[0066]

【発明の効果】以上説明したように、請求項1ないし請
求項3のいずれか1項に記載の電池によれば、正極の充
電時におけるリチウム金属に対する電位が3.7V以上
となり、かつ4.0Vよりも大きくならず、負極の充電
時におけるリチウム金属に対する電位が0.4V以下と
なり、かつ0.1Vよりも小さくならないようにしたの
で、充電容量を向上させることができ、高容量の電池を
得られる。したがって、機器の動作時間を長くすること
ができる。また、負極の利用率を下げたことにより、急
速充電が可能となる。
As described above, according to the battery according to any one of claims 1 to 3, the potential of the positive electrode with respect to lithium metal during charging is 3.7 V or more, and 4. Since the potential is not higher than 0 V, the potential of the negative electrode with respect to the lithium metal during charging is 0.4 V or less, and not lower than 0.1 V, the charging capacity can be improved and a high capacity battery can be obtained. can get. Therefore, the operating time of the device can be lengthened. Also, by reducing the utilization rate of the negative electrode, rapid charging becomes possible.

【0067】特に、請求項2記載の電池によれば、正極
活物質に対する負極活物質の質量比(負極活物質質量/
正極活物質質量)を20/53以上32/29以下であ
るようにしたので、負極の利用率を下げ、充電容量を高
めることができる。
Particularly, according to the battery of claim 2, the mass ratio of the negative electrode active material to the positive electrode active material (negative electrode active material mass /
Since the positive electrode active material mass) is set to 20/53 or more and 32/29 or less, the utilization rate of the negative electrode can be reduced and the charge capacity can be increased.

【0068】請求項4ないし請求項7のいずれか1項に
記載の電池によれば、正極が導電剤として鱗片状黒鉛と
無定形炭素とを含有し、鱗片状黒鉛の正極における質量
比が3質量%以上7質量%以下であり、鱗片状黒鉛と無
定形炭素との質量比は鱗片状黒鉛:無定形炭素=6:4
〜7:2であるようにしたので、正極の導電性を高くす
ることができ、特に重負荷での放電容量を向上させるこ
とができると共に、サイクル特性を向上させることがで
きる。したがって、メイン電源としての使用に堪えうる
コイン型電池を実現できる。
According to the battery of any one of claims 4 to 7, the positive electrode contains scaly graphite and amorphous carbon as a conductive agent, and the mass ratio of the scaly graphite in the positive electrode is 3 The mass ratio is from 7% by mass to 7% by mass, and the mass ratio of the scaly graphite to the amorphous carbon is scaly graphite: amorphous carbon = 6: 4.
Since it is set to 7: 2, the conductivity of the positive electrode can be increased, the discharge capacity can be improved especially under heavy load, and the cycle characteristics can be improved. Therefore, it is possible to realize a coin-type battery that can be used as a main power source.

【0069】特に、請求項6記載の電池によれば、鱗片
状黒鉛の平均粒子径を2μm以上40μm以下としたの
で、取り扱いおよび加工を容易とすることができる。
In particular, according to the battery of the sixth aspect, the average particle diameter of the flake graphite is set to 2 μm or more and 40 μm or less, so that handling and processing can be facilitated.

【0070】また、特に、請求項7記載の電池によれ
ば、正極の充電時におけるリチウム金属に対する電位が
3.7V以上となり、かつ4.0Vよりも大きくなら
ず、負極の充電時におけるリチウム金属に対する電位が
0.4V以下となり、かつ0.1Vよりも小さくならな
いようにしたので、正極活物質としてリチウム・マンガ
ン複合酸化物を用い、電池電圧を3.6V程度とする場
合においても、高い容量を得ることができる。
Further, in particular, according to the battery of claim 7, the potential with respect to the lithium metal at the time of charging the positive electrode is 3.7 V or more and does not become larger than 4.0 V, and the lithium metal at the time of charging the negative electrode is Since the potential of the lithium-manganese composite oxide is set to 0.4 V or less and not lower than 0.1 V, a high capacity is obtained even when the lithium-manganese composite oxide is used as the positive electrode active material and the battery voltage is set to about 3.6 V. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態および第2の実施の
形態に係る二次電池の構成を表す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a secondary battery according to a first exemplary embodiment and a second exemplary embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る図1に示した
二次電池において、リチウムに対する負極の電位と放電
容量との関係を表す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a negative electrode potential with respect to lithium and a discharge capacity in the secondary battery shown in FIG. 1 according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態に係る図1に示した
二次電池において、導電剤に含まれる鱗片状黒鉛の正極
に対する質量比と放電容量との関係を表す特性図であ
る。
FIG. 3 is a characteristic diagram showing the relationship between the mass ratio of the flake graphite contained in the conductive agent to the positive electrode and the discharge capacity in the secondary battery shown in FIG. 1 according to the second embodiment of the present invention. .

【図4】本発明の第2の実施の形態に係る図1に示した
二次電池において、導電剤に含まれる鱗片状黒鉛の正極
に対する質量比と閉路電圧換算抵抗値との関係を表す特
性図である。
FIG. 4 is a characteristic of the secondary battery shown in FIG. 1 according to the second embodiment of the present invention, showing the relationship between the mass ratio of the flake graphite contained in the conductive agent to the positive electrode and the closed circuit voltage conversion resistance value. It is a figure.

【図5】一般的なリチウムイオン二次電池における正極
電位、負極電位および電池電圧に関する特性図である。
FIG. 5 is a characteristic diagram regarding a positive electrode potential, a negative electrode potential, and a battery voltage in a general lithium ion secondary battery.

【図6】一般的なリチウムイオン二次電池における充電
電圧と、充放電容量および充放電効率との関係を表す特
性図である。
FIG. 6 is a characteristic diagram showing a relationship between a charging voltage and a charge / discharge capacity and charge / discharge efficiency in a general lithium ion secondary battery.

【符号の説明】[Explanation of symbols]

11…正極缶、12…正極、13…負極缶、14…負
極、15…セパレータ、16…電解液、17…ガスケッ
11 ... Positive electrode can, 12 ... Positive electrode, 13 ... Negative electrode can, 14 ... Negative electrode, 15 ... Separator, 16 ... Electrolyte, 17 ... Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 厚美 吉則 福島県郡山市日和田町高倉字下杉下1番地 の1 ソニー福島株式会社内 (72)発明者 岩佐 和弘 福島県郡山市日和田町高倉字下杉下1番地 の1 ソニー福島株式会社内 (72)発明者 太田 康雄 福島県郡山市日和田町高倉字下杉下1番地 の1 ソニー福島株式会社内 Fターム(参考) 5H029 AJ03 AK03 AK18 AL02 AL06 AL07 AL16 AL18 AM03 AM04 AM05 AM07 AM16 BJ03 CJ02 CJ08 DJ08 DJ16 EJ04 HJ01 HJ05 HJ18 5H050 AA08 BA17 CA08 CA09 CA29 CB07 CB08 CB20 CB29 DA02 DA10 EA09 FA17 GA02 GA10 HA01 HA05 HA18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshinori Atsumi             1 Shimo-Sugishita, Takakura, Hiwada-cho, Koriyama City, Fukushima Prefecture             1 Sony Fukushima Co., Ltd. (72) Inventor Kazuhiro Iwasa             1 Shimo-Sugishita, Takakura, Hiwada-cho, Koriyama City, Fukushima Prefecture             1 Sony Fukushima Co., Ltd. (72) Inventor Yasuo Ota             1 Shimo-Sugishita, Takakura, Hiwada-cho, Koriyama City, Fukushima Prefecture             1 Sony Fukushima Co., Ltd. F term (reference) 5H029 AJ03 AK03 AK18 AL02 AL06                       AL07 AL16 AL18 AM03 AM04                       AM05 AM07 AM16 BJ03 CJ02                       CJ08 DJ08 DJ16 EJ04 HJ01                       HJ05 HJ18                 5H050 AA08 BA17 CA08 CA09 CA29                       CB07 CB08 CB20 CB29 DA02                       DA10 EA09 FA17 GA02 GA10                       HA01 HA05 HA18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を含む正極と、負極活物質を
含む負極と、電解質とを備えた電池であって、 前記正極は、正極活物質として、リチウム・ニッケル複
合酸化物およびリチウム・マンガン複合酸化物のうちの
少なくとも1種を含み、 前記正極の充電時におけるリチウム金属に対する電位
は、3.7V以上となり、かつ4.0Vよりも大きくな
らず、 前記負極の充電時におけるリチウム金属に対する電位
は、0.4V以下となり、かつ0.1Vよりも小さくな
らないことを特徴とする電池。
1. A battery comprising a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an electrolyte, wherein the positive electrode contains lithium-nickel composite oxide and lithium-manganese as the positive electrode active material. A potential for lithium metal at the time of charging the positive electrode is 3.7 V or more and not higher than 4.0 V, including at least one kind of complex oxide, and a potential for lithium metal at the time of charging the negative electrode. Is a battery that is 0.4 V or less and does not become less than 0.1 V.
【請求項2】 前記正極活物質に対する前記負極活物質
の質量比(負極活物質質量/正極活物質質量)は、20
/53以上32/29以下であることを特徴とする請求
項1記載の電池。
2. The mass ratio of the negative electrode active material to the positive electrode active material (negative electrode active material mass / positive electrode active material mass) is 20.
The battery according to claim 1, which is / 53 or more and 32/29 or less.
【請求項3】 前記負極は、負極活物質として、リチウ
ムを吸蔵および離脱することが可能な負極材料を含むこ
とを特徴とする請求項1記載の電池。
3. The battery according to claim 1, wherein the negative electrode contains a negative electrode material capable of inserting and extracting lithium as a negative electrode active material.
【請求項4】 ディスク状の正極と負極とが電解質を介
して対向配置された電池であって、 前記正極は、正極活物質としてリチウムと少なくとも1
種の遷移金属とを含む複合酸化物を含有すると共に、導
電剤として鱗片状黒鉛と無定形炭素とを含有し、 前記鱗片状黒鉛の前記正極における含有量は3質量%以
上7質量%以下であり、 前記鱗片状黒鉛と前記無定形炭素との質量比は、鱗片状
黒鉛:無定形炭素=6:4〜7:2であることを特徴と
する電池。
4. A battery in which a disk-shaped positive electrode and a negative electrode are arranged to face each other with an electrolyte interposed therebetween, wherein the positive electrode contains at least one of lithium and a positive electrode active material.
Along with containing a complex oxide containing a kind of transition metal, containing scaly graphite and amorphous carbon as a conductive agent, the content of the scaly graphite in the positive electrode is 3% by mass or more and 7% by mass or less. The battery is characterized in that the mass ratio of the scaly graphite to the amorphous carbon is scaly graphite: amorphous carbon = 6: 4 to 7: 2.
【請求項5】 前記正極は、正極活物質としてリチウム
・マンガン複合酸化物を含み、 前記負極は、負極活物質として、有機物を熱処理して得
られた炭素質材料および熱処理による炭素化により自己
焼結された炭素質材料のうちの少なくとも一方を含むこ
とを特徴とする請求項4記載の電池。
5. The positive electrode contains a lithium-manganese composite oxide as a positive electrode active material, and the negative electrode as a negative electrode active material is a carbonaceous material obtained by heat-treating an organic material and self-calcination by carbonization by heat treatment. The battery according to claim 4, comprising at least one of the bonded carbonaceous materials.
【請求項6】 前記鱗片状黒鉛は、平均粒子径が2μm
以上40μm以下であることを特徴とする請求項4記載
の電池。
6. The scaly graphite has an average particle diameter of 2 μm.
The battery according to claim 4, wherein the battery has a thickness of 40 μm or less.
【請求項7】 前記正極の充電時におけるリチウム金属
に対する電位は、3.7V以上となり、かつ4.0Vよ
りも大きくならず、 前記負極の充電時におけるリチウム金属に対する電位
は、0.4V以下となり、かつ0.1Vよりも小さくな
らないことを特徴とする請求項4記載の電池。
7. The potential of the positive electrode with respect to lithium metal during charging is 3.7 V or higher and not higher than 4.0 V, and the potential of the negative electrode with respect to lithium metal during charging is 0.4 V or lower. The battery according to claim 4, wherein the battery does not become lower than 0.1 V.
JP2002142438A 2002-05-17 2002-05-17 Cell Pending JP2003331922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142438A JP2003331922A (en) 2002-05-17 2002-05-17 Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142438A JP2003331922A (en) 2002-05-17 2002-05-17 Cell

Publications (1)

Publication Number Publication Date
JP2003331922A true JP2003331922A (en) 2003-11-21

Family

ID=29702717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142438A Pending JP2003331922A (en) 2002-05-17 2002-05-17 Cell

Country Status (1)

Country Link
JP (1) JP2003331922A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027008A (en) * 2005-07-20 2007-02-01 Sony Corp Battery
JP2008091210A (en) * 2006-10-02 2008-04-17 Nissan Motor Co Ltd Lithium ion battery and its charging method
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery
US7732097B2 (en) 2005-02-17 2010-06-08 Sony Corporation Battery
JP2010262914A (en) * 2009-04-29 2010-11-18 Samsung Sdi Co Ltd Lithium secondary battery
JP2011124052A (en) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery and method for charging the same
WO2012036127A1 (en) * 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 Nonaqueous secondary cell
JP2015046295A (en) * 2013-08-28 2015-03-12 新神戸電機株式会社 Lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222206A (en) * 1995-02-16 1996-08-30 Sumitomo Chem Co Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JPH1064520A (en) * 1996-08-23 1998-03-06 Fuji Photo Film Co Ltd Lithium ion secondary battery
JP2000133246A (en) * 1998-10-30 2000-05-12 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2000268874A (en) * 1999-03-15 2000-09-29 Toyota Central Res & Dev Lab Inc Manufacturing method of lithium secondary battery
JP2001176560A (en) * 1999-12-17 2001-06-29 Denso Corp Method for adjusting characteristics of lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222206A (en) * 1995-02-16 1996-08-30 Sumitomo Chem Co Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JPH1064520A (en) * 1996-08-23 1998-03-06 Fuji Photo Film Co Ltd Lithium ion secondary battery
JP2000133246A (en) * 1998-10-30 2000-05-12 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2000268874A (en) * 1999-03-15 2000-09-29 Toyota Central Res & Dev Lab Inc Manufacturing method of lithium secondary battery
JP2001176560A (en) * 1999-12-17 2001-06-29 Denso Corp Method for adjusting characteristics of lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732097B2 (en) 2005-02-17 2010-06-08 Sony Corporation Battery
JP2007027008A (en) * 2005-07-20 2007-02-01 Sony Corp Battery
JP2008091210A (en) * 2006-10-02 2008-04-17 Nissan Motor Co Ltd Lithium ion battery and its charging method
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery
JP2010262914A (en) * 2009-04-29 2010-11-18 Samsung Sdi Co Ltd Lithium secondary battery
US8597833B2 (en) 2009-04-29 2013-12-03 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP2011124052A (en) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery and method for charging the same
WO2012036127A1 (en) * 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 Nonaqueous secondary cell
US8481212B2 (en) 2010-09-14 2013-07-09 Hitachi Maxell, Ltd. Non-aqueous secondary battery
US8859147B2 (en) 2010-09-14 2014-10-14 Hitachi Maxell, Ltd. Non-aqueous secondary battery
JP2015046295A (en) * 2013-08-28 2015-03-12 新神戸電機株式会社 Lithium ion battery

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US7198871B2 (en) Non-aqueous electrolyte secondary battery
JP4412778B2 (en) Polymer electrolyte battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2004047180A (en) Nonaqueous electrolytic solution battery
JPH10255807A (en) Lithium ion secondary battery
JP2001345101A (en) Secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP2009206091A (en) Nonaqueous electrolyte battery and negative electrode, and method for manufacturing the same
JP3580209B2 (en) Lithium ion secondary battery
JP7133776B2 (en) Non-aqueous electrolyte secondary battery
JP2004111202A (en) Anode material and battery using the same
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JP3786273B2 (en) Negative electrode material and battery using the same
JP2004014472A (en) Nonaqueous secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2003331922A (en) Cell
JP2003007331A (en) Nonaqueous electrolyte secondary battery
JP2004362934A (en) Positive electrode material and battery
JP2004063269A (en) Nonaqueous electrolyte battery
JP2002025626A (en) Aging treatment method for lithium secondary battery
WO2007040114A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery
JP2004186035A (en) Nonaqueous electrolytic solution battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106