[go: up one dir, main page]

JP2003331645A - Proton conductive material - Google Patents

Proton conductive material

Info

Publication number
JP2003331645A
JP2003331645A JP2002143093A JP2002143093A JP2003331645A JP 2003331645 A JP2003331645 A JP 2003331645A JP 2002143093 A JP2002143093 A JP 2002143093A JP 2002143093 A JP2002143093 A JP 2002143093A JP 2003331645 A JP2003331645 A JP 2003331645A
Authority
JP
Japan
Prior art keywords
conductive material
proton
proton conductive
main chain
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002143093A
Other languages
Japanese (ja)
Inventor
Takuichi Arai
卓一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002143093A priority Critical patent/JP2003331645A/en
Publication of JP2003331645A publication Critical patent/JP2003331645A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Silicon Polymers (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】100℃以上での使用に耐える耐久性をもつプ
ロトン伝導材料を提供すること。 【解決手段】シロキサン構造をもつ主鎖と、該主鎖にグ
ラフト化され、ケイ素原子と強酸性官能基とをもつ側鎖
と、を有する高分子材料からなるプロトン伝導材料。つ
まり、プロトン伝導材料として、炭素−炭素結合よりも
結合エネルギーの高いケイ素−酸素結合やケイ素−炭素
結合を化学構造中にもつ高分子材料を用いることで、プ
ロトン伝導材料の熱分解に対する耐性を向上することが
できる。また、軟化点や融点が高くなるので、クリープ
特性が向上する。したがって、プロトン伝導材料の耐熱
性を向上できる。
(57) [Problem] To provide a proton conductive material having durability to withstand use at 100 ° C or higher. A proton conductive material comprising a polymer material having a main chain having a siloxane structure and side chains grafted to the main chain and having a silicon atom and a strongly acidic functional group. In other words, by using a polymer material having a silicon-oxygen bond or a silicon-carbon bond having a higher binding energy than a carbon-carbon bond in the chemical structure as the proton-conductive material, the resistance of the proton-conductive material to thermal decomposition is improved. can do. In addition, since the softening point and the melting point are increased, the creep characteristics are improved. Therefore, the heat resistance of the proton conductive material can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性に優れたプ
ロトン伝導材料に関する。
TECHNICAL FIELD The present invention relates to a proton conductive material having excellent heat resistance.

【0002】[0002]

【従来の技術】固体高分子型燃料電池用として実用に耐
えるプロトン伝導材料としては、ナフィオン(商標)を
代表とするパーフルオロカーボンスルホン酸系高分子材
料がある。
2. Description of the Related Art As a proton conductive material that can be practically used for a polymer electrolyte fuel cell, there is a perfluorocarbon sulfonic acid type polymer material represented by Nafion (trademark).

【0003】[0003]

【発明が解決しようとする課題】ナフィオン等のパーフ
ルオロカーボンスルホン酸系高分子材料の欠点として
は、フッ素樹脂なので高価であること、100℃以上の
高温ではクリープ、材料自体の熱分解等の問題から使用
できず充分な耐熱性を有しないことが知られている。プ
ロトン伝導材料の主要用途である燃料電池においては、
高い運転温度を採用することで運転効率が上昇する。そ
こで、安価で耐熱性の高いエンジニアリングプラスチッ
クをベースにした耐熱性の高いプロトン伝導材料がナフ
ィオンの代替品として盛んに研究されているが実用化さ
れているものは殆どない。
The disadvantages of perfluorocarbon sulfonic acid type polymer materials such as Nafion are that they are expensive because they are fluororesins, and that they creep at high temperatures of 100 ° C. or higher, thermal decomposition of the materials themselves, etc. It is known that it cannot be used and does not have sufficient heat resistance. In fuel cells, which are the main applications of proton conductive materials,
Adopting a high operating temperature increases operating efficiency. Therefore, an inexpensive and highly heat-resistant engineering plastic-based highly heat-resistant proton conductive material has been actively researched as a substitute for Nafion, but few have been put into practical use.

【0004】本発明では、100℃以上での使用に耐え
る耐久性をもつプロトン伝導材料を提供することを解決
すべき課題とする。
In the present invention, it is an object to be solved to provide a proton conductive material having durability to withstand use at 100 ° C. or higher.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する目的
で本発明者は鋭意研究を行った結果、シロキサン構造を
もつ主鎖と、該主鎖にグラフト化され、ケイ素原子と強
酸性官能基とをもつ側鎖と、を有する高分子材料からな
ることを特徴とするプロトン伝導材料を発明した(請求
項1)。
Means for Solving the Problems As a result of intensive research for solving the above-mentioned problems, the present inventor has conducted extensive research and found that a main chain having a siloxane structure and a silicon atom and a strongly acidic functional group grafted onto the main chain were formed. A proton conducting material is invented, which is composed of a polymer material having a side chain having and.

【0006】つまり、プロトン伝導材料として、炭素−
炭素結合よりも結合エネルギーの高いケイ素−酸素結合
やケイ素−炭素結合を化学構造中にもつ高分子材料を用
いることで、プロトン伝導材料の熱分解に対する耐性を
向上することができる。また、軟化点や融点が高くなる
ので、クリープ特性が向上する。したがって、プロトン
伝導材料の耐熱性を向上できる。
That is, carbon is used as the proton conductive material.
By using a polymer material having a silicon-oxygen bond or a silicon-carbon bond having a higher binding energy than a carbon bond in its chemical structure, the resistance of the proton conductive material to thermal decomposition can be improved. Moreover, since the softening point and the melting point are increased, the creep characteristics are improved. Therefore, the heat resistance of the proton conductive material can be improved.

【0007】このプロトン伝導材料を構成する高分子材
料は一般式(1)で表される部分構造を有することが好
ましい(請求項2)。一般式(1)の構造は、高分子材
料中に導入することでプロトン伝導材料の耐熱性が向上
する利点のほかに、高分子材料中に容易に導入すること
ができ、廉価で製造できるという利点がある。特に、こ
の高分子材料は本質的に一般式(1)で表される構造を
有することが好ましい(請求項3)。プロトン伝導材料
を構成する高分子材料のすべてを概ね耐熱性の高い一般
式(1)で表される構造とすることで、プロトン伝導材
料の耐熱性をより向上することができる。
It is preferable that the polymer material constituting the proton conductive material has a partial structure represented by the general formula (1) (claim 2). The structure of the general formula (1) has the advantage that the heat resistance of the proton conductive material is improved by introducing it into the polymer material, and it can be easily introduced into the polymer material and can be manufactured at low cost. There are advantages. In particular, it is preferable that this polymer material essentially has a structure represented by the general formula (1) (claim 3). The heat resistance of the proton conductive material can be further improved by making all of the polymer materials forming the proton conductive material a structure represented by the general formula (1) having a high heat resistance.

【0008】[0008]

【化3】 [Chemical 3]

【0009】(式(1)中、n>0である。R1は独立
して炭素数1〜4のアルキル基である。R2は独立して
炭素数1〜4のアルキル基又は前記側鎖である。)な
お、式中“*”で表すのは、本部分構造が導入・結合さ
れる主鎖の部分を示しており、不特定の、元素、官能基
及び高分子鎖が結合することを表す。
(In the formula (1), n> 0. R1 is independently an alkyl group having 1 to 4 carbon atoms. R2 is independently an alkyl group having 1 to 4 carbon atoms or the side chain. The symbol "*" in the formula represents the portion of the main chain into which this partial structure is introduced / bonded, and shows that unspecified elements, functional groups and polymer chains are bonded. Represent

【0010】そして、前記高分子材料の前記側鎖が一般
式(2)で表される構造をもつことが好ましい(請求項
4)。一般式(2)の構造はプロトン伝導材料の耐熱性
をより向上できると共に、高分子材料中の側鎖に容易に
導入することができるので、廉価でプロトン伝導材料を
製造することができる。また、プロトン伝導材料のプロ
トン伝導性を向上できる。
The side chains of the polymer material preferably have a structure represented by the general formula (2) (claim 4). Since the structure of the general formula (2) can further improve the heat resistance of the proton conductive material and can be easily introduced into the side chain in the polymer material, the proton conductive material can be manufactured at low cost. Further, the proton conductivity of the proton conductive material can be improved.

【0011】[0011]

【化4】 [Chemical 4]

【0012】(式(2)中、m>0且つR3及びR4は
それぞれ独立して炭素数1〜4のアルキル基である。)
なお、式中“*”で表すのは、本側鎖部分構造が導入・
結合される主鎖及び/又は側鎖と結合する部分を示して
おり、不特定の、元素、官能基、高分子鎖が結合するこ
とを表す。
(In the formula (2), m> 0 and R3 and R4 are each independently an alkyl group having 1 to 4 carbon atoms.)
In addition, "*" in the formula indicates that this side chain partial structure is introduced.
The main chain and / or the side chain to be bonded is shown, which represents that an unspecified element, functional group, or polymer chain is bonded.

【0013】これらの高分子材料は線状高分子からなる
ことが好ましい(請求項5)。線状高分子とすること
で、本発明のプロトン伝導材料の柔軟性を向上でき、良
好な機械的特性を発現できる。
It is preferable that these polymer materials consist of linear polymers (claim 5). By using a linear polymer, the flexibility of the proton conductive material of the present invention can be improved and good mechanical properties can be exhibited.

【0014】[0014]

【発明の実施の形態】本発明のプロトン伝導材料は、主
鎖と、その主鎖にグラフト化された側鎖とを有する高分
子材料からなる。本明細書において、「主鎖」とは高分
子材料を構成する高分子化合物分子のうちで相対的に最
も長い鎖を意味し、「側鎖」は主鎖の途中で主鎖に結合
する鎖を意味する。ここで、本発明のプロトン伝導材料
を構成する高分子材料は、柔軟性等の機械的特性の観点
から線状分子からなることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The proton conducting material of the present invention comprises a polymer material having a main chain and side chains grafted to the main chain. In the present specification, the “main chain” means a relatively longest chain among polymer compound molecules constituting a polymer material, and the “side chain” is a chain bonded to the main chain in the middle of the main chain. Means Here, the polymer material constituting the proton conductive material of the present invention is preferably composed of linear molecules from the viewpoint of mechanical properties such as flexibility.

【0015】本発明のプロトン伝導材料は前述の高分子
材料のほかに、他の高分子化合物を混合することができ
る。混合できる高分子化合物としては特に限定しない
が、ナフィオン、ポリエチレンオキサイド、ポリビニル
アルコール、ポリアクリル酸、ポリスルホン酸、シリカ
ゲル、エンジニアリングプラスチック等が例示できる。
他の高分子化合物を混合する場合には、前述の本発明の
プロトン伝導材料の高分子材料をプロトン伝導材料全体
に対して、50%以上、より好ましくは60%以上含有
することが好ましい。また、本プロトン伝導材料は必要
に応じて、補強材等の添加材と共に用いることができ
る。
The proton conductive material of the present invention may be mixed with other polymer compounds in addition to the above polymer materials. The polymer compound that can be mixed is not particularly limited, but examples include Nafion, polyethylene oxide, polyvinyl alcohol, polyacrylic acid, polysulfonic acid, silica gel, and engineering plastics.
When another polymer compound is mixed, it is preferable that the above-described polymer material of the proton conductive material of the present invention is contained in 50% or more, more preferably 60% or more, based on the entire proton conductive material. Further, the present proton conductive material can be used together with an additive such as a reinforcing material, if necessary.

【0016】高分子材料を構成する主鎖はシロキサン構
造をもつ。シロキサン構造としては前述した一般式
(1)で表される構造が好ましい。主鎖は本質的にすべ
て一般式(1)で表される構造とすることが好ましい。
一般式(1)においてR1はメチル基又はエチル基が好
ましく、更にはメチル基とすることが好ましい。また、
R2は、前述した側鎖とするか、アルキル基としてのメ
チル基又はエチル基とすることが好ましく、アルキル基
とする場合にはメチル基とすることが好ましい。R2へ
の側鎖の導入割合については後述する。
The main chain constituting the polymer material has a siloxane structure. As the siloxane structure, the structure represented by the general formula (1) described above is preferable. It is preferable that essentially all of the main chain has a structure represented by the general formula (1).
In the general formula (1), R1 is preferably a methyl group or an ethyl group, and more preferably a methyl group. Also,
R2 is preferably the above-mentioned side chain or a methyl group or an ethyl group as an alkyl group, and when it is an alkyl group, it is preferably a methyl group. The ratio of side chains introduced into R2 will be described later.

【0017】高分子材料を構成する側鎖は強酸性官能基
を有すると共に、その化学構造中にケイ素元素をもつこ
と以外は特に限定されない。側鎖に含まれるケイ素原子
はどのように存在してもよい。つまり、ケイ素原子は側
鎖上に存在すればよく、側鎖上の存在位置は特に限定し
ない。好ましいケイ素原子の導入位置としては、主鎖と
の結合部と、側鎖に含まれる強酸性官能基との間の部分
にケイ素原子を導入することで、強酸性官能基が熱によ
り主鎖から脱落することが抑制できるので耐熱性が向上
する。また、ケイ素原子は側鎖の一部に含有すれば足り
るが、すべての側鎖に含まれることが耐熱性の観点から
は好ましい。
The side chain constituting the polymer material is not particularly limited except that it has a strongly acidic functional group and silicon element in its chemical structure. The silicon atom contained in the side chain may be present in any manner. That is, the silicon atom only needs to exist on the side chain, and the position on the side chain is not particularly limited. As a preferable introduction position of a silicon atom, by introducing a silicon atom into a portion between the bonding portion with the main chain and the strongly acidic functional group contained in the side chain, the strongly acidic functional group is thermally transferred from the main chain. Since it can be prevented from falling off, heat resistance is improved. Further, it is sufficient if the silicon atom is contained in a part of the side chain, but it is preferable from the viewpoint of heat resistance that it is contained in all the side chains.

【0018】強酸性官能基としては陽イオン交換能力を
もつものであれば特に限定しない。強酸性官能基として
は、スルホン酸官能基、リン酸、アクリル酸、シラノー
ル、カルビノール等が例示できる。強酸性官能基として
は特にスルホン酸官能基が好ましい。
The strongly acidic functional group is not particularly limited as long as it has a cation exchange ability. Examples of the strongly acidic functional group include a sulfonic acid functional group, phosphoric acid, acrylic acid, silanol, carbinol and the like. As the strongly acidic functional group, a sulfonic acid functional group is particularly preferable.

【0019】側鎖としては一般式(2)で表される構造
で表されるものが好ましい。側鎖についてもシロキサン
構造を採用することで耐熱性が向上すると共に、一般式
(2)で表される構造は高分子材料中に導入しやすく製
造が容易であるからである。ここで、一般式(2)にお
けるmの値としては2〜10で有ることが好ましい。
The side chain is preferably one having a structure represented by the general formula (2). By adopting a siloxane structure for the side chain as well, heat resistance is improved, and at the same time, the structure represented by the general formula (2) is easily introduced into the polymer material and is easily manufactured. Here, the value of m in the general formula (2) is preferably 2 to 10.

【0020】主鎖の構造のうち、シロキサン構造以外の
部分の構造は特に限定されない。また、側鎖の構造のう
ち、ケイ素原子を導入した部分以外の部分の構造につい
ても限定しない。例えば一般的な炭素−炭素結合を主体
とする構造を例示できる。具体的には、炭素−炭素結合
を主体とする構造としては、ポリオレフィン及びその水
素の一部乃至全部をフッ素で置換したフッ素置換オレフ
ィン、ポリスチレン、ポリアミド、ポリイミド等が例示
できる。主鎖上に存在する側鎖の数は特に限定しない
が、主鎖の炭素−炭素結合及び/又はケイ素−酸素結合
(主鎖の構造が一般式(1)で表される場合には、かっ
こ内の繰り返し単位)が2個〜10個程度に1つの割合
で側鎖をもつことが、プロトン伝導性の向上と、強度・
耐熱性・耐水性向上の両立の観点から好ましい。
The structure of the main chain structure other than the siloxane structure is not particularly limited. Further, the structure of the side chain structure other than the silicon atom-introduced part is not limited. For example, a general structure mainly composed of carbon-carbon bonds can be exemplified. Specifically, examples of the structure mainly composed of carbon-carbon bonds include polyolefin and fluorine-substituted olefins obtained by substituting part or all of hydrogens with fluorine, polystyrene, polyamide, polyimide and the like. The number of side chains present on the main chain is not particularly limited, but carbon-carbon bonds and / or silicon-oxygen bonds of the main chain (when the structure of the main chain is represented by the general formula (1), the parentheses The number of repeating units in the above) has a side chain at a ratio of about 2 to 10 so that the proton conductivity is improved and the strength
It is preferable from the viewpoint of improving both heat resistance and water resistance.

【0021】本発明のプロトン伝導材料を製造する方法
は特に限定されない。例えば主鎖に相当する分子鎖に、
側鎖に相当する分子鎖をグラフト化することにより製造
できる。主鎖に側鎖をグラフト化する方法としては、例
えば主鎖上に高エネルギー線照射等の何らかの方法でラ
ジカル等の反応起点を生成し、その反応起点を基にして
側鎖を構成するモノマーを重合成長させたり、主鎖上に
反応性の官能基を導入して、その官能基に側鎖を結合さ
せることで達成できる。また、側鎖の端部にビニル基等
の重合性の官能基を付与し、主鎖を構成するモノマーと
共に重合させて、主鎖を合成すると同時に側鎖を導入す
ることもできる。
The method for producing the proton conductive material of the present invention is not particularly limited. For example, in the molecular chain corresponding to the main chain,
It can be produced by grafting a molecular chain corresponding to a side chain. As a method of grafting a side chain on the main chain, for example, a reaction starting point such as a radical is generated on the main chain by some method such as irradiation with high energy rays, and a monomer forming a side chain is formed based on the reaction starting point. This can be achieved by polymerizing growth or by introducing a reactive functional group on the main chain and binding a side chain to the functional group. It is also possible to add a polymerizable functional group such as a vinyl group to the end of the side chain and polymerize it with a monomer constituting the main chain to synthesize the main chain and at the same time introduce the side chain.

【0022】一般式(1)で表されるシロキサン構造
は、対応するジアルキルジクロロシランを適正な条件で
重合させることで得られる。また、一般式(2)のよう
に、側鎖の末端部にスルホン化したフェニル基を導入す
るにはフェニル基が結合されたシラン化合物を用いてフ
ェニル基をジアルキルシロキサン構造に導入した後に発
煙硫酸等によりスルホン化することで得られる。
The siloxane structure represented by the general formula (1) can be obtained by polymerizing a corresponding dialkyldichlorosilane under appropriate conditions. Further, as shown in the general formula (2), in order to introduce a sulfonated phenyl group at the end of a side chain, a silane compound having a phenyl group bonded is used to introduce the phenyl group into a dialkylsiloxane structure, and then fuming sulfuric acid. It can be obtained by sulfonation with the like.

【0023】[0023]

【実施例】(試験例1) (a)室温、窒素雰囲気下にて、ポリHメチルシロキサ
ン(分子量2000)と、末端ビニルポリジメチルシロ
キサン(分子量2000)とを化学量論比にてH:ビニ
ル=100:1で混合し、充分に攪拌した。その後、ビ
ニル基に対して白金換算100ppmの白金錯体(白金
−シクロビニルメチルシロキサン錯体)を添加して、ホ
モジナイザーで充分に攪拌して溶液とした。そして、炉
にて溶液を150℃24時間加熱処理を行い、徐冷して
室温に戻した。
(Test Example 1) (a) At room temperature and in a nitrogen atmosphere, poly H-methyl siloxane (molecular weight 2000) and terminal vinyl polydimethyl siloxane (molecular weight 2000) were used in a stoichiometric ratio of H: vinyl = 100: 1 and mixed well. Then, a platinum complex (platinum-cyclovinylmethylsiloxane complex) of 100 ppm in terms of platinum was added to the vinyl group, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0024】(b)室温、窒素雰囲気下にて、ビニルテ
トラメチルジシロキサンと、スルホン化トリフェニルシ
ラノール−メチレンクロライド30%溶液とを化学量論
比H:OH=1:1で混合し、充分に攪拌した。その
後、Hに対してスズ換算で150ppmのスズ触媒(ビ
ス(2−エチルへキシル)スズ)を添加してホモジナイ
ザーで充分に攪拌して溶液とした。そして、炉にて溶液
を150℃24時間加熱処理を行い、徐冷して室温に戻
した。
(B) At room temperature under a nitrogen atmosphere, vinyl tetramethyldisiloxane and a 30% sulfonated triphenylsilanol-methylene chloride solution were mixed at a stoichiometric ratio H: OH = 1: 1 and mixed sufficiently. It was stirred. Then, 150 ppm of tin catalyst (bis (2-ethylhexyl) tin) in terms of tin was added to H, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0025】(c)(a)で調製した溶液のH量と
(b)で調製した溶液のビニル基の量とが化学量論比で
H:ビニル=1:1.5となるように混合し、ビニル基
に対して白金換算100ppmの白金錯体(白金−シク
ロビニルメチルシロキサン錯体)を添加した。ホモジナ
イザーで充分に攪拌して溶液とした。これをPTFE製
の平板上にキャスティングして製膜した後に、炉にて1
50℃24時間加熱処理を行い試験例1の試験試料であ
る薄膜を得た。この薄膜は主鎖、側鎖共にジメチルシロ
キサン構造を有する。
(C) The amount of H in the solution prepared in (a) and the amount of vinyl groups in the solution prepared in (b) are mixed in a stoichiometric ratio of H: vinyl = 1: 1.5. Then, a platinum complex (platinum-cyclovinylmethylsiloxane complex) of 100 ppm in terms of platinum was added to the vinyl group. The solution was thoroughly stirred with a homogenizer. After casting this on a flat plate made of PTFE to form a film, 1 in a furnace
Heat treatment was performed at 50 ° C. for 24 hours to obtain a thin film as a test sample of Test Example 1. This thin film has a dimethylsiloxane structure in both the main chain and side chains.

【0026】(試験例2)室温、窒素雰囲気下にて、ビ
ニルテトラメチルジシロキサンと、トリフェニルシラノ
ール−メチレンクロライド30%溶液とを化学量論比
H:OH=1:1で混合し充分に撹拌した。その後、H
に対してスズ換算で150ppmのスズ触媒(ビス(2
−エチルへキシル)スズ)を添加してホモジナイザーで
充分に攪拌して溶液とした。そして、炉にて溶液を15
0℃24時間加熱処理を行い、徐冷して室温に戻した。
これにスチレンモノマーを加えて、よく混合し、さらに
AIBNを加え70℃12時間加熱して薄膜を得た。こ
れを60%発煙硫酸に24時間浸漬してフェニル基のス
ルホン化を行った後に、純水、エタノールで順に洗浄・
乾燥して試験例2の試験試料である薄膜を得た。この薄
膜は主鎖に炭化水素構造、側鎖にジメチルシロキサン構
造を有する。
Test Example 2 Vinyl tetramethyldisiloxane and a 30% triphenylsilanol-methylene chloride solution were mixed at a stoichiometric ratio H: OH = 1: 1 at room temperature under a nitrogen atmosphere and thoroughly mixed. It was stirred. Then H
On the other hand, 150 ppm of tin catalyst (bis (2
-Ethylhexyl) tin) was added, and the mixture was thoroughly stirred with a homogenizer to give a solution. Then, in a furnace,
The mixture was heat-treated at 0 ° C. for 24 hours, gradually cooled and returned to room temperature.
A styrene monomer was added to this and mixed well, AIBN was further added, and the mixture was heated at 70 ° C. for 12 hours to obtain a thin film. This was immersed in 60% fuming sulfuric acid for 24 hours to sulfonate the phenyl group, and then washed with pure water and ethanol in that order.
A thin film as a test sample of Test Example 2 was obtained by drying. This thin film has a hydrocarbon structure in the main chain and a dimethylsiloxane structure in the side chain.

【0027】(試験例3)室温、窒素雰囲気下にて、ポ
リHメチルシロキサン(分子量2000)と、末端ビニ
ルポリジメチルシロキサン(分子量2000)とを化学
量論比にてH:ビニル=100:1で混合し、充分に攪
拌した。その後、ビニル基に対して白金換算100pp
mの白金錯体(白金−シクロビニルメチルシロキサン錯
体)を添加して、ホモジナイザーで充分に攪拌して溶液
とした。そして、炉にて溶液を150℃24時間加熱処
理を行い、徐冷して室温に戻した。さらに、窒素雰囲気
下でアリルベンゼン−メチレンクロライド30%溶液を
加えた(化学量論比H:ビニル=1:1.5)。充分に
撹拌した後に、白金錯体(白金−シクロビニルメチルシ
ロキサン錯体)をHに対して100ppm添加した。こ
れをPTFE製の平板上にキャスティングして製膜した
後に、炉にて100℃12時間加熱処理を行った。その
後、60%発煙硫酸に24時間、浸漬してフェニル基の
スルホン化を行った。そして純水、エタノールで洗浄し
た後に乾燥して、試験例3の試験試料である薄膜を得
た。この薄膜は主鎖にジメチルシロキサン構造、側鎖に
炭化水素構造(ケイ素原子を側鎖に有しない)を有す
る。
(Test Example 3) At room temperature and under a nitrogen atmosphere, poly H-methyl siloxane (molecular weight 2000) and terminal vinyl polydimethyl siloxane (molecular weight 2000) in stoichiometric ratio H: vinyl = 100: 1. And mixed well. After that, 100pp in terms of platinum for vinyl groups
m platinum complex (platinum-cyclovinylmethylsiloxane complex) was added, and the mixture was thoroughly stirred with a homogenizer to give a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature. Further, a 30% allylbenzene-methylene chloride solution was added under a nitrogen atmosphere (stoichiometric ratio H: vinyl = 1: 1.5). After sufficiently stirring, 100 ppm of platinum complex (platinum-cyclovinylmethylsiloxane complex) was added to H. This was cast on a PTFE flat plate to form a film, and then heat-treated at 100 ° C. for 12 hours in a furnace. Then, it was immersed in 60% fuming sulfuric acid for 24 hours to sulfonate the phenyl groups. Then, it was washed with pure water and ethanol and then dried to obtain a thin film as a test sample of Test Example 3. This thin film has a dimethylsiloxane structure in the main chain and a hydrocarbon structure in the side chain (without a silicon atom in the side chain).

【0028】(試験例4)市販のプロトン伝導材料製薄
膜(ナフィオン)を試験例4の試験試料とした (試験例5)室温、窒素雰囲気下にて、ポリHメチルシ
ロキサン(分子量2000)と、末端ビニルポリジメチ
ルシロキサン(分子量2000)とを化学量論比にて
H:ビニル=100:1で混合し、充分に攪拌した。そ
の後、ビニル基に対して白金換算100ppmの白金錯
体(白金−シクロビニルメチルシロキサン錯体)を添加
して、ホモジナイザーで充分に攪拌して溶液とした。そ
して、炉にて溶液を150℃24時間加熱処理を行い、
徐冷して室温に戻した。次に調製した溶液に室温、窒素
雰囲気下でスルホン化トリフェニルビニルシラン−メチ
レンクロライド30%溶液を加えた(混合比はH:ビニ
ル=1:1.5)。充分に撹拌した後に、Hに対して白
金換算100ppmの白金錯体(白金−シクロビニルメ
チルシロキサン錯体)を添加して、ホモジナイザーで充
分に攪拌して溶液とした。これを膜状にキャストして、
炉にて150℃2時間加熱乾燥処理を行い、薄膜を得
た。
(Test Example 4) A commercially available thin film (Nafion) made of a proton conductive material was used as a test sample of Test Example 4 (Test Example 5) at room temperature under a nitrogen atmosphere, and poly (H-methylsiloxane) (molecular weight 2000) was added. Vinyl-terminated polydimethylsiloxane (molecular weight 2000) was mixed at a stoichiometric ratio of H: vinyl = 100: 1 and stirred sufficiently. Then, a platinum complex (platinum-cyclovinylmethylsiloxane complex) of 100 ppm in terms of platinum was added to the vinyl group, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. Then, the solution is heated in a furnace at 150 ° C. for 24 hours,
It was gradually cooled to room temperature. Next, a 30% sulfonated triphenylvinylsilane-methylene chloride solution was added to the prepared solution at room temperature under a nitrogen atmosphere (mixing ratio H: vinyl = 1: 1.5). After sufficiently stirring, 100 ppm of platinum-based platinum complex (platinum-cyclovinylmethylsiloxane complex) was added to H and sufficiently stirred with a homogenizer to prepare a solution. Cast this into a film,
A thin film was obtained by heating and drying at 150 ° C. for 2 hours in a furnace.

【0029】(試験例6) 1.室温、窒素雰囲気下にて、ポリHメチルシロキサン
(分子量2000)と、末端ビニルポリジメチルシロキ
サン(分子量2000)とを化学量論比にてH:ビニル
=100:1で混合し、充分に攪拌した。その後、ビニ
ル基に対して白金換算100ppmの白金錯体(白金−
シクロビニルメチルシロキサン錯体)を添加して、ホモ
ジナイザーで充分に攪拌して溶液とした。そして、炉に
て溶液を150℃24時間加熱処理を行い、徐冷して室
温に戻した。
(Test Example 6) 1. At room temperature under a nitrogen atmosphere, poly-H-methyl siloxane (molecular weight 2000) and terminal vinyl polydimethyl siloxane (molecular weight 2000) were mixed at a stoichiometric ratio of H: vinyl = 100: 1 and stirred sufficiently. . Then, a platinum complex of 100 ppm in terms of platinum based on the vinyl group (platinum-
Cyclovinylmethylsiloxane complex) was added, and the mixture was thoroughly stirred with a homogenizer to give a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0030】2.次に、室温、窒素雰囲気下でビニルジ
メチルシランとスルホン化トリフェニルシラノール−メ
チレンクロライド30%溶液とを化学量論比H:OH=
1:1で混合し充分に撹拌した後に、Hに対してスズ換
算で150ppmのスズ触媒(ビス(2−エチルへキシ
ル)スズ)を添加しホモジナイザーで充分に撹拌して溶
液とした。その後、炉にて溶液を150℃24時間加熱
処理を行い、徐冷して室温に戻した。
2. Next, at room temperature under a nitrogen atmosphere, vinyl dimethyl silane and a sulfonated triphenylsilanol-methylene chloride 30% solution were added to a stoichiometric ratio H: OH =.
After mixing 1: 1 and sufficiently stirring, 150 ppm of tin catalyst (bis (2-ethylhexyl) tin) in terms of tin with respect to H was added and sufficiently stirred with a homogenizer to obtain a solution. Then, the solution was heat-treated in a furnace at 150 ° C. for 24 hours, gradually cooled and returned to room temperature.

【0031】3.1.で調製した溶液のH量と2.で調
製した溶液のビニル基との化学量論比がH:ビニル=
1:1.5となるように混合し、ビニル基に対して白金
換算100ppmの白金錯体(白金−シクロビニルメチ
ルシロキサン錯体)を添加して、ホモジナイザーで充分
に攪拌して溶液とした。これを膜状にキャストして、炉
にて150℃2時間加熱乾燥処理を行い、薄膜を得た。
なお、試験例1〜6における説明中で「ppm」とある
のは、対応するH又はビニル基のモル数に対する添加す
る化合物中の白金又はスズのモル数の大きさをあらわ
す。
3.1. H amount of the solution prepared in 2. The stoichiometric ratio with the vinyl group of the solution prepared in H: vinyl =
The mixture was mixed at a ratio of 1: 1.5, 100 ppm of platinum-based platinum complex (platinum-cyclovinylmethylsiloxane complex) was added to the vinyl group, and the mixture was sufficiently stirred with a homogenizer to obtain a solution. This was cast into a film, and heat-dried at 150 ° C. for 2 hours in a furnace to obtain a thin film.
In the description of Test Examples 1 to 6, “ppm” represents the number of moles of platinum or tin in the compound to be added with respect to the number of moles of the corresponding H or vinyl group.

【0032】(試験) (プロトン伝導性の測定)各試験試料1〜4について、
それぞれプロトン伝導度を測定した。プロトン伝導度の
測定は雰囲気の相対湿度を90%とし、温度を80℃、
100℃、120℃の3条件に変動して交流インピーダ
ンス法にて測定を行った。各試験試料はそれぞれの雰囲
気下で2時間保持して薄膜が含有する水分量が平衡状態
となってからプロトン伝導性を測定した。
(Test) (Measurement of Proton Conductivity) For each test sample 1 to 4,
The proton conductivity of each was measured. Proton conductivity was measured by setting the relative humidity of the atmosphere to 90%, the temperature to 80 ° C,
The measurement was performed by the AC impedance method while changing the conditions to 100 ° C. and 120 ° C. Each test sample was kept in each atmosphere for 2 hours, and the proton conductivity was measured after the amount of water contained in the thin film reached an equilibrium state.

【0033】(熱分解特性の測定)各試験試料1〜3に
ついて、熱分解特性を測定した。熱分解特性の測定は熱
重量測定(TG)にて行い、測定温度範囲は0℃〜40
0℃、昇温速度が10℃/分の条件下で行った。
(Measurement of Thermal Decomposition Property) The thermal decomposition property of each of the test samples 1 to 3 was measured. The thermal decomposition characteristics are measured by thermogravimetric measurement (TG), and the measurement temperature range is 0 ° C to 40 ° C.
It was carried out under the conditions of 0 ° C. and a heating rate of 10 ° C./min.

【0034】(結果)各試験例の試験試料のプロトン伝
導性を表1に、熱分解特性測定の結果を図1にそれぞれ
示す。
(Results) The proton conductivity of the test sample of each test example is shown in Table 1, and the result of the thermal decomposition property measurement is shown in FIG.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、雰囲気温度80
℃〜100℃において、試験例1〜3の試験試料は代表
的な従来のプロトン伝導材料である試験例4のナフィオ
ンと遜色のないプロトン伝導性を示している。特に側鎖
にジメチルシロキサン構造を導入した試験例1及び2の
試験試料では著しく高いプロトン伝導性を示した。そし
て、雰囲気温度が120℃ではナフィオン(試験試料
4)のプロトン伝導性が低下するのに対して、試験例
1、3の試験試料は高いプロトン伝導性を維持すること
が明らかとなった。
As is apparent from Table 1, the ambient temperature is 80
The test samples of Test Examples 1 to 3 show a proton conductivity comparable to that of Nafion of Test Example 4, which is a typical conventional proton conducting material, at 100 to 100 ° C. In particular, the test samples of Test Examples 1 and 2 in which a dimethylsiloxane structure was introduced into the side chain exhibited remarkably high proton conductivity. When the ambient temperature was 120 ° C., the proton conductivity of Nafion (test sample 4) decreased, whereas it was revealed that the test samples of Test Examples 1 and 3 maintain high proton conductivity.

【0037】また、図1から明らかなように、試験例1
の試験試料(主鎖、側鎖共にシロキサン構造を有する)
は雰囲気温度が150℃であっても質量減少が1%以下
とほとんど分解しないことが明らかとなった。
Further, as is apparent from FIG. 1, Test Example 1
Test sample (both main chain and side chain have siloxane structure)
It has been revealed that even if the ambient temperature is 150 ° C., the mass reduction is 1% or less, and the decomposition is almost zero.

【0038】それに対して、試験例2の試験試料(主鎖
が炭化水素構造、側鎖がシロキサン構造を有する)は1
00℃以下の60℃で分解が始まり、雰囲気温度が15
0℃を超える当たりで既に40%近くの質量減少が認め
られた。試験例3の試験試料(主鎖がシロキサン構造、
側鎖が炭化水素構造を有する)は雰囲気温度が150℃
での質量減少は10%程度であるものの、100℃以下
の非常に低い温度から高い質量減少(数%〜10%程
度)が認められた。
On the other hand, the test sample of Test Example 2 (having a hydrocarbon structure in the main chain and a siloxane structure in the side chain) was 1
Decomposition starts at 60 ° C below 00 ° C and the ambient temperature is 15
Almost 40% of the mass loss was already observed per 0 ° C. Test sample of Test Example 3 (main chain is siloxane structure,
The side chain has a hydrocarbon structure) has an ambient temperature of 150 ° C.
Although the mass loss at 10% was about 10%, a high mass loss (about several% to 10%) was observed from a very low temperature of 100 ° C. or lower.

【0039】つまり、主鎖及び側鎖のいずれかについ
て、化学構造中にケイ素原子を欠くことにより、熱分解
特性が低くなることが明らかとなった。
In other words, it was revealed that the thermal decomposition characteristics of the main chain and the side chains were deteriorated by lacking a silicon atom in the chemical structure.

【0040】(クリープ特性の測定)試験試料1及び4
についてクリープ特性を測定した。クリープ特性の測定
用の試料は試験試料を1cm角に切り出し、試料1につ
いては200μm厚みのものを20枚、試料4について
はNafion117を20枚積層したものを用いた。
クリープ試験の条件は、雰囲気温度90℃に昇温した後
に、面圧を2.5MPa(25kgf/cm2)として
加え、200時間行った際のクリープ歪みを測定した。
クリープ歪みは1次クリープ(面圧を加えた後の2〜1
0時間程度で進行する初期変動)を除いた2次クリープ
歪み(面圧を加えた後の10〜200時間程度で進行す
る変動)を測定した。2次クリープ歪みで評価する理由
としては、1次クリープは材料固有の弾性率に起因する
ものであり、材料自体の変質、破壊によるものではない
こと及び3次クリープが見られないからである。そこで
2次クリープを材料の本質的なクリープ歪みとみなし
た。クリープ歪みは、{(測定時の試料長さ)−(面圧
付与前の試料長さ)}/(面圧付与前の試料長さ)/
(面圧付与時間)×100(%)で算出した。
(Measurement of Creep Property) Test Samples 1 and 4
The creep characteristics were measured. As the sample for measuring the creep characteristics, a test sample was cut into a 1 cm square, 20 samples having a thickness of 200 μm were laminated for sample 1, and 20 samples of Nafion 117 were laminated for sample 4.
The conditions of the creep test were as follows: after the temperature was raised to 90 ° C., the surface pressure was applied at 2.5 MPa (25 kgf / cm 2 ), and the creep strain after 200 hours was measured.
Creep strain is the primary creep (2-1 after applying surface pressure)
The secondary creep strain (variation that progresses in about 10 to 200 hours after applying the surface pressure) excluding the initial variation that progresses in approximately 0 hours) was measured. The reason for evaluating the secondary creep strain is that the primary creep is due to the elastic modulus inherent to the material, not due to alteration or breakage of the material itself, and no tertiary creep is observed. Therefore, the secondary creep was regarded as the essential creep strain of the material. The creep strain is {(sample length at the time of measurement)-(sample length before applying surface pressure)} / (sample length before applying surface pressure) /
It was calculated by (surface pressure application time) × 100 (%).

【0041】結果を図2及び3に示す。図より明らかな
ように、本発明のプロトン伝導材料である試験試料1の
クリープ歪みは、従来の試験試料4(ナフィオン)より
も1次クリープ歪み、2次クリープ歪み共に低い値を示
すことが明らかとなった。2次クリープ歪みは試験試料
1が0.025%であり、試験試料4が0.102%と
本発明のプロトン伝導材料である試験例1は試験試料4
(ナフィオン)と比較して1/4以下の低い値を示し
た。2次クリープ歪みは、{(面圧付与後、200時間
後の試料長さ)−(10時間後の試料長さ)}/(10
時間後の試料長さ)/(面圧付与時間:190時間)×
100(%)で算出した。
The results are shown in FIGS. 2 and 3. As is apparent from the figure, the creep strain of the test sample 1 which is the proton conducting material of the present invention is lower than that of the conventional test sample 4 (Nafion) in both the primary creep strain and the secondary creep strain. Became. The secondary creep strain was 0.025% in the test sample 1 and 0.102% in the test sample 4, and the test sample 4 is the test sample 4 which is the proton conductive material of the present invention.
The value was 1/4 or less lower than that of (Nafion). The secondary creep strain is {(sample length after 200 hours after application of surface pressure)-(sample length after 10 hours)} / (10
Sample length after time) / (surface pressure application time: 190 hours) ×
It was calculated at 100 (%).

【0042】(側鎖のジメチルシロキサン構造のシロキ
サン単位の数とEW値との関係について)試験例1、5
及び6について、EW値を測定した。試験例1、5及び
6の試験試料は下式に示す構造において、それぞれm=
0(試験例5)、m=1(試験例6)及びm=2(試験
例1)である。
(Relationship Between Number of Siloxane Units of Side Chain Dimethylsiloxane Structure and EW Value) Test Examples 1 and 5
The EW value was measured for Sample Nos. 6 and 6. The test samples of Test Examples 1, 5 and 6 have m =
0 (test example 5), m = 1 (test example 6) and m = 2 (test example 1).

【0043】[0043]

【化5】 [Chemical 5]

【0044】なお、式中“*”で表されるのは延長され
た主鎖が結合されることを示す。
The symbol "*" in the formula indicates that the extended main chain is bound.

【0045】EW値の測定は塩化ナトリウム滴定法にて
行った。具体的には塩化ナトリウムを加え、発生した塩
酸の量からpH値を測定し、活性なスルホン酸基を定量
するものである。(*−SO3H+NaCl→*−SO3
Na+HCl) その結果、EW値は、m=0の試験試料(試験例5)で
は850、m=1の試験試料(試験例6)では800、
m=2の試験試料(試験例1)では620と側鎖の長さ
が短いほど高い値を示し、プロトン伝導性に関与するス
ルホン酸基の量が相対的に多いことが明らかとなった。
詳しくは示さないが、mの値が大きくなるにつれて、酸
素透過係数の測定値が大きくなることが明らかとなっ
た。
The EW value was measured by the sodium chloride titration method. Specifically, sodium chloride is added, the pH value is measured from the amount of hydrochloric acid generated, and the active sulfonic acid group is quantified. (* -SO 3 H + NaCl → * -SO 3
As a result, the EW value was 850 for the test sample with m = 0 (Test Example 5), 800 for the test sample with m = 1 (Test Example 6),
In the test sample of m = 2 (Test Example 1), 620 showed a higher value as the length of the side chain was shorter, and it was revealed that the amount of the sulfonic acid group involved in proton conductivity was relatively large.
Although not shown in detail, it became clear that the measured value of the oxygen permeation coefficient increases as the value of m increases.

【0046】[0046]

【発明の効果】本発明のプロトン伝導材料は、主鎖にシ
ロキサン構造を有し、側鎖にケイ素原子を有すること
で、高いプロトン伝導性を保ちながら、100℃以上の
使用条件にも耐えうる高い耐熱性(熱分解特性、クリー
プ歪み)を発揮できる。したがって、燃料電池の電極触
媒層等のように、高い運転温度が要求される用途に好適
に適用できる。
The proton conductive material of the present invention has a siloxane structure in the main chain and has a silicon atom in the side chain, so that it can withstand use conditions of 100 ° C. or higher while maintaining high proton conductivity. It can exhibit high heat resistance (thermal decomposition characteristics, creep strain). Therefore, it can be suitably applied to applications where a high operating temperature is required, such as an electrode catalyst layer of a fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において熱分解特性を測定したTGの実
測値を示したグラフである。
FIG. 1 is a graph showing an actual measurement value of TG whose thermal decomposition characteristics were measured in Examples.

【図2】実施例においてクリープ歪みの経時的変化を示
したグラフである。
FIG. 2 is a graph showing changes over time in creep strain in Examples.

【図3】実施例においてクリープ歪みの経時的変化を示
したグラフの一部拡大図である。
FIG. 3 is a partially enlarged view of a graph showing changes over time in creep strain in Examples.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J035 BA02 CA02U CA022 CA14U CA142 CA25M CA26M CA26N CA261 FB01 HA01 HB05 LA05 LB20 5G301 CA30 CD01 5H018 AA06 AS01 EE17 5H026 AA06 CX05 EE18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J035 BA02 CA02U CA022 CA14U                       CA142 CA25M CA26M CA26N                       CA261 FB01 HA01 HB05                       LA05 LB20                 5G301 CA30 CD01                 5H018 AA06 AS01 EE17                 5H026 AA06 CX05 EE18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シロキサン構造をもつ主鎖と、該主鎖に
グラフト化され、ケイ素原子と強酸性官能基とをもつ側
鎖と、を有する高分子材料からなることを特徴とするプ
ロトン伝導材料。
1. A proton conductive material comprising a polymer material having a main chain having a siloxane structure and a side chain grafted to the main chain and having a silicon atom and a strongly acidic functional group. .
【請求項2】 前記高分子材料は一般式(1)で表され
る部分構造を有する請求項1に記載のプロトン伝導材
料。 【化1】 (式(1)中、n>0である。R1は独立して炭素数1
〜4のアルキル基である。R2は独立して炭素数1〜4
のアルキル基又は前記側鎖である。)
2. The proton conductive material according to claim 1, wherein the polymer material has a partial structure represented by the general formula (1). [Chemical 1] (In the formula (1), n> 0. R1 independently has 1 carbon atom.
~ 4 alkyl groups. R2 independently has 1 to 4 carbon atoms
Is an alkyl group or a side chain thereof. )
【請求項3】 前記高分子材料は本質的に前記一般式
(1)で表される構造を有する請求項1又は2に記載の
プロトン伝導材料。
3. The proton conductive material according to claim 1, wherein the polymer material essentially has a structure represented by the general formula (1).
【請求項4】 前記側鎖が一般式(2)で表される構造
をもつ請求項1〜3のいずれかに記載のプロトン伝導材
料。 【化2】 (式(2)中、m≧0且つR3及びR4はそれぞれ独立
して炭素数1〜4のアルキル基である。)
4. The proton conducting material according to claim 1, wherein the side chain has a structure represented by the general formula (2). [Chemical 2] (In the formula (2), m ≧ 0 and R3 and R4 are each independently an alkyl group having 1 to 4 carbon atoms.)
【請求項5】 前記高分子材料は線状高分子からなる請
求項1〜4のいずれかに記載のプロトン伝導材料。
5. The proton conducting material according to claim 1, wherein the polymer material is a linear polymer.
JP2002143093A 2002-05-17 2002-05-17 Proton conductive material Pending JP2003331645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143093A JP2003331645A (en) 2002-05-17 2002-05-17 Proton conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143093A JP2003331645A (en) 2002-05-17 2002-05-17 Proton conductive material

Publications (1)

Publication Number Publication Date
JP2003331645A true JP2003331645A (en) 2003-11-21

Family

ID=29703198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143093A Pending JP2003331645A (en) 2002-05-17 2002-05-17 Proton conductive material

Country Status (1)

Country Link
JP (1) JP2003331645A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material
JP2005190813A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Electrolyte material for fuel cell electrode
JP2005310454A (en) * 2004-04-20 2005-11-04 Toyota Central Res & Dev Lab Inc Electrolyte and electrolyte membrane
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound and production method thereof, polymer electrolyte membrane, membrane electrode assembly, and fuel cell
JP2007305315A (en) * 2006-05-08 2007-11-22 Fujitsu Ltd Catalyst electrode, membrane electrode assembly, and polymer electrolyte fuel cell
US20140080039A1 (en) * 2012-09-14 2014-03-20 University Of Ontario Institute Of Technology Sulfonated silica-based electrode materials useful in fuel cells

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920325A (en) * 1982-07-13 1984-02-02 デグツサ・アクチエンゲゼルシヤフト Sulfonate group-containing organopolysiloxane, manufacture and cation exchanger therefrom
JPS62235330A (en) * 1986-04-03 1987-10-15 Nippon Telegr & Teleph Corp <Ntt> Polysiloxane compound
JPS63136409A (en) * 1986-11-27 1988-06-08 日立マクセル株式会社 Lithium ion conducting polymer electrolyte
JPS63243088A (en) * 1987-03-14 1988-10-07 ダウ・コーニング・リミテッド Manufacture of sulfonated organosilicone compound
JPH02132124A (en) * 1988-07-04 1990-05-21 Mitsui Petrochem Ind Ltd Fluorine-containing sulfonated polyphenylsiloxane, its uses, manufacturing methods and usage methods
JPH02215836A (en) * 1989-02-17 1990-08-28 Fuji Photo Film Co Ltd Polyelectrolyte
JPH0625420A (en) * 1992-05-15 1994-02-01 Tonen Chem Corp Sulfonated silicone
JPH0625369A (en) * 1992-05-15 1994-02-01 Nippon Paint Co Ltd Aqueous silicone-modified resin
JPH11502543A (en) * 1995-01-13 1999-03-02 エスアールアイ インターナショナル Single ion conductive solid polymer electrolyte
JPH11209472A (en) * 1998-01-22 1999-08-03 Mitsui Chem Inc Preparation of sulfonic group-containing organic macromolecular siloxane
JP2001011219A (en) * 1999-06-28 2001-01-16 Toyota Central Res & Dev Lab Inc Polymer electrolyte composite membrane
JP2002097272A (en) * 2000-09-22 2002-04-02 Tsutomu Minami Polysiloxane, method for producing the same, and proton conductive material
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive material
JP2002298913A (en) * 2001-03-29 2002-10-11 Fuji Photo Film Co Ltd Polysiloxane salt, electrolyte composition, electrochemical battery, nonaqueous secondary battery and photoelectrochemical battery
JP2003137527A (en) * 2001-10-26 2003-05-14 Tsutomu Minami Phosphosilicate gel, proton conductive material and method for producing the same
JP2003331644A (en) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd Proton-conductive membrane, its manufacturing method and fuel cell using same
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920325A (en) * 1982-07-13 1984-02-02 デグツサ・アクチエンゲゼルシヤフト Sulfonate group-containing organopolysiloxane, manufacture and cation exchanger therefrom
JPS62235330A (en) * 1986-04-03 1987-10-15 Nippon Telegr & Teleph Corp <Ntt> Polysiloxane compound
JPS63136409A (en) * 1986-11-27 1988-06-08 日立マクセル株式会社 Lithium ion conducting polymer electrolyte
JPS63243088A (en) * 1987-03-14 1988-10-07 ダウ・コーニング・リミテッド Manufacture of sulfonated organosilicone compound
JPH02132124A (en) * 1988-07-04 1990-05-21 Mitsui Petrochem Ind Ltd Fluorine-containing sulfonated polyphenylsiloxane, its uses, manufacturing methods and usage methods
JPH02215836A (en) * 1989-02-17 1990-08-28 Fuji Photo Film Co Ltd Polyelectrolyte
JPH0625420A (en) * 1992-05-15 1994-02-01 Tonen Chem Corp Sulfonated silicone
JPH0625369A (en) * 1992-05-15 1994-02-01 Nippon Paint Co Ltd Aqueous silicone-modified resin
JPH11502543A (en) * 1995-01-13 1999-03-02 エスアールアイ インターナショナル Single ion conductive solid polymer electrolyte
JPH11209472A (en) * 1998-01-22 1999-08-03 Mitsui Chem Inc Preparation of sulfonic group-containing organic macromolecular siloxane
JP2001011219A (en) * 1999-06-28 2001-01-16 Toyota Central Res & Dev Lab Inc Polymer electrolyte composite membrane
JP2002097272A (en) * 2000-09-22 2002-04-02 Tsutomu Minami Polysiloxane, method for producing the same, and proton conductive material
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive material
JP2002298913A (en) * 2001-03-29 2002-10-11 Fuji Photo Film Co Ltd Polysiloxane salt, electrolyte composition, electrochemical battery, nonaqueous secondary battery and photoelectrochemical battery
JP2003137527A (en) * 2001-10-26 2003-05-14 Tsutomu Minami Phosphosilicate gel, proton conductive material and method for producing the same
JP2003331644A (en) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd Proton-conductive membrane, its manufacturing method and fuel cell using same
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material
JP2005190813A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Electrolyte material for fuel cell electrode
JP2005310454A (en) * 2004-04-20 2005-11-04 Toyota Central Res & Dev Lab Inc Electrolyte and electrolyte membrane
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound and production method thereof, polymer electrolyte membrane, membrane electrode assembly, and fuel cell
US7833665B2 (en) 2006-02-21 2010-11-16 Samsung Sdi Co., Ltd. Polysiloxane compound containing sulfonic acid groups, method of preparing the same and fuel cell including the same
JP2007305315A (en) * 2006-05-08 2007-11-22 Fujitsu Ltd Catalyst electrode, membrane electrode assembly, and polymer electrolyte fuel cell
US20140080039A1 (en) * 2012-09-14 2014-03-20 University Of Ontario Institute Of Technology Sulfonated silica-based electrode materials useful in fuel cells

Similar Documents

Publication Publication Date Title
Ahmad et al. Polyimide− ceramic hybrid composites by the sol− gel route
JP5475941B2 (en) Hybrid inorganic organic proton electrolyte membrane (PEM) grafted with phosphonic acid
JP4430618B2 (en) Proton conductive membrane, method for producing the same, and fuel cell using the same
JP4990624B2 (en) Hybrid inorganic-organic polymer electrolyte membrane (PEM) based on alkyloxysilane grafted thermoplastic polymer
US8501369B2 (en) Composite for fuel cell membrane based on organomodified inorganic particles and method for preparing same
CN102575014A (en) Novel sulfonic acid group-containing segmented block copolymer and use thereof
JP4958712B2 (en) POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND FUEL CELL INCLUDING THE POLYMER ELECTROLYTE MEMBRANE
JP2005005046A (en) Siloxane polymer electrolyte membrane and solid polymer fuel cell using the same
US8628893B2 (en) Binder compositions and membrane electrode assemblies employing the same
CN103172805A (en) Star silsesquioxane-grafted acrylic ester-sulfonated styrene segmented copolymer and preparation method thereof
KR20130011676A (en) Block copolymer comprising hydrophilic block and hydrophobic block, polymer electrolyte membrane prepared from the block copolymer, and fuel cell employing the polymer electrolyte membrane
JP4582740B2 (en) Proton conductive material
JP2003331645A (en) Proton conductive material
JP5346194B2 (en) Proton conducting material, membrane-electrode bonding agent, proton conducting membrane, proton conducting membrane with bonding layer, membrane-electrode assembly and solid polymer fuel cell
JP4099699B2 (en) Proton conducting material
KR20090115746A (en) Proton Conductive Membranes, Membrane-electrode Assemblies and Solid Polymer Fuel Cells
JP3922162B2 (en) Proton conducting material
WO2012046889A1 (en) Complex electrolyte membrane for a fuel cell, method for manufacturing same, and fuel cell including same
JP2008074989A (en) Silicon-oxygen crosslinked structure and method for producing the same, silicone rubber composition for polymer electrolyte, and proton conductive polymer electrolyte membrane
JP5480578B2 (en) Proton conductive material, proton conductive electrolyte membrane, proton conductive electrolyte membrane with proton conductive electrolyte layer, membrane-electrode assembly, and polymer electrolyte fuel cell
JP4547713B2 (en) Electrolyte membrane
JP2010195987A (en) Silane-treated electrolyte membrane and method for producing the same
JP2004285190A (en) Inorganic-organic hybrid material and method for producing the same
JP4775715B2 (en) Organic-inorganic hybrid polymer composition and method for producing the film
US20190345301A1 (en) Proton-conducting inorganic particles, method for the preparation thereof, and use thereof to form a fuel cell membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318