[go: up one dir, main page]

JP2003328045A - PROCESS FOR TREATING Ca-CONTAINING DUST - Google Patents

PROCESS FOR TREATING Ca-CONTAINING DUST

Info

Publication number
JP2003328045A
JP2003328045A JP2002136006A JP2002136006A JP2003328045A JP 2003328045 A JP2003328045 A JP 2003328045A JP 2002136006 A JP2002136006 A JP 2002136006A JP 2002136006 A JP2002136006 A JP 2002136006A JP 2003328045 A JP2003328045 A JP 2003328045A
Authority
JP
Japan
Prior art keywords
reduction
dust
content
cao
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002136006A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirohane
弘行 広羽
Kazuhiko Tate
和彦 舘
Tatsuro Ariyama
達郎 有山
Toshihiko Okada
敏彦 岡田
Hiroshi Sugidachi
宏志 杉立
Hidetoshi Tanaka
英年 田中
Takao Harada
孝夫 原田
Hiroshi Tamazawa
博 玉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd filed Critical JFE Steel Corp
Priority to JP2002136006A priority Critical patent/JP2003328045A/en
Publication of JP2003328045A publication Critical patent/JP2003328045A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment process which can solve problems accompanying thermal reduction of high-Ca dust containing valuable metals for recovering the valuable metals, such as erosion of a furnace bottom refractory and decrease in rate of reduction caused by the high Ca-content and reduction in recovery rate of the valuable metals accompanying these. <P>SOLUTION: When thermally reducing the dust containing metal components and ≥15 mass% Ca component calculated in terms of CaO (based on dry weight), a Ca-diluting material is added to the dust to adjust the Ca content calculated in terms of CaO to ≤14 mass% before performing thermal reduction. This inhibits erosion of the furnace bottom refractory caused by slag leaching and enables efficient thermal reduction. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄工場などで発
生する鉄やニッケル、クロムなどの金属成分を含むダス
ト(酸洗スラッジを含む)、特にCaを多量に含有する
ダストから、上記金属成分を有価成分として効率よく回
収し得るように改善された処理法に関するものである。
TECHNICAL FIELD The present invention relates to a dust containing metal components such as iron, nickel, and chromium (including pickling sludge) generated in an iron manufacturing plant, etc. The present invention relates to a treatment method improved so as to efficiently recover as a valuable component.

【0002】[0002]

【従来の技術】鉄、ニッケル、クロムなどの金属成分を
含有するダストを還元処理し、金属成分を有価資源とし
て回収する方法の1つに、ロータリーキルンを用いて加
熱還元する方法が知られている(特公昭51−1308
3号公報、同55−21810号公報など)。また特開
平11−241125号公報には、金属成分の加熱還元
を連続的に効率よく実施し得るように改善された方法と
して、回転炉床炉を使用する方法が開示されている。
2. Description of the Related Art As one of the methods for reducing dust containing a metal component such as iron, nickel and chromium and recovering the metal component as a valuable resource, a method of heating and reducing it using a rotary kiln is known. (Japanese Patent Publication Sho 51-1308
No. 3, gazette 55-21810, etc.). Further, Japanese Patent Application Laid-Open No. 11-241125 discloses a method of using a rotary hearth furnace as an improved method capable of continuously and efficiently performing the thermal reduction of metal components.

【0003】また製鉄工場などにおいて、鋼板やめっき
鋼板などの酸洗工程で排出される酸洗廃液は、無害化の
ためアルカリ剤を用いて中和処理されるが、ここで使用
されるアルカリとしては、安価で且つ中和物を水に不溶
性の塩として回収することのできるCaO、Ca(O
H)2などが汎用されている。そのため、酸洗廃液の中
和スラッジには、Fe、ニッケル、クロムなどの金属成
分と共に、Ca成分がCaSO3,CaSO4,CaCO
3,Ca3(PO42,CaF2,CaCl2,CaO,C
a(OH)2等の形態で多量含まれてくる。そのため、
該中和スラッジから上記金属成分を回収する方法につい
ても幾つかの報告が見られる。
In an iron factory, etc., the pickling waste liquid discharged from the pickling process such as steel plate and plated steel plate is neutralized with an alkali agent to make it harmless. Is an inexpensive CaO, Ca (O) capable of recovering a neutralized product as a water-insoluble salt.
H) 2 is commonly used. Therefore, in the neutralization sludge of the pickling waste liquid, Ca components are CaSO 3 , CaSO 4 , CaCO together with metallic components such as Fe, nickel and chromium.
3 , Ca 3 (PO 4 ) 2 , CaF 2 , CaCl 2 , CaO, C
It is contained in a large amount in the form of a (OH) 2 . for that reason,
There are some reports on a method for recovering the metal component from the neutralized sludge.

【0004】例えば特開昭51−28515号公報に
は、 1)酸洗廃液の中和スラッジを脱水・乾燥し、含水率を2
〜15質量%程度にまで低下させ、 2)これを乾燥状態の製鉄ダストやスケール等と混合し、 3)これに有機質バインダーを1〜5質量%、必要により
無機質バインダーを5質量%程度添加した後、加水して
水分含量を6〜14質量%に調整してから混練し、 4)該混練物をブリケット状に加工してから乾燥し、電気
炉のフェロアロイ用原料として有効利用する方法 が開示されている。
For example, in JP-A-51-28515, 1) neutralized sludge of pickling waste liquid is dehydrated and dried to obtain a water content of 2
To about 15% by mass, 2) this is mixed with dry iron-making dust, scale, etc., 3) 1 to 5% by mass of an organic binder and about 5% by mass of an inorganic binder are added thereto. After that, water is added to adjust the water content to 6 to 14% by mass and then kneaded, and 4) the kneaded product is processed into a briquette and then dried, and the method is effectively used as a raw material for a ferroalloy of an electric furnace. Has been done.

【0005】ところが、中和スラッジは微細粒状の不溶
物が混在した泥状物であって天日乾燥は極めて困難であ
り、乾燥炉などを用いて強制乾燥するにしても効率が非
常に悪い。しかも、炭素源として例えば高炉湿ダストな
どを配合すると、その乾燥は一層困難且つ非効率的とな
り、回収に要する設備費や維持管理費が、有価資源とし
ての回収による利益を上回る場合も生じてくる。
However, the neutralized sludge is a mud-like substance in which fine granular insoluble matter is mixed, and it is extremely difficult to dry in the sun, and even if it is forcedly dried using a drying furnace or the like, the efficiency is very poor. In addition, if, for example, blast furnace wet dust is blended as a carbon source, the drying becomes more difficult and inefficient, and the equipment cost and maintenance cost required for recovery may exceed the profit due to recovery as a valuable resource. .

【0006】また特開2001‐40429号公報に
は、比較的新しい技術として、酸洗廃液の中和スラッジ
に炭素質還元剤を配合してペレット状もしくはブリケッ
ト状に成形し、これを1000〜1100℃程度で5分
程度以上加熱することにより、該スラッジ中に含まれて
いるFe、ニッケル、クロムなどの酸化物(若しくは水
酸化物など)を還元し、還元金属として回収する方法が
開示されている。
Further, in Japanese Patent Laid-Open No. 2001-40429, as a relatively new technique, a neutralizing sludge of pickling waste liquid is blended with a carbonaceous reducing agent to be formed into pellets or briquettes, which are formed into 1000 to 1100. A method of reducing oxides (or hydroxides) such as Fe, nickel, and chromium contained in the sludge by heating the sludge for about 5 minutes or more and recovering the reduced metal is disclosed. There is.

【0007】この方法は、1000〜1100℃程度の
低温で加熱還元を行う方法であるから、加熱還元工程で
炉床耐火物を著しく溶損する低融点化合物(溶融スラ
グ)の沁み出しが起こらず、加熱還元炉の寿命を長期的
に維持し得るという利点を有している。しかしこの方法
に指摘される最大の難点は、加熱還元温度が低温である
ため還元速度が遅いことであり、還元効率が悪い。しか
も、還元金属(回収製品)としての回収率を実操業レベ
ルに高めるには加熱還元時間を長くしなければならず、
連続化のためには長大な加熱還元炉が必要になるので、
設備費も高騰する。
Since this method is a method of performing heat reduction at a low temperature of about 1000 to 1100 ° C., the low melting point compound (molten slag) that significantly melts the hearth refractory in the heat reduction step does not leak out, It has an advantage that the life of the heating reduction furnace can be maintained for a long period of time. However, the biggest difficulty pointed out in this method is that the reduction rate is slow because the heating reduction temperature is low, and the reduction efficiency is poor. Moreover, in order to increase the recovery rate of the reduced metal (recovered product) to the actual operation level, it is necessary to lengthen the heating and reduction time,
Since a long heating reduction furnace is required for continuity,
Equipment costs will also soar.

【0008】この様に、酸洗廃液の中和スラッジを加熱
還元して有価金属を回収する方法は幾つか知られている
が、回収効率や設備面に様々の問題が山積していること
から、工業的規模で実用化されているものは極めて少な
く、該中和スラッジを含めて多くの製鉄ダストは産業廃
棄物として埋立て等に投棄されているのが実情である。
As described above, several methods are known for recovering valuable metals by heating and reducing the neutralized sludge of the pickling waste liquid, but there are many problems in recovery efficiency and equipment. Very few have been put to practical use on an industrial scale, and most iron-making dust, including the neutralized sludge, is thrown into landfills as industrial waste.

【0009】また酸洗廃液の中和スラッジには、前述し
たような理由から多量のCaO、またはその水和物であ
るCa(OH)2やCaSO3,CaSO4,CaCO3
Ca 3(PO42,CaF2,CaCl2などの形態でC
a成分が含まれており、該Ca成分は加熱還元工程で低
融点のスラグを形成し、沁み出した溶融スラグによる加
熱還元炉耐火物の溶損を起こしたり、有価金属の還元効
率を低下させるので、前記スラッジ中のCaO含量を適
切に制御することは極めて重要と考えられる。
The neutralization sludge of the pickling waste liquid is described above.
For a reason as described above, a large amount of CaO or its hydrate is used.
Ca (OH)2And CaSO3, CaSOFour, CaCO3
Ca 3(POFour)2, CaF2, CaCl2C in the form
a component is contained, and the Ca component is low in the heat reduction step.
A slag with a melting point is formed and added by the molten slag
Pyrolysis furnace Refractory material meltdown and valuable metal reduction effect
The CaO content in the sludge should be adjusted to reduce the rate.
It is considered extremely important to control it carefully.

【0010】ところが先に挙げた公知文献を含めて、中
和スラッジを加熱還元して有価金属を回収する際に、該
スラッジ中のCaO含量に注目して有価金属成分の還元
効率や回収率などを高める方向での研究は全くなされて
いない。
However, including the above-mentioned publicly known documents, when the neutralized sludge is heated and reduced to recover the valuable metal, attention is paid to the CaO content in the sludge and the reduction efficiency and recovery rate of the valuable metal component. There has been no research aimed at increasing

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の様な状
況の下で、酸洗廃液の中和スラッジなどに見られる如く
多量のCaOやCaSO3,CaSO4,CaCO3,C
3(PO42,CaF2,CaCl2,Ca(OH)2
どのCa成分を含むダストから加熱還元によって有価金
属を回収する際に、Ca成分の多量含有に起因する問題
点に絞って研究を進めてきた。そして、Ca含量の高い
ダストを1100℃程度以上の高温で加熱還元すると、
CaO含量の高い低融点スラグの沁み出しが起こって加
熱還元炉の炉床耐火物が著しく溶損され、更には、有価
金属成分の還元反応が阻害されることが確認された。
Under the above circumstances, the present invention is intended to provide a large amount of CaO, CaSO 3 , CaSO 4 , CaCO 3 , C as found in neutralization sludge of pickling waste liquid.
a 3 (PO 4) when recovering valuable metal by heating and reducing a dust containing 2, CaF 2, Ca component such as CaCl 2, Ca (OH) 2 , focus on problems caused by the large amount containing the Ca component Have advanced research. When the Ca-rich dust is heated and reduced at a high temperature of about 1100 ° C. or higher,
It was confirmed that the low-melting-point slag with a high CaO content was exuded, the hearth refractory of the heating reduction furnace was significantly melted, and the reduction reaction of valuable metal components was hindered.

【0012】他方、加熱還元温度を1100℃レベル以
下に抑えると、低融点スラグの沁み出しによる上記問題
は回避できるものの還元効率が低下し、加熱還元に長時
間を要するばかりでなく、満足のいく有価金属の回収率
も得られなくなる。加えて加熱還元温度を低くすると、
加熱還元によって得られる還元金属の圧潰強度も乏しく
なり、回収金属としての取扱い性も悪くなる。
On the other hand, if the heating reduction temperature is suppressed to the level of 1100 ° C. or lower, the above problems due to the leaching of the low melting point slag can be avoided, but the reduction efficiency is lowered, and the heating reduction takes a long time and is satisfactory. The recovery rate of valuable metals cannot be obtained either. In addition, if the heating reduction temperature is lowered,
The crushing strength of the reduced metal obtained by heating and reduction is also poor, and the handleability as a recovered metal is poor.

【0013】本発明はこの様な事情に着目してなされた
ものであって、その目的は、例えば酸洗廃液の中和スラ
ッジの如くCa含量が高く、具体的にはCaO換算のC
a含量が15質量%以上である有価金属含有ダストを加
熱還元し有価金属を資源として回収する際に、高Ca含
量に起因する前述した問題、特に加熱還元炉の炉床耐火
物の溶損や、還元効率の低下とそれに伴う有価金属の回
収率低下などの問題を一挙に解消することのできる処理
法を提供することにある。
The present invention has been made in view of such circumstances, and its purpose is to have a high Ca content such as neutralized sludge of pickling waste liquid, and specifically, to convert it to CaO.
When the valuable metal-containing dust having an a content of 15% by mass or more is heated and reduced to recover the valuable metal as a resource, the above-mentioned problems caused by the high Ca content, particularly melting loss of the hearth refractory of the heating and reduction furnace and Another object of the present invention is to provide a treatment method capable of solving all of the problems such as reduction in reduction efficiency and reduction in recovery rate of valuable metals.

【0014】[0014]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るCa含有ダストの処理法とは、C
aO換算の乾量基準で15質量%以上のCa成分を含む
金属成分含有ダストを加熱還元処理する方法であって、
該ダストにCa希釈材を配合し、CaO換算のCa含量
を14質量%以下に調整してから加熱還元するところに
要旨が存在する。
The method for treating Ca-containing dust according to the present invention which has been able to solve the above-mentioned problems is C
A method of heating and reducing metal component-containing dust containing 15% by mass or more of Ca component on a dry basis of aO conversion,
The gist resides in that a Ca diluent is added to the dust to adjust the Ca content in terms of CaO to 14% by mass or less and then the material is heated and reduced.

【0015】この処理法を採用すれば、加熱還元温度を
1100℃以上に高めても、従来技術で指摘したような
問題を生じることがなく、有価金属成分を還元金属とし
て効率よく回収することができる。但し、加熱還元温度
を高め過ぎると、スラグの沁み出しによる炉床耐火物の
溶損などが避けられなくなるので、好ましくは1350
℃程度以下に抑えることが望ましい。
By adopting this treatment method, even if the heating / reduction temperature is raised to 1100 ° C. or higher, the problem as pointed out in the prior art does not occur, and the valuable metal component can be efficiently recovered as a reduced metal. it can. However, if the heating / reduction temperature is too high, melting loss of the hearth refractory due to the slag leaking out is unavoidable.
It is desirable to keep the temperature below about ° C.

【0016】また本発明を実施するに当たっては、有価
金属成分を還元するために炭素質還元剤が配合される
が、該炭素質還元剤の配合量は、還元に寄与するフリー
C換算で、当該ダスト中に含まれる還元性金属酸化物
(鉄、ニッケル、クロム、鉛、亜鉛などの酸化物)の還
元に要する理論量のCに対し−2%以上、+1%以下と
することにより、有価金属成分の加熱還元を無駄なく効
率よく進めることができ、しかも生成する金属成分の圧
潰強度を高めることができるので好ましい。但し、高炉
向け用途などで使用される場合のように、格別高い金属
化率が要求されない場合はこの限りでない。
Further, in carrying out the present invention, a carbonaceous reducing agent is blended in order to reduce the valuable metal component, and the blending amount of the carbonaceous reducing agent is equivalent to free C which contributes to the reduction. Valuable metal by controlling the amount of reducing metal oxides (oxides of iron, nickel, chromium, lead, zinc, etc.) contained in dust to -2% or more and + 1% or less with respect to the theoretical amount of C required for reduction. It is preferable because the heat reduction of the components can be efficiently advanced without waste, and the crushing strength of the produced metal components can be increased. However, this does not apply if a particularly high metallization rate is not required, such as when used for blast furnace applications.

【0017】本発明で使用する前記ダストとしては、前
述した酸洗廃液の中和スラッジの如く、Ca成分と共に
多量の有価金属成分を含有するものであれば特に制限な
く使用できるが、金属成分として鉄、ニッケル、クロム
の少なくとも1種、とりわけ多量のFeを含むダストか
ら金属鉄主体の還元金属を回収する方法として有益であ
る。
The dust used in the present invention can be used without any particular limitation as long as it contains a large amount of valuable metal components in addition to the Ca component, such as the neutralization sludge of the pickling waste liquid described above. It is useful as a method for recovering a reduced metal mainly composed of metallic iron from dust containing at least one of iron, nickel, and chromium, and particularly a large amount of Fe.

【0018】[0018]

【発明の実施の形態】上記の様に本発明では、酸洗廃液
の中和スラッジの如くCaO換算(乾量基準:以下同
じ)で15質量%以上の多量のCa成分を含む金属成分
含有ダストの加熱還元処理法を提供するもので、その特
徴は、該ダストにCa希釈材を配合することによって、
CaO換算のCa含量を14質量%以下に調整してから
加熱還元するところにある。ちなみに金属成分含有ダス
ト中に含まれるCaOは、金属成分の加熱還元工程で該
ダスト中に含まれるSiO2やAl23などのスラグ形
成成分と合体してスラグ化するが、ダスト中のCaO含
量が多いと、スラグ中のCaO含量も多くなって比較的
低融点のスラグを形成する。そのため、該低融点のスラ
グが金属成分の加熱還元工程における比較的低い温度域
で溶融スラグとなって沁み出し、これが炉床耐火物を著
しく溶損する。そのため、炉床耐火物の溶損を抑えるに
は加熱還元を低温域で実施せざるを得ず、金属成分に対
する還元効率も不十分となり、ひいては金属成分の回収
率も十分に高められなくなる。こうした傾向は、原料ダ
スト中のCaO換算のCa含量が15質量%以上である
ときに顕著に表われてくる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the present invention, metal component-containing dust containing a large amount of Ca component of 15% by mass or more in terms of CaO (dry basis: hereinafter the same), such as neutralized sludge of pickling waste liquid. The present invention provides a heating reduction treatment method of the above, which is characterized in that by adding a Ca diluent to the dust,
The content of CaO in terms of CaO is adjusted to 14% by mass or less, and then the material is heated and reduced. Incidentally, CaO contained in the metal component-containing dust is combined with slag-forming components such as SiO 2 and Al 2 O 3 contained in the dust in the heat reduction step of the metal component to form slag. When the content is high, the content of CaO in the slag is also high and a slag having a relatively low melting point is formed. Therefore, the low-melting slag becomes molten slag in a relatively low temperature range in the heating and reducing step of the metal component, and is drained out, which significantly melts the hearth refractory material. Therefore, in order to suppress the melting loss of the hearth refractory, the heat reduction must be carried out in a low temperature range, the reduction efficiency for the metal component becomes insufficient, and the recovery rate of the metal component cannot be sufficiently increased. Such a tendency is remarkably exhibited when the Ca content in terms of CaO in the raw material dust is 15% by mass or more.

【0019】そこで本発明では、こうした多量のCaO
を含むダスト中の金属成分を加熱還元する際に、該ダス
トにCa希釈材を添加することによって、CaO換算の
Ca含量を14質量%以下、より好ましくは10質量%
以下に低減してから加熱還元を行う。そうすると、加熱
還元工程で生成するスラグ中のCaO含量も低下し、そ
れに伴って生成スラグの融点は上昇する。その結果、一
般的に採用される加熱還元温度である1000℃前後の
温度域はもとより、1100℃以上の温度域でも生成ス
ラグの溶融・沁み出しが起こらなくなり、炉床耐火物の
溶損を防止できる。しかも加熱還元温度を例えば110
0℃程度以上の高めに設定できることから、金属成分の
加熱還元効率も向上し、金属成分の回収率を高めること
が可能となる。
Therefore, in the present invention, such a large amount of CaO is used.
When the metal component in the dust containing is heated and reduced, by adding a Ca diluent to the dust, the Ca content in terms of CaO is 14% by mass or less, more preferably 10% by mass.
After reduction to below, heat reduction is performed. Then, the CaO content in the slag produced in the heating reduction step also decreases, and the melting point of the produced slag rises accordingly. As a result, melting and exudation of the generated slag do not occur in the temperature range around 1100 ° C, as well as in the temperature range around 1000 ° C, which is the generally used heat reduction temperature, and the melting damage of the hearth refractory is prevented. it can. Moreover, the heating reduction temperature is set to, for example, 110.
Since the temperature can be set higher than about 0 ° C., the heat reduction efficiency of the metal component is improved and the recovery rate of the metal component can be increased.

【0020】但し、加熱還元温度を高めすぎると、Ca
O含量の低減にも拘わらず、生成スラグの沁み出しによ
る炉床耐火物溶損の懸念が生じてくるので、1350℃
程度以下に抑えることが望ましい。
However, if the heating reduction temperature is too high, Ca
Despite the reduction of O content, there is a concern of melting of the hearth refractory due to the exudation of the generated slag.
It is desirable to keep it below a certain level.

【0021】また本発明を実施するに当たっては、有価
金属成分を還元するために炭素質還元剤が配合される
が、該炭素質還元剤の配合量は、還元に寄与するフリー
C換算で、当該ダスト中に含まれる還元性金属酸化物の
還元に要する理論量のCに対し−2%以上、+1%以
下、より好ましくは−1.7〜0%となるように調整す
ることが望ましい。ちなみに、炭素質還元剤の配合量が
理論量に対して−2%未満では、C量不足によって金属
成分の還元効率が不十分になる傾向が生じてくる。逆に
+1%を超えてC含量が過剰になると、残留するCが金
属鉄の結合を妨げ、またスラグも軟化し難くて結合力が
弱くなるので、生成還元鉄が脆弱なものとなり、製品と
して取扱い性の劣るものとなる。よって炭素質還元剤の
配合量は、原料ダスト内に含まれる金属成分の還元に要
する理論量に対して−2%以上、1%以下の範囲とする
ことが望ましい。もっとも、高炉向け用途などで使用さ
れる場合の如く、格別高い金属化率が要求されない場合
はこの限りでない。
Further, in carrying out the present invention, a carbonaceous reducing agent is blended in order to reduce the valuable metal component, and the blending amount of the carbonaceous reducing agent is calculated in terms of free C which contributes to the reduction. It is desirable that the amount is adjusted to be −2% or more and + 1% or less, and more preferably −1.7 to 0% with respect to the theoretical amount of C required to reduce the reducing metal oxide contained in the dust. By the way, if the amount of the carbonaceous reducing agent blended is less than -2% with respect to the theoretical amount, the reduction efficiency of the metal component tends to be insufficient due to insufficient C content. On the other hand, if the C content exceeds + 1% and becomes excessive, the residual C hinders the binding of metallic iron, and the slag is also less likely to soften, resulting in a weak binding force. The handling becomes poor. Therefore, the blending amount of the carbonaceous reducing agent is preferably within a range of -2% or more and 1% or less with respect to the theoretical amount required for reducing the metal component contained in the raw material dust. However, this does not apply to cases where a particularly high metallization rate is not required, such as when used in applications for blast furnaces.

【0022】本発明で使用する前記ダストとしては、前
述した如く酸洗廃液の中和スラッジの様に、多量のCa
成分と共に有価金属成分を含有するものであれば特に制
限なく使用でき、中和スラッジ以外にも電気炉ダスト、
転炉ダスト、溶銑予備処理ダスト(特に脱硫性向上のた
め多量の石灰を用いた場合の生成ダスト等)、更には路
面清掃汚泥などの如く、金属成分として鉄、ニッケル、
クロムの少なくとも1種を含有する様々のダストを使用
できる。これらの中でも、製鉄・製鋼工場で排出される
多量のFe成分を含む各種ダストや、熱延工場などから
排出されるFe含有スラッジ等は有用な原料となり、有
価金属成分含量の高い廃棄原料として有価金属の回収に
有効に使用できる。
As the dust used in the present invention, as described above, a large amount of Ca such as neutralization sludge of pickling waste liquid is used.
It can be used without particular limitation as long as it contains a valuable metal component together with the components, in addition to neutralization sludge, electric furnace dust,
Converter dust, hot metal pretreatment dust (especially dust produced when a large amount of lime is used to improve desulfurization, etc.), as well as road cleaning sludge, such as iron, nickel as metal components,
Various dusts containing at least one of chromium can be used. Among them, various dusts containing a large amount of Fe component discharged from iron and steel manufacturing plants, and Fe-containing sludge discharged from hot rolling plants are useful raw materials and valuable as waste raw materials with a high content of valuable metal components. It can be effectively used for metal recovery.

【0023】またCa希釈材としては、それ自体CaO
含量の少ない様々の材料、例えば鉄鉱石などを利用でき
るが、好ましいのは、それ自身廃材として有効利用が求
められている高炉湿ダスト、ラグーンスラッジ、電気炉
ダスト、転炉ダスト、転炉スラッジ、ミルスケール、ミ
ルスラッジ、鉄鉱石ペレット粉、焼結ダスト、キュポラ
ダスト、DRI粉などであり、これらは単独で使用しえ
るほか、必要により2種以上を適宜併用することが可能
である。
As the Ca diluent, CaO itself is used.
Various materials with low content, such as iron ore, can be used, but preferred are blast furnace wet dust, lagoon sludge, electric furnace dust, converter dust, converter sludge, which are themselves required to be effectively used as waste materials. Mill scale, mill sludge, iron ore pellet powder, sinter dust, cupola dust, DRI powder, and the like can be used alone, and if necessary, two or more kinds can be appropriately used in combination.

【0024】また炭素質還元剤としては、石炭、コーク
スブリーズ、CDQ粉、都市ごみ炭化物などを使用でき
る。また高炉湿ダストやラグーンスラッジ等はFe成分
と共に相当量のCを含んでいるので、炭素源やCa希釈
材を兼ねた原料ダストとして有効に活用できる。
As the carbonaceous reducing agent, coal, coke breeze, CDQ powder, municipal solid waste carbide, etc. can be used. Further, since blast furnace wet dust, lagoon sludge, and the like contain a considerable amount of C together with the Fe component, they can be effectively utilized as raw material dust that also serves as a carbon source and a Ca diluent.

【0025】本発明を実施するに当たっては、前述した
有価金属含有ダストとCa希釈材および炭素質還元剤
を、所定のCaO含量およびC含量となる様に配合し、
必要により有機質もしくは無機質バインダーを配合し、
好ましくはペレット状やブリケット状に予備整形してか
らから予備乾燥し、或いは粉末状のままで、常法に従っ
てロータリーキルンや回転炉床炉など任意の加熱還元炉
によって加熱還元すればよく、該加熱還元時におけるス
ラグの沁み出しによるロータリーキルン内壁や炉床耐火
物の溶損を可及的に抑制しつつ、高レベルの還元効率で
金属成分を還元金属として効率よく回収できる。
In carrying out the present invention, the above-mentioned valuable metal-containing dust, Ca diluent and carbonaceous reducing agent are blended so as to have predetermined CaO content and C content,
If necessary, add an organic or inorganic binder,
Preferably, it is preliminarily shaped into pellets or briquettes and then pre-dried, or while it is in powder form, it may be subjected to heat reduction in any heating reduction furnace such as a rotary kiln or a rotary hearth furnace according to a conventional method. While suppressing the melting damage of the rotary kiln inner wall and the hearth refractory material due to the leaching of slag as much as possible, the metal component can be efficiently recovered as a reduced metal with a high level of reduction efficiency.

【0026】このときの加熱還元温度は、前述した如く
スラグ沁み出しによる耐火物の溶損を抑えつつより高い
還元効率と金属化率を確保するため、1100〜135
0℃の範囲で行うことが望ましい。尚、例えば溶融亜鉛
めっき工場から排出される酸洗廃液の中和スラッジ等を
原料として使用した場合は、中和スラッジ中には相当量
のZn成分が混入しており、これが回収される還元鉄な
どに混入することがある。ところが本発明によれば、前
述の如く加熱還元温度を高めに設定できることの副次的
効果として、揮発温度の比較的低い金属亜鉛などは加熱
還元工程で揮発除去されるので、回収される還元金属中
に含まれるZnの如く、鉄源として使用する際に混入が
嫌われる異種金属の含有量も低減されるので好ましい。
The heat reduction temperature at this time is 1100 to 135 in order to secure higher reduction efficiency and metallization rate while suppressing melting loss of the refractory due to slag creeping out as described above.
It is desirable to carry out in the range of 0 ° C. If, for example, neutralized sludge of pickling waste liquid discharged from a hot dip galvanizing plant is used as a raw material, a considerable amount of Zn component is mixed in the neutralized sludge, and this reduced iron is recovered. May be mixed in. However, according to the present invention, as a side effect of being able to set the heating reduction temperature higher as described above, metal zinc, which has a relatively low volatilization temperature, is volatilized and removed in the heating reduction step, so the recovered reduced metal is recovered. The content of different metals such as Zn contained therein which is unfavorable to be mixed when used as an iron source is also reduced, which is preferable.

【0027】[0027]

【実施例】以下、具体的な実施例を参照しつつ本発明の
実施形態を詳細に説明するが、本発明はもとより下記実
施例によって制限を受けるものではなく、前・後記の趣
旨に適合し得る範囲で適当に変更を加えて実施すること
も可能であり、それらはいずれも本発明の技術的範囲に
包含される。
EXAMPLES Hereinafter, the embodiments of the present invention will be described in detail with reference to specific examples. However, the present invention is not limited to the following examples, and conforms to the gist of the preceding and the following. It is also possible to carry out appropriate modifications within the range to be obtained, and all of them are included in the technical scope of the present invention.

【0028】実施例 まず原料廃材として、鉄鋼素材の酸洗ラインで、酸洗廃
液のアルカリ中和剤としてCaO/Ca(OH)2を用
いて得た中和スラッジを用いて還元実験を行った。還元
のための炭素源としては高炉湿ダストを利用し、且つ成
分調整用としてラグーンスラッジとミルスケールを使用
した。各々の成分組成は下記表1に示す通りである。
Example First, as a raw material waste material, a reduction experiment was conducted in a steel material pickling line using neutralized sludge obtained by using CaO / Ca (OH) 2 as an alkali neutralizing agent of the pickling waste solution. . Wet blast furnace dust was used as a carbon source for reduction, and lagoon sludge and mill scale were used for component adjustment. The composition of each component is as shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】まず、CaO換算のCa含量が15質量%
以上であるダストとして上記中和スラッジを、またCa
希釈材として高炉湿ダスト、ラグーンスラッジ、ミルス
ケールを使用した。また上記高炉湿ダストは相当量の炭
素を含んでいるので、炭素源としても兼用した。また、
バインダーの一部として消石灰を1質量%外装で添加し
た。
First, the Ca content in terms of CaO is 15% by mass.
The above-mentioned neutralized sludge as the above dust, Ca
Wet blast furnace dust, lagoon sludge, and mill scale were used as diluents. Further, since the blast furnace wet dust contains a considerable amount of carbon, it was also used as a carbon source. Also,
Slaked lime was added as a part of the binder in a 1 mass% exterior.

【0031】中和スラッジ86質量部(固形分量)と高
炉ダスト14質量部を予備混合し、ロータリードライヤ
ーによって水分量が13質量%となるまで予備乾燥した
後、混合・混練してサイズ6ccのブリケット状に成形
した。該ブリケットの固形分中に占めるCaO含量は1
9.3質量%、トータルC含量は8.2質量%、フリー
C含量は4.9%である。その後、更に乾燥して水分量
を1.0質量%にまで低減したものについて、回転炉床
炉を用いて1300℃で加熱還元を行ったところ、低融
点スラグの沁み出しが起こった。また、加熱温度を12
50℃、更に1200℃に下げて同様に加熱還元を行っ
たところ、同様にスラグの沁み出しが起こった。また加
熱還元温度を1100℃にまで下げたところ、スラグの
沁み出しは起こらなかったが、鉄の金属化率および脱亜
鉛率は何れも低く、9分12秒の滞留時間での鉄の金属
化率は30.6%、脱亜鉛率は32.9%に過ぎなかっ
た。
86 parts by mass (solid content) of neutralized sludge and 14 parts by mass of blast furnace dust were pre-mixed and pre-dried by a rotary dryer until the water content became 13 mass%, then mixed and kneaded to make a size 6 cc briquette. It was molded into a shape. The content of CaO in the solid content of the briquette is 1
The total C content is 9.3% by mass, the total C content is 8.2% by mass, and the free C content is 4.9%. Then, when the product further dried to reduce the water content to 1.0 mass% was subjected to heat reduction using a rotary hearth furnace at 1300 ° C., low melting point slag was exuded. Also, the heating temperature is 12
When the temperature was lowered to 50 ° C. and further to 1200 ° C. and the same heat reduction was carried out, the slag leaked out similarly. When the heating reduction temperature was lowered to 1100 ° C, the slag did not leak out, but the metallization rate and dezincification rate of iron were low, and the metallization of iron at a residence time of 9 minutes and 12 seconds was low. The rate was 30.6% and the dezincification rate was only 32.9%.

【0032】そこで、上記表1に示した原料の配合比率
を下記表2に示す如く様々に変更することによって、配
合原料中のCaO含量を変更すると共に、炭素源の配合
量を調整することで金属成分に対するC含量も調整し、
同様の乾燥ブリケットを作製した。なおC含有量につい
ては、下記式(1)として示す余剰C量 余剰C量(質量%)=還元反応に寄与するフリーC(質量%)−(ブリッケット中の 還元性金属酸化物中の酸素量(質量%))×12/16……(1) として調整した。なお還元性金属酸化物とは、鉄、ニッ
ケル、クロム、亜鉛、鉛などの酸化物を意味し、アルミ
ナやシリカ、マグネシア等は含まれない得られた各ブリ
ケットを、回転炉床式加熱還元炉により1250℃で加
熱還元し、低融点スラグの沁み出しの有無を調べると共
に、Feの金属化率と脱亜鉛率、更には還元金属の圧潰
強度を測定し、表3に示す結果を得た。
Therefore, by changing the blending ratio of the raw materials shown in Table 1 above as shown in Table 2 below, the CaO content in the blended raw materials can be changed and the blending amount of the carbon source can be adjusted. Adjusting the C content for metal components,
A similar dry briquette was made. Regarding the C content, the surplus C amount shown as the following formula (1) surplus C amount (mass%) = free C (mass%) contributing to the reduction reaction- (oxygen amount in the reducing metal oxide in the briquette (Mass%)) × 12/16 ... (1) was adjusted. The reducing metal oxides mean oxides of iron, nickel, chromium, zinc, lead, etc., and each briquette obtained, which does not contain alumina, silica, magnesia, etc. Was heated and reduced at 1250 ° C. to examine whether or not the low melting point slag was leaked out, and the Fe metallization ratio and dezincification ratio, and further the crush strength of the reduced metal were measured, and the results shown in Table 3 were obtained.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】図1は、上記表2,3に示した結果を元
に、原料ブリケットのCaO含量と余剰C量が、加熱還
元時における低融点スラグの沁み出しに及ぼす影響を整
理して示したグラフである。この図からも明らかなよう
に、CaO含量が10質量%程度以下では、余剰C量の
多少に関わらずスラグの沁み出しは起こっていない。ま
た、CaO含量を14質量%以下にすれば、スラグの沁
み出しをごく少量に抑えることができ、スラッジの処理
を円滑に実施できる。
Based on the results shown in Tables 2 and 3, FIG. 1 shows the effects of CaO content and surplus C content of raw material briquettes on the exudation of low melting point slag during heat reduction. It is a graph. As is clear from this figure, when the CaO content is about 10 mass% or less, the slag is not exuded regardless of the amount of surplus C. Further, if the CaO content is 14 mass% or less, the slag can be suppressed from leaking out to a very small amount, and sludge can be smoothly treated.

【0036】図2は、同様に前記表2,3に示した実験
結果を元に、CaO含量と余剰C量がスラグの沁み出し
と、得られる還元鉄の圧潰強度に与える影響を整理して
示したグラフである。この図からも明らかな様に、余剰
Cが+1%を超えると還元鉄の圧潰強度が低下傾向を示
すようになり、また余剰Cが−2%を下回ると、金属化
率が低下傾向を示している。
Similarly, based on the experimental results shown in Tables 2 and 3, FIG. 2 summarizes the effects of CaO content and surplus C content on the slag creeping out and the crush strength of the reduced iron obtained. It is the graph shown. As is clear from this figure, when the excess C exceeds + 1%, the crushing strength of reduced iron tends to decrease, and when the excess C falls below -2%, the metallization rate tends to decrease. ing.

【0037】上記表2,3および図1,2からも明らか
なように、CaO含量を14%以下に調整してから加熱
還元を行えば、加熱温度を1250℃まで高めた場合で
もスラグの沁み出しは起こらず、炉床耐火物の溶損を生
じることなく円滑に加熱還元を行えることが分る。ま
た、原料中のC含量を金属成分の還元に要する理論量に
対し−2%未満にすると、金属化率はやや不足気味にな
ると共に、還元効率は低めとなる。逆に+1%を超えて
C含量が多くなり過ぎると、得られる還元鉄の圧潰強度
が乏しくなる。しかし、本発明最大の課題である「スラ
グの沁み出し防止による炉床耐火物の溶損防止」という
目的からすれば、CaO含量を14%以下に抑えること
で目的を十分に果たし得ることが分る。
As is clear from the above Tables 2 and 3 and FIGS. 1 and 2, if the CaO content is adjusted to 14% or less and the heat reduction is carried out, the slag will be removed even if the heating temperature is raised to 1250 ° C. It can be seen that no heat generation occurs, and that the heat reduction can be smoothly performed without causing melting loss of the hearth refractory material. Further, when the C content in the raw material is less than -2% with respect to the theoretical amount required for the reduction of the metal component, the metallization rate will be slightly insufficient and the reduction efficiency will be low. On the other hand, if the C content exceeds + 1% and the C content becomes too high, the crush strength of the obtained reduced iron becomes poor. However, for the purpose of "preventing melting damage of the hearth refractory by preventing slag from leaking out", which is the greatest problem of the present invention, it has been found that the purpose can be sufficiently achieved by suppressing the CaO content to 14% or less. It

【0038】[0038]

【発明の効果】本発明は以上のように構成されており、
酸洗廃液の中和スラッジの如くCaO含量の多いダスト
を加熱還元して有価金属を回収する際に、該ダストにC
a希釈材を配合してCaO含量を14%以下に調整する
ことにより、加熱還元時の還元効率を低下させることな
くスラグの沁み出しを可及的に抑えることができ、加熱
還元炉の炉床耐火物の溶損を可及的に抑えることができ
る。また原料調製段階で、余剰C量を金属成分の還元に
要する理論量に対し−2%〜+1%の範囲内に調整すれ
ば、高レベルの還元効率や金属化率を確保しつつ、圧潰
強度が強く取扱い性に優れた還元金属を効率よく得るこ
とが可能となる。
The present invention is configured as described above,
When recovering valuable metals by heating and reducing dust having a large CaO content such as neutralized sludge of pickling waste liquid, C is added to the dust.
a By adjusting the CaO content to 14% or less by blending a diluent, the slag can be suppressed from exuding as much as possible without reducing the reduction efficiency during heating reduction, and the hearth of the heating reduction furnace is reduced. The melting loss of the refractory can be suppressed as much as possible. In addition, if the excess C amount is adjusted within the range of -2% to + 1% with respect to the theoretical amount required for the reduction of the metal component in the raw material preparation stage, the crushing strength can be ensured while ensuring a high level of reduction efficiency and metallization rate. It is possible to efficiently obtain a reduced metal that is strong and easy to handle.

【図面の簡単な説明】[Brief description of drawings]

【図1】加熱還元に供されるダスト中のCaO含量がス
ラグの沁み出しに与える影響を示すグラフである。
FIG. 1 is a graph showing the effect of CaO content in dust subjected to heat reduction on slag creeping out.

【図2】加熱還元に供されるダスト中のCaO含量と余
剰C量が、加熱還元物の圧潰強度に与える影響を示すグ
ラフである。
FIG. 2 is a graph showing the influence of CaO content and surplus C content in the dust subjected to heat reduction on the crush strength of the heat reduced product.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 34/32 C22B 34/32 (72)発明者 舘 和彦 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 有山 達郎 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 岡田 敏彦 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 杉立 宏志 大阪市中央区備後町4丁目1番3号 株式 会社神戸製鋼所大阪支社内 (72)発明者 田中 英年 大阪市中央区備後町4丁目1番3号 株式 会社神戸製鋼所大阪支社内 (72)発明者 原田 孝夫 大阪市中央区備後町4丁目1番3号 株式 会社神戸製鋼所大阪支社内 (72)発明者 玉澤 博 大阪市中央区備後町4丁目1番3号 株式 会社神戸製鋼所大阪支社内 Fターム(参考) 4D059 AA11 AA13 BK30 CC07 DA51 DA57 DA58 EB01 EB06 4K001 AA08 AA10 AA19 BA14 BA15 BA24 CA09 CA19 CA21 CA23 GA07 KA06 4K012 DE03 DE06 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22B 34/32 C22B 34/32 (72) Inventor Kazuhiko Tate 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Stocks In-house (72) Inventor Tatsuro Ariyama 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Toshihiko Okada 1-2 1-2 Marunouchi, Chiyoda-ku, Tokyo Nihonkansen Co., Ltd. (72) Inventor Hiroshi Sugitu 4-3, Bingo-cho, Chuo-ku, Osaka City Kobe Steel, Ltd. Osaka Branch Office (72) Inventor Hidetoshi Tanaka 4- 1-3, Bingo-cho, Chuo-ku, Osaka Kobe Steel Works Osaka Branch (72) Inventor Takao Harada 4-3 Bingocho, Chuo-ku, Osaka City Kobe Steel Works Osaka Branch (72) Inventor Hiroshi Tamazawa 4-1-1 Bingocho, Chuo-ku, Osaka No. 3 F-term of Kobe Steel, Ltd. Osaka branch office (reference) 4D059 AA11 AA13 BK30 CC07 DA51 DA57 DA58 EB01 EB06 4K001 AA08 AA10 AA19 BA14 BA15 BA24 CA09 CA19 CA21 CA23 GA07 KA06 4K012 DE03 DE06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 CaO換算の乾量基準で15質量%以上
のCa成分を含む金属成分含有ダストを加熱還元処理す
る方法であって、該ダストにCa希釈材を添加し、Ca
O換算のCa含量を14質量%以下に調整してから加熱
還元することを特徴とするCa含有ダストの処理法。
1. A method of heat-reducing a metal component-containing dust containing 15% by mass or more of Ca component on a dry weight basis in terms of CaO, wherein a Ca diluent is added to the dust.
A method for treating Ca-containing dust, which comprises reducing the Ca content in terms of O to 14% by mass or less and then reducing the content by heating.
【請求項2】 前記加熱還元を1100℃以上、135
0℃以下の温度で行う請求項1に記載の処理法。
2. The heating reduction is performed at 1100 ° C. or higher for 135
The processing method according to claim 1, which is performed at a temperature of 0 ° C. or lower.
【請求項3】 前記ダストが、金属成分として鉄、ニッ
ケル、クロムの少なくとも1種を含むものである請求項
1または2に記載の処理法。
3. The processing method according to claim 1, wherein the dust contains at least one of iron, nickel and chromium as a metal component.
【請求項4】 前記ダストが、製鉄工場で排出される中
和スラッジである請求項3に記載の処理法。
4. The processing method according to claim 3, wherein the dust is neutralized sludge discharged from a steelmaking plant.
JP2002136006A 2002-05-10 2002-05-10 PROCESS FOR TREATING Ca-CONTAINING DUST Pending JP2003328045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136006A JP2003328045A (en) 2002-05-10 2002-05-10 PROCESS FOR TREATING Ca-CONTAINING DUST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136006A JP2003328045A (en) 2002-05-10 2002-05-10 PROCESS FOR TREATING Ca-CONTAINING DUST

Publications (1)

Publication Number Publication Date
JP2003328045A true JP2003328045A (en) 2003-11-19

Family

ID=29698180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136006A Pending JP2003328045A (en) 2002-05-10 2002-05-10 PROCESS FOR TREATING Ca-CONTAINING DUST

Country Status (1)

Country Link
JP (1) JP2003328045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197783A (en) * 2006-01-27 2007-08-09 Nippon Steel Corp Reduction method of metal oxide in rotary hearth type reduction furnace
JP2008031549A (en) * 2006-07-06 2008-02-14 Nippon Yakin Kogyo Co Ltd Roasting reduction method for steel by-product
JP2008031548A (en) * 2006-07-06 2008-02-14 Nippon Yakin Kogyo Co Ltd Raw material for reduction-recycling of steel by-product and roasting reduction method therefor
JP2010248622A (en) * 2009-03-27 2010-11-04 Nippon Steel Corp Method for producing reduced iron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197783A (en) * 2006-01-27 2007-08-09 Nippon Steel Corp Reduction method of metal oxide in rotary hearth type reduction furnace
JP4589875B2 (en) * 2006-01-27 2010-12-01 新日本製鐵株式会社 Reduction method of metal oxide in rotary hearth type reduction furnace
JP2008031549A (en) * 2006-07-06 2008-02-14 Nippon Yakin Kogyo Co Ltd Roasting reduction method for steel by-product
JP2008031548A (en) * 2006-07-06 2008-02-14 Nippon Yakin Kogyo Co Ltd Raw material for reduction-recycling of steel by-product and roasting reduction method therefor
JP2010248622A (en) * 2009-03-27 2010-11-04 Nippon Steel Corp Method for producing reduced iron

Similar Documents

Publication Publication Date Title
CN103468961B (en) A kind of airtight cupola furnace process Steel Plant are containing zinc, lead powder dirt processing method
RU2435868C1 (en) Procedure for production of pelleted reduced iron and procedure for production of cast iron
BR0205667B1 (en) method for manufacturing metal nuggets.
JP3944378B2 (en) Method for producing metal oxide agglomerates
US6986801B2 (en) Method of producing reduced iron compacts in rotary hearth-type reducing furnace, reduced iron compacts, and method of producing molten iron using them
TWI396749B (en) Producing method of reduced iron
WO2011138954A1 (en) Process for production of metal iron
JP5303727B2 (en) Method for producing reduced iron agglomerates for steelmaking
JP5428534B2 (en) Pig iron production method using high zinc content iron ore
CN104364399A (en) Process for producing hardened granules from iron-containing particles
JP4411306B2 (en) Method for manufacturing reduced briquettes
CN111455187B (en) Method for recycling fly ash
JP2003328045A (en) PROCESS FOR TREATING Ca-CONTAINING DUST
CN106480309A (en) Dust and mud pellet for alkali metal removal treatment and preparation method thereof
JP2010138420A (en) Method for producing ferromolybdenum, and ferromolybdenum
JP2003247026A (en) Briquette for recovering valuable metal in steel making by-product for electric smelting furnace and production method thereof
RU2506326C2 (en) Extrusion-type briquette (breks) - component of blast-furnace charge
CN1234895C (en) Method for smelting iron with slag mixture of nickel smelting slag and slag
JP2004250780A (en) Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material
CN115572828B (en) Treatment methods for converter sludge
JP4779585B2 (en) Solid fuel for vertical scrap melting furnace and operating method of vertical scrap melting furnace
JPS6337173B2 (en)
CN113337673B (en) Preparation method of converter steelmaking efficient dephosphorization agent
KR100668158B1 (en) Manufacturing method of direct reduced iron using oil-containing hot rolled sludge
JP5503364B2 (en) Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430