[go: up one dir, main page]

JP2003318068A - Solid electrolytic capacitor and method of manufacturing the same - Google Patents

Solid electrolytic capacitor and method of manufacturing the same

Info

Publication number
JP2003318068A
JP2003318068A JP2003031982A JP2003031982A JP2003318068A JP 2003318068 A JP2003318068 A JP 2003318068A JP 2003031982 A JP2003031982 A JP 2003031982A JP 2003031982 A JP2003031982 A JP 2003031982A JP 2003318068 A JP2003318068 A JP 2003318068A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
cathode
anode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003031982A
Other languages
Japanese (ja)
Other versions
JP4831593B2 (en
Inventor
Masahiro Kuroyanagi
政広 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003031982A priority Critical patent/JP4831593B2/en
Publication of JP2003318068A publication Critical patent/JP2003318068A/en
Application granted granted Critical
Publication of JP4831593B2 publication Critical patent/JP4831593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor of low equivalent series resistance and a method of manufacturing the same in a solid electrolytic capacitor where solid electrolytic capacitor elements provided with solid electrolytes on valve metal substrates each having a dielectric layer are laminated. <P>SOLUTION: The solid electrolytic capacitor is a solid electrolytic capacitor where a cut-out section is provided in at least a part of the cathode in the solid electrolytic capacitor element and a conductive body is filled in the cut-out section. The method of manufacturing the solid electrolytic capacitor is characterized in that the cut-out sections are provided at the cathodes in the solid capacitors, a plurality of the solid electrolytic capacitor elements are laminated so as to allow the elements to be overlapped on each other, the conductive body is filled in the cut-out sections, and the cathodes and an anodes are each connected with a lead frame and are formed by sealing with an external resin. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サ及びその製造方法に関するものである。さらに詳しく
言えば、誘電体皮膜を有する弁作用金属基体を積層する
固体電解コンデンサにおいて、等価直列抵抗(ESR)
を著しく低減させた固体電解コンデンサ及びその製造方
法に関する。
TECHNICAL FIELD The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same. More specifically, in a solid electrolytic capacitor in which valve action metal substrates having a dielectric film are laminated, the equivalent series resistance (ESR)
And a method for manufacturing the same.

【0002】[0002]

【従来の技術】最近、電子機器の小型化・高周波化が進
み、それに使用する電子部品の1種である固体電解コン
デンサにおいても小型化が要求されているが、一般には
積層型のチップ形状によって小型化の要求に対応してい
る。
2. Description of the Related Art Recently, electronic devices have become smaller and higher in frequency, and a solid electrolytic capacitor, which is one of electronic components used therein, is also required to be smaller. Meets the demand for miniaturization.

【0003】図1は従来のチップ形状の固体電解コンデ
ンサを示す斜視図であるが、外装樹脂6の内部にある固
体電解コンデンサ素子1が複数個方向を揃えて配置され
ており、コンデンサ素子1の陽極部3と素子の表面に形
成された陰極部2の底面とを、それぞれ一対の対向して
配置されたリードフレームの陽極リード引き出し部であ
る陽極リード部5と陰極リード引出し部である陰極リー
ド部4に載置して導電材例えば導電性接着剤で接合され
た状態を示しており、別に用意したエポキシ樹脂等の外
装樹脂6によって封口されている。
FIG. 1 is a perspective view showing a conventional solid electrolytic capacitor having a chip shape. A plurality of solid electrolytic capacitor elements 1 inside an exterior resin 6 are arranged in the same direction. The anode part 3 and the bottom surface of the cathode part 2 formed on the surface of the element are paired so as to face each other. The anode lead part 5 is the anode lead part and the cathode lead part is the cathode lead part. It shows a state in which it is placed on the portion 4 and joined with a conductive material, for example, a conductive adhesive, and is sealed by a separately prepared exterior resin 6 such as an epoxy resin.

【0004】例えば、固体電解コンデンサにおけるコン
デンサ素子の形状が平板状のものに関しては、弁作用を
有する平板状の金属からなる電極体の表面に誘電体皮膜
を設け、この誘電体皮膜上に固体電解質層を設け、さら
にこの固体電解質層上に陰極導電体層を設けたコンデン
サ素子の陰極部を備え、このコンデンサ素子における電
極体に一体に陽極部を設け、かつこの陽極引き出し部と
してマスキング用のレジスト膜を施した部分を設け、更
に前記陰極導電体層および陽極部の接続部がそれぞれ対
応するように複数個のコンデンサ素子を重ね合わせて積
層したものを陰極リード部及び陽極リード部に接続する
構造を採用することにより、コンデンサ容量の容積効率
(一定容積におけるコンデンサ容量値)を上げている。
For example, when the solid electrolytic capacitor has a flat plate-shaped capacitor element, a dielectric film is provided on the surface of an electrode body made of a flat plate-shaped metal having a valve action, and the solid electrolyte is formed on the dielectric film. A cathode part of a capacitor element in which a cathode conductor layer is further provided on the solid electrolyte layer, an anode part is integrally provided on the electrode body of the capacitor element, and a masking resist is used as the anode lead part. A structure in which a portion provided with a film is provided, and a plurality of capacitor elements are stacked and laminated so that the connection portions of the cathode conductor layer and the anode portion correspond to each other and are connected to the cathode lead portion and the anode lead portion. By adopting, the capacity efficiency of the capacitor capacity (capacitor capacity value in a fixed volume) is increased.

【0005】また、コンデンサ素子の等価直列抵抗を減
ずる方法としてはコンデンサ素子に穴を開ける方法が提
示されている(例えば、特許文献1参照。)。この方法
では積層されたコンデンサ素子間の等価直列抵抗成分を
有効に減少できていない。
As a method of reducing the equivalent series resistance of the capacitor element, a method of making a hole in the capacitor element has been proposed (for example, refer to Patent Document 1). This method cannot effectively reduce the equivalent series resistance component between the laminated capacitor elements.

【0006】[0006]

【発明が解決しようとする課題】固体電解コンデンサの
等価直列抵抗成分は陽極リード部の固有抵抗成分、陽極
リード部とコンデンサ素子の陽極部との接合面における
接触抵抗成分、コンデンサ素子が有している固有の抵抗
成分、コンデンサ素子の陰極部と陰極リード部の接合面
における接触抵抗成分、陰極リード部の固有抵抗成分が
主に関与している。
The equivalent series resistance component of the solid electrolytic capacitor has a specific resistance component of the anode lead portion, a contact resistance component at the joint surface between the anode lead portion and the anode portion of the capacitor element, and the capacitor element has The specific resistance component, the contact resistance component at the joint surface between the cathode part and the cathode lead part of the capacitor element, and the specific resistance component of the cathode lead part are mainly involved.

【0007】積層構造を有する固体電解コンデンサにお
いては、1層目コンデンサ素子と陰極リード部は導電材
(導電性接着剤)により電気的に接続されているが、2
層目コンデンサ素子は導電材(導電性接着剤)を用いて
1層目コンデンサ素子に結合されるので、陰極リード部
とは1層目コンデンサ素子の表面に形成された陰極導電
体層を介して電気的な接続が確保される構造となってい
て、この陰極導電体層の抵抗成分が作製した固体電解コ
ンデンサの等価直列抵抗を上昇させるという問題点があ
った。
In the solid electrolytic capacitor having a laminated structure, the first layer capacitor element and the cathode lead portion are electrically connected by a conductive material (conductive adhesive).
Since the first-layer capacitor element is bonded to the first-layer capacitor element using a conductive material (conductive adhesive), the cathode lead portion is connected to the first-layer capacitor element through the cathode conductor layer formed on the surface of the first-layer capacitor element. There is a problem that the electrical connection is ensured, and the resistance component of the cathode conductor layer increases the equivalent series resistance of the manufactured solid electrolytic capacitor.

【0008】積層された各コンデンサ素子と陰極リード
部を電気的に直接接続するために、導電性接着剤等をコ
ンデンサ素子の積層後に塗布すると、固体電解コンデン
サの等価直列抵抗は低くなるが、各コンデンサ素子にま
たがって導電性接着剤を塗布するという工程が生じ、生
産性、経済性に問題点があった。
When a conductive adhesive or the like is applied after the capacitor elements are laminated in order to electrically connect the laminated capacitor elements and the cathode lead portion directly, the equivalent series resistance of the solid electrolytic capacitor becomes low. A step of applying a conductive adhesive over the capacitor elements occurs, which causes problems in productivity and economy.

【0009】また、陰極リード部を各コンデンサ素子に
直接接合するような形状とすることでも、固体電解コン
デンサの等価直列抵抗成分を低くすることが出来るが、
同様に陰極リード部に対して複雑な加工工程が必要とな
ってしまう問題点があった。
Further, the equivalent series resistance component of the solid electrolytic capacitor can be reduced by forming the cathode lead portion to be directly bonded to each capacitor element.
Similarly, there is a problem that a complicated processing step is required for the cathode lead portion.

【0010】[0010]

【特許文献1】特開平4−119624号公報[Patent Document 1] Japanese Patent Laid-Open No. 4-119624

【0011】[0011]

【課題を解決するための手段】本発明者等は前述した課
題を解決するために鋭意研究した結果、本発明は従来の
固体電解コンデンサの製造方法を大きく変更することな
く、単にコンデンサ素子陰極部の形状を変更することに
より、積層された全てのコンデンサ素子と陰極リード部
とを導電性接着剤を用いて直接接続することを可能なら
しめるものである。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, the present invention does not significantly change the conventional method for manufacturing a solid electrolytic capacitor, but simply changes the capacitor element cathode portion. By changing the shape of, it becomes possible to directly connect all the laminated capacitor elements and the cathode lead portion by using a conductive adhesive.

【0012】弁作用を有する平板状の金属からなる電極
体の表面に陽極酸化皮膜を設ける際に、コンデンサ素子
の陰極部となる部分の少なくとも1ヶ所に、予め陰極切
り欠き部を設ける。その後は固体電解質層を設け、さら
にこの固体電解質層上に陰極導電体層を設けたコンデン
サ素子を備え、このコンデンサ素子における電極体に一
体に陽極端子を設け、かつこの陽極端子として絶縁樹脂
帯(マスキング)を施した部分を設け、更に前記陰極導
電体層および陽極端子部の接続部がそれぞれ対応するよ
うに複数個のコンデンサ素子を重ね合わせて積層したも
のを陰極リード部及び陽極リード部に接続することによ
り、等価直列抵抗成分が優れて低い固体電解コンデンサ
を得ることが出来る。
When the anodic oxide film is provided on the surface of the electrode body made of a flat metal having a valve action, a cathode notch portion is provided in advance at least at one portion of the capacitor element which serves as the cathode portion. After that, a solid electrolyte layer is provided, and a capacitor element having a cathode conductor layer provided on the solid electrolyte layer is further provided. An anode terminal is integrally provided on the electrode body of this capacitor element, and an insulating resin strip ( A masked portion is provided, and a plurality of capacitor elements are stacked and laminated so that the connection portions of the cathode conductor layer and the anode terminal portion correspond to each other and connected to the cathode lead portion and the anode lead portion. By doing so, a solid electrolytic capacitor having an excellent equivalent series resistance component and a low value can be obtained.

【0013】即ち、本発明は以下の固体電解コンデンサ
及びその製造方法を提供するものである。 1) 表面に誘電体皮膜層を有する弁作用金属からなる
陽極基体の一方の端部を陽極部とし、この陽極基体の残
部の該誘電体皮膜層上に固体電解質層、その上に導電体
層が形成された陰極部を有する複数個の固体電解コンデ
ンサ素子の該陽極部と該陰極部とがそれぞれ積層されて
リードフレームに接続され、外装樹脂で封止成形されて
いる固体電解コンデンサであって、それぞれの固体電解
コンデンサ素子の陰極部の少なくとも一部に切り欠き部
が有り、切り欠き部に導電材が充填されている固体電解
コンデンサ、 2) 固体電解コンデンサ素子の陰極部の切り欠き部
が、陰極部の縁部に有る上記1に記載の固体電解コンデ
ンサ、 3) 固体電解コンデンサ素子が、陽極部と陰極部の境
界部に絶縁性樹脂帯を周状に有する上記1または2に記
載の固体電解コンデンサ、 4) 積層された陰極部の切り欠き部が、導電材で覆わ
れている上記1乃至3のいずれかひとつに記載の固体電
解コンデンサ、 5) 弁作用金属が、アルミニウム、タンタル、チタ
ン、ニオブ及びそれらの合金から選ばれた一種である上
記1乃至4のいずれかひとつに記載の固体電解コンデン
サ、 6) 弁作用金属が、アルミニウム化成箔またはニオブ
化成箔である上記1乃至4のいずれかひとつに記載の固
体電解コンデンサ、 7) 弁作用金属が、30V未満の電圧で化成処理して
得られた化成箔である上記1乃至6のいずれかひとつに
記載の固体電解コンデンサ、 8) リードフレームが、銅または銅合金系の材料であ
る上記1乃至7のいずれかひとつに記載の固体電解コン
デンサ、 9) 固体電解質が、π電子共役系重合体を含んだもの
である上記1乃至8のいずれかひとつに記載の固体電解
コンデンサ、 10) π電子共役系重合体が、複素五員環化合物から
得られた重合体である上記9に記載の固体電解コンデン
サ、 11) 複素五員環化合物が、ピロール、チオフェン、
フラン、イソチアナフテン、1,3−ジヒドロイソチア
ナフテン及びそれらの置換誘導体から選ばれた少なくと
も1種である上記10記載の固体電解コンデンサ、 12) 複素五員環化合物が、3,4−エチレンジオキ
シチオフェン及び1,3−ジヒドロイソチアナフテンか
ら選ばれた少なくとも1種である上記10に記載の固体
電解コンデンサ、 13) 表面に誘電体皮膜層を有する弁作用金属からな
る陽極基体の一方の端部に陽極部を設け、この陽極基体
の残部の少なくとも一部に切り欠き部を有する弁作用金
属の該誘電体皮膜層上に固体電解質層、その上に導電体
層を形成して陰極部を有する固体電解コンデンサ素子と
し、これら素子を切り欠き部が重なるように複数個積層
して切り欠き部に導電材を充填し、陰極部、陽極部をそ
れぞれリードフレームに接続し、外装樹脂で封止成形す
ることを特徴とする固体電解コンデンサの製造方法、 14) 陽極部と陰極部の境界部に絶縁性樹脂帯を周状
に設けた固体電解コンデンサ素子を切り欠き部が重なる
ように複数個積層して切り欠き部に導電材を充填し、陰
極部、陽極部をそれぞれリードフレームに接続し、外装
樹脂で封止成形する上記13に記載の固体電解コンデン
サの製造方法、及び 15) 表面に誘電体皮膜層を有する弁作用金属からな
る陽極基体の一方の端部を陽極部とし、この陽極基体の
残部の該誘電体皮膜層上に固体電解質層、その上に導電
体層が形成された陰極部を有する複数個の固体電解コン
デンサ素子の該陽極部と該陰極部とがそれぞれ積層され
てリードフレームに接続されている固体電解コンデンサ
素子であって、それぞれの固体電解コンデンサ素子の陰
極部の少なくとも一部に切り欠き部が有り、切り欠き部
に導電材が充填されている固体電解コンデンサ素子。
That is, the present invention provides the following solid electrolytic capacitor and its manufacturing method. 1) One end of an anode substrate made of a valve metal having a dielectric coating layer on its surface is used as an anode portion, the rest of the anode substrate has a solid electrolyte layer on the dielectric coating layer, and a conductor layer thereon. A solid electrolytic capacitor in which the anode part and the cathode part of a plurality of solid electrolytic capacitor elements each having a cathode part formed with are laminated and connected to a lead frame, and which is sealed and molded with an exterior resin. , A solid electrolytic capacitor in which at least a part of the cathode portion of each solid electrolytic capacitor element has a cutout portion, and the cutout portion is filled with a conductive material, 2) the cutout portion of the cathode portion of the solid electrolytic capacitor element is The solid electrolytic capacitor as described in 1 above, which is at the edge of the cathode part, 3) The solid electrolytic capacitor element as described in 1 or 2 above, which has an insulating resin band in a circumferential shape at the boundary between the anode part and the cathode part. Solid electrolytic capacitor, 4) The solid electrolytic capacitor as described in any one of 1 to 3 above, in which the cutout portion of the laminated cathode portion is covered with a conductive material. 5) The valve metal is aluminum, tantalum, The solid electrolytic capacitor as described in any one of 1 to 4 above, which is one kind selected from titanium, niobium and alloys thereof, 6) The valve action metal according to 1 to 4 above, which is an aluminum conversion foil or a niobium conversion foil. 7) The solid electrolytic capacitor described in any one of 7), wherein the valve metal is a chemical conversion foil obtained by a chemical conversion treatment at a voltage of less than 30V, and the solid electrolytic capacitor described in any one of 1 to 6 above, 8) The solid electrolytic capacitor as described in any one of 1 to 7 above, in which the lead frame is a copper or copper alloy-based material, 9) The solid electrolyte is a π-electron conjugated system. 10. The solid electrolytic capacitor as described in any one of 1 to 8 above, which contains a polymer, 10) The π-electron conjugated polymer is a polymer obtained from a hetero five-membered ring compound, according to 9 above. Solid electrolytic capacitors, 11) Hetero five-membered ring compounds are pyrrole, thiophene,
The solid electrolytic capacitor as described in 10 above, which is at least one selected from furan, isothianaphthene, 1,3-dihydroisothianaphthene, and substituted derivatives thereof, 12) The 5-membered heterocyclic compound is 3,4-ethylene. 11. The solid electrolytic capacitor as described in 10 above, which is at least one selected from dioxythiophene and 1,3-dihydroisothianaphthene, 13) One of the anode substrates made of a valve metal having a dielectric film layer on the surface thereof. A cathode portion is provided by forming an anode portion on an end portion, and forming a solid electrolyte layer on the dielectric coating layer of the valve metal having a cutout portion in at least a part of the remaining portion of the anode substrate, and forming a conductor layer thereon. A solid electrolytic capacitor element having, a plurality of these elements are laminated so that the cutout portions overlap, and the cutout portions are filled with a conductive material, and the cathode portion and the anode portion are respectively formed. A method for manufacturing a solid electrolytic capacitor, which comprises connecting to a lead frame and molding with an exterior resin, 14) A solid electrolytic capacitor element in which an insulating resin band is circumferentially provided at a boundary between an anode part and a cathode part. 14. The solid electrolysis as described in 13 above, wherein a plurality of cutouts are laminated so that the cutouts are overlapped, the cutouts are filled with a conductive material, the cathode part and the anode part are respectively connected to lead frames, and sealing molding is performed with an exterior resin. Method of manufacturing capacitor, and 15) One end of an anode substrate made of a valve metal having a dielectric coating layer on the surface is used as an anode part, and a solid electrolyte layer is formed on the remainder of the anode substrate on the dielectric coating layer. A solid electrolytic capacitor element in which a plurality of solid electrolytic capacitor elements each having a cathode portion on which a conductor layer is formed are laminated and connected to a lead frame. Te, each of the solid electrolyte at least partially in the notch portion of the cathode portion of the capacitor element is there, the solid electrolytic capacitor element is electrically conductive material in the notch portion is filled.

【0014】[0014]

【発明の実施の形態】以下、本発明について詳細に説明
する。 (弁作用金属)本発明において固体電解コンデンサの陽
極基体として用いられる弁作用金属としては、例えばア
ルミニウム、タンタル、チタン、ニオブ、ジルコニウム
およびこれらを基質とする合金等がいずれも使用でき
る。そして陽極基体の形状としては、平板状の箔や板や
棒状等が挙げられる。このうちアルミニウム化成箔が経
済性に優れているので実用上多く用いられている。この
アルミニウム化成箔は、40〜200μm厚、平板形素
子単位として縦横1〜30mm程度の矩形のものが使用
される。好ましくは幅2〜20mm、長さ2〜20m
m、より好ましくは幅2〜5mm、長さ2〜6mmであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. (Valve metal) As the valve metal used as the anode substrate of the solid electrolytic capacitor in the present invention, for example, aluminum, tantalum, titanium, niobium, zirconium and alloys using these as substrates can be used. The shape of the anode substrate may be a flat foil, a plate, a rod, or the like. Of these, aluminum chemical conversion foils are often used in practice because of their excellent economic efficiency. As this aluminum chemical conversion foil, a rectangular one having a thickness of 40 to 200 μm and a flat element unit of about 1 to 30 mm in length and width is used. Width 2 to 20 mm, length 2 to 20 m
m, more preferably 2 to 5 mm in width and 2 to 6 mm in length.

【0015】陽極基体の表面に設ける誘電体皮膜層は、
弁作用金属の表面部分に設けられた弁作用金属自体の酸
化物層であってもよく、或は、弁作用金属箔の表面上に
設けられた他の誘電体層であってもよいが、特に弁作用
金属自体の酸化物からなる層であることが望ましい。
The dielectric coating layer provided on the surface of the anode substrate is
Although it may be an oxide layer of the valve action metal itself provided on the surface portion of the valve action metal, or may be another dielectric layer provided on the surface of the valve action metal foil, In particular, a layer made of an oxide of the valve metal itself is desirable.

【0016】本発明では、表面に誘電体皮膜層が形成さ
れた平板状の陽極基体の端部の一区画に陽極部を設け
て、さらにこの陽極基体の残部の誘電体皮膜上に固体電
解質層、導電体層が形成された陰極部を設けており、こ
の陰極部の少なくとも一部に切り欠き部を設けている。
In the present invention, an anode portion is provided in one section of an end portion of a flat plate-shaped anode substrate having a dielectric coating layer formed on the surface, and a solid electrolyte layer is further formed on the remaining dielectric coating of the anode substrate. A cathode portion provided with a conductor layer is provided, and a cutout portion is provided in at least a part of the cathode portion.

【0017】切り欠き部を設けるのは、陽極基体(弁作
用金属)に誘電体皮膜層を形成する前に行うのが好まし
いが、陽極基体に誘電体皮膜層を形成した後、または固
体電解質層を形成する前でも、切り欠き部を設けること
で生じた切り込み口の弁作用金属表面に誘電体皮膜を形
成させることができればよい。結果的に陽極基体の弁作
用金属表面が誘電体皮膜層で覆われていれば切り欠き部
を設ける時機は特に差し支えがない。
The notch is preferably formed before forming the dielectric coating layer on the anode substrate (valve action metal), but after forming the dielectric coating layer on the anode substrate or the solid electrolyte layer. It is sufficient that the dielectric film can be formed on the valve action metal surface of the notch formed by providing the notch even before forming the. As a result, when the valve metal surface of the anode substrate is covered with the dielectric film layer, there is no particular problem in providing the notch.

【0018】切り欠き部の大きさは、陰極部の大きさ、
コンデンサ素子の積層枚数によって異なるため予備実験
によって決められる。また切り欠き部の形状は円形、楕
円形、半円形、三角形、四角形等公知のどのような形状
でも差し支えない。切り欠き部の個数は、複数個でもよ
い。
The size of the cutout portion is the size of the cathode portion,
It depends on the number of stacked capacitor elements and is determined by preliminary experiments. The shape of the notch may be any known shape such as a circle, an ellipse, a semicircle, a triangle, and a quadrangle. The number of notches may be plural.

【0019】また、切り欠き部が有る部位としてはコン
デンサ素子の陰極部であれば、例えば平板状の素子では
縁部(外周部で隅部を含む)、平板央部どこでもよい
が、加工し易さ、素子の強度等で縁部が好ましい。
Further, as the portion having the cutout portion, if it is the cathode portion of the capacitor element, for example, in the case of a plate-shaped element, it may be at the edge portion (including the corner portion at the outer peripheral portion) or the flat plate central portion, but it is easy to process. The edge is preferable in terms of the strength of the element.

【0020】弁作用を有する平板状の金属からなる電極
体の表面に陽極酸化皮膜を設ける際に、コンデンサ素子
の陰極部となる部分の少なくとも1ケ所に、図2に示す
ような切り欠き部8を設ける。なお、図2の切り欠き部
形状は四角形であるが、切り欠き形状は問わない。図3
の如き側面に形成された切り欠き部8aであってもっよ
い。
When an anodic oxide film is provided on the surface of a plate-shaped metal plate having a valve action, a notch 8 as shown in FIG. To provide. The shape of the cutout portion in FIG. 2 is a quadrangle, but the shape of the cutout portion does not matter. Figure 3
The cutout portion 8a may be formed on the side surface as described above.

【0021】(固体電解質)次に、陽極部とした以外の
残りの誘電体皮膜層上に固体電解質を形成させている
が、固体電解質層の種類には特に制限は無く、従来公知
の固体電解質が使用できるが、とりわけ高導電率の導電
性高分子を固体電解質として作製する固体電解質コンデ
ンサは、従来の電解液を用いた湿式電解コンデンサや二
酸化マンガンを用いた固体電解コンデンサに比べて、等
価直列抵抗成分が低く、大容量でかつ小形となり、高周
波性能が良好なために好ましい。
(Solid Electrolyte) Next, a solid electrolyte is formed on the remaining dielectric coating layer other than the anode portion, but the type of solid electrolyte layer is not particularly limited, and a conventionally known solid electrolyte is used. However, solid electrolyte capacitors that use a high conductivity conductive polymer as a solid electrolyte are equivalent to series capacitors compared to conventional wet electrolytic capacitors that use electrolytic solutions and solid electrolytic capacitors that use manganese dioxide. It is preferable because it has a low resistance component, a large capacity, a small size, and good high-frequency performance.

【0022】本発明の固体電解コンデンサに用いられる
固体電解質を形成する導電性重合体は限定されないが、
好ましくはπ電子共役系構造を有する導電性重合体、例
えばチオフェン骨格を有する化合物、多環状スルフィド
骨格を有する化合物、ピロール骨格を有する化合物、フ
ラン骨格を有する化合物等で示される構造を繰り返し単
位として含む導電性重合体が挙げられる。
The conductive polymer forming the solid electrolyte used in the solid electrolytic capacitor of the present invention is not limited,
Preferably, a conductive polymer having a π-electron conjugated structure, for example, a compound having a thiophene skeleton, a compound having a polycyclic sulfide skeleton, a compound having a pyrrole skeleton, a compound having a furan skeleton, etc. is contained as a repeating unit. Conductive polymers are mentioned.

【0023】導電性重合体の原料として用いられるモノ
マーのうち、チオフェン骨格を有する化合物としては、
例えば、3−メチルチオフェン、3−エチルチオフェ
ン、3−プロピルチオフェン、3−ブチルチオフェン、
3−ペンチルチオフェン、3−ヘキシルチオフェン、3
−ヘプチルチオフェン、3−オクチルチオフェン、3−
ノニルチオフェン、3−デシルチオフェン、3−フルオ
ロチオフェン、3−クロロチオフェン、3−ブロモチオ
フェン、3−シアノチオフェン、3,4−ジメチルチオ
フェン、3,4−ジエチルチオフェン、3,4−ブチレ
ンチオフェン、3,4−メチレンジオキシチオフェン、
3,4−エチレンジオキシチオフェン等の誘導体を挙げ
ることができる。これらの化合物は、一般には市販され
ている化合物または公知の方法(例えば、Synthetic M
etals誌,1986年,15巻,169頁)で準備できる。
Among the monomers used as the raw material of the conductive polymer, the compound having a thiophene skeleton is
For example, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene,
3-pentylthiophene, 3-hexylthiophene, 3
-Heptylthiophene, 3-octylthiophene, 3-
Nonylthiophene, 3-decylthiophene, 3-fluorothiophene, 3-chlorothiophene, 3-bromothiophene, 3-cyanothiophene, 3,4-dimethylthiophene, 3,4-diethylthiophene, 3,4-butylenethiophene, 3 , 4-methylenedioxythiophene,
Examples thereof include derivatives such as 3,4-ethylenedioxythiophene. These compounds are commercially available compounds or known methods (for example, Synthetic M
et al., 1986, vol. 15, p. 169).

【0024】また、例えば、多環状スルフィド骨格を有
する化合物としては、例えば、1,3−ジヒドロ多環状
スルフィド(別名、1,3−ジヒドロベンゾ[c]チオ
フェン)骨格を有する化合物、1,3−ジヒドロナフト
[2,3−c]チオフェン骨格を有する化合物が使用で
きる。さらには1,3−ジヒドロアントラ[2,3−
c]チオフェン骨格を有する化合物、1,3−ジヒドロ
ナフタセノ[2,3−c]チオフェン骨格を有する化合
物を挙げることができ、公知の方法、例えば特開平8-31
56号広報記載の方法により準備することができる。
As the compound having a polycyclic sulfide skeleton, for example, a compound having a 1,3-dihydropolycyclic sulfide (also known as 1,3-dihydrobenzo [c] thiophene) skeleton, 1,3- A compound having a dihydronaphtho [2,3-c] thiophene skeleton can be used. Furthermore, 1,3-dihydroanthra [2,3-
Examples thereof include compounds having a c] thiophene skeleton and compounds having a 1,3-dihydronaphthaceno [2,3-c] thiophene skeleton, and known methods such as JP-A 8-31
It can be prepared by the method described in No. 56 Public Relations.

【0025】また、例えば、1,3−ジヒドロナフト
[1,2−c]チオフェン骨格を有する化合物、1,3
−ジヒドロフェナントラ[2,3−c]チオフェン誘導
体、1,3−ジヒドロトリフェニロ[2,3−c]チオ
フェン骨格を有する化合物、1,3−ジヒドロベンゾ
[a]アントラセノ[7,8−c]チオフェン誘導体等
も使用できる。
Further, for example, a compound having a 1,3-dihydronaphtho [1,2-c] thiophene skeleton, 1,3
-Dihydrophenanthra [2,3-c] thiophene derivative, compound having 1,3-dihydrotriphenyl [2,3-c] thiophene skeleton, 1,3-dihydrobenzo [a] anthraceno [7,8- c] Thiophene derivatives and the like can also be used.

【0026】縮合環に窒素またはN−オキシドを任意に
含んでいる化合物もあり、1,3−ジヒドロチエノ
[3,4−b]キノキサリンや、1,3−ジヒドロチエ
ノ[3,4−b]キノキサリン−4−オキシド、1,3
−ジヒドロチエノ[3,4−b]キノキサリン−4,9
−ジオキシド等を挙げることができるが、これらに限定
されるものではない。
Some compounds optionally contain nitrogen or N-oxide in the condensed ring, such as 1,3-dihydrothieno [3,4-b] quinoxaline and 1,3-dihydrothieno [3,4-b] quinoxaline-. 4-oxide, 1,3
-Dihydrothieno [3,4-b] quinoxaline-4,9
-Dioxide and the like can be mentioned, but the invention is not limited thereto.

【0027】また、ピロール骨格を有する化合物として
は、例えば、3−メチルピロール、3−エチルピロー
ル、3−プロピルピロール、3−ブチルピロール、3−
ペンチルピロール、3−ヘキシルピロール、3−ヘプチ
ルピロール、3−オクチルピロール、3−ノニルピロー
ル、3−デシルピロール、3−フルオロピロール、3−
クロロピロール、3−ブロモピロール、3−シアノピロ
ール、3,4−ジメチルピロール、3,4−ジエチルピ
ロール、3,4−ブチレンピロール、3,4−メチレン
ジオキシピロール、3,4−エチレンジオキシピロール
等の誘導体を挙げられるが、これらに限られない。これ
らの化合物は、市販品または公知の方法で準備できる。
Examples of the compound having a pyrrole skeleton include 3-methylpyrrole, 3-ethylpyrrole, 3-propylpyrrole, 3-butylpyrrole and 3-
Pentylpyrrole, 3-hexylpyrrole, 3-heptylpyrrole, 3-octylpyrrole, 3-nonylpyrrole, 3-decylpyrrole, 3-fluoropyrrole, 3-
Chloropyrrole, 3-bromopyrrole, 3-cyanopyrrole, 3,4-dimethylpyrrole, 3,4-diethylpyrrole, 3,4-butylenepyrrole, 3,4-methylenedioxypyrrole, 3,4-ethylenedioxy Examples thereof include derivatives such as pyrrole, but are not limited thereto. These compounds can be commercially available or can be prepared by known methods.

【0028】また、フラン骨格を有する化合物として
は、例えば、3−メチルフラン、3−エチルフラン、3
−プロピルフラン、3−ブチルフラン、3−ペンチルフ
ラン、3−ヘキシルフラン、3−ヘプチルフラン、3−
オクチルフラン、3−ノニルフラン、3−デシルフラ
ン、3−フルオロフラン、3−クロロフラン、3−ブロ
モフラン、3−シアノフラン、3,4−ジメチルフラ
ン、3,4−ジエチルフラン、3,4−ブチレンフラ
ン、3,4−メチレンジオキシフラン、3,4−エチレ
ンジオキシフラン等の誘導体が挙げられるが、これらに
限られるものではない。これらの化合物は市販品または
公知の方法で準備できる。
Examples of the compound having a furan skeleton include 3-methylfuran, 3-ethylfuran, and 3
-Propylfuran, 3-butylfuran, 3-pentylfuran, 3-hexylfuran, 3-heptylfuran, 3-
Octylfuran, 3-nonylfuran, 3-decylfuran, 3-fluorofuran, 3-chlorofuran, 3-bromofuran, 3-cyanofuran, 3,4-dimethylfuran, 3,4-diethylfuran, 3,4-butylenefuran, Examples thereof include derivatives such as 3,4-methylenedioxyfuran and 3,4-ethylenedioxyfuran, but are not limited thereto. These compounds may be commercially available products or prepared by known methods.

【0029】重合の手法は、電解重合でも、化学酸化重
合でも、その組合せでもよい。また、誘電体皮膜上に導
電性重合体でない固体電解質をまず形成し、次いで上記
の重合方法で導電性重合体を形成する方法でもよい。
The method of polymerization may be electrolytic polymerization, chemical oxidative polymerization, or a combination thereof. Alternatively, a method in which a solid electrolyte that is not a conductive polymer is first formed on the dielectric film and then the conductive polymer is formed by the above-mentioned polymerization method may be used.

【0030】導電性重合体を形成する例として、3,4
−エチレンジオキシチオフェンモノマー及び酸化剤を好
ましくは溶液の形態において、別々に前後してまたは一
緒に誘電体皮膜上に塗布して形成する方法(特開平2-156
11号公報や特開平10-32145号公報)等が利用できる。
As an example of forming a conductive polymer, 3,4
A method of forming ethylenedioxythiophene monomer and an oxidizing agent, preferably in the form of a solution, separately, before or after or together on a dielectric film (JP-A-2-156)
No. 11, JP-A-10-32145) and the like can be used.

【0031】一般に導電性重合体には、ドーピング能の
ある化合物(ドーパント)が使用されるが、ドーパントは
モノマー溶液と酸化剤溶液のいずれに添加しても良く、
ドーパントと酸化剤が同一の化合物になっている有機ス
ルホン酸金属塩の様なものでもよい。ドーパントとして
は、好ましくはアリールスルホン酸塩系のドーパントが
使用される。例えば、ベンゼンスルホン酸、トルエンス
ルホン酸、ナフタレンスルホン酸、アントラセンスルホ
ン酸、アントラキノンスルホン酸などの塩を用いること
ができる。
Generally, a compound having a doping ability (dopant) is used for the conductive polymer, but the dopant may be added to either the monomer solution or the oxidant solution,
It may be an organic sulfonic acid metal salt in which the dopant and the oxidizing agent are the same compound. As the dopant, an aryl sulfonate-based dopant is preferably used. For example, salts of benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, anthracenesulfonic acid, anthraquinonesulfonic acid and the like can be used.

【0032】(固体電解コンデンサ)そしてこのような
導電性重合体を含む固体電解質層上には、例えばカーボ
ンペーストおよび/または銀ペースト等の従来公知の導
電ペーストを積層して導電体層を形成して陰極部(導電
体層形成部)を構成している。また、陽極部と陰極部と
の境界部に絶縁樹脂層(マスキング用のレジスト膜)に
より、周状(はち巻き状)に絶縁樹脂層を形成していて
もよい。
(Solid Electrolytic Capacitor) Then, a known conductive paste such as carbon paste and / or silver paste is laminated on the solid electrolyte layer containing the conductive polymer to form a conductive layer. Constitutes a cathode portion (conductor layer forming portion). In addition, an insulating resin layer (a resist film for masking) may be formed around the boundary between the anode part and the cathode part so as to form an insulating resin layer in a circumferential shape (in a spiral shape).

【0033】このように導電体層まで形成されたコンデ
ンサ素子を複数枚方向を揃えて積層する方法を説明す
る。このコンデンサ素子11aを図4に示すように、陰
極リード部21に導電性接着剤23aを用いて接合す
る。なお、図4においては陰極リード部上に導電性接着
剤を塗布しているが、導電性接着剤の塗布は陰極リード
部側でもコンデンサ素子側でも、或いはその双方でもか
まわない。コンデンサ素子と陰極リード部を接合する
と、図5に示すように導電性接着剤の一部が陰極切り欠
き部にはみ出し、導電性接着部31を切り欠き部周辺に
形成することとなる。次いで、コンデンサ素子11a上
に導電性接着剤23bを用いてコンデンサ素子11bを
接合すると図6に示すように、陰極切り欠き部からはみ
出た余剰の導電性接着剤は導電性接着部31と接触し一
体化して、導電性接着部41が形成される。この導電性
接着部41を介して1層目コンデンサ素子11a、2層
目コンデンサ素子11b及び陰極リード部21が電気
的、機械的に直接接続することとなり、コンデンサ素
子、陰極リード部間及びコンデンサ素子間の電気抵抗を
減ずる効果をもたらし、等価直列抵抗が低下したコンデ
ンサを得ることができる。
A method of stacking a plurality of capacitor elements thus formed up to the conductor layer with their directions aligned will be described. As shown in FIG. 4, the capacitor element 11a is bonded to the cathode lead portion 21 using a conductive adhesive 23a. Although the conductive adhesive is applied to the cathode lead portion in FIG. 4, the conductive adhesive may be applied to the cathode lead portion side, the capacitor element side, or both. When the capacitor element and the cathode lead portion are joined together, as shown in FIG. 5, a part of the conductive adhesive is squeezed out into the cathode cutout portion, and the conductive adhesive portion 31 is formed around the cutout portion. Then, when the capacitor element 11b is bonded onto the capacitor element 11a by using the conductive adhesive 23b, the excess conductive adhesive protruding from the cathode notch comes into contact with the conductive adhesive portion 31, as shown in FIG. The conductive adhesive portion 41 is formed integrally. The first-layer capacitor element 11a, the second-layer capacitor element 11b, and the cathode lead portion 21 are directly electrically and mechanically connected via the conductive adhesive portion 41, and the capacitor element, the cathode lead portion, and the capacitor element are connected. The effect of reducing the electrical resistance between them is brought about, and a capacitor with reduced equivalent series resistance can be obtained.

【0034】図7は、積層したコンデンサ素子を導電性
接着剤で接合した状態を示す断面図である。同図におい
て、コンデンサ素子1の陰極部2の切り欠き部8が一致
するように各コンデンサ素子を載置した後、導電性接着
剤によって切り欠き部8を一体化して積層したコンデン
サ素子としている。切り欠き部8の大半を導電性接着剤
で埋めていれば、切り欠き部8の一部に導電性接着剤の
未充填部があってもよい。
FIG. 7 is a cross-sectional view showing a state in which laminated capacitor elements are joined with a conductive adhesive. In the figure, each capacitor element is placed so that the cutout portions 8 of the cathode portion 2 of the capacitor element 1 are aligned with each other, and then the cutout portions 8 are integrally laminated by a conductive adhesive to form a laminated capacitor element. If most of the cutout portion 8 is filled with the conductive adhesive, a part of the cutout portion 8 may have a portion not filled with the conductive adhesive.

【0035】積層したコンデンサ素子は、さらに各コン
デンサ素子同志の接続を強固にするため、各コンデンサ
素子の陰極部のみを、例えば銀ペースト等の導電材浴に
浸漬し、乾燥硬化することにより一体化を計ってもよ
い。前述した導電材としては、銀ペースト等の公知の導
電ペースト、クリーム半田等の溶融可能金属が挙げられ
る。
In order to further strengthen the connection between the capacitor elements, the laminated capacitor elements are integrated by immersing only the cathode portion of each capacitor element in a bath of conductive material such as silver paste and drying and hardening. You may measure. Examples of the above-mentioned conductive material include known conductive paste such as silver paste and meltable metal such as cream solder.

【0036】このようにしてリードフレームに接続され
た固体電解コンデンサ素子はエポキシ樹脂等の外装樹脂
により、トランスファー成形機等で、封止成形を行った
後、リードフレームの凸部をコンデンサ素子の近辺で切
断してチップ状の固体電解コンデンサとしている。
The solid electrolytic capacitor element thus connected to the lead frame is sealed and molded with an exterior resin such as epoxy resin by a transfer molding machine or the like, and then the convex portion of the lead frame is placed near the capacitor element. It is cut with to make a chip-shaped solid electrolytic capacitor.

【0037】リードフレームの材料は一般的に使用され
るものであれば特に制限はないが、好ましくは銅系(例
えばCu−Ni系、Cu−Ag系、Cu−Sn系、Cu
−Fe系、Cu−Ni−Ag系、Cu−Ni−Sn系、
Cu−Co−P系、Cu−Zn−Mg系、Cu−Sn−
Ni−P系合金等)の材料もしくは表面に銅系の材料の
メッキ処理を施した材料で構成すればリードフレームの
形状の工夫により抵抗の減少、リードフレームの面取り
作業性が良好になる等の効果が得られる。
The material of the lead frame is not particularly limited as long as it is generally used, but is preferably a copper type (for example, Cu-Ni type, Cu-Ag type, Cu-Sn type, Cu
-Fe system, Cu-Ni-Ag system, Cu-Ni-Sn system,
Cu-Co-P system, Cu-Zn-Mg system, Cu-Sn-
Ni-P alloy etc.) or a material plated with a copper-based material on the surface can reduce resistance by improving the shape of the lead frame and improve chamfering workability of the lead frame. The effect is obtained.

【0038】[0038]

【実施例】以下に本発明について代表的な例を示し、さ
らに具体的に説明する。なお、これらは説明のための単
なる例示であって、本発明はこれらに何等制限されるも
のでない。
The present invention will be described in more detail below by showing typical examples. Note that these are merely examples for description, and the present invention is not limited to these.

【0039】実施例1〜5 表1に示した形状と大きさの切り欠き部を有するアルミ
ニウム化成箔(日本蓄電器工業株式会社製、箔種110
LJB22B、定格皮膜耐電圧:4vf)(以下、化成
箔と称する。)を先端から二分するように、化成箔の両
面および両端にマスキング材(耐熱性樹脂)による幅1
mmのマスキングを周状に形成した。陰極部(横3mm
×縦4mm)と陽極部に分け、この化成箔の先端側区画
部分である陰極部を、電解液としてアジピン酸アンモニ
ウム10質量%水溶液を使用し、温度55℃、電圧4
V、電流密度5mA/cm2、通電時間10分の条件で化
成し、水洗した。
Examples 1 to 5 Aluminum chemical conversion foils having notches of the shapes and sizes shown in Table 1 (manufactured by Nippon Condenser Industry Co., Ltd., foil type 110).
LJB22B, rated film withstand voltage: 4 vf (hereinafter referred to as "formation foil") is divided in half from the tip by a masking material (heat-resistant resin) width 1 on both sides and both ends.
A mm masking was formed circumferentially. Cathode part (width 3mm
(Vertical length 4 mm) and an anode part, and the cathode part, which is a partition part on the tip side of this chemical conversion foil, uses a 10 mass% ammonium adipate aqueous solution as an electrolytic solution, and the temperature is 55 ° C. and the voltage is 4
It was formed under the conditions of V, current density of 5 mA / cm 2 and energization time of 10 minutes, and washed with water.

【0040】その後、陰極部を、3,4−エチレンジオ
キシチオフェンのイソプロピルアルコール溶液1mol
/lに浸漬後、2分間放置し、次いで、酸化剤(過硫酸
アンモニウム:1.5mol/l)とドーパント(ナフ
タレン−2−スルホン酸ナトリウム:0.15mol/
l)の混合水溶液に浸漬し、45℃、5分間放置するこ
とにより酸化重合を行った。
Thereafter, the cathode portion was replaced with 1 mol of a solution of 3,4-ethylenedioxythiophene in isopropyl alcohol.
After immersing in 1 / l, it is left for 2 minutes, and then an oxidizing agent (ammonium persulfate: 1.5 mol / l) and a dopant (sodium naphthalene-2-sulfonate: 0.15 mol / l)
It was immersed in the mixed aqueous solution of 1) and left at 45 ° C. for 5 minutes to carry out oxidative polymerization.

【0041】この含浸工程及び重合工程を全体で12回
繰り返し、ドーパントを含む固体電解質層を化成箔の微
細孔内に形成した。このドーパントを含む固体電解質層
を形成した化成箔を50℃温水中で水洗し固体電解質層
を形成した。固体電解質層を形成させた後、電解液とし
てアジピン酸アンモニウム10質量%水溶液を使用し、
温度55℃、電圧4V、電流密度5mA/cm2、通電
時間10分の条件で再度化成し、水洗の後、100℃で
30分乾燥を行った。その上にカーボンペースト、銀ペ
ーストを順次被覆させて陰極導電体層を形成した。
The impregnation step and the polymerization step were repeated 12 times in total to form a solid electrolyte layer containing a dopant in the fine pores of the chemical conversion foil. The formed foil on which the solid electrolyte layer containing this dopant was formed was washed with water at 50 ° C. to form a solid electrolyte layer. After forming the solid electrolyte layer, a 10 mass% ammonium adipate aqueous solution is used as an electrolytic solution,
It was chemically reformed under the conditions of a temperature of 55 ° C., a voltage of 4 V, a current density of 5 mA / cm 2 , and an energization time of 10 minutes, washed with water, and then dried at 100 ° C. for 30 minutes. A carbon paste and a silver paste were sequentially coated thereon to form a cathode conductor layer.

【0042】このコンデンサ素子3枚を、リードフレー
ムの陰極リード部及び陽極リード部に対して導電性接着
剤として銀ペーストを用いて方向を揃えて重ね、積層し
陰極部の接合をした。積層した陽極部は陽極リード部を
スポット熔接にて接合した。
The three capacitor elements were laminated on the cathode lead portion and the anode lead portion of the lead frame by using silver paste as a conductive adhesive in the same direction and laminated to join the cathode portions. The laminated anode part was joined by spot welding the anode lead part.

【0043】このコンデンサ素子の積層構造体を樹脂封
止し、更に135℃の環境で2.5Vの電圧を45分間
印加して、コンデンサ素子が3枚積層された構造を持つ
定格容量100μF、定格電圧2Vの固体電解コンデン
サを50個得た。こうして得られた50個の固体電解コ
ンデンサの容量、等価直列抵抗を実際に測定した結果を
表2として示す。
The laminated structure of this capacitor element is sealed with resin, and a voltage of 2.5 V is applied for 45 minutes in an environment of 135 ° C. to have a structure in which three capacitor elements are laminated, the rated capacity is 100 μF, and the rating is 100 μF. 50 solid electrolytic capacitors having a voltage of 2 V were obtained. Table 2 shows the results of actual measurement of the capacities and equivalent series resistances of the 50 solid electrolytic capacitors thus obtained.

【0044】実施例6 実施例1において、過硫酸アンモニウムに代えて硫酸第
2鉄を、また、3,4−エチレンジオキシチオフェンに
代えてジヒドロイソチアナフテンとした以外は、実施例
1と同様に50個のコンデンサ素子を作製させた。これ
ら試験体の評価を実施例1と同様に行った。その結果を
表2に示す。
Example 6 The same as Example 1 except that ferric sulfate was replaced with ammonium persulfate and dihydroisothianaphthene was replaced with 3,4-ethylenedioxythiophene. Fifty capacitor elements were produced. Evaluation of these test pieces was performed in the same manner as in Example 1. The results are shown in Table 2.

【0045】実施例7 実施例1において、3,4−エチレンジオキシチオフェ
ンに代えてピロールとし、この時、ピロール溶液は含浸
後、3℃で5分間乾燥し、さらに酸化剤溶液含浸後、5
℃にて10分間重合させた以外は、実施例1と同様に5
0個のコンデンサ素子を作製させた。これら試験体の評
価を実施例1と同様に行った。その結果を表2に示す。
Example 7 In Example 1, pyrrole was used in place of 3,4-ethylenedioxythiophene. At this time, the pyrrole solution was impregnated and dried at 3 ° C. for 5 minutes.
The same procedure as in Example 1 was repeated except that the polymerization was conducted at 10 ° C. for 10 minutes.
0 capacitor elements were produced. Evaluation of these test pieces was performed in the same manner as in Example 1. The results are shown in Table 2.

【0046】比較例1 陰極部に切り欠き部が無い化成箔を用いた、以外は実施
例1と同様にして50個の固体電解コンデンサを作製し
た。その固体電解コンデンサの性能を表2に示した。な
お各実施例または比較例は全数値とも50点の平均値で
ある。
Comparative Example 1 Fifty solid electrolytic capacitors were produced in the same manner as in Example 1 except that a chemical conversion foil having no notch portion in the cathode portion was used. The performance of the solid electrolytic capacitor is shown in Table 2. In each of the examples and comparative examples, all numerical values are average values of 50 points.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】このようにコンデンサ素子の陰極部に陰
極切り欠き部を設けることにより、コンデンサ素子の積
層枚数を何枚にしても、陰極切り欠き部に形成される余
剰導電性接着剤が陰極リード部とコンデンサ素子を直接
接続することとなり、積層されたコンデンサ素子と陰極
リード部間の抵抗成分を減ずることが出来る。コンデン
サ素子と陰極リード部間の抵抗成分を減ずることによ
り、等価直列抵抗成分の低い固体電解コンデンサの製造
を可能とする。
As described above, by providing the cathode notch portion in the cathode portion of the capacitor element, the surplus conductive adhesive formed in the cathode notch portion becomes the cathode regardless of the number of laminated capacitor elements. Since the lead portion and the capacitor element are directly connected, the resistance component between the laminated capacitor element and the cathode lead portion can be reduced. By reducing the resistance component between the capacitor element and the cathode lead portion, it is possible to manufacture a solid electrolytic capacitor having a low equivalent series resistance component.

【0050】[0050]

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の積層型固体電解コンデンサ素子を示す斜
視図。
FIG. 1 is a perspective view showing a conventional laminated solid electrolytic capacitor element.

【図2】本発明におけるコンデンサ素子の切り欠き部の
例を示した平面図。
FIG. 2 is a plan view showing an example of a cutout portion of a capacitor element according to the present invention.

【図3】本発明におけるコンデンサ素子の切り欠き部の
例を示した平面図。
FIG. 3 is a plan view showing an example of a cutout portion of a capacitor element according to the present invention.

【図4】本発明の1層目コンデンサ素子を陰極リード部
及び陽極リード部に接合する状態を表す斜視図。
FIG. 4 is a perspective view showing a state in which the first layer capacitor element of the present invention is bonded to a cathode lead portion and an anode lead portion.

【図5】本発明の2層目コンデンサ素子を陰極リード部
及び陽極リード部に接合する状態を表す斜視図。
FIG. 5 is a perspective view showing a state in which the second layer capacitor element of the present invention is bonded to the cathode lead portion and the anode lead portion.

【図6】本発明の2層目コンデンサ素子を陰極リード部
及び陽極リード部に接合した状態を表す斜視図。
FIG. 6 is a perspective view showing a state in which a second-layer capacitor element of the present invention is joined to a cathode lead portion and an anode lead portion.

【図7】本発明の固体電解コンデンサ素子の断面図
(a)及び平面図(b)。
FIG. 7 is a sectional view (a) and a plan view (b) of the solid electrolytic capacitor element of the present invention.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 2 陰極部 3 陽極部 4 陰極リード部 5 陽極リード部 6 外装樹脂 7 マスキング(レジスト膜) 8、8a 切り欠き部 11a 1層目コンデンサ素子 11b 2層目コンデンサ素子 21 陰極リード 22 陽極リード 23a、23b 導電性接着剤 31 導電性接着部 41 導電性接着部 1 Capacitor element 2 Cathode part 3 Anode part 4 Cathode lead part 5 Anode lead part 6 Exterior resin 7 Masking (resist film) 8,8a Notch 11a First layer capacitor element 11b Second layer capacitor element 21 Cathode lead 22 Anode lead 23a, 23b conductive adhesive 31 Conductive adhesive part 41 Conductive adhesive part

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/14 H01G 9/04 325 9/15 9/02 331G 9/24 B C F Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01G 9/14 H01G 9/04 325 9/15 9/02 331G 9/24 B C F

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 表面に誘電体皮膜層を有する弁作用金属
からなる陽極基体の一方の端部を陽極部とし、この陽極
基体の残部の該誘電体皮膜層上に固体電解質層、その上
に導電体層が形成された陰極部を有する複数個の固体電
解コンデンサ素子の該陽極部と該陰極部とがそれぞれ積
層されてリードフレームに接続され、外装樹脂で封止成
形されている固体電解コンデンサであって、それぞれの
固体電解コンデンサ素子の陰極部の少なくとも一部に切
り欠き部が有り、切り欠き部に導電材が充填されている
固体電解コンデンサ。
1. An anode part made of a valve metal having a dielectric film layer on its surface is used as an anode part, and a solid electrolyte layer is provided on the remaining part of the anode substrate, and a solid electrolyte layer is formed on the dielectric film layer. A solid electrolytic capacitor in which the anode part and the cathode part of a plurality of solid electrolytic capacitor elements each having a cathode part in which a conductor layer is formed are laminated and connected to a lead frame, and are molded by encapsulation with an exterior resin. A solid electrolytic capacitor in which a cutout portion is provided in at least a part of the cathode portion of each solid electrolytic capacitor element, and the cutout portion is filled with a conductive material.
【請求項2】 固体電解コンデンサ素子の陰極部の切り
欠き部が、陰極部の縁部に有る請求項1に記載の固体電
解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the notch portion of the cathode portion of the solid electrolytic capacitor element is at an edge portion of the cathode portion.
【請求項3】 固体電解コンデンサ素子が、陽極部と陰
極部の境界部に絶縁性樹脂帯を周状に有する請求項1ま
たは2に記載の固体電解コンデンサ。
3. The solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor element has an insulating resin band in a circumferential shape at a boundary between the anode part and the cathode part.
【請求項4】 積層された陰極部の切り欠き部が、導電
材で覆われている請求項1乃至3のいずれかひとつに記
載の固体電解コンデンサ。
4. The solid electrolytic capacitor according to claim 1, wherein the cutout portion of the laminated cathode portion is covered with a conductive material.
【請求項5】 弁作用金属が、アルミニウム、タンタ
ル、チタン、ニオブ及びそれらの合金から選ばれた一種
である請求項1乃至4のいずれかひとつに記載の固体電
解コンデンサ。
5. The solid electrolytic capacitor according to claim 1, wherein the valve action metal is one selected from aluminum, tantalum, titanium, niobium and alloys thereof.
【請求項6】 弁作用金属が、アルミニウム化成箔また
はニオブ化成箔である請求項1乃至4のいずれかひとつ
に記載の固体電解コンデンサ。
6. The solid electrolytic capacitor according to claim 1, wherein the valve metal is an aluminum conversion foil or a niobium conversion foil.
【請求項7】 弁作用金属が、30V未満の電圧で化成
処理して得られた化成箔である請求項1乃至6のいずれ
かひとつに記載の固体電解コンデンサ。
7. The solid electrolytic capacitor according to claim 1, wherein the valve metal is a chemical conversion foil obtained by chemical conversion treatment at a voltage of less than 30V.
【請求項8】 リードフレームが、銅または銅合金系の
材料である請求項1乃至7のいずれかひとつに記載の固
体電解コンデンサ。
8. The solid electrolytic capacitor according to claim 1, wherein the lead frame is made of a copper or copper alloy material.
【請求項9】 固体電解質が、π電子共役系重合体を含
んだものである請求項1乃至8のいずれかひとつに記載
の固体電解コンデンサ。
9. The solid electrolytic capacitor according to claim 1, wherein the solid electrolyte contains a π-electron conjugated polymer.
【請求項10】 π電子共役系重合体が、複素五員環化
合物から得られた重合体である請求項9に記載の固体電
解コンデンサ。
10. The solid electrolytic capacitor according to claim 9, wherein the π-electron conjugated polymer is a polymer obtained from a five-membered heterocyclic compound.
【請求項11】 複素五員環化合物が、ピロール、チオ
フェン、フラン、イソチアナフテン、1,3−ジヒドロ
イソチアナフテン及びそれらの置換誘導体から選ばれた
少なくとも1種である請求項10記載の固体電解コンデ
ンサ。
11. The solid according to claim 10, wherein the five-membered heterocyclic compound is at least one selected from pyrrole, thiophene, furan, isothianaphthene, 1,3-dihydroisothianaphthene and substituted derivatives thereof. Electrolytic capacitor.
【請求項12】 複素五員環化合物が、3,4−エチレ
ンジオキシチオフェン及び1,3−ジヒドロイソチアナ
フテンから選ばれた少なくとも1種である請求項10に
記載の固体電解コンデンサ。
12. The solid electrolytic capacitor according to claim 10, wherein the five-membered heterocyclic compound is at least one selected from 3,4-ethylenedioxythiophene and 1,3-dihydroisothianaphthene.
【請求項13】 表面に誘電体皮膜層を有する弁作用金
属からなる陽極基体の一方の端部に陽極部を設け、この
陽極基体の残部の少なくとも一部に切り欠き部を有する
弁作用金属の該誘電体皮膜層上に固体電解質層、その上
に導電体層を形成して陰極部を有する固体電解コンデン
サ素子とし、これら素子を切り欠き部が重なるように複
数個積層して切り欠き部に導電材を充填し、陰極部、陽
極部をそれぞれリードフレームに接続し、外装樹脂で封
止成形することを特徴とする固体電解コンデンサの製造
方法。
13. A valve action metal having an anode portion provided at one end of a positive electrode substrate made of a valve action metal having a dielectric coating layer on its surface, and a cutout portion at least at a part of the remaining portion of the positive electrode substrate. A solid electrolyte layer is formed on the dielectric film layer, and a conductor layer is formed on the solid electrolyte layer to form a solid electrolytic capacitor element having a cathode portion. A plurality of these elements are laminated so that the notch portions are overlapped with each other to form the notch portion. A method of manufacturing a solid electrolytic capacitor, which comprises filling a conductive material, connecting the cathode part and the anode part to a lead frame, respectively, and encapsulating with an exterior resin.
【請求項14】 陽極部と陰極部の境界部に絶縁性樹脂
帯を周状に設けた固体電解コンデンサ素子を切り欠き部
が重なるように複数個積層して切り欠き部に導電材を充
填し、陰極部、陽極部をそれぞれリードフレームに接続
し、外装樹脂で封止成形する請求項13に記載の固体電
解コンデンサの製造方法。
14. A plurality of solid electrolytic capacitor elements, in which insulating resin strips are circumferentially provided at the boundary between the anode part and the cathode part, are stacked so that the cutouts overlap each other, and the cutouts are filled with a conductive material. The method for producing a solid electrolytic capacitor according to claim 13, wherein the cathode part and the anode part are respectively connected to a lead frame, and encapsulation molding is performed with an exterior resin.
【請求項15】 表面に誘電体皮膜層を有する弁作用金
属からなる陽極基体の一方の端部を陽極部とし、この陽
極基体の残部の該誘電体皮膜層上に固体電解質層、その
上に導電体層が形成された陰極部を有する複数個の固体
電解コンデンサ素子の該陽極部と該陰極部とがそれぞれ
積層されてリードフレームに接続されている固体電解コ
ンデンサ素子であって、それぞれの固体電解コンデンサ
素子の陰極部の少なくとも一部に切り欠き部が有り、切
り欠き部に導電材が充填されている固体電解コンデンサ
素子。
15. One end of an anode substrate made of a valve metal having a dielectric coating layer on its surface is used as an anode part, and the remaining part of the anode substrate is a solid electrolyte layer on which the solid electrolyte layer is formed. A solid electrolytic capacitor element in which the anode part and the cathode part of a plurality of solid electrolytic capacitor elements each having a cathode part on which a conductor layer is formed are laminated and connected to a lead frame. A solid electrolytic capacitor element in which at least a part of a cathode portion of the electrolytic capacitor element has a cutout portion, and the cutout portion is filled with a conductive material.
JP2003031982A 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof Expired - Lifetime JP4831593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031982A JP4831593B2 (en) 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002045248 2002-02-21
JP2002045248 2002-02-21
JP2002-45248 2002-02-21
JP2003031982A JP4831593B2 (en) 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003318068A true JP2003318068A (en) 2003-11-07
JP4831593B2 JP4831593B2 (en) 2011-12-07

Family

ID=29551823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031982A Expired - Lifetime JP4831593B2 (en) 2002-02-21 2003-02-10 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4831593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066853A1 (en) * 2010-11-15 2012-05-24 株式会社村田製作所 Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066853A1 (en) * 2010-11-15 2012-05-24 株式会社村田製作所 Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor

Also Published As

Publication number Publication date
JP4831593B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US5473503A (en) Solid electrolytic capacitor and method for manufacturing the same
KR100334918B1 (en) Solid electrolytic capacitor using a conducting polymer and method of making same
JP3231689B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
US7573699B2 (en) Solid state electrolyte capacitor and manufacturing method thereof
US8004824B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor using same
US7198733B2 (en) Formed substrate used for solid electrolytic capacitor, production method thereof and solid electrolytic capacitor using the substrate
JP4001329B2 (en) Chemical conversion substrate for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor
US6862169B2 (en) Solid electrolytic capacitor and method for producing the same
US6813141B2 (en) Solid electrolytic capacitor and method for producing the same
JPH09306788A (en) Capacitor and manufacturing method thereof
JP4831593B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004087713A (en) Aluminum solid electrolytic capacitors
JPWO2006129639A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003257788A (en) Solid electrolytic capacitor and its producing method
JP3485848B2 (en) Solid electrolytic capacitors
KR100753612B1 (en) Solid Electrolytic Capacitors and Manufacturing Method Thereof
JP3963561B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008109070A (en) Solid-state electrolytic capacitor element and method for manufacturing the same
US20020003689A1 (en) Solid electrolytic capacitor and method for producing the same
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
KR0148613B1 (en) Solid Electrolytic Capacitors And Method Of Manufacturing The Same
JPH1187179A (en) Manufacture of solid electrolytic capacitor
JP2000040643A (en) Solid electrolytic capacitor and its manufacture
JPH0260118A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080808

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100705

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

R150 Certificate of patent or registration of utility model

Ref document number: 4831593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

EXPY Cancellation because of completion of term