JP2003313097A - Method for growing group iii nitride crystal - Google Patents
Method for growing group iii nitride crystalInfo
- Publication number
- JP2003313097A JP2003313097A JP2002119436A JP2002119436A JP2003313097A JP 2003313097 A JP2003313097 A JP 2003313097A JP 2002119436 A JP2002119436 A JP 2002119436A JP 2002119436 A JP2002119436 A JP 2002119436A JP 2003313097 A JP2003313097 A JP 2003313097A
- Authority
- JP
- Japan
- Prior art keywords
- group iii
- iii nitride
- mixed melt
- metal
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 75
- 239000013078 crystal Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 44
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 19
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims description 24
- 150000001340 alkali metals Chemical class 0.000 claims description 24
- 238000002109 crystal growth method Methods 0.000 claims description 17
- 239000000758 substrate Substances 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 229910052594 sapphire Inorganic materials 0.000 description 9
- 239000010980 sapphire Substances 0.000 description 9
- 239000011734 sodium Substances 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 235000005811 Viola adunca Nutrition 0.000 description 2
- 240000009038 Viola odorata Species 0.000 description 2
- 235000013487 Viola odorata Nutrition 0.000 description 2
- 235000002254 Viola papilionacea Nutrition 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 102100031083 Uteroglobin Human genes 0.000 description 1
- 108090000203 Uteroglobin Proteins 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ディスク用青紫
色光源,紫外光源(LDやLED),電子写真用青紫色
光源,III族窒化物電子デバイスなどに利用可能なIII族
窒化物結晶成長方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a group III nitride crystal growth method applicable to blue-violet light sources for optical disks, ultraviolet light sources (LD and LED), blue-violet light sources for electrophotography, group III nitride electronic devices, and the like. Regarding
【0002】[0002]
【従来の技術】現在、紫〜青〜緑色光源として用いられ
ているInGaAlN系(III族窒化物)デバイスは、
その殆どがサファイア基板あるいはSiC基板上に、M
O−CVD法(有機金属化学気相成長法)やMBE法
(分子線結晶成長法)等を用いた結晶成長により作製さ
れている。サファイアやSiCを基板として用いる場合
には、III族窒化物との熱膨張係数差や格子定数差が大
きいことに起因する結晶欠陥が多くなる。このために、
デバイス特性が悪く、例えば発光デバイスの寿命を長く
することが困難であったり、動作電力が大きくなったり
するという問題がある。2. Description of the Related Art InGaAlN (group III nitride) devices currently used as light sources of purple to blue to green are
Most of them are M on a sapphire substrate or SiC substrate.
It is produced by crystal growth using an O-CVD method (metal organic chemical vapor deposition method), MBE method (molecular beam crystal growth method), or the like. When sapphire or SiC is used as the substrate, there are many crystal defects due to a large difference in thermal expansion coefficient or lattice constant with the group III nitride. For this,
There are problems that the device characteristics are poor, for example, it is difficult to extend the life of the light emitting device, and the operating power is increased.
【0003】更に、サファイア基板の場合には絶縁性で
あるために、従来の発光デバイスのように基板側からの
電極取り出しが不可能であり、結晶成長したIII族窒化
物半導体表面側からの電極取り出しが必要となる。その
結果、デバイス面積が大きくなり、高コストにつながる
という問題がある。また、サファイア基板上に作製した
III族窒化物半導体デバイスは、劈開によるチップ分離
が困難であり、レーザダイオード(LD)で必要とされ
る共振器端面を劈開で得ることが容易ではない。このた
め、現在はドライエッチングによる共振器端面形成や、
あるいはサファイア基板を100μm以下の厚さまで研
磨した後に、劈開に近い形での共振器端面形成を行って
いるが、この場合にも、従来のLDのような共振器端面
とチップ分離を単一工程で容易に行うことが不可能であ
り、工程の複雑化ひいてはコスト高につながる。Further, since the sapphire substrate is insulative, it is impossible to take out the electrode from the substrate side as in the conventional light emitting device, and the electrode from the crystal-grown group III nitride semiconductor surface side is not possible. It needs to be taken out. As a result, there is a problem that the device area becomes large, leading to high cost. Also, it was fabricated on a sapphire substrate.
In the group III nitride semiconductor device, chip separation by cleavage is difficult, and it is not easy to obtain the cavity end face required for a laser diode (LD) by cleavage. For this reason, currently, cavity end face formation by dry etching,
Alternatively, after the sapphire substrate is polished to a thickness of 100 μm or less, the resonator end face is formed in a shape close to the cleavage, but in this case also, the resonator end face and the chip separation as in the conventional LD are separated in a single process Therefore, it is impossible to easily carry out the process, and the process becomes complicated and the cost becomes high.
【0004】これらの問題を解決するために、サファイ
ア基板上にIII族窒化物半導体膜を選択横方向成長やそ
の他の工夫を行うことで、結晶欠陥を低減させることが
提案されている。この手法では、サファイア基板上にG
aN膜を選択横方向成長しない場合に比較して、結晶欠
陥を低減させることが可能となるが、サファイア基板を
用いることによる、絶縁性と劈開に関する前述の問題は
依然として残っている。更には、工程が複雑化するこ
と、及びサファイア基板とGaN薄膜という異種材料の
組み合わせに伴う基板の反りという問題が生じる。これ
らは高コスト化につながっている。In order to solve these problems, it has been proposed to reduce the crystal defects by selectively laterally growing a group III nitride semiconductor film on a sapphire substrate or by taking other measures. In this method, G on the sapphire substrate
Although it becomes possible to reduce the crystal defects as compared with the case where the aN film is not selectively laterally grown, the above-mentioned problems regarding the insulating property and the cleavage due to the use of the sapphire substrate still remain. Furthermore, there are problems that the process becomes complicated and that the substrate warps due to the combination of different materials such as the sapphire substrate and the GaN thin film. These lead to higher costs.
【0005】[0005]
【発明が解決しようとする課題】上述したような問題を
解決するためには、基板としては、基板上に結晶成長す
るIII族窒化物材料(ここでは、GaNとする)と同一
であるGaN基板が最も適切である。そのため、気相成
長,融液成長等によりバルクGaNの結晶成長の研究が
なされている。しかし、未だ高品質で且つ実用的な大き
さを有するGaN基板は実現していない。In order to solve the above-mentioned problems, the substrate is a GaN substrate which is the same as the group III nitride material (here, GaN) crystal-grown on the substrate. Is the most appropriate. Therefore, research on crystal growth of bulk GaN has been conducted by vapor phase growth, melt growth and the like. However, a GaN substrate having high quality and practical size has not yet been realized.
【0006】GaN基板を実現する一つの手法として、
文献「Chemistry of Materials Vol.9 (1997) p.413-41
6」(以下、従来技術という)には、Naをフラックス
として用いたGaN結晶成長方法が提案されている。こ
の方法はアジ化ナトリウム(NaN3)と金属Gaを原
料として、ステンレス製の反応容器(容器内寸法;内径
=7.5mm、長さ=100mm)に窒素雰囲気で封入
し、その反応容器を600〜800℃の温度で24〜1
00時間保持することにより、GaN結晶を成長させる
ものである。As one method for realizing a GaN substrate,
Reference `` Chemistry of Materials Vol.9 (1997) p.413-41
6 ”(hereinafter referred to as“ conventional technology ”), a GaN crystal growth method using Na as a flux has been proposed. In this method, sodium azide (NaN 3 ) and metallic Ga are used as raw materials, and a stainless steel reaction vessel (inside vessel size; inner diameter = 7.5 mm, length = 100 mm) is sealed in a nitrogen atmosphere, and the reaction vessel is sealed at 600 24 to 1 at a temperature of ~ 800 ° C
The GaN crystal is grown by holding it for 00 hours.
【0007】この従来技術の場合には、600〜800
℃と比較的低温での結晶成長が可能であり、容器内圧力
も高々100kg/cm2程度と比較的圧力が低く、実
用的な成長条件であることが特徴である。しかし、この
従来技術の方法では、得られる結晶の大きさが1mmに
満たない程度に小さいという問題がある。In the case of this prior art, 600 to 800
The crystal growth is possible at a relatively low temperature of ℃, and the pressure inside the container is relatively low at about 100 kg / cm 2, which is a practical growth condition. However, this conventional method has a problem in that the size of the obtained crystal is small to less than 1 mm.
【0008】上述の従来技術の問題を解決するために、
本願出願人は、III族原料および/またはV族原料を外
部より反応容器内に供給する発明を数多く案出し、特許
出願している。In order to solve the above-mentioned problems of the prior art,
The applicant of the present application has devised a large number of inventions for supplying the group III raw material and / or the group V raw material into the reaction vessel from the outside and applied for a patent.
【0009】これらの発明の中でも、板状のIII族窒化
物結晶を混合融液の表面に浮かせて成長させる結晶成長
方法は、大きなIII族窒化物結晶を得るのに有用と考え
られる。Among these inventions, the crystal growth method in which a plate-shaped group III nitride crystal is allowed to float on the surface of the mixed melt and grows is considered to be useful for obtaining a large group III nitride crystal.
【0010】しかしながら、この種のIII族窒化物結晶
成長方法は、III族窒化物結晶がある程度の大きさに成
長すると、その自重によってIII族窒化物結晶は混合融
液中に沈んでしまい、成長速度の低下や、多結晶化が起
こり、単結晶の大型化が阻害されるという問題があっ
た。However, in this type of III-nitride crystal growth method, when the III-nitride crystal grows to a certain size, the III-nitride crystal sinks in the mixed melt due to its own weight and grows. There are problems that the speed is lowered and polycrystallization occurs, which hinders the size increase of the single crystal.
【0011】本発明は、III族窒化物結晶を混合融液の
表面に浮かせて成長させるIII族窒化物結晶成長方法に
おいて、III族窒化物結晶が大きく成長しても混合融液
中に沈まないようにして、実用的な結晶サイズのIII族
窒化物結晶を成長させることの可能なIII族窒化物結晶
成長方法を提供することを目的としている。The present invention is a method for growing a group III nitride crystal in which a group III nitride crystal is floated on the surface of a mixed melt to grow, and even if the group III nitride crystal grows large, it does not sink in the mixed melt. Thus, an object is to provide a group III nitride crystal growth method capable of growing a group III nitride crystal having a practical crystal size.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、反応容器内で、アルカリ金
属と少なくともIII族金属を含む物質とが混合融液を形
成し、該混合融液と少なくとも窒素を含む物質とから、
III族金属と窒素とから構成されるIII族窒化物を結晶成
長させるIII族窒化物結晶成長方法であって、前記混合
融液には、結晶成長するIII族窒化物の密度よりも大き
い密度のものを用いることを特徴としている。In order to achieve the above object, the invention according to claim 1 is characterized in that in a reaction vessel, an alkali metal and a substance containing at least a Group III metal form a mixed melt, From the mixed melt and a substance containing at least nitrogen,
A group III nitride crystal growth method for crystal-growing a group III nitride composed of a group III metal and nitrogen, wherein the mixed melt has a density higher than that of the group III nitride to be crystal-grown. It is characterized by using things.
【0013】また、請求項2記載の発明は、請求項1記
載のIII族窒化物結晶成長方法において、前記混合融液
は、アルカリ金属,III族金属の他に、アルカリ金属,I
II族金属とは異なる金属をさらに含んでいることを特徴
としている。The invention according to claim 2 is the method for growing a group III nitride crystal according to claim 1, wherein the mixed melt contains alkali metal, group III metal, alkali metal, I
It is characterized by further containing a metal different from the Group II metal.
【0014】また、請求項3記載の発明は、請求項2記
載のIII族窒化物結晶成長方法において、前記混合融液
に含まれているアルカリ金属,III族金属とは異なる前
記金属は、III族窒化物の結晶成長温度において窒化物
を形成しないものであることを特徴としている。The invention according to claim 3 is the method for growing group III nitride crystals according to claim 2, wherein the metal different from the alkali metal and the group III metal contained in the mixed melt is III It is characterized in that it does not form a nitride at the crystal growth temperature of the group nitride.
【0015】また、請求項4記載の発明は、請求項2ま
たは請求項3のIII族窒化物結晶成長方法において、ア
ルカリ金属,III族金属とは異なる前記金属は、Biで
あることを特徴としている。The invention according to claim 4 is characterized in that, in the group III nitride crystal growth method according to claim 2 or 3, the metal different from the alkali metal and the group III metal is Bi. There is.
【0016】また、請求項5記載の発明は、請求項1乃
至請求項4のいずれか一項に記載のIII族窒化物結晶成
長方法において、III族窒化物として、板状のIII族窒化
物結晶を、混合融液表面近傍で成長させることを特徴と
している。The invention according to claim 5 is the group III nitride crystal growth method according to any one of claims 1 to 4, wherein the group III nitride is a plate-shaped group III nitride. The crystal is characterized in that it is grown near the surface of the mixed melt.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0018】図1は本発明に係るIII族窒化物結晶成長
装置の構成例を示す図である。図1の結晶成長装置は、
アルカリ金属(例えばナトリウム(Na))とIII族金
属(例えばGa)を含む混合融液24を保持し結晶成長
を行なうための混合融液保持容器12が、ステンレス製
の閉じた形状の反応容器11内に設けられている。FIG. 1 is a diagram showing a structural example of a group III nitride crystal growth apparatus according to the present invention. The crystal growth apparatus of FIG.
A mixed melt holding container 12 for holding a mixed melt 24 containing an alkali metal (for example, sodium (Na)) and a group III metal (for example, Ga) and performing crystal growth is a closed reaction container 11 made of stainless steel. It is provided inside.
【0019】また、反応容器11には、窒素原料となる
窒素(N2)ガスとアルカリ金属の蒸発を抑制する為の
アルゴン(Ar)ガスを充満させ、かつ、反応容器11
内の窒素(N2)圧力とアルゴン(Ar)ガス圧力を制
御することを可能にするガス供給管14が反応容器11
を貫通して装着されている。The reaction vessel 11 is filled with nitrogen (N 2 ) gas as a nitrogen source and argon (Ar) gas for suppressing the evaporation of alkali metal, and the reaction vessel 11
The gas supply pipe 14 that enables control of the nitrogen (N 2 ) pressure and the argon (Ar) gas pressure in the reaction vessel 11 is provided.
Is pierced through.
【0020】ガス供給管14は、窒素供給管17と、ア
ルゴン供給管20とに分岐しており、それぞれ、バルブ
15,18で分離することが可能となっている。また、
それぞれの圧力を圧力制御装置16,19で調整するこ
とが可能となっている。The gas supply pipe 14 is branched into a nitrogen supply pipe 17 and an argon supply pipe 20, which can be separated by valves 15 and 18, respectively. Also,
The respective pressures can be adjusted by the pressure control devices 16 and 19.
【0021】また、反応容器11内の全圧力をモニター
するための圧力計22が設置されている。なお、不活性
気体としてのアルゴンを混合するのは、アルカリ金属の
蒸発を抑制しつつ、窒素ガスの圧力を独立して制御する
ためである。これにより、制御性の高い結晶成長が可能
となる。また、混合融液保持容器12は、反応容器11
から取り外すことができる。Further, a pressure gauge 22 for monitoring the total pressure inside the reaction vessel 11 is installed. The reason for mixing argon as an inert gas is to control the pressure of nitrogen gas independently while suppressing the evaporation of alkali metal. This enables crystal growth with high controllability. Further, the mixed melt holding container 12 is the reaction container 11
Can be removed from.
【0022】また、反応容器11の外側にはヒーター1
3が設置されている。ヒーター13は任意の温度に制御
可能となっている。A heater 1 is provided outside the reaction vessel 11.
3 are installed. The heater 13 can be controlled to any temperature.
【0023】また、反応容器11は、バルブ21の部分
で結晶成長装置から取り外すことが可能であり、反応容
器11の部分のみをグローブボックスに入れて作業する
ことができる。The reaction vessel 11 can be detached from the crystal growth apparatus at the valve 21 portion, and only the reaction vessel 11 portion can be put in the glove box for work.
【0024】ところで、本発明では、反応容器11内
で、アルカリ金属(例えば、Na)と少なくともIII族
金属を含む物質(例えば、Ga)とが混合融液24を形
成し、該混合融液24と少なくとも窒素を含む物質とか
ら、III族金属と窒素とから構成されるIII族窒化物26
(例えば、GaN)を結晶成長させるときに、図1に示
すように、III族窒化物結晶26を混合融液24の表面
に浮かせて成長させるようにしている。By the way, in the present invention, an alkali metal (for example, Na) and a substance containing at least a Group III metal (for example, Ga) form a mixed melt 24 in the reaction vessel 11, and the mixed melt 24 And a substance containing at least nitrogen, a group III nitride composed of a group III metal and nitrogen 26
When crystallizing (for example, GaN), the group III nitride crystal 26 is floated on the surface of the mixed melt 24 and grown as shown in FIG.
【0025】より詳細には、III族窒化物26として、
C面を主面とする板状のIII族窒化物結晶を、C面を混
合融液24の表面に平行にして混合融液24の表面近傍
で成長させるようにしている。More specifically, as the group III nitride 26,
A plate-shaped group III nitride crystal having a C-plane as a main surface is grown near the surface of the mixed melt 24 with the C-plane parallel to the surface of the mixed melt 24.
【0026】このため、本発明では、反応容器11内
で、アルカリ金属(例えば、Na)と少なくともIII族
金属を含む物質(例えば、Ga)とが混合融液24を形
成し、該混合融液24と少なくとも窒素を含む物質とか
ら、III族金属と窒素とから構成されるIII族窒化物26
(例えば、GaN)を結晶成長させるときに、混合融液
24には、結晶成長するIII族窒化物26の密度よりも
大きい密度のものを用いるようにしている。Therefore, in the present invention, in the reaction vessel 11, the alkali metal (for example, Na) and the substance containing at least the Group III metal (for example, Ga) form the mixed melt 24, and the mixed melt is formed. Group III nitride composed of Group III metal and nitrogen from 24 and a substance containing at least nitrogen 26
When crystallizing (for example, GaN), a mixed melt 24 having a density higher than that of the group-III nitride 26 for crystal growth is used.
【0027】具体的に、このような混合融液24として
は、アルカリ金属,III族金属の他に、アルカリ金属,I
II族金属とは異なる金属をさらに含んでいるものを用い
ることができる。Specifically, as such a mixed melt 24, in addition to alkali metals and group III metals, alkali metals and I
It is possible to use a material further containing a metal different from the Group II metal.
【0028】ここで、混合融液24に含まれるアルカリ
金属,III族金属とは異なる前記金属は、III族窒化物の
結晶成長温度において窒化物を形成しないもの(例え
ば、Bi)である。Here, the metal different from the alkali metal and the group III metal contained in the mixed melt 24 is one that does not form a nitride at the crystal growth temperature of the group III nitride (for example, Bi).
【0029】なお、図1に示すように、混合融液24の
所定の位置に(混合融液24の表面の混合融液保持容器
12に接しない位置に)優先的にIII族窒化物26(例
えばGaN)を結晶成長させるためには、混合融液保持
容器12の内壁(換言すれば、混合融液24が接する部
分)が、III族窒化物結晶が生じにくいような表面の反
応性の低い材質(例えば、タングステン(W))で構成
されているか、あるいは、混合融液保持容器12に、混
合融液保持容器12の温度を上昇させる発熱機構(例え
ばヒーターや誘導加熱手段)を備えて、保持容器の温度
を融液の温度よりも高くして、結晶核の生成熱を保持容
器側へ放熱されないようにして、保持容器内壁に結晶核
が発生しないようにするのが良い。As shown in FIG. 1, the group III nitride 26 (at a position on the surface of the mixed melt 24 which is not in contact with the mixed melt holding container 12) is preferentially added to the group III nitride 26 ( For crystal growth of, for example, GaN), the inner wall of the mixed melt holding container 12 (in other words, the portion in contact with the mixed melt 24) has a low surface reactivity such that group III nitride crystals are hard to occur. It is made of a material (for example, tungsten (W)), or the mixed melt holding container 12 is provided with a heat generating mechanism (for example, a heater or induction heating means) for raising the temperature of the mixed melt holding container 12, It is preferable that the temperature of the holding container is set higher than the temperature of the melt so that the heat of formation of crystal nuclei is not radiated to the holding container side so that crystal nuclei are not generated on the inner wall of the holding container.
【0030】以下に、図1のIII族窒化物結晶成長装置
を使用したGaNの結晶成長方法の一例を説明する。An example of a GaN crystal growth method using the group III nitride crystal growth apparatus of FIG. 1 will be described below.
【0031】まず、反応容器11をバルブ21の部分で
III族窒化物結晶成長装置から分離し、Ar雰囲気のグ
ローブボックスに入れる。次いで、例えばタングステン
(W)製の混合融液保持容器12に、III族金属原料と
してGaを入れ、アルカリ金属として例えばナトリウム
(Na)を入れ、さらに、アルカリ金属,III族金属の
他に、アルカリ金属,III族金属とは異なる金属(例え
ば、Bi)を入れる。First, the reaction vessel 11 is replaced by the valve 21.
Separated from the group III nitride crystal growth apparatus, placed in a glove box in Ar atmosphere. Next, for example, Ga as a group III metal raw material and sodium (Na) as an alkali metal are placed in a mixed melt holding container 12 made of, for example, tungsten (W). A metal (for example, Bi) different from the metal or the group III metal is added.
【0032】次いで、この混合融液保持容器12を反応
容器11内に設置する。次いで、反応容器11を密閉
し、バルブ21を閉じ、混合融液保持容器12の内部を
外部雰囲気と遮断する。一連の作業は高純度のArガス
雰囲気のグローブボックス内で行うので、反応容器11
の内部はArガスが充填されている。次いで、反応容器
11をグローブボックスから出し、III族窒化物結晶成
長装置に組み込む。すなわち、反応容器11をヒーター
13がある所定の位置に設置し、バルブ21の部分で窒
素とアルゴンのガス供給ライン14に接続する。次い
で、ヒーター13に通電し、混合融液保持容器12を結
晶成長温度まで昇温する。Next, the mixed melt holding container 12 is set in the reaction container 11. Next, the reaction vessel 11 is closed, the valve 21 is closed, and the inside of the mixed melt holding vessel 12 is shut off from the external atmosphere. Since a series of operations is performed in a glove box in a high purity Ar gas atmosphere, the reaction container 11
The inside of is filled with Ar gas. Then, the reaction vessel 11 is taken out of the glove box and incorporated into a group III nitride crystal growth apparatus. That is, the reaction vessel 11 is installed at a predetermined position where the heater 13 is located, and is connected to the nitrogen and argon gas supply line 14 at the valve 21. Next, the heater 13 is energized to raise the temperature of the mixed melt holding container 12 to the crystal growth temperature.
【0033】次いで、バルブ21とバルブ18を開け、
Arガス供給管20からArガスを入れ、圧力制御装置
19で圧力を調整して、反応容器11内の全圧を4MP
aにしてバルブ18を閉じる。次いで、窒素ガス供給管
17から窒素ガスを入れ、圧力制御装置16で圧力を調
整してバルブ15を開け、反応容器11内の全圧を8M
Paにする。すなわち、反応容器11内の窒素の分圧
は、4MPaである。この状態で300時間保持した
後、室温まで降温する。Next, the valves 21 and 18 are opened,
Ar gas is introduced from the Ar gas supply pipe 20 and the pressure is adjusted by the pressure control device 19 so that the total pressure in the reaction vessel 11 is 4MP.
Then, the valve 18 is closed. Then, nitrogen gas is introduced from the nitrogen gas supply pipe 17, the pressure is adjusted by the pressure control device 16, the valve 15 is opened, and the total pressure in the reaction vessel 11 is adjusted to 8M.
Set to Pa. That is, the partial pressure of nitrogen in the reaction vessel 11 is 4 MPa. After keeping this state for 300 hours, the temperature is lowered to room temperature.
【0034】この場合、混合融液保持容器12内には、
混合融液24の表面に、混合融液24中に沈むことな
く、また、混合融液保持容器12の内壁に接することな
く、大きな板状のGaNの単結晶26を結晶成長させる
ことができた。In this case, in the mixed melt holding container 12,
A large plate-shaped GaN single crystal 26 could be grown on the surface of the mixed melt 24 without sinking into the mixed melt 24 and without contact with the inner wall of the mixed melt holding container 12. .
【0035】すなわち、本発明では、反応容器11内
で、アルカリ金属とIII族金属とその他の金属(例え
ば、Bi)との混合融液24と少なくとも窒素を含む物
質とから、III族金属と窒素とから構成されるIII族窒化
物26を結晶成長させることができる。That is, in the present invention, the group III metal and the nitrogen are mixed in the reaction vessel 11 from the mixed melt 24 of the alkali metal, the group III metal and the other metal (for example, Bi) and the substance containing at least nitrogen. The group III nitride 26 composed of and can be crystal-grown.
【0036】このとき、混合融液24は、アルカリ金
属,III族金属の他に、アルカリ金属,III族金属とは異
なる金属(例えば、Bi)をさらに含んでおり、結晶成
長するIII族窒化物26の密度よりも大きい密度のもの
となっているので、III族窒化物結晶26が大きく成長
しても混合融液中に沈まないようにすることができる。
なお、この混合融液24に含まれているアルカリ金属,
III族金属とは異なる前記金属(例えば、Bi)は、III
族窒化物26の結晶成長温度において窒化物を形成しな
いものである。At this time, the mixed melt 24 further contains, in addition to the alkali metal and the group III metal, a metal different from the alkali metal and the group III metal (for example, Bi), and a group III nitride for crystal growth is formed. Since the density of the group III nitride crystal 26 is higher than that of the group 26, even if the group III nitride crystal 26 grows large, it can be prevented from sinking in the mixed melt.
The alkali metal contained in the mixed melt 24,
The metal (eg, Bi) different from the group III metal is III
It does not form a nitride at the crystal growth temperature of the group nitride 26.
【0037】[0037]
【発明の効果】以上に説明したように、請求項1乃至請
求項5記載の発明によれば、反応容器内で、アルカリ金
属と少なくともIII族金属を含む物質とが混合融液を形
成し、該混合融液と少なくとも窒素を含む物質とから、
III族金属と窒素とから構成されるIII族窒化物を結晶成
長させるIII族窒化物結晶成長方法であって、前記混合
融液には、結晶成長するIII族窒化物の密度よりも大き
い密度のものを用いるので、III族窒化物結晶が大きく
成長しても混合融液中に沈まないようにして、実用的な
結晶サイズのIII族窒化物結晶を成長させることができ
る。As described above, according to the inventions of claims 1 to 5, the alkali metal and the substance containing at least a group III metal form a mixed melt in the reaction vessel, From the mixed melt and a substance containing at least nitrogen,
A group III nitride crystal growth method for crystal-growing a group III nitride composed of a group III metal and nitrogen, wherein the mixed melt has a density higher than that of the group III nitride to be crystal-grown. Since the material used is a group III nitride crystal, even if the group III nitride crystal grows large, it is possible to grow a group III nitride crystal having a practical crystal size by preventing it from sinking in the mixed melt.
【図1】本発明に係るIII族窒化物結晶成長装置の構成
例を示す図である。FIG. 1 is a diagram showing a configuration example of a Group III nitride crystal growth apparatus according to the present invention.
11 反応容器 12 混合融液保持容器 13 ヒーター 14 ガス供給管 15,18,21 バルブ 16,19 圧力制御装置 17 窒素供給管 20 アルゴン供給管 22 圧力計 24 混合融液 26 III族窒化物結晶 11 Reaction vessel 12 Mixed melt holding container 13 heater 14 Gas supply pipe 15,18,21 valves 16, 19 Pressure control device 17 Nitrogen supply pipe 20 Argon supply pipe 22 Pressure gauge 24 mixed melt 26 Group III nitride crystal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 島田 昌彦 宮城県仙台市青葉区貝ヶ森3−29−5 (72)発明者 山根 久典 宮城県仙台市宮城野区鶴ヶ谷1−12−4 Fターム(参考) 4G077 AA02 BE15 CC04 CC10 EC08 HA02 HA12 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masahiko Shimada 3-29-5 Kaigamori, Aoba-ku, Sendai City, Miyagi Prefecture (72) Inventor Hisanori Yamane 1-12-4 Tsurugaya, Miyagino-ku, Sendai City, Miyagi Prefecture F-term (reference) 4G077 AA02 BE15 CC04 CC10 EC08 HA02 HA12
Claims (5)
もIII族金属を含む物質とが混合融液を形成し、該混合
融液と少なくとも窒素を含む物質とから、III族金属と
窒素とから構成されるIII族窒化物を結晶成長させるIII
族窒化物結晶成長方法であって、前記混合融液には、結
晶成長するIII族窒化物の密度よりも大きい密度のもの
を用いることを特徴とするIII族窒化物結晶成長方法。1. A reaction vessel, in which an alkali metal and a substance containing at least a group III metal form a mixed melt, and the mixed melt and a substance containing at least nitrogen are used to form a group III metal and nitrogen. Growth of group III nitrides III
A Group III nitride crystal growth method, wherein the mixed melt has a density higher than that of the Group III nitride for crystal growth.
法において、前記混合融液は、アルカリ金属,III族金
属の他に、アルカリ金属,III族金属とは異なる金属を
さらに含んでいることを特徴とするIII族窒化物結晶成
長方法。2. The group III nitride crystal growth method according to claim 1, wherein the mixed melt further contains an alkali metal and a metal different from the group III metal in addition to the alkali metal and the group III metal. A method for growing a group III nitride crystal, comprising:
法において、前記混合融液に含まれているアルカリ金
属,III族金属とは異なる前記金属は、III族窒化物の結
晶成長温度において窒化物を形成しないものであること
を特徴とするIII族窒化物結晶成長方法。3. The Group III nitride crystal growth method according to claim 2, wherein the metal different from the alkali metal and the Group III metal contained in the mixed melt is a Group III nitride crystal growth temperature. A III-nitride crystal growth method characterized in that no nitride is formed.
結晶成長方法において、アルカリ金属,III族金属とは
異なる前記金属は、Biであることを特徴とするIII族
窒化物結晶成長方法。4. The Group III nitride crystal growth method according to claim 2 or 3, wherein the metal different from the alkali metal and the Group III metal is Bi. .
記載のIII族窒化物結晶成長方法において、III族窒化物
として、板状のIII族窒化物結晶を、混合融液表面近傍
で成長させることを特徴とするIII族窒化物結晶成長方
法。5. The group III nitride crystal growth method according to claim 1, wherein a plate-shaped group III nitride crystal is used as the group III nitride in the vicinity of the surface of the mixed melt. A method for growing a group III nitride crystal, characterized in that the growth is carried out by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002119436A JP4271408B2 (en) | 2002-04-22 | 2002-04-22 | Group III nitride crystal production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002119436A JP4271408B2 (en) | 2002-04-22 | 2002-04-22 | Group III nitride crystal production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003313097A true JP2003313097A (en) | 2003-11-06 |
JP4271408B2 JP4271408B2 (en) | 2009-06-03 |
Family
ID=29535998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002119436A Expired - Fee Related JP4271408B2 (en) | 2002-04-22 | 2002-04-22 | Group III nitride crystal production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4271408B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323404B2 (en) | 2005-11-21 | 2012-12-04 | Ricoh Company, Ltd. | Group III nitride crystal and manufacturing method thereof |
US8337617B2 (en) | 2005-03-14 | 2012-12-25 | Ricoh Company, Ltd. | Manufacturing method and manufacturing apparatus of a group III nitride crystal |
US8475593B2 (en) | 2006-03-14 | 2013-07-02 | Ricoh Company, Ltd. | Crystal preparing device, crystal preparing method, and crystal |
-
2002
- 2002-04-22 JP JP2002119436A patent/JP4271408B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8337617B2 (en) | 2005-03-14 | 2012-12-25 | Ricoh Company, Ltd. | Manufacturing method and manufacturing apparatus of a group III nitride crystal |
US9376763B2 (en) | 2005-03-14 | 2016-06-28 | Ricoh Company, Ltd. | Manufacturing method and manufacturing apparatus of a group III nitride crystal, utilizing a melt containing a group III metal, an alkali metal, and nitrogen |
US8323404B2 (en) | 2005-11-21 | 2012-12-04 | Ricoh Company, Ltd. | Group III nitride crystal and manufacturing method thereof |
US9365948B2 (en) | 2005-11-21 | 2016-06-14 | Ricoh Company, Ltd | Group III nitride crystal and manufacturing method thereof |
US8475593B2 (en) | 2006-03-14 | 2013-07-02 | Ricoh Company, Ltd. | Crystal preparing device, crystal preparing method, and crystal |
Also Published As
Publication number | Publication date |
---|---|
JP4271408B2 (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003313098A (en) | Method and apparatus for growing group iii nitride crystal | |
US20110030611A1 (en) | METHOD FOR PREPARING POLYCRYSTALS AND SINGLE CRYSTALS OF ZINC OXIDE (ZnO) ON A SEED BY CHEMICALLY ACTIVATED SUBLIMATION AT HIGH TEMPERATURE AND DEVICE FOR CARRYING OUT SAID METHOD | |
JP2003292400A (en) | Group iii nitride crystal growth method, group iii nitride crystal growth apparatus, group iii nitride crystal, and semiconductor device | |
JP2001064098A (en) | Method and device for growing crystal, and group iii nitride crystal | |
JP2006290730A (en) | Method and apparatus for producing group iii nitride crystal | |
JP2008094704A (en) | Growing method of nitride single crystal, nitride single crystal and nitride single crystal substrate | |
JP2003313099A (en) | Apparatus for growing group iii nitride crystal | |
JP4278330B2 (en) | Group III nitride crystal production method and group III nitride crystal production apparatus | |
JP2004231447A (en) | Method for growing group iii nitride crystal, group iii nitride crystal, and semiconductor device | |
JP4159303B2 (en) | Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus | |
JP2005187317A (en) | Method of manufacturing single crystal, single crystal, and its composite | |
JP4077643B2 (en) | Group III nitride crystal growth apparatus and group III nitride crystal growth method | |
JP2003300799A (en) | Method and apparatus for growing group iii nitride crystal | |
JP4014411B2 (en) | Group III nitride crystal manufacturing method | |
JP4094878B2 (en) | Group III nitride crystal production method and group III nitride crystal production apparatus | |
JP5699493B2 (en) | Method for producing group III nitride single crystal | |
JP4248276B2 (en) | Group III nitride crystal manufacturing method | |
JP2009126771A (en) | Method and apparatus for growing crystal | |
JP4271408B2 (en) | Group III nitride crystal production method | |
JP4426238B2 (en) | Group III nitride crystal manufacturing method | |
JP4426251B2 (en) | Group III nitride crystal manufacturing method | |
JP5205630B2 (en) | Crystal manufacturing method and crystal manufacturing apparatus | |
JP2009221056A (en) | Crystal growth method, crystal growth apparatus, and semiconductor device | |
JP2000044399A (en) | Production of bulk crystal of gallium nitride compound semiconductor | |
JP2009007207A (en) | Crystal growth method and crystal growth apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041210 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060201 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4271408 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |