[go: up one dir, main page]

JP2003311404A - Sealing welding method for turbine blade core support hole and turbine blade - Google Patents

Sealing welding method for turbine blade core support hole and turbine blade

Info

Publication number
JP2003311404A
JP2003311404A JP2002120201A JP2002120201A JP2003311404A JP 2003311404 A JP2003311404 A JP 2003311404A JP 2002120201 A JP2002120201 A JP 2002120201A JP 2002120201 A JP2002120201 A JP 2002120201A JP 2003311404 A JP2003311404 A JP 2003311404A
Authority
JP
Japan
Prior art keywords
welding
turbine blade
sealing
hole
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002120201A
Other languages
Japanese (ja)
Other versions
JP4112264B2 (en
Inventor
Takeshi Tsukamoto
武志 塚本
Kunio Miyazaki
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002120201A priority Critical patent/JP4112264B2/en
Publication of JP2003311404A publication Critical patent/JP2003311404A/en
Application granted granted Critical
Publication of JP4112264B2 publication Critical patent/JP4112264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

(57)【要約】 【課題】ニッケル基耐熱合金からなるタービン翼に形成
された中子支持穴を封止溶接する際、翼の肉厚変動に起
因した溶接不良を防止する。 【解決手段】ニッケル基耐熱合金で形成されたタービン
翼の中子支持穴の封止溶接方法において、精密鋳造され
た該タービン翼の中子溶出工程の前に中子支持部を除去
して穴を形成し、更に該穴の下部にある中子に、該穴を
溶接金属で封止した際に該溶接金属に所定の余盛形状を
転写するためのパターン加工を行った後、該穴にニッケ
ル基合金からなる溶加材を供給して封止溶接を行う。 【効果】タービン翼製造の歩留まりおよび翼の信頼性が
向上する。
(57) An object of the present invention is to prevent welding defects caused by fluctuations in blade wall thickness when sealing and welding a core support hole formed in a turbine blade made of a nickel-base heat-resistant alloy. In a sealing welding method for a core support hole of a turbine blade formed of a nickel-base heat-resistant alloy, the core support portion is removed before the core elution step of the precisely cast turbine blade. And, after the hole is sealed with a weld metal, pattern processing is performed to transfer a predetermined overlay shape to the weld metal. Sealing welding is performed by supplying a filler material made of a nickel-based alloy. [Effect] Turbine blade manufacturing yield and blade reliability are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル基耐熱合
金により形成されたタービン翼に係り、特に中子を用い
精密鋳造によってタービン翼を製造した際に、タービン
翼表面に残る中子支持部を封止溶接する方法に関する。
本発明は、溶接による高温割れの抑制,溶接後の熱処理
過程におけるひずみ時効割れの抑制に好適であり、かつ
高歩留りのガスタービン翼中子支持穴の封止溶接方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine blade formed of a nickel-base heat-resistant alloy, and more particularly to a core support portion remaining on the surface of the turbine blade when the turbine blade is manufactured by precision casting using a core. A method for sealing and welding.
The present invention relates to a method for sealing and welding a gas turbine blade core supporting hole, which is suitable for suppressing high temperature cracking due to welding and suppressing strain age cracking in a heat treatment process after welding and has a high yield.

【0002】[0002]

【従来の技術】高温環境で使用されるガスタービン翼
は、ニッケル基の耐熱合金を用い、精密鋳造で作製され
るのが一般的である。このとき翼の内部に、空気等の冷
媒による冷却を行うための複雑な冷却通路を設ける手法
が用いられている。この冷却通路は鋳造時に中子を用い
て形成される。中子は鋳造後に薬剤により溶出,除去さ
れるが、中子の支持部が鋳造された翼に支持穴として残
るため、この支持穴を封止して製品とする必要がある。
2. Description of the Related Art A gas turbine blade used in a high temperature environment is generally manufactured by precision casting using a nickel-base heat resistant alloy. At this time, a method of providing a complicated cooling passage for cooling with a refrigerant such as air is used inside the blade. This cooling passage is formed by using a core during casting. The core is eluted and removed by the chemicals after casting, but since the support portion of the core remains in the cast blade as a support hole, it is necessary to seal this support hole to obtain a product.

【0003】この中子支持穴の封止方法として、溶加材
を用いたアーク溶接法が用いられているが、タービン翼
を形成するニッケル基耐熱合金は、添加されているAl
やTi等の強化元素の影響により、溶接時に結晶粒界の
強度低下に起因した割れを生じやすい。このため、この
溶接割れを抑制する溶接方法が、特開平1−107973号公
報に記載されている。この方法では、封止溶接の溶加材
として、翼材よりも延性に優れるニッケル基または鉄基
の合金を用いることで、溶接金属の組成を調整し、翼材
に含まれる強化元素の影響を抑制して割れを生じにくく
していた。
An arc welding method using a filler material is used as a method for sealing the core support hole, but the nickel-base heat-resistant alloy forming the turbine blade is added with Al.
Due to the influence of strengthening elements such as Ti and Ti, cracks are likely to occur during welding due to the decrease in the strength of the crystal grain boundaries. For this reason, a welding method for suppressing this welding crack is described in JP-A-1-107973. In this method, by using a nickel-based or iron-based alloy, which is more ductile than the wing material, as the filler metal for sealing welding, the composition of the weld metal is adjusted and the effect of the strengthening elements contained in the wing material is adjusted. It was suppressed to make cracks less likely to occur.

【0004】しかしながら、前記公報に記載されている
アーク溶接法では、溶接時の入熱量が大きいため、形成
される溶接金属の体積が封止する中子支持穴に対し必要
以上に大きくなる傾向がある。溶接金属は溶加材による
成分調整のため、溶接時の割れは生じにくくなっている
が、高温強度等の特性が翼材よりも劣ることから、過大
な溶接金属はタービン翼性能の低下を招く。
However, in the arc welding method described in the above publication, since the heat input during welding is large, the volume of the weld metal formed tends to become larger than necessary relative to the core supporting hole to be sealed. is there. Since the weld metal is adjusted in composition by the filler metal, cracks during welding are less likely to occur, but since the characteristics such as high temperature strength are inferior to the blade material, excessive weld metal causes deterioration of turbine blade performance. .

【0005】また、封止溶接後に、時効熱処理などの熱
処理過程がある場合には、溶接時に割れを生じなかった
溶接金属においても、溶接によって生じたひずみの緩和
過程において、溶接金属の延性不足による割れを生ずる
ことがあり、製品の歩留まりを低下させる要因となる。
この熱処理時に生じる割れも、翼材から溶接金属に溶け
込んだAl,Ti等の強化元素に起因するものと考えら
れ、割れを抑制するためには溶接金属中に含まれる翼材
成分の割合を低減する、すなわち溶接時の翼材の溶融量
を低減する必要がある。
In addition, when there is a heat treatment process such as an aging heat treatment after the sealing welding, even in the weld metal which did not crack during welding, due to the lack of ductility of the weld metal in the process of relaxing the strain caused by welding. This may cause cracking, which is a factor that reduces the yield of products.
The cracks generated during this heat treatment are also considered to be due to the strengthening elements such as Al and Ti dissolved in the weld metal from the blade material, and in order to suppress the cracks, the proportion of the blade material component contained in the weld metal is reduced. That is, it is necessary to reduce the melting amount of the blade material during welding.

【0006】この問題を解決する手法としては、所定の
形状に成形した溶加材をあらかじめ中子支持穴を塞ぐよ
うに配し、この溶加材にレーザまたはアークを収束させ
て優先的に加熱溶融することで、翼材の溶融量を抑制し
ながら支持穴を封止する溶接方法が有効である。この手
法によれば、翼性能を低下させる低強度の溶接金属を縮
小することが可能であるばかりでなく、溶接時の割れや
時効熱処理時の割れを著しく抑制することが可能であ
る。
As a method for solving this problem, a filler material formed into a predetermined shape is arranged in advance so as to close the core support hole, and a laser or an arc is focused on the filler material to preferentially heat the filler material. A welding method that seals the support holes while suppressing the melting amount of the blade material by melting is effective. According to this method, not only the low-strength weld metal that reduces blade performance can be reduced, but also cracks during welding and cracks during aging heat treatment can be significantly suppressed.

【0007】[0007]

【発明が解決しようとする課題】上記の従来技術では、
封止溶接を行う中子支持穴周囲の翼の肉厚に応じて、適
正な溶接条件を選択して施工を行うことが必要である。
適正な範囲から外れた溶接条件で施工した場合には、溶
融過多により溶接金属の垂れ落ちが生じたり、反対に溶
け込み不足やアンダーカットなどの溶接不良を生じる可
能性がある。鋳造によって製作されるタービン翼は、中
子位置の変動等によって個々の翼ごとに、また中子支持
穴の位置ごとに、その肉厚が異なるため、封止溶接施工
の際には個々の支持穴部の肉厚を測定し、溶接条件を変
更する必要があり、施工効率低下の要因となる。
SUMMARY OF THE INVENTION In the above prior art,
It is necessary to select appropriate welding conditions and perform the construction depending on the wall thickness of the blade around the core support hole where the sealing welding is performed.
If the welding is carried out under welding conditions out of the proper range, excessive melting may cause dripping of the weld metal, or conversely, insufficient welding or insufficient welding such as undercut. Turbine blades manufactured by casting have different wall thicknesses for each blade due to variations in the core position and for each core support hole position. It is necessary to measure the wall thickness of the hole and change the welding conditions, which causes a decrease in construction efficiency.

【0008】本発明は、このような事情に鑑みてなされ
たもので、精密鋳造後、粗加工を行ったタービン翼から
中子の溶出を行う前に、中子支持部の穴加工を行って、
中子支持部の除去ならびに支持穴側面を整形するととも
に、支持穴底部の中子に溶接金属の余盛に所定の形状を
転写するための窪み状のパターンを形成し、その後、溶
加材を用いた封止溶接を行うことにより、溶接金属の垂
れ落ちを防止して常に所定の余盛形状が得られるように
することで、封止溶接部の翼肉厚の変動に対する裕度が
大きいタービン翼中子支持穴の封止溶接方法、ならびに
この方法を用いたタービン翼を提供することを目的とす
る。
The present invention has been made in view of the above circumstances. After the precision casting, the core supporting portion is bored before the core is eluted from the roughened turbine blade. ,
While removing the core support part and shaping the side surface of the support hole, a hollow pattern is formed on the core of the bottom part of the support hole to transfer the desired shape to the extra metal of the weld metal. By performing the sealing welding used, it is possible to prevent the weld metal from dripping so that a predetermined extra-height shape can always be obtained. An object of the present invention is to provide a method for sealing and welding a blade core support hole, and a turbine blade using this method.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の構成を採用した。
The present invention has the following features to attain the object mentioned above.

【0010】すなわち、タービン翼の中子支持穴の封止
溶接に関する第一の方法では、精密鋳造されたタービン
翼から中子を溶出する前に、該中子を支持している部分
を除去する穴加工を行い、更に該穴の下部に位置する中
子の表面を除去して、該穴を封止する溶接金属に所定の
余盛形状を転写するためのパターンを形成し、その後、
該穴にニッケル基合金からなる溶加材を供給して、封止
溶接を行う。
That is, in the first method of sealing welding of the core support hole of the turbine blade, the portion supporting the core is removed before the core is eluted from the precision cast turbine blade. Performing hole processing, further removing the surface of the core located in the lower portion of the hole, to form a pattern for transferring a predetermined swelling shape to the weld metal that seals the hole, then,
A filler material made of a nickel-based alloy is supplied to the hole and sealing welding is performed.

【0011】第二の方法では、タービン翼の翼頂部に中
子支持部があり、この中子支持部が穴として残るタービ
ン翼の前記穴の封止溶接方法において、前記タービン翼
から中子を溶出除去する前に該中子支持部を除去する穴
加工を行って穴を形成し、更に該穴の下部に位置する中
子に該穴を封止する溶接金属に所定の余盛形状を転写す
るためのパターンを形成し、その後、該穴にニッケル基
合金からなる溶加材を供給して封止溶接を行う。
In the second method, there is a core support portion at the top of the turbine blade, and in the method of sealing welding of the hole of the turbine blade, the core support portion remains as a hole, the core is removed from the turbine blade. Prior to elution and removal, a hole is formed by removing the core support part to form a hole, and a predetermined extra-height shape is transferred to the weld metal that seals the hole in the core located below the hole. A pattern for forming the pattern is formed, and then a filler material made of a nickel-based alloy is supplied to the hole to perform sealing welding.

【0012】前記第一および第二の方法において、前記
穴の下部に位置する中子に加工したパターンにより転写
される溶接金属の余盛形状は、余盛の径に対する余盛高
さの比が1/10〜1/2となる球面形状とすることが
望ましい。
In the first and second methods, the weld metal surplus shape transferred by the pattern processed on the core located at the lower portion of the hole has a ratio of the surplus height to the diameter of the surplus metal. It is desirable that the spherical shape is 1/10 to 1/2.

【0013】本発明の封止溶接方法では、前記溶加材と
して封止用の部材を、溶接前に前記支持穴に配置する。
In the sealing welding method of the present invention, a sealing member as the filler material is arranged in the support hole before welding.

【0014】封止溶接の具体的方法としては、不活性ガ
スにより溶接部の酸化を抑制しながらレーザ溶接により
封止する方法,不活性ガスにより溶接部の酸化を抑制し
ながらTIG溶接により封止する方法,不活性ガスによ
り溶接部の酸化を抑制しながらプラズマ溶接により封止
する方法、あるいは電子ビーム溶接により封止する方法
が好ましい。
As a concrete method of the sealing welding, a method of sealing by laser welding while suppressing the oxidation of the welding portion by an inert gas, and a sealing by TIG welding while suppressing the oxidation of the welding portion by an inert gas. The method of sealing, the method of sealing by plasma welding while suppressing the oxidation of the welded portion by an inert gas, or the method of sealing by electron beam welding is preferable.

【0015】本発明のタービン翼は、精密鋳造時に形成
された中子支持部が穴として残存するタービン翼におい
て、該穴が溶接により封止され、該穴を封止せしめてい
る溶接金属の翼内面側に余盛を有し、該余盛が精密鋳造
後に翼内部に残留している中子に形成したパターンの転
写によって形成されたものであることを特徴とする。前
記余盛は球面形状を有し、余盛の径に対する余盛高さの
比が1/10〜1/2であることが望ましい。
According to the turbine blade of the present invention, in a turbine blade in which a core support portion formed during precision casting remains as a hole, the hole is sealed by welding, and the welded metal blade seals the hole. It is characterized in that it has a bulge on the inner surface side, and the bulge is formed by transferring the pattern formed on the core remaining inside the blade after precision casting. It is preferable that the extra reinforcement has a spherical shape, and the ratio of the extra elevation to the diameter of the extra protrusion is 1/10 to 1/2.

【0016】[0016]

【発明の実施の形態】[第一実施例]本発明に係るター
ビン翼の中子支持穴封止溶接方法の第一実施例を、図1
から図7を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment] A first embodiment of a core support hole sealing welding method for a turbine blade according to the present invention will be described with reference to FIG.
From now on, description will be made with reference to FIG. 7.

【0017】本実施例のタービン翼中子支持穴の封止溶
接方法は、図1から図4に示すように、ニッケル基耐熱
合金で形成されたタービン翼1の翼頂部10に配された
中子支持穴2に、前記ニッケル基耐熱合金よりも延性に
優れるニッケル基合金で形成された封止用部材3を配
し、レーザを封止用部材3の表面に照射することによ
り、封止用部材3と中子支持穴2周囲の翼材を溶融させ
て封止溶接するものであり、大略して以下の工程を経て
完了する。
As shown in FIGS. 1 to 4, the method of sealing welding of the turbine blade core support hole of the present embodiment is arranged on the blade top portion 10 of the turbine blade 1 formed of a nickel-base heat-resistant alloy. A sealing member 3 formed of a nickel-based alloy having a ductility superior to that of the nickel-based heat-resistant alloy is arranged in the child support hole 2, and the surface of the sealing member 3 is irradiated with a laser beam for sealing. The member 3 and the blade material around the core support hole 2 are melted and sealed and welded, and the process is roughly completed through the following steps.

【0018】まず、第1工程として、精密鋳造により形
成された後、粗加工され、必要に応じて熱処理が施され
たタービン翼1に対し、翼頂部10に配された中子支持
穴2を図2に示すように整形加工する。この中子支持穴
は、穴加工を施す前に中子支持部として使用されていた
ところである。中子支持部を形成していたセラミックを
除去して中子支持穴2を形成するとともに、中子支持穴
2の底部にある中子4の表面の一部を除去する。この除
去した部分は、中子支持穴2を溶接金属で封止した際
に、余盛となる。溶接金属の余盛の形状は球面状が望ま
しく、したがって、中子4の表面を除去する際に球面状
の余盛のパターン5を付与することが望ましい。本実施
例では、余盛の直径dに対する余盛高さhの比が約1/
6となるようにパターン5の形状を制御した。中子支持
穴2の整形加工と、中子4へ余盛のパターン5を付与す
る加工は、一つの加工ツールで同時に行うことが望まし
いが、中子支持穴2の加工を行った後、別の加工ツール
により余盛のパターン5の加工を行っても構わない。ま
た本実施例では、図2に示すように中子支持穴2にテー
パー状の整形を施したが、ストレートの穴形状に整形し
てもよい。
First, as a first step, a core support hole 2 arranged at a blade top 10 is provided for a turbine blade 1 which has been formed by precision casting, then rough-processed and optionally heat-treated. It is shaped as shown in FIG. This core support hole was used as a core support portion before drilling. The ceramic that has formed the core support portion is removed to form the core support hole 2, and a part of the surface of the core 4 at the bottom of the core support hole 2 is removed. The removed portion becomes extra when the core support hole 2 is sealed with weld metal. The shape of the weld metal swell is preferably spherical, and therefore it is desirable to provide the spherical swell pattern 5 when removing the surface of the core 4. In this embodiment, the ratio of the height h of the extra deposit to the diameter d of the extra deposit is about 1 /.
The shape of the pattern 5 was controlled so as to be 6. It is desirable that the shaping process of the core support hole 2 and the process of giving the extra pattern 5 to the core 4 be performed at the same time by one processing tool, but after the core support hole 2 is processed, another process is performed. The extra pattern 5 may be processed by the above-mentioned processing tool. Further, in this embodiment, as shown in FIG. 2, the core support hole 2 is formed in a tapered shape, but it may be formed in a straight hole shape.

【0019】第2工程では、図3に示すように第1工程
で整形した中子支持穴2に封止用部材3を配置し、必要
に応じてパーカッション溶接等により仮付けを行う。封
止用部材3の体積は、封止する中子支持穴2の設計値の
上での容積に対し、1.5 倍から3倍程度の大きさにす
ることが望ましい。封止用部材3の体積を変えることに
より、溶接金属の表面側の余盛量を調整することが可能
である。本実施例では中子支持穴2の設計値の上での容
積に対し、1.8 倍の体積を有する封止用部材3を用い
た。封止用部材3の形状は、中子支持穴2と嵌め合いと
なるように整形すると配置が容易になる。
In the second step, as shown in FIG. 3, the sealing member 3 is arranged in the core supporting hole 2 shaped in the first step, and if necessary, temporary attachment is performed by percussion welding or the like. It is desirable that the volume of the sealing member 3 be 1.5 to 3 times as large as the volume of the core supporting hole 2 to be sealed on the design value. By changing the volume of the sealing member 3, it is possible to adjust the amount of excess metal on the surface side of the weld metal. In this embodiment, the sealing member 3 having a volume 1.8 times as large as the design value of the core support hole 2 was used. If the shape of the sealing member 3 is shaped so as to fit with the core support hole 2, the arrangement becomes easy.

【0020】次に第3工程では、図3に示すようにレー
ザトーチ14から噴出させた不活性ガス流8により封止
溶接部を翼の外面側からシールドしながら、レーザ6を
封止用部材3に照射して溶融させるとともに、熱伝導に
より中子支持穴2の周囲の翼材も同時に溶し込むことに
より封止溶接が行われる。溶接終了時にレーザ出力を徐
々に減少させるダウンスロープ処理を行うと、図4に示
した溶接金属7の翼外面側の余盛に生じる引け9を抑制
することが可能である。ダウンスロープ処理を行っても
引け9が十分に抑制されない場合には、封止溶接の時よ
りも小さい入熱量で、溶接金属7の上部のみを再溶融す
ることにより、引け9を縮小させることも有効である。
本実施例ではレーザにYAGレーザを用いたが、半導体
レーザやCO2 レーザであっても同様な溶接が可能であ
る。
Next, in the third step, as shown in FIG. 3, the laser 6 is sealed by the inert gas flow 8 ejected from the laser torch 14 while the sealing weld is shielded from the outer surface of the blade. Sealing and welding is performed by irradiating and melting the wing material around the core support hole 2 at the same time by heat conduction. By performing a down-slope process that gradually reduces the laser output at the end of welding, it is possible to suppress the shrinkage 9 that occurs in the extra metal on the outer surface side of the blade of the weld metal 7 shown in FIG. If the shrinkage 9 is not sufficiently suppressed even if the downslope treatment is performed, the shrinkage 9 can be reduced by remelting only the upper portion of the weld metal 7 with a smaller heat input than that in the sealing welding. It is valid.
Although the YAG laser is used as the laser in this embodiment, similar welding can be performed by using a semiconductor laser or a CO 2 laser.

【0021】第4工程では、翼外面から封止溶接部の検
査を行った後、必要に応じてタービン翼に熱処理を施
す。
In the fourth step, after inspecting the seal welding portion from the outer surface of the blade, heat treatment is applied to the turbine blade if necessary.

【0022】最終の第5工程では、タービン翼内部の中
子を溶出した後、翼外面および内面側から封止溶接部の
検査を行い、不具合が無いことを確認する。
In the final fifth step, after the core inside the turbine blade is eluted, the sealing welds are inspected from the blade outer surface and inner surface side to confirm that there is no problem.

【0023】本実施例では、タービン翼1の材質を、重
量%で炭素(C)0.07 ,クロム(Cr)7.1,コ
バルト(Co)1.0,モリブデン(Mo)0.8 ,タ
ングステン(W)8.8,ニオブ(Nb)0.8,アルミ
ニウム(Al)5.1 ,ボロン(B)0.02,タンタ
ル(Ta)8.9,ハフニウム(Hf)0.25 ,レニ
ウム(Re)3.0 ,残部ニッケル(Ni)の組成を有
するニッケル基耐熱合金単結晶材とし、封止用部材3の
材質を、重量%で炭素(C)0.05 ,マンガン(M
n)0.25,鉄(Fe)2.5,シリコン(Si)0.
25,クロム(Cr)21.5,モリブデン(Mo)9.
0,アルミニウム(Al)0.2 ,チタン(Ti)0.
2,ニオブ(Nb)とタンタル(Ta)の合計が3.6
5,ニッケル(Ni)61.0 、及び残部不可避的不純
物、の組成を有するニッケル基合金とした場合に、表1
に示した溶接条件範囲から選択した条件を用いること
で、タービン翼1の翼頂部10の肉厚が1.2から1.8
mmの範囲でばらついた場合にも、一定の溶接条件で施工
を行うことが可能で、封止溶接部外面および内面の余盛
形状は良好であり、なおかつ溶接割れ,熱処理割れの無
い健全な封止溶接が実現できた。
In this embodiment, the material of the turbine blade 1 is carbon (C) 0.07, chromium (Cr) 7.1, cobalt (Co) 1.0, molybdenum (Mo) 0.8, in weight%. Tungsten (W) 8.8, Niobium (Nb) 0.8, Aluminum (Al) 5.1, Boron (B) 0.02, Tantalum (Ta) 8.9, Hafnium (Hf) 0.25, Rhenium ( Re) 3.0, nickel-based heat-resistant alloy single crystal material having the composition of the balance nickel (Ni), and the material of the sealing member 3 is carbon (C) 0.05, manganese (M) in% by weight.
n) 0.25, iron (Fe) 2.5, silicon (Si) 0.2.
25, chromium (Cr) 21.5, molybdenum (Mo) 9.
0, aluminum (Al) 0.2, titanium (Ti) 0.
2. The total of niobium (Nb) and tantalum (Ta) is 3.6.
5, nickel (Ni) 61.0, and the balance unavoidable impurities, a nickel-based alloy having the composition shown in Table 1
By using the condition selected from the welding condition range shown in, the wall thickness of the blade tip 10 of the turbine blade 1 is 1.2 to 1.8.
Even if there are variations in the range of mm, it is possible to carry out the work under constant welding conditions, the outer and inner surfaces of the sealing welded part have a good bulge shape, and there is a sound seal with no weld cracks or heat treatment cracks. Stop welding was realized.

【0024】[0024]

【表1】 [Table 1]

【0025】本実施例では、溶接割れ,熱処理割れ防止
の観点から、封止溶接における翼材の溶融量を抑制する
ために、溶接の熱源に収束性,制御性に優れるレーザを
用いたが、類似した熱源特性を有する電子ビームであっ
ても同様に封止溶接が可能である。
In this embodiment, from the viewpoint of preventing weld cracking and heat treatment cracking, a laser having excellent convergence and controllability was used as a heat source for welding in order to suppress the amount of melting of the blade material in the sealing welding. Seal welding can be similarly performed even for electron beams having similar heat source characteristics.

【0026】[第二実施例]第二の実施例におけるター
ビン翼中子支持穴の封止溶接方法は、図1および図5か
ら図7に示すように、ニッケル基耐熱合金で形成された
タービン翼1の翼頂部10に配された中子支持穴2に、
前記ニッケル基耐熱合金よりも延性に優れるニッケル基
合金で形成された封止用部材3を配し、TIG溶接によ
り封止用部材3と中子支持穴2周囲の翼材を溶融させて
封止溶接するものであり、大略して以下の工程を経て完
了する。
[Second Embodiment] As shown in FIGS. 1 and 5 to 7, a turbine blade core support hole sealing welding method according to a second embodiment is a turbine formed of a nickel-base heat-resistant alloy. In the core support hole 2 arranged on the wing top portion 10 of the wing 1,
A sealing member 3 formed of a nickel-based alloy having a higher ductility than the nickel-based heat-resistant alloy is arranged, and the sealing member 3 and the wing material around the core support hole 2 are melted and sealed by TIG welding. Welding is performed, and the process is roughly completed through the following steps.

【0027】まず、第1工程として、精密鋳造により形
成された後、粗加工され、必要に応じて熱処理が施され
たタービン翼1に対し、翼頂部10に配された中子支持
穴2を図5に示すように整形加工する。このとき、第一
実施例と同様に、中子支持穴2の整形加工の際に中子支
持部を除去するとともに、中子支持穴2底部の中子4に
溶接金属の余盛に所定の形状を転写するための球面状の
余盛のパターン5を付与する。本実施例では、余盛の直
径dに対する余盛高さhの比が約1/5となるように余
盛のパターン5の形状を制御した。中子支持穴2の整形
加工と、中子4へ余盛のパターン5を付与する加工は、
一つの加工ツールにより中子支持穴2の整形加工と同時
に行った。また本実施例では、図5に示すように中子支
持穴2をストレートの穴形状に整形した。もちろん、中
子支持穴2の形状は第一実施例と同様にテーパーを有し
ていても構わない。
First, as a first step, a core support hole 2 arranged at a blade top portion 10 is provided for a turbine blade 1 which has been formed by precision casting, then rough-processed, and optionally heat-treated. It is shaped as shown in FIG. At this time, as in the first embodiment, the core support portion is removed during shaping of the core support hole 2, and a predetermined amount of extra weld metal is provided on the core 4 at the bottom of the core support hole 2. A spherical extra pattern 5 for transferring the shape is applied. In the present embodiment, the shape of the extra pattern 5 was controlled so that the ratio of the extra height h to the extra diameter d was about 1/5. The shaping process of the core support hole 2 and the process of giving the extra pattern 5 to the core 4 are
It was performed at the same time as the shaping of the core support hole 2 with one processing tool. Further, in this embodiment, as shown in FIG. 5, the core support hole 2 was shaped into a straight hole shape. Of course, the core support hole 2 may have a taper as in the first embodiment.

【0028】第2工程では、図6に示すように第1工程
で整形した中子支持穴2に嵌合するように円柱状に加工
した封止用部材3を中子支持穴に配置した。また本実施
例では封止用部材3の体積を、封止する中子支持穴2の
設計値の上での容積に対し、2倍の大きさとした。
In the second step, as shown in FIG. 6, a cylindrical sealing member 3 was placed in the core supporting hole so as to fit into the core supporting hole 2 shaped in the first step. Further, in this embodiment, the volume of the sealing member 3 is twice as large as the volume of the core supporting hole 2 to be sealed in terms of the designed value.

【0029】次に第3工程では、図6に示すようにTI
Gトーチ15から噴出させた不活性ガス流8により封止
溶接部を翼の外面側からシールドしながら、アーク11
を溶接電極12と封止用部材3の間で発生させ、封止用
部材3を溶融するとともに、熱伝導により中子支持穴2
の周囲も同時に溶し込むことにより封止溶接が行われ
る。
Next, in the third step, as shown in FIG.
While shielding the sealed weld from the outer surface of the blade by the inert gas flow 8 ejected from the G torch 15, the arc 11
Is generated between the welding electrode 12 and the sealing member 3, the sealing member 3 is melted, and the core supporting hole 2 is formed by heat conduction.
Sealing welding is performed by simultaneously melting the surrounding area.

【0030】本実施例では、アークによるエネルギーを
選択的に封止用部材3に投入して翼材の溶融量を抑制す
るため、図6に示したように、不導体で形成され中央部
に穴を設けた円盤状のアークマスク13を中子支持穴2
の上部に配し、支持穴周囲の翼頂部表面をマスキングし
た。アークマスク13にはアルミナを使用したが、他の
耐熱性不導体であってもよく、耐熱性不導体と高融点金
属を積層もしくは重ねたものであっても構わない。アー
クマスク13の中央に設けた穴の径は、中子支持穴2の
翼外面側の直径より0.5〜2.0mm程度大きくすること
が望ましい。
In the present embodiment, the energy from the arc is selectively applied to the sealing member 3 to suppress the amount of melting of the blade material. Therefore, as shown in FIG. The disk-shaped arc mask 13 with holes is used as the core support hole 2
The upper surface of the blade around the support hole was masked. Alumina is used for the arc mask 13, but other heat-resistant non-conductors may be used, or the heat-resistant non-conductor and the high melting point metal may be laminated or stacked. The diameter of the hole provided in the center of the arc mask 13 is preferably larger than the diameter of the core support hole 2 on the outer surface side of the blade by about 0.5 to 2.0 mm.

【0031】また、溶接の終了時に溶接出力を徐々に減
少させるダウンスロープ処理を行うと、図7に示した溶
接金属7の翼外面側の余盛に生じる引け9を抑制するこ
とが可能である。ダウンスロープ処理を行っても引け9
が十分に抑制されない場合には、封止溶接の時よりも小
さい入熱量で、溶接金属7の上部のみを再溶融すること
により、引け9を縮小させることも有効である。
Further, by performing the down-slope treatment for gradually reducing the welding output at the end of welding, it is possible to suppress the shrinkage 9 that occurs in the excess on the outer surface side of the blade of the weld metal 7 shown in FIG. . Even if downslope processing is performed, it is closed.
Is not sufficiently suppressed, it is also effective to reduce the shrinkage 9 by remelting only the upper portion of the weld metal 7 with a smaller heat input than in the sealing welding.

【0032】第4工程および第5工程では、第一実施例
と同様に、封止溶接部の検査や熱処理を実施する。
In the fourth step and the fifth step, as in the first embodiment, the inspection and heat treatment of the sealing weld are carried out.

【0033】本実施例では、タービン翼1の材質を、重
量%で炭素(C)0.07 ,クロム(Cr)6.0,コ
バルト(Co)9.0,モリブデン(Mo)0.5 ,タ
ングステン(W)8.0,アルミニウム(Al)5.7,
チタン(Ti)0.7 ,ボロン(B)0.015,タン
タル(Ta)3.0,ハフニウム(Hf)1.4 ,レニ
ウム(Re)3.0 ,残部ニッケル(Ni)の組成を有
するニッケル基耐熱合金一方向凝固材とし、封止用部材
3の材質を第一実施例と同様に、重量%で炭素(C)0.
05,マンガン(Mn)0.25,鉄(Fe)2.5,シ
リコン(Si)0.25,クロム(Cr)21.5,モリ
ブデン(Mo)9.0,アルミニウム(Al)0.2,チ
タン(Ti)0.2 ,ニオブ(Nb)とタンタル(T
a)の合計が3.65,ニッケル(Ni)61.0、及び
残部不可避的不純物、の組成を有するニッケル基合金と
した場合に、表2に示した溶接条件範囲から選択した条
件を用いることで、タービン翼1の翼頂部10の肉厚が
1.2から1.8mmの範囲でばらついた場合にも、一定の
溶接条件で施工を行うことが可能で、封止溶接部外面お
よび内面の余盛形状は良好であり、なおかつ溶接割れや
熱処理割れの無い健全な封止溶接が実現された。
In this embodiment, the turbine blade 1 is made of carbon (C) 0.07, chromium (Cr) 6.0, cobalt (Co) 9.0, molybdenum (Mo) 0.5, in weight%. Tungsten (W) 8.0, Aluminum (Al) 5.7,
Nickel having a composition of titanium (Ti) 0.7, boron (B) 0.015, tantalum (Ta) 3.0, hafnium (Hf) 1.4, rhenium (Re) 3.0, and the balance nickel (Ni). The base heat-resistant alloy is a unidirectionally solidified material, and the material of the sealing member 3 is carbon (C) of 0.
05, manganese (Mn) 0.25, iron (Fe) 2.5, silicon (Si) 0.25, chromium (Cr) 21.5, molybdenum (Mo) 9.0, aluminum (Al) 0.2. Titanium (Ti) 0.2, Niobium (Nb) and Tantalum (T
In the case of a nickel-based alloy having a composition of a) total of 3.65, nickel (Ni) 61.0, and the balance unavoidable impurities, use the conditions selected from the welding condition range shown in Table 2. Therefore, even if the thickness of the blade tip portion 10 of the turbine blade 1 varies in the range of 1.2 to 1.8 mm, it is possible to carry out the construction under constant welding conditions, and The surplus shape was good, and sound sealing welding without welding cracks or heat treatment cracks was realized.

【0034】[0034]

【表2】 [Table 2]

【0035】本実施例では、溶接割れ,熱処理割れ防止
の観点から、封止溶接における翼材の溶融量を抑制する
ために、TIG溶接とアークマスクを組合せて封止溶接
を行ったが、溶接熱源にプラズマを用いた場合であって
も、同様にアークマスクとの組合せにより良好な封止溶
接が可能である。
In the present embodiment, from the viewpoint of preventing weld cracking and heat treatment cracking, in order to suppress the melting amount of the blade material in the sealing welding, the sealing welding was performed by combining TIG welding and an arc mask. Even when plasma is used as the heat source, good sealing welding can be similarly performed by combining with the arc mask.

【0036】以上、二つの実施例では、ニッケル基耐熱
合金単結晶材および一方向凝固材で形成されたタービン
翼翼頂部の中子支持穴の封止溶接方法を示したが、ター
ビン翼の他の部位に形成される中子支持穴や冷却孔等の
封止に適用してもよい。また、本発明に係るタービン翼
中子支持穴の封止溶接方法は、本実施例に記載したニッ
ケル基耐熱合金以外の他のニッケル基耐熱合金単結晶材
や一方向凝固材で形成されたタービン翼中子支持穴の封
止溶接にも好適である。
In the above two examples, the sealing welding method of the core supporting hole of the turbine blade blade top formed by the nickel-base heat-resistant alloy single crystal material and the unidirectionally solidified material was shown. It may be applied to the sealing of core support holes, cooling holes, etc. formed in the part. Further, the method for sealing and welding the turbine blade core support hole according to the present invention is a turbine formed of a nickel-base heat-resistant alloy single crystal material or a unidirectionally solidified material other than the nickel-base heat-resistant alloy described in the present embodiment. It is also suitable for sealing welding of blade core support holes.

【0037】[0037]

【発明の効果】本発明によれば、ニッケル基耐熱合金で
形成されたタービン翼の中子支持穴、特に翼頂部に配さ
れた中子支持穴の封止溶接において、溶加材を用いて中
子支持穴を封止溶接する際に、あらかじめ翼内部の中子
に形成した余盛形状のパターンを転写することにより、
溶接金属の翼内面側の余盛形状をほぼ一定の形状にする
ことが可能であり、翼の肉厚のばらつきによる溶接不良
を低減することが可能である。
According to the present invention, a filler metal is used in sealing welding of a core supporting hole of a turbine blade formed of a nickel-base heat-resistant alloy, particularly a core supporting hole arranged at the top of the blade. When sealing and welding the core support hole, by transferring the extra-height pattern previously formed on the core inside the blade,
The extra-height shape of the weld metal on the inner surface side of the blade can be made substantially constant, and it is possible to reduce welding defects due to variations in the wall thickness of the blade.

【0038】また、溶接金属の翼内面側の余盛形状を、
余盛の直径に対する余盛高さの比が1/10〜1/2の
範囲となるように制御することにより、溶接によって生
じる残留応力を分散させ、余盛部に発生しやすい溶接割
れや熱処理割れを低減することができる。
Further, the extra-height shape of the weld metal on the inner surface side of the blade is
By controlling the ratio of the height of the extra deposit to the diameter of the extra deposit to be in the range of 1/10 to 1/2, residual stress generated by welding is dispersed, and welding cracks and heat treatment that are likely to occur in the extra portion. It is possible to reduce cracking.

【0039】また前記封止溶接に用いる溶加材として、
封止用の部材をあらかじめ中子支持穴に配置しておき、
封止溶接を行うことにより、溶接により溶融する翼材の
割合を低減し、翼材に含まれる強化元素に起因して生じ
る溶接金属の割れを抑制することができる。
As the filler material used for the sealing welding,
Place the sealing member in the core support hole in advance,
By performing the sealing welding, the proportion of the blade material melted by the welding can be reduced, and cracking of the weld metal caused by the strengthening element contained in the blade material can be suppressed.

【0040】また、前記封止溶接の溶接熱源にレーザ,
アーク,プラズマあるいは電子ビームを用い、溶加材に
優先的にエネルギーを投入することにより、溶接により
溶融する翼材の割合を低減し、溶接金属の割れを抑制す
ることができるだけでなく、溶接金属のサイズが小さく
抑えられることで封止溶接部に起因したガスタービン翼
の強度低下が抑制される。
A laser is used as a welding heat source for the sealing welding.
By using arc, plasma or electron beam to preferentially input energy to the filler metal, the ratio of the blade material melted by welding can be reduced, cracks of the weld metal can be suppressed, and the weld metal can be suppressed. Since the size of the gas turbine blade is suppressed to be small, the decrease in strength of the gas turbine blade due to the sealed weld is suppressed.

【0041】これらの効果により、タービン翼製造時の
歩留まりが向上するとともに、溶接による翼の性能低下
が抑制され、翼寿命を長期化することができる。
Due to these effects, the yield at the time of manufacturing the turbine blade is improved, the deterioration of the blade performance due to welding is suppressed, and the blade life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】翼頂部に中子支持穴を有するタービン翼の斜視
図である。
FIG. 1 is a perspective view of a turbine blade having a core support hole at a blade top.

【図2】本発明に係るタービン翼中子支持穴の封止溶接
方法の実施例において、中子支持部の除去、ならびにテ
ーパ―状の整形加工を施された中子支持穴と中子に形成
された余盛のパターンの形状を示す、翼頂部中子支持穴
近傍の断面図である。
FIG. 2 is a diagram illustrating an embodiment of a method for sealing and welding a turbine blade core support hole according to the present invention, in which a core support portion is removed and a core support hole and a core that have been subjected to a tapered shaping process are provided. FIG. 6 is a cross-sectional view showing the shape of the formed extra-height pattern in the vicinity of the blade top core support hole.

【図3】本発明に係るタービン翼中子支持穴の封止溶接
方法の実施例において、中子支持穴に封止用部材を配
し、レーザ溶接により封止を行う場合の概略構成を示
す、翼頂部中子支持穴近傍の断面図である。
FIG. 3 shows a schematic configuration in the case where a sealing member is arranged in a core support hole and sealing is performed by laser welding in an embodiment of a method for sealing and welding a turbine blade core support hole according to the present invention. FIG. 3 is a cross-sectional view of the vicinity of a blade top core support hole.

【図4】本発明に係るタービン翼中子支持穴の封止溶接
方法の実施例において、中子支持穴に封止用部材を配
し、レーザ溶接により封止を行った後の状態を示した翼
頂部中子支持穴近傍の断面図である。
FIG. 4 shows a state after a sealing member is arranged in the core support hole and sealing is performed by laser welding in the embodiment of the method for sealing and welding the turbine blade core support hole according to the present invention. FIG. 3 is a cross-sectional view of the vicinity of a blade top core support hole.

【図5】本発明に係るタービン翼中子支持穴の封止溶接
方法の実施例において、中子支持部の除去、ならびに整
形加工を施された中子支持穴と中子に形成された余盛の
パターンの形状を示す、翼頂部中子支持穴近傍の断面図
である。
FIG. 5 is a diagram illustrating an embodiment of a method for sealing and welding a turbine blade core support hole according to the present invention, in which a core support portion is removed, and a core support hole that has been subjected to shaping processing and a margin formed in the core. FIG. 6 is a cross-sectional view showing the shape of a pattern of a mound in the vicinity of a blade top core support hole.

【図6】本発明に係るタービン翼中子支持穴の封止溶接
方法の実施例において、中子支持穴に封止用部材を配
し、TIG溶接により封止を行う場合の概略構成を示
す、翼頂部中子支持穴近傍の断面図である。
FIG. 6 shows a schematic configuration in the case where a sealing member is arranged in the core support hole and sealing is performed by TIG welding in the embodiment of the method for sealing and welding the turbine blade core support hole according to the present invention. FIG. 3 is a cross-sectional view of the vicinity of a blade top core support hole.

【図7】本発明に係るタービン翼中子支持穴の封止溶接
方法の実施例において、TIG溶接により封止を行った
後の状態を示した翼頂部中子支持穴近傍の断面図であ
る。
FIG. 7 is a cross-sectional view in the vicinity of a blade top core support hole showing a state after performing sealing by TIG welding in an embodiment of a method for sealing and welding a turbine blade core support hole according to the present invention. .

【符号の説明】[Explanation of symbols]

1…タービン翼、2…中子支持穴、3…封止用部材、4
…中子、5…余盛のパターン、6…レーザ、7…溶接金
属、8…不活性ガス流、9…引け、10…翼頂部、11
…アーク、12…溶接電極、13…アークマスク、14
…レーザトーチ、15…TIGトーチ。
DESCRIPTION OF SYMBOLS 1 ... Turbine blade, 2 ... Core support hole, 3 ... Sealing member, 4
... core, 5 ... extra pattern, 6 ... laser, 7 ... weld metal, 8 ... inert gas flow, 9 ... shrinkage, 10 ... blade top, 11
... arc, 12 ... welding electrode, 13 ... arc mask, 14
… Laser torch, 15… TIG torch.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B23K 103:08 B23K 103:08 Fターム(参考) 4E001 BB07 BB11 CB03 CC04 DC04 DD01 DG01 4E066 CA18 CB06 4E068 BA06 CH08 CJ01 DB02 4E081 AA05 BA08 DA13 YG03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B23K 103: 08 B23K 103: 08 F term (reference) 4E001 BB07 BB11 CB03 CC04 DC04 DD01 DG01 4E066 CA18 CB06 4E068 BA06 CH08 CJ01 DB02 4E081 AA05 BA08 DA13 YG03

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ニッケル基耐熱合金よりなり、精密鋳造さ
れたタービン翼の中子支持穴の封止溶接方法において、
前記タービン翼から中子を溶出する前に中子支持部を除
去して穴をあけ、該穴の下部に位置する中子の一部を除
去して該穴を封止する溶接金属に所定の余盛形状を転写
するためのパターンを形成し、その後、該穴にニッケル
基合金からなる溶加材を供給して封止溶接を行うことを
特徴とするタービン翼中子支持穴の封止溶接方法。
1. A method for sealing and welding a core support hole of a turbine blade, which is made of a nickel-base heat-resistant alloy and is precision-cast,
Before the core is eluted from the turbine blade, the core support is removed to make a hole, and a part of the core located at the lower part of the hole is removed to seal the hole with a predetermined metal. Sealing welding of a turbine blade core support hole, characterized in that a pattern for transferring the extra-height shape is formed, and then a filler material made of a nickel-based alloy is supplied to the hole to perform sealing welding. Method.
【請求項2】ニッケル基耐熱合金よりなり、精密鋳造さ
れたタービン翼の翼頂部の中子支持穴を封止溶接する方
法において、前記タービン翼の精密鋳造時に用いた中子
を溶出して除去する前に、該中子を支持している部分を
除去して穴をあけ、この穴の下部に位置する中子の表面
の一部を除去して該穴を封止する溶接金属に所定の余盛
形状を転写するためのパターンを形成し、その後、該穴
にニッケル基合金からなる溶加材を供給して封止溶接を
行うことを特徴とするタービン翼中子支持穴の封止溶接
方法。
2. A method of sealing and welding a core support hole of a precision-cast turbine blade, which is made of a nickel-base heat-resistant alloy, in which a core used during precision casting of the turbine blade is eluted and removed. Before removing the core, a portion supporting the core is removed to make a hole, and a part of the surface of the core located at the lower portion of the hole is removed to remove a predetermined amount from the weld metal for sealing the hole. Sealing welding of a turbine blade core support hole, characterized in that a pattern for transferring the extra-height shape is formed, and then a filler material made of a nickel-based alloy is supplied to the hole to perform sealing welding. Method.
【請求項3】請求項1又は2において、前記穴の下部に
位置する中子に加工したパターンにより転写される前記
溶接金属の余盛形状が、余盛の直径に対する余盛高さの
比が1/10〜1/2となる球面形状を有することを特
徴とするタービン翼中子支持穴の封止溶接方法。
3. The reinforcement shape of the weld metal transferred by the pattern machined to the core located in the lower portion of the hole according to claim 1 or 2, wherein the ratio of the height of the reinforcement to the diameter of the reinforcement is A sealing welding method for a turbine blade core support hole, which has a spherical shape of 1/10 to 1/2.
【請求項4】請求項1又は2において、前記溶加材は溶
接前に前記穴に配置する封止用の部材であることを特徴
とするタービン翼中子支持穴の封止溶接方法。
4. The method for sealing and welding a turbine blade core supporting hole according to claim 1, wherein the filler material is a sealing member arranged in the hole before welding.
【請求項5】請求項1から4のいずれか1つにおいて、
前記封止溶接は不活性ガスにより溶接部の酸化を抑制し
ながらレーザ溶接で行うことを特徴とするタービン翼中
子支持穴の封止溶接方法。
5. The method according to any one of claims 1 to 4,
The sealing welding of a turbine blade core support hole is characterized in that the sealing welding is performed by laser welding while suppressing oxidation of the welded portion by an inert gas.
【請求項6】請求項1から4のいずれかに1つにおい
て、前記封止溶接は不活性ガスにより溶接部の酸化を抑
制しながらTIG溶接で行うことを特徴とするタービン
翼中子支持穴の封止溶接方法。
6. The turbine blade core support hole according to any one of claims 1 to 4, wherein the sealing welding is performed by TIG welding while suppressing oxidation of the welded portion by an inert gas. Sealing welding method.
【請求項7】請求項1から4のいずれかに1つにおい
て、前記封止溶接は不活性ガスにより溶接部の酸化を抑
制しながらプラズマ溶接で行うことを特徴とするタービ
ン翼中子支持穴の封止溶接方法。
7. The turbine blade core support hole according to any one of claims 1 to 4, wherein the sealing welding is performed by plasma welding while suppressing oxidation of the welded portion by an inert gas. Sealing welding method.
【請求項8】請求項1から4のいずれか1つにおいて、
前記封止溶接は電子ビーム溶接で行うことを特徴とする
タービン翼中子支持穴の封止溶接方法。
8. The method according to any one of claims 1 to 4,
A sealing welding method for a turbine blade core support hole, wherein the sealing welding is performed by electron beam welding.
【請求項9】精密鋳造時に形成された中子支持部が残存
するニッケル基耐熱合金製のタービン翼において、該中
子支持部が除去されることにより形成された穴が溶接に
より封止され、該穴を封止せしめている溶接金属の翼内
面側に余盛を有し、該余盛が精密鋳造後に翼内部に残留
している中子に形成したパターンの転写によって形成さ
れたものであることを特徴とするタービン翼。
9. A turbine blade made of a nickel-base heat-resistant alloy in which a core supporting portion formed during precision casting remains, and a hole formed by removing the core supporting portion is sealed by welding. The weld metal that seals the hole has a bulge on the inner surface side of the blade, and the bulge is formed by transferring the pattern formed on the core remaining inside the blade after precision casting. Turbine blade characterized by that.
【請求項10】請求項9において、前記余盛が球面形状
を有し、該余盛の径に対する余盛高さの比が1/10〜
1/2であることを特徴とするタービン翼。
10. The ridge according to claim 9, wherein the sphere has a spherical shape, and the ratio of the height of the sphere to the diameter of the sphere is 1/10 to 10.
Turbine blade characterized by being 1/2.
JP2002120201A 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade Expired - Lifetime JP4112264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120201A JP4112264B2 (en) 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120201A JP4112264B2 (en) 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade

Publications (2)

Publication Number Publication Date
JP2003311404A true JP2003311404A (en) 2003-11-05
JP4112264B2 JP4112264B2 (en) 2008-07-02

Family

ID=29536489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120201A Expired - Lifetime JP4112264B2 (en) 2002-04-23 2002-04-23 Seal welding method for turbine blade core support hole and turbine blade

Country Status (1)

Country Link
JP (1) JP4112264B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066659A (en) * 2007-09-10 2009-04-02 Snecma Use of activating flux for tig welding of metal parts
JP2011073060A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Method and system for focused energy brazing
EP2754528A1 (en) * 2013-01-14 2014-07-16 Siemens Aktiengesellschaft Method of build up welding a substrate through laser remelting of a prefabricated mold
JP2015096649A (en) * 2013-10-09 2015-05-21 信越化学工業株式会社 Manufacturing method of flame spray body and flame spray body
WO2017208012A1 (en) * 2016-06-03 2017-12-07 The Welding Institute Method of joining first and second workpieces using in-situ formed fasteners created through laser or electron beam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066659A (en) * 2007-09-10 2009-04-02 Snecma Use of activating flux for tig welding of metal parts
JP2011073060A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Method and system for focused energy brazing
EP2754528A1 (en) * 2013-01-14 2014-07-16 Siemens Aktiengesellschaft Method of build up welding a substrate through laser remelting of a prefabricated mold
JP2015096649A (en) * 2013-10-09 2015-05-21 信越化学工業株式会社 Manufacturing method of flame spray body and flame spray body
US10137597B2 (en) 2013-10-09 2018-11-27 Shin-Etsu Chemical Co., Ltd. Sprayed article and making method
US10744673B2 (en) 2013-10-09 2020-08-18 Shin-Etsu Chemical Co., Ltd. Sprayed article and making method
WO2017208012A1 (en) * 2016-06-03 2017-12-07 The Welding Institute Method of joining first and second workpieces using in-situ formed fasteners created through laser or electron beam

Also Published As

Publication number Publication date
JP4112264B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US6884964B2 (en) Method of weld repairing a component and component repaired thereby
US9352413B2 (en) Deposition of superalloys using powdered flux and metal
US6814544B2 (en) Method for manufacturing turbine blade and manufactured turbine blade
EP3417972B1 (en) Method of welding superalloys
EP2950959B1 (en) Cladding of alloys using cored feed material comprising powdered flux and metal
EP2902516B1 (en) A weld filler for nickel-base superalloys
US5951792A (en) Method for welding age-hardenable nickel-base alloys
US20130140279A1 (en) Laser re-melt repair of superalloys using flux
US20030108767A1 (en) High energy beam welding of single-crystal superalloys and assemblies formed thereby
JP2000160313A (en) Nickel base super heat resistant alloy and heat treatment before welding, and welding for this nickel base superalloy
US20090014421A1 (en) Weld Repair Method for a Turbine Bucket Tip
KR20150113149A (en) Selective laser melting/sintering using powdered flux
CN107186309B (en) Forced Cracking and Brazing Repair of Superalloy Welds
KR20150106007A (en) Localized repair of superalloy component
CN105408056A (en) Repair of a substrate with component supported filler
WO2014120475A2 (en) Deposition of superalloys using powdered flux and metal
US9272363B2 (en) Hybrid laser plus submerged arc or electroslag cladding of superalloys
EP1361013B1 (en) A method of welding and repairing superalloy castings
EP3034229B1 (en) Weld filler for superalloys
WO2014120736A1 (en) Method of laser re-melt repair of superalloys using flux
US9186724B2 (en) Electroslag and electrogas repair of superalloy components
JP2003311404A (en) Sealing welding method for turbine blade core support hole and turbine blade
JP3845819B2 (en) Gas turbine blade and method for manufacturing the same
JP2003227350A (en) Manufacturing method of turbine blade and turbine blade using this method
JP2011230127A (en) Method for welding metal part and welding metal part for atomic power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Ref document number: 4112264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250