JP2003309395A - Radio wave absorption material - Google Patents
Radio wave absorption materialInfo
- Publication number
- JP2003309395A JP2003309395A JP2003034720A JP2003034720A JP2003309395A JP 2003309395 A JP2003309395 A JP 2003309395A JP 2003034720 A JP2003034720 A JP 2003034720A JP 2003034720 A JP2003034720 A JP 2003034720A JP 2003309395 A JP2003309395 A JP 2003309395A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- radio wave
- wave absorber
- absorber according
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 16
- 238000010521 absorption reaction Methods 0.000 title abstract description 24
- 239000000835 fiber Substances 0.000 claims abstract description 127
- 239000006096 absorbing agent Substances 0.000 claims description 70
- 239000004745 nonwoven fabric Substances 0.000 claims description 30
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 13
- 239000004744 fabric Substances 0.000 claims description 13
- 239000003063 flame retardant Substances 0.000 claims description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 12
- 239000004917 carbon fiber Substances 0.000 claims description 12
- 229920003235 aromatic polyamide Polymers 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 239000004760 aramid Substances 0.000 claims description 8
- 239000003365 glass fiber Substances 0.000 claims description 7
- 239000002759 woven fabric Substances 0.000 claims description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 5
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 5
- 239000004626 polylactic acid Substances 0.000 claims description 5
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 5
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 4
- 229920002530 polyetherether ketone Polymers 0.000 claims description 4
- -1 polyparaphenylene benzobisoxazole Polymers 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 11
- 239000002131 composite material Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229920000784 Nomex Polymers 0.000 description 5
- 239000004763 nomex Substances 0.000 description 5
- 229920000271 Kevlar® Polymers 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000004761 kevlar Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920002972 Acrylic fiber Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 241000255789 Bombyx mori Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 101001093748 Homo sapiens Phosphatidylinositol N-acetylglucosaminyltransferase subunit P Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は電波吸収材、特
に、マイクロ波、ミリ波帯の電波吸収材に関し、さらに
詳しくは、電波暗室の内壁に貼り付けたり、船舶航空機
等の移動体に装着したり、橋梁等の構造物の外壁に貼り
付けたりするほか、近年急速に拡大している無線LA
N、高速道路のETCをはじめとするDSRC(狭帯路
車間通信)やITS(高度交通情報システム)に関わる
装置内外部に設置したり、システム周辺の構造物、例え
ば外壁や壁や天井や床などに使用したりして、電波障害
を防止するのに使用する電波吸収体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorber, particularly a microwave or millimeter wave band radiowave absorber, and more specifically, it is attached to an inner wall of an anechoic chamber or mounted on a moving body such as a ship aircraft. In addition to being attached to the outer walls of structures such as bridges, wireless LA has expanded rapidly in recent years.
N, installed on the inside and outside of equipment related to DSRC (narrow zone road-to-vehicle communication) and ITS (advanced traffic information system) such as ETC on highways, and structures around the system, such as outer walls, walls, ceilings and floors The present invention relates to a radio wave absorber that is used to prevent radio wave interference by being used.
【0002】[0002]
【従来の技術】電波吸収体は、到来した電波を反射する
ことなく体内に取り入れ、その体内において速やかに減
衰させるものであり、そのため整合効果と吸収効果を同
時に満足するよう構成されている。すなわち表面から見
た規格化インピーダンスを1または可能な限り1に近く
して到来電波の反射を防止し、電波を体内に取り込んで
自身の電気的損失や磁気的損失を利用して吸収するので
ある。2. Description of the Related Art A radio wave absorber is designed to take an incoming radio wave into the body without reflecting it and rapidly attenuate it in the body. Therefore, the wave absorber is constructed so as to satisfy the matching effect and the absorbing effect at the same time. That is, the standardized impedance seen from the surface is set to 1 or as close to 1 as possible to prevent the reflection of the incoming radio wave, and the radio wave is taken into the body and absorbed by utilizing its own electric loss and magnetic loss. .
【0003】そのような電波吸収体としては、従来、フ
ェライトや金属片などの磁性、導電粉末を混用しその混
用比によって所定の電波吸収性を得るものや(例えば、
特許文献1、2参照)、磁気的損失層と電気的損失層の
2層効果を持つもの(例えば、特許文献3参照)など、
いろいろなものが知られている。しかしながら、これら
従来の電磁波吸収体は、電気的損失材や磁気的損失材を
基材の中に均一になるように混合するのが非常に面倒で
あるため製造コストが高く、また、耐候性や強度に劣る
などの欠点がある。As such an electromagnetic wave absorber, one that has conventionally mixed magnetic and conductive powders such as ferrite and metal pieces and obtains a predetermined electromagnetic wave absorption by the mixture ratio (for example,
Patent Documents 1 and 2), one having a two-layer effect of a magnetic loss layer and an electrical loss layer (for example, see Patent Document 3),
Various things are known. However, in these conventional electromagnetic wave absorbers, it is very troublesome to mix the electrical loss material and the magnetic loss material in the base material so that the manufacturing cost is high, and the weather resistance and There are drawbacks such as poor strength.
【0004】これらの問題を解決する方法として、ポリ
アクロニトリル繊維やピッチ系不融化繊維等を通常の炭
素繊維を得る場合よりも低い500〜1,000℃で焼
成してなる、いわゆる低温炭化糸や、1,300〜2,
000℃で焼成したシリコンカーバイド繊維など、電気
伝導率が10-6から103S/cmの半導体領域にある
ような繊維を使用することで、マイクロ波帯において高
い吸収効果を示し、周波数帯域が広く、耐候性や強度に
優れた電波吸収体が提案されてきた(例えば、特許文献
4参照)。これらは、あらかじめ前駆体のポリアクリロ
ニトリル繊維やピッチ系不融化繊維あるいは、シリコン
カーバイド繊維を織物形状などシート化しておき、それ
を焼成して上記半導体繊維を得るため、わざわざ損失材
を混ぜる手間がいらない。しかもはじめから繊維シート
の形態で作ることができ、軽量で、フレキシブルである
ため曲面に巻き付けて使用したり、また樹脂に含浸し
て、平板状や円筒状のコンポジット形態にしたりと、非
常に使いやすく、アプリケーションの幅が広い。しかし
ながらこれらの繊維の製造については、高度な焼成温度
の制御技術が必要であり、高度な設備でのみの製造に限
られている。As a method for solving these problems, so-called low-temperature carbonized yarn obtained by firing polyacrylonitrile fiber, pitch-based infusible fiber or the like at a temperature of 500 to 1,000 ° C., which is lower than in the case of obtaining ordinary carbon fiber. Or 1,300-2
By using a fiber such as silicon carbide fiber fired at 000 ° C., which has an electric conductivity in the semiconductor region of 10 −6 to 10 3 S / cm, a high absorption effect in the microwave band and a frequency band A wide range of radio wave absorbers having excellent weather resistance and strength have been proposed (see, for example, Patent Document 4). These are precursors such as polyacrylonitrile fiber or pitch-based infusible fiber or silicon carbide fiber formed into a sheet such as a woven fabric shape, and there is no need to bother to mix the loss material in order to obtain the semiconductor fiber by firing it. . Moreover, it can be made in the form of a fiber sheet from the beginning, and because it is lightweight and flexible, it can be wrapped around a curved surface for use, or it can be impregnated with resin to form a flat or cylindrical composite form, which makes it extremely useful. Easy and wide range of applications. However, the production of these fibers requires advanced firing temperature control technology and is limited to production only with advanced equipment.
【0005】[0005]
【特許文献1】 特開昭51−58046号公報[Patent Document 1] JP-A-51-58046
【0006】[0006]
【特許文献2】 特開昭58−71698号公報[Patent Document 2] Japanese Patent Laid-Open No. 58-71698
【0007】[0007]
【特許文献3】 特公昭50−4423号公報[Patent Document 3] Japanese Patent Publication No. 504-2423
【0008】[0008]
【特許文献4】 特開昭62−183599号公報[Patent Document 4] JP-A-62-183599
【0009】[0009]
【発明が解決しようとする課題】本発明は、かかる従来
技術の背景に鑑み、低温炭化糸やシリコンカーバイド繊
維シートに匹敵する高い吸収効果と、幅広いアプリケー
ションに対応する使いやすさを有する、電波吸収材を、
より簡単にに安価に提供せんとするものである。In view of such background of the prior art, the present invention has a high absorption effect comparable to that of a low temperature carbonized yarn or a silicon carbide fiber sheet, and is easy to use for a wide variety of applications. Material
It is intended to be provided more easily and cheaply.
【0010】[0010]
【課題を解決するための手段】本発明は、かかる課題を
解決するために、次のような手段を採用するものであ
る。すなわち、本発明の電波吸収材は、導電性繊維の短
繊維を有する繊維シートを含んで構成され、かつ、周波
数1〜20GHzの範囲内における複素比誘電率の少な
くとも1点が、その複素比誘電率の実部をεR、虚部を
εJとしたとき、下記(1)〜(4)式で囲まれる領域
内にあることを特徴とするものである。The present invention employs the following means in order to solve the above problems. That is, the radio wave absorber of the present invention is configured to include a fiber sheet having short fibers of conductive fibers, and at least one of the complex relative permittivities in the frequency range of 1 to 20 GHz is the complex relative permittivity. When the real part of the ratio is ε R and the imaginary part is ε J , it is in the region surrounded by the following formulas (1) to (4).
【0011】(1)εR=2 (2)εR=50 (3)εJ=0.7εR 1/2 (4)εJ=6.5εR 1/2 (1) ε R = 2 (2) ε R = 50 (3) ε J = 0.7 ε R 1/2 (4) ε J = 6.5 ε R 1/2
【0012】[0012]
【発明の実施の形態】本発明の電波吸収材は、導電性繊
維の短繊維を有する含繊維シートを含んで構成され、か
つ、周波数1〜20GHzの範囲内における複素比誘電
率の少なくとも1点が、その複素比誘電率の実部を
εR、虚部をεJとしたとき、下記(1)〜(4)式で囲
まれる領域内にあるものである。BEST MODE FOR CARRYING OUT THE INVENTION The radio wave absorber of the present invention is configured to include a fiber-containing sheet having conductive short fibers, and has at least one complex relative permittivity within a frequency range of 1 to 20 GHz. However, when the real part of the complex relative permittivity is ε R and the imaginary part is ε J , it is within the region surrounded by the following formulas (1) to (4).
【0013】(1)εR=2
(2)εR=50
(3)εJ=0.7εR 1/2
(4)εJ=6.5εR 1/2導電性繊維の短繊維としては
炭素繊維、あるいは金、銀、銅、ニッケル、アルミニウ
ム、鉄などの金属繊維のような繊維の1種または2種以
上が用いられる。ガラス繊維やシリコンカーバイド繊
維、ボロン繊維、有機高弾性繊維、ポリエステル繊維や
ポリアミド繊維などの合成繊維のようにそれ自身は導電
性を全く有していないかあるいはほとんど有していなく
てもこれらに上記のような金属をメッキ、蒸着、溶射す
るなどして導電性を付与した繊維を用いても良い。アク
リル繊維に金属銅を染色吸塵させた日本蚕毛染色(株)
のサンダーロン(R)も好ましく使用できる。(1) ε R = 2 (2) ε R = 50 (3) ε J = 0.7 ε R 1/2 (4) ε J = 6.5 ε R 1/2 As a short fiber of conductive fiber Is one or more of carbon fibers or fibers such as metal fibers such as gold, silver, copper, nickel, aluminum and iron. Even if the glass fiber, silicon carbide fiber, boron fiber, organic high-elasticity fiber, synthetic fiber such as polyester fiber or polyamide fiber has no or almost no electrical conductivity, Fibers to which conductivity is imparted by plating, vapor deposition, thermal spraying or the like with a metal as described above may be used. Nippon Silkworm Dyeing Co., Ltd. which dyes and absorbs metallic copper on acrylic fiber
Thunderron (R) can also be preferably used.
【0014】本発明は、上記のような導電性繊維の短繊
維が含まれるを有する繊維シートを、複数枚層状に積層
したり、樹脂に含浸して複合化したり、ハニカム状、波
板状等の嵩高い形状にしたりして、電波吸収材を構成
し、周波数1〜20GHzの範囲内における複素誘電率
を上記範囲内にコントロールすることを特徴とする。In the present invention, a plurality of fibrous sheets containing the above-mentioned conductive fiber short fibers are laminated, laminated with a resin or impregnated with a resin to form a composite, a honeycomb shape, a corrugated plate shape, or the like. And a complex electric permittivity within a frequency range of 1 to 20 GHz is controlled within the above range.
【0015】周波数が1〜20GHzの範囲内で、複素
誘電率が上記範囲にコントロールされたものであると、
良好な電波吸収特性を有しているといえるが、特に、対
象周波数を10GHzとした複素誘電率を規定するとよ
い。なぜなら、10GHzの電波は波長が3cmと短す
ぎず長すぎないため、複素比誘電率を測定しやすく、測
定精度が高い。さらに、本発明の具体的な実施態様の構
成では、1〜20GHzで複素比誘電率の実数部、虚数
部の値はほぼ一定であることが多く、10GHzの値を
1〜20GHzの周波数の代表値として扱うこともでき
るためである。When the complex permittivity is controlled within the above range within the frequency range of 1 to 20 GHz,
Although it can be said that it has excellent electromagnetic wave absorption characteristics, it is particularly preferable to define a complex dielectric constant with a target frequency of 10 GHz. Because the radio wave of 10 GHz has a wavelength of 3 cm, which is neither too short nor too long, so that the complex relative permittivity can be easily measured and the measurement accuracy is high. Further, in the configuration of the concrete embodiment of the present invention, the values of the real part and the imaginary part of the complex relative permittivity are often substantially constant at 1 to 20 GHz, and the value of 10 GHz is representative of the frequency of 1 to 20 GHz. This is because it can be treated as a value.
【0016】複素誘電率の実数部分εRは、通常の比誘
電率に相当する項で、あまり小さいと電波を吸収材内部
へ取り込んだ波長の圧縮が小さいため電波を効率よく減
衰させることができない。かといって大きいと電波を表
面反射してしまうので、効率的に内部へ取り込み、吸収
するためには、2〜50の範囲にあることが必要であ
る。The real part ε R of the complex permittivity is a term corresponding to a normal relative permittivity. If it is too small, the radio wave cannot be efficiently attenuated because the compression of the wavelength of the radio wave taken into the absorber is small. . On the other hand, if it is large, the radio wave will be reflected on the surface, so that it must be in the range of 2 to 50 in order to be efficiently taken in and absorbed inside.
【0017】複素誘電率の虚数部分εJは、電気的損失
に起因する項であり、この項によって電波エネルギーが
熱エネルギーに変換され電波は減衰を受ける。εJは、
εRの平方根に0.7〜6.5の係数を掛けた範囲にあ
ることが必要である。あまり小さいと電波の減衰が小さ
く、大きすぎると表面反射が大きくなり、それを避ける
ため、電波吸収材を非常に薄くしなければならず、かえ
って厚みのコントロールを難しくしてしまう。The imaginary part ε J of the complex permittivity is a term caused by electrical loss, and this term converts radio wave energy into heat energy and attenuates the radio wave. ε J is
It must be in the range of the square root of ε R multiplied by a coefficient of 0.7 to 6.5. If it is too small, the attenuation of radio waves will be small, and if it is too large, the surface reflection will be large, and in order to avoid it, the radio wave absorber must be made extremely thin, which makes it difficult to control the thickness.
【0018】導電性繊維は、特別な処理を施さなくても
それ自身で導電性を有し、かつ高強度、高弾性、しかも
比重が小さいという優れた特長を有する炭素繊維が好ま
しく用いられる。さらに、炭素繊維は、炭素繊維の長繊
維織物の製造工程で排出され、従来は産業廃棄物として
処理されてきた不要な長繊維を切断し、短繊維としたも
のを利用することもできる。上記のような炭素繊維の短
繊維は、長さ0.1〜20mm、アスペクト比(繊維長
/繊維直径)5以上を有しているのが好ましい。繊維長
があまり短かすぎたり、アスペクト比が小さすぎたりす
ると、繊維同士が重なりにくくなって接点の数が減少す
るようになり、接点の減少を補おうとして使用量を増や
すと製造コストが高くなる。また、平均繊維長が長くな
ると、一見、繊維同士の重なり合いが多くなって使用量
が少なくてすむように思えるが、逆に折れやすくなるの
でそれほど少量化できるわけでもない導電繊維の短繊維
を含んでいれば、非導電性の短繊維を含んでいても良
い。その割合は、導電性短繊維が非導電性の短繊維10
0重量部に対して0.1〜10重量部であるのが好まし
い。非導電性繊維も導電性繊維と類似の形状であれば、
導電性繊維を均一に配位しやすくするばかりか、両者の
割合により電気的損失をコントロールすることもでき
る。その場合、導電性繊維があまり少なすぎたり多すぎ
たりするとどちらかの均一性が低下し、電波吸収性にば
らつきを生じやすくなる。このような構成にすること
で、本発明の範囲の複素誘電率をもつ良好な電波吸収体
を得やすくなる。また、混合する繊維材料の剛性や強度
などの諸特性も反映させることができる。As the conductive fiber, carbon fiber is preferably used, which has conductivity by itself without any special treatment, and has the excellent features of high strength, high elasticity and small specific gravity. Further, carbon fibers can be used by cutting unnecessary long fibers, which have been discharged in the manufacturing process of carbon fiber long-fiber woven fabric and have been conventionally treated as industrial waste, into short fibers. The short fiber of the carbon fiber as described above preferably has a length of 0.1 to 20 mm and an aspect ratio (fiber length / fiber diameter) of 5 or more. If the fiber length is too short or the aspect ratio is too small, it becomes difficult for the fibers to overlap with each other, and the number of contacts will decrease.If you try to compensate for the decrease in contacts, the manufacturing cost will increase. Become. Also, when the average fiber length becomes long, it seems that the fibers are overlapped with each other and the usage amount is small, but on the contrary, since it is easy to break, it cannot be reduced so much. If it exists, you may contain the non-conductive short fiber. As for the ratio, the conductive short fibers are non-conductive short fibers 10
It is preferably 0.1 to 10 parts by weight with respect to 0 parts by weight. If the non-conductive fiber also has a similar shape to the conductive fiber,
Not only can the conductive fibers be easily coordinated uniformly, but the electrical loss can be controlled by the ratio of the two. In that case, if the amount of the conductive fibers is too small or too large, the uniformity of either of them is deteriorated, and the radio wave absorption tends to vary. With such a structure, it becomes easy to obtain a good electromagnetic wave absorber having a complex dielectric constant within the range of the present invention. In addition, various characteristics such as rigidity and strength of the mixed fiber material can be reflected.
【0019】非導電性繊維は、ガラス繊維、芳香族ポリ
アミド繊維、ポリフェニレンサルファイド繊維、ポリエ
ーテルエーテルケトン繊維、およびポリパラフェニレン
ベンゾビスオキザゾール繊維から選ばれる少なくとも1
種の短繊維であることが好ましい。これらの繊維は強度
や難燃性に優れている。特に、繊維が樹脂と併用して使
用される場合、芳香族ポリアミド繊維の1種であり、パ
ラ系アラミド繊維である「ケブラー(R)」は高強度、
高弾性であるために樹脂の補強効果が大きく特に好まし
く使用される。またポリ乳酸繊維などの生分解繊維も、
環境負荷を軽減させるために好ましく使用される。The non-conductive fiber is at least one selected from glass fiber, aromatic polyamide fiber, polyphenylene sulfide fiber, polyether ether ketone fiber, and polyparaphenylene benzobisoxazole fiber.
It is preferred to be a kind of short fiber. These fibers are excellent in strength and flame retardancy. In particular, when the fiber is used in combination with a resin, “Kevlar (R)”, which is a kind of aromatic polyamide fiber and is a para-aramid fiber, has high strength,
Since it has high elasticity, it has a large reinforcing effect on the resin and is particularly preferably used. In addition, biodegradable fiber such as polylactic acid fiber,
It is preferably used to reduce environmental load.
【0020】導電性繊維の短繊維を有する繊維シートの
形態に特に制約はなく、導電性繊維の短繊維と非導電性
短繊維を混合した紡績糸を織物や編物にしても、両繊維
を混合して不織布にしてシート化してもよい。しかし、
より安価に製造するためには、不織布の形態をしている
ものが特に好ましい。不織布は短繊維が均一にシート状
に分散されてなる形態のものであれば特に制約はされな
いが、導電性繊維ができるだけランダムに、均一に分散
されているのが好ましい。また、ここでいう不織布には
紙も含まれる。不織布の製造方法としては、短繊維を混
合しシート状に並べた後、ニードルパンチで繊維同士を
交絡させたりする方法や、短繊維を水中で混合し、抄紙
する方法などいずれの方法も好ましく使用される。必要
に応じて、水酸化アルミニウム等の無機結合材や、澱
粉、ポリビニルアルコール、ポリエチレン、パラフィ
ン、アクリル繊維等の有機結合材を添加してもよい。There is no particular limitation on the form of the fiber sheet having the conductive short fibers, and the spun yarn obtained by mixing the conductive short fibers and the non-conductive short fibers into a woven fabric or a knitted fabric may be mixed with both fibers. You may make it into a nonwoven fabric and make it into a sheet. But,
In order to manufacture at a lower cost, a non-woven fabric is particularly preferable. The nonwoven fabric is not particularly limited as long as it has a form in which short fibers are uniformly dispersed in a sheet shape, but it is preferable that the conductive fibers are uniformly dispersed as randomly as possible. Further, the non-woven fabric here includes paper. As a method for manufacturing a non-woven fabric, any method such as a method of mixing short fibers and arranging them in a sheet shape and then interlacing the fibers with a needle punch, or a method of mixing short fibers in water and making paper is preferably used. To be done. If necessary, an inorganic binder such as aluminum hydroxide or an organic binder such as starch, polyvinyl alcohol, polyethylene, paraffin or acrylic fiber may be added.
【0021】また、電波吸収材は電子部品周辺用途とし
て使用される場合も多いため、好ましくは 不織布は、
機器の部品用プラスチック材料の燃焼性試験UL−94
安全規格に定める難燃規格V−0,1またはVTM−
0,1を満足しているものが好ましい。[0021] Further, since the radio wave absorber is often used for the peripheral use of electronic parts, the non-woven fabric is preferably made of
Flammability test UL-94 for plastic materials for equipment parts
Flame retardant standard V-0,1 or VTM- stipulated in safety standards
Those satisfying 0 and 1 are preferable.
【0022】上記難燃規格を満足するためには、導電性
繊維以外の繊維成分が、ガラス繊維、芳香族ポリアミド
繊維、ポリフェニレンサルファイド繊維などの難燃性繊
維であるのが好ましい。しかし、導電性繊維以外の繊維
成分が非難燃性のポリエステル繊維などの場合であって
も、難燃剤を含む樹脂混合物を、不織布に含浸などして
付与しても良い。難燃剤は環境負荷の大きいハロゲン元
素を含まないものであるのが好ましく、縮合燐酸エステ
ル、燐酸エステル、芳香族ジフォスフェート、水酸化マ
グネシウム、水酸化アルミニウムおよび赤リンから選ば
れる少なくとも一種であるのが、添加量が少なくても高
い効果が得られるため好ましい。In order to satisfy the above-mentioned flame-retardant standard, it is preferable that the fiber component other than the conductive fiber is a flame-retardant fiber such as glass fiber, aromatic polyamide fiber, polyphenylene sulfide fiber or the like. However, even when the fiber component other than the conductive fibers is a non-flame retardant polyester fiber or the like, the resin mixture containing the flame retardant may be applied by impregnating the non-woven fabric. It is preferable that the flame retardant does not contain a halogen element having a large environmental load, and it is at least one selected from condensed phosphoric acid ester, phosphoric acid ester, aromatic diphosphate, magnesium hydroxide, aluminum hydroxide and red phosphorus. However, even if the addition amount is small, a high effect can be obtained, which is preferable.
【0023】不織布の製造方法の中でも、湿式抄紙は一
度に大量の不織布が安価に製造できる有効な方法の1つ
である。この際、きれいに巻き取るためには、繊維同士
を絡みやすくする「つなぎ」の役割をするパルプ成分を
添加するのが好ましい。パルプ成分はセルロース系や合
成繊維系などいずれも使用することができる。難燃性が
必要な場合は、難燃性パルプであるのが好ましい。なか
でも芳香族ポリアミド繊維である、パラ系アラミド繊維
の「ケブラー(R)」やメタ系アラミド繊維の「ノーメ
ックス(R)」のパルプは、パルプ形態を有しながらそ
れぞれの繊維の特性も併せ持つ優れた材料である。Among the methods for producing non-woven fabric, wet papermaking is one of the effective methods for producing a large amount of non-woven fabric at a low cost at one time. At this time, in order to wind up cleanly, it is preferable to add a pulp component which functions as a "link" for facilitating entanglement of fibers. As the pulp component, any of cellulose type and synthetic fiber type can be used. When flame retardancy is required, it is preferably flame retardant pulp. Among them, the aromatic polyamide fibers, "Kevlar (R)" of para-aramid fiber and "Nomex (R)" of meta-aramid fiber, are excellent in having the characteristics of each fiber while having a pulp form. It is a material.
【0024】難燃性パルプは10〜30%の範囲内で含
んでいると、不織布の仕上がりが良く好ましい。It is preferable that the flame-retardant pulp is contained in the range of 10 to 30% because the finished non-woven fabric is good.
【0025】また、不織布の電気伝導率は1S/cm以
下であるのが好ましい。不織布の電気伝導率は導電性繊
維の分散状態により若干変動することがあるが、この範
囲の電気伝導率を持つものが吸収量が飛躍的に大きくな
る傾向がある。The electrical conductivity of the non-woven fabric is preferably 1 S / cm or less. The electrical conductivity of the non-woven fabric may fluctuate slightly depending on the dispersed state of the conductive fibers, but those having the electrical conductivity in this range tend to have a drastically increased absorption amount.
【0026】不織布の目付は50〜200g/m2の範
囲内にあるのが好ましい。また、厚みは50μm〜30
0μmの範囲内にあるのが望ましい。電波の吸収にはあ
る程度厚みを要するため、不織布を複数枚、層状に配置
するなどして使用しても良い。しかし、1枚当たりの目
付が小さすぎると何枚も大量に積層しなければならず手
間がかかり、逆に目付が大きすぎると重くなり、取り扱
いが難しくなるため、使いやすさの面から、この範囲に
あることが好ましい。The basis weight of the non-woven fabric is preferably in the range of 50 to 200 g / m 2 . Further, the thickness is 50 μm to 30
It is desirable to be in the range of 0 μm. Since a certain amount of thickness is required to absorb radio waves, a plurality of non-woven fabrics may be arranged in layers and used. However, if the fabric weight per sheet is too small, many sheets must be laminated in a large amount of time, and conversely if the fabric weight is too large, it becomes heavy and difficult to handle. It is preferably in the range.
【0027】既に述べたように不織布に樹脂が複合さ
れ、成形されていることも好ましい。繊維による樹脂の
補強効果が期待できるためである。樹脂は、エポキシ樹
脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイ
ミド樹脂、ポリビスマレイミド樹脂等の熱硬化性樹脂や
ポリエステル樹脂、ポリアミド樹脂、ポリエチレン樹
脂、塩化ビニル樹脂、ポリエーテルエーテルケトン樹
脂、ポリ乳酸樹脂等の熱可塑性樹脂など好ましく使用す
ることができる。耐熱性を必要とする用途には、ポリイ
ミド樹脂やポリビスマレイミド樹脂、ポリエーテルエー
テルケトン樹脂を用いるのが好ましい。As described above, it is also preferable that the non-woven fabric is formed by compounding a resin. This is because the effect of reinforcing the resin by the fibers can be expected. Resins include thermosetting resins such as epoxy resin, unsaturated polyester resin, phenol resin, polyimide resin, polybismaleimide resin, polyester resin, polyamide resin, polyethylene resin, vinyl chloride resin, polyether ether ketone resin, polylactic acid resin. A thermoplastic resin such as the above can be preferably used. For applications requiring heat resistance, it is preferable to use a polyimide resin, polybismaleimide resin, or polyether ether ketone resin.
【0028】電波吸収材の厚みは好ましくは厚みが1〜
30mmの範囲内にあるのがマイクロ波帯域で吸収をも
つためには好ましい。The thickness of the radio wave absorber is preferably 1 to
It is preferable to be in the range of 30 mm in order to have absorption in the microwave band.
【0029】一方、電波吸収材の外観が平面でなくても
良い使用場所、たとえば、電波暗室やOA室の内装のよ
うな所では、上述の不織布をフィルターユニットに使用
されるようなハニカム状や、波板状、ピラミッド状の立
体形状にすることによって、内部反射によって電波が吸
収されるような構造にし、少ない不織布の使用量で高い
電波吸収効果を得ることができる。立体形状にする方法
には特に制約はなく、立体形状に組み立てやすくするた
め、不織布にエンボス加工を施し折り目を付ける方法な
どもこれに含まれる。On the other hand, in a place where the electromagnetic wave absorber does not have to have a flat appearance, for example, in a place where an anechoic chamber or an OA room is installed, the above-mentioned non-woven fabric may be used in a honeycomb shape or a filter unit. By adopting a corrugated plate or pyramid three-dimensional shape, a structure in which radio waves are absorbed by internal reflection can be obtained, and a high radio wave absorption effect can be obtained with a small amount of non-woven fabric used. There is no particular limitation on the method of forming a three-dimensional shape, and a method of embossing the non-woven fabric to make a crease or the like is included in this in order to facilitate assembling into a three-dimensional shape.
【0030】本発明による電波吸収材は、1層型電波吸
収体としてのみでなく、電波が入射する方向に整合層を
設け2層型電波吸収体の吸収層としても好ましく使用さ
れる。The radio wave absorber according to the present invention is preferably used not only as a one-layer type radio wave absorber but also as an absorption layer of a two-layer type radio wave absorber by providing a matching layer in the direction in which radio waves are incident.
【0031】整合層は対象周波数として1〜20GHz
の範囲内、特に10GHzにおける複素比誘電率が、そ
の複素比誘電率の実部をεR、虚部をεJとしたときεR
=3〜5εJ≦0.2の範囲内であるのが好ましい。こ
のような整合層を設け2層型電波吸収体とすることで、
1層型電波吸収体に比べ、特にマイクロ波帯における吸
収帯域幅がさらに広く、かつ、その吸収帯域における吸
収が比較的広い電波吸収体を提供することができる。The matching layer has a target frequency of 1 to 20 GHz.
In the range of, in particular complex relative permittivity at 10GHz is, the real part of the complex relative permittivity epsilon R, when the imaginary part was epsilon J epsilon R
= 3 to 5ε J ≦ 0.2 is preferable. By providing such a matching layer to form a two-layer type electromagnetic wave absorber,
It is possible to provide a radio wave absorber having a wider absorption band particularly in the microwave band and a relatively wider absorption in the absorption band than the one-layer type radio wave absorber.
【0032】整合層は、織物、編物および不織布から選
ばれる少なくとも1種の布帛を含んでいるのが好まし
い。布帛そのものを吸収層と積層しても良いし、樹脂中
に布帛を含んだものを積層しても吸収効果には差し支え
ない。The matching layer preferably contains at least one fabric selected from woven fabrics, knitted fabrics and non-woven fabrics. The cloth itself may be laminated with the absorbent layer, or the resin containing cloth may be laminated with no problem on the absorption effect.
【0033】布帛は、難燃性が必要とされる場合等に
は、ガラス繊維、芳香族ポリアミド繊維、ポリフェニレ
ンサルファイド繊維から選ばれる少なくとも1種の繊維
を含んでいるのがより好ましい。また、環境負荷を軽減
させるためにポリ乳酸繊維を使用するのも好ましい。The fabric preferably contains at least one fiber selected from glass fiber, aromatic polyamide fiber and polyphenylene sulfide fiber when flame retardancy is required. It is also preferable to use polylactic acid fiber in order to reduce the environmental load.
【0034】整合層の厚みはマイクロ波帯域で広い吸収
幅をもつためには、厚みが1〜20mmの範囲内にある
のが好ましい。The thickness of the matching layer is preferably in the range of 1 to 20 mm in order to have a wide absorption width in the microwave band.
【0035】上記の電波吸収材または電波吸収体は、そ
れぞれ単独でも好ましく使用されるが、導電性を有する
基材の少なくとも一面に電波吸収材または電波吸収体を
有することによって、吸収性能のみならず遮蔽性能を併
せ持つさらに優れた電波遮蔽構造体を作ることができ
る。Each of the above-mentioned radio wave absorbers or radio wave absorbers is preferably used alone. However, by having the radio wave absorbers or radio wave absorbers on at least one surface of the conductive base material, not only the absorption performance is improved. It is possible to create a more excellent radio wave shielding structure that also has shielding performance.
【0036】電波吸収材または電波吸収体を基材の片面
に有する場合、一方向からの電波吸収、遮蔽が可能とな
るが、両面に有する場合は両方向からの電波吸収、遮蔽
が可能となり、両側の干渉を減少させることができるの
で、病院やオフィスの衝立などの用途に特に好ましく使
用できる。When the electromagnetic wave absorber or the electromagnetic wave absorber is provided on one side of the base material, the electromagnetic wave can be absorbed and shielded from one direction, but when it is provided on both sides, the electromagnetic wave can be absorbed and shielded from both directions, and both sides can be absorbed. Since it is possible to reduce the interference of the above, it can be particularly preferably used for applications such as partitions in hospitals and offices.
【0037】[0037]
【実施例】以下、実施例により本発明をさらに詳細に説
明する。なお、実施例および比較例に示す性能値は次の
方法で測定した。
<複素誘電率>方形導波管を用い、Sパラメータ法によ
り複素誘電率を求めた。Sパラメータ法とは、伝送線路
の途中に挿入した試料の反射(S11)と透過(S2
1)をネットワークアナライザで測定して複素誘電率を
求める方法である。The present invention will be described in more detail with reference to the following examples. The performance values shown in Examples and Comparative Examples were measured by the following methods. <Complex Permittivity> Using a rectangular waveguide, the complex permittivity was determined by the S parameter method. The S-parameter method refers to reflection (S11) and transmission (S2) of a sample inserted in the middle of a transmission line.
This is a method of measuring 1) with a network analyzer to obtain a complex permittivity.
【0038】方形導波管は、(株)関東電子応用開発製
Sパラメータ法による誘電率測定用サンプルホルダ
を、ネットワークアナライザはアジレント・テクノロジ
ー(株)製を用いた。As the rectangular waveguide, a sample holder for permittivity measurement by S-parameter method manufactured by Kanto Electronics Co., Ltd. was used, and a network analyzer manufactured by Agilent Technology Co., Ltd. was used.
【0039】<反射損失>大きさ30cm×30cmで
1mm厚さのアルミ板に垂直に電波を当てた時の反射レ
ベルを測定した後、同面積のサンプルに電波を当て、両
者の差から反射損失(dB)を測定した。反射損失の測
定は、上記ネットワークアナライザの透過(S21)で
測定した。<Reflection Loss> After measuring the reflection level when a radio wave was vertically applied to an aluminum plate having a size of 30 cm × 30 cm and a thickness of 1 mm, the radio wave was applied to a sample having the same area, and the reflection loss was calculated from the difference between the two. (DB) was measured. The reflection loss was measured by transmission (S21) of the network analyzer.
【0040】実施例1
ポリアクリロニトリル系を原料とする繊維長が12m
m、繊維直径が7μmの炭素繊維の短繊維、繊維長が1
3mm、直径が7μmのガラスチョップ糸および平均繊
維長が0.7mmのノーメックス(R)パルプを、それ
ぞれの重量比が1重量%、79重量%、20重量%にな
るよう混合し、湿式抄紙した。得られた混抄紙の電気伝
導率は3.3×10-3S/cm以下、厚さは0.5m
m、目付は100g/m2、また、この混抄紙は難燃規
格V−0を満足していた。Example 1 Fiber length of 12 m from polyacrylonitrile-based material
m, fiber diameter 7 μm, short carbon fiber, fiber length 1
A glass chopped yarn having a diameter of 7 mm and a diameter of 7 mm and Nomex (R) pulp having an average fiber length of 0.7 mm were mixed so that their weight ratios were 1% by weight, 79% by weight and 20% by weight, respectively, and wet papermaking was performed. . The obtained mixed paper has an electric conductivity of 3.3 × 10 −3 S / cm or less and a thickness of 0.5 m.
m, the basis weight was 100 g / m 2 , and this mixed paper satisfied the flame retardancy standard V-0.
【0041】上記混抄紙に常温硬化型エポキシ樹脂を含
浸して3層を積層し、周波数10GHzにおける複素誘
電率が18−4jである複合材料板を得た。得られた複
合材料板の厚みは1.8mmであった。この複合材料板
の1、5、15、20GHzにおける複素比誘電率も測
定し、表1に示した。The above mixed paper was impregnated with a room temperature curing type epoxy resin and three layers were laminated to obtain a composite material plate having a complex dielectric constant of 18-4j at a frequency of 10 GHz. The thickness of the obtained composite material plate was 1.8 mm. The complex relative permittivity of this composite material plate at 1, 5, 15, and 20 GHz was also measured and is shown in Table 1.
【0042】次に、この板を吸収層とし、裏面に反射層
として1mm厚のアルミ板を貼り付けて電波吸収体とし
た。上記吸収体について7〜13GHzにおける反射損
失を測定した。結果を図1に示す。Next, this plate was used as an absorption layer, and an aluminum plate having a thickness of 1 mm was attached as a reflection layer on the back surface to obtain a radio wave absorber. The reflection loss in the said absorber was measured at 7-13 GHz. The results are shown in Fig. 1.
【0043】実施例2
実施例1と同様の炭素繊維の短繊維、ガラスチョップ糸
およびノーメックス(
R)パルプ(デュポン社製)を、それぞれの重量比が3
重量%、77重量%、20重量%になるように混合し、
湿式抄紙した。得られた混抄紙の電気伝導率は3.3×
10-3S/cm以下、厚さは0.5mm、目付は100
g/m2であった。また、この混抄紙は難燃規格V−0
を満足していた。Example 2 Short fibers of carbon fiber, glass chop yarn and Nomex (R) pulp (manufactured by DuPont) similar to those in Example 1 were used in a weight ratio of 3 respectively.
Mix so that weight%, 77%, and 20% by weight,
Wet papermaking. The electric conductivity of the obtained mixed paper is 3.3 ×.
10 -3 S / cm or less, thickness 0.5 mm, basis weight 100
It was g / m 2 . In addition, this mixed paper is flame retardant standard V-0.
Was satisfied.
【0044】上記混抄紙に常温硬化型エポキシ樹脂を含
浸して2層を積層し、周波数10GHzにおける複素誘
電率が19−24jである複合材料板(A)を得た。得
られた複合材料板(A)の厚みは1.2mmであった。
また、この複合材料板(A)の1、5、15、20GH
zにおける複素比誘電率も測定し、表1に示した。The above mixed paper was impregnated with a room temperature curable epoxy resin and two layers were laminated to obtain a composite material plate (A) having a complex dielectric constant of 19-24j at a frequency of 10 GHz. The thickness of the obtained composite material plate (A) was 1.2 mm.
In addition, 1, 5, 15, 20 GH of this composite material plate (A)
The complex relative permittivity at z was also measured and is shown in Table 1.
【0045】次にアラミド繊維ケブラー(R)織物(平
織り、目付460g/m2)に常温硬化型エポキシ樹脂
を含浸して6層を積層し、周波数10GHzにおける複
素誘電率が4−0.1jである複合材料板(B)を得
た。得られた複合材料板(B)の厚みは2.6mmであ
った。Next, an aramid fiber Kevlar (R) fabric (plain weave, basis weight 460 g / m 2 ) was impregnated with a room temperature curing type epoxy resin to laminate 6 layers, and a complex dielectric constant at a frequency of 10 GHz was 4-0.1 j. A composite material plate (B) was obtained. The thickness of the obtained composite material plate (B) was 2.6 mm.
【0046】次に反射層となる厚み1mmのアルミ板の
上に電波吸収層となる複合材料板(A)、さらにその上
に整合層となる複合材料板(B)を接着剤で接合し、電
波吸収体とした。上記吸収体について7〜13GHzに
おける反射損失を測定した。結果を図2に示す。Next, a composite material plate (A) serving as a radio wave absorbing layer and an composite material plate (B) serving as a matching layer are bonded on an aluminum plate having a thickness of 1 mm serving as a reflection layer and further bonded thereon with an adhesive. It was used as a radio wave absorber. The reflection loss in the said absorber was measured at 7-13 GHz. The results are shown in Figure 2.
【0047】実施例3
実施例1と同様の炭素繊維の短繊維、繊維長6mmのケ
ブラー(R)チョップ糸(東レデュポン社製)および平
均繊維長0.7mmのノーメックスパルプ(R)(デュ
ポン社製)をそれぞれの重量比が0.4重量%、79.
6重量%、20重量%になるように混合し、湿式抄紙し
た。得られた混抄紙の電気伝導率は3.3×10-3S/
cm以下、厚さは0.5mm、目付は100g/m2で
あった。上記シートを6枚を接着剤で接合し、10GH
zにおける複素比誘電率が25−28jである繊維シー
ト板(C)を得た。また、この繊維シート板(C)の
1、5、15、20GHzにおける複素比誘電率も測定
し、表1に示した。得られた繊維シート板の厚みは1m
mであった。Example 3 Short fibers of the same carbon fiber as in Example 1, Kevlar (R) chop yarn having a fiber length of 6 mm (manufactured by Toray DuPont) and Nomex pulp (R) having an average fiber length of 0.7 mm (Dupont) Manufactured by Mitsui Chemicals Co., Ltd., each having a weight ratio of 0.4 wt%,
6% by weight and 20% by weight were mixed, and wet papermaking was performed. The electric conductivity of the obtained mixed paper is 3.3 × 10 −3 S /
The thickness was 0.5 cm or less, the thickness was 0.5 mm, and the basis weight was 100 g / m 2 . Bond 6 sheets above with adhesive and
A fiber sheet plate (C) having a complex relative dielectric constant in z of 25-28j was obtained. The complex relative permittivity of the fiber sheet plate (C) at 1, 5, 15, and 20 GHz was also measured and shown in Table 1. The thickness of the obtained fiber sheet board is 1 m.
It was m.
【0048】次にガラス繊維織物(平織り、目付430
g/m2)に常温硬化型エポキシ樹脂を含浸して周波数
10GHzにおける複素誘電率が5−0.1jである複
合材料板(D)を得た。Next, glass fiber woven fabric (plain weave, fabric weight 430)
g / m 2 ) was impregnated with a room temperature curing type epoxy resin to obtain a composite material plate (D) having a complex dielectric constant of 5 to 0.1 j at a frequency of 10 GHz.
【0049】次に反射層となる厚み1mmのアルミ板の
上に電波吸収層となる繊維シート板(C)、さらにその
上に整合層となる複合材料板(D)を接着剤で接合し、
電波吸収体とした。上記吸収体について7〜13GHz
における反射損失を測定した。結果を図3に示す。Next, an aluminum plate having a thickness of 1 mm, which serves as a reflection layer, is bonded with a fiber sheet plate (C), which serves as a radio wave absorbing layer, and a composite material plate (D), which serves as a matching layer.
It was used as a radio wave absorber. About the absorber 7-13 GHz
The reflection loss at was measured. The results are shown in Fig. 3.
【0050】比較例1
実施例1の炭素繊維の短繊維100%で不織布を得た。
この不織布の電気伝導率は102S/cm厚さは0.5
mm、目付は100g/m2であった。上記不織布に常
温硬化型エポキシ樹脂を含浸して3層を積層し、周波数
10GHzにおける複素誘電率が90−70jである複
合材料板を得た。また、この複合材料板の1、5、1
5、20GHzにおける複素比誘電率も測定し、表1に
示した。得られた複合材料板の厚みは1.8mmであ
る。次にこの板を吸収層とし、裏面に反射層として1m
m厚のアルミ板を貼り付けて電波吸収体とした。上記吸
収体について7〜13GHzにおける反射損失を測定し
た。結果を図4に示す。Comparative Example 1 A non-woven fabric was obtained with 100% of the short carbon fibers of Example 1.
The electric conductivity of this non-woven fabric is 10 2 S / cm and the thickness is 0.5.
mm and basis weight was 100 g / m 2 . The above nonwoven fabric was impregnated with a room temperature curable epoxy resin and three layers were laminated to obtain a composite material plate having a complex dielectric constant of 90-70j at a frequency of 10 GHz. In addition, 1, 5, 1 of this composite material plate
The complex relative permittivity at 5 and 20 GHz was also measured and shown in Table 1. The thickness of the obtained composite material plate is 1.8 mm. Next, this plate is used as an absorption layer and a reflection layer on the back surface of 1 m.
A m-thick aluminum plate was attached to make a radio wave absorber. The reflection loss in the said absorber was measured at 7-13 GHz. The results are shown in Fig. 4.
【0051】比較例2
実施例1のガラスチョップ糸、ノーメックス(R)パル
プを、それぞれの重量比が80重量%、20重量%にな
るよう混合し、湿式抄紙した。得られた混抄紙の電気伝
導率は10-3S/cm以下、厚さは0.5mm、目付は
100g/m2、10GHzにおける透過減衰量は0d
Bであった。上記混抄紙にエポキシ樹脂を含浸して3層
を積層し、周波数10GHzにおける複素誘電率が5−
0.01jである複合材料板を得た。また、この複合材
料板の1、5、15、20GHzにおける複素比誘電率
も測定し、表1に示した。得られた複合材料板の厚みは
1.8mmである。Comparative Example 2 The glass chopped yarn and Nomex (R) pulp of Example 1 were mixed so that their weight ratio was 80% by weight and 20% by weight, and wet papermaking. The resulting mixed paper has an electric conductivity of 10 −3 S / cm or less, a thickness of 0.5 mm, a basis weight of 100 g / m 2 , and a transmission attenuation of 0 d at 10 GHz.
It was B. The above mixed paper is impregnated with epoxy resin and three layers are laminated, and the complex dielectric constant at a frequency of 10 GHz is 5
A composite plate of 0.01 j was obtained. Further, the complex relative permittivity of this composite material plate at 1, 5, 15, and 20 GHz was also measured and shown in Table 1. The thickness of the obtained composite material plate is 1.8 mm.
【0052】次にこの板を吸収層とし、裏面に反射層と
して1mm厚のアルミ板を貼り付けて電波吸収体とし
た。上記吸収体について7〜13GHzにおける反射損
失を測定した。結果を図5に示す。Next, this plate was used as an absorption layer and an aluminum plate having a thickness of 1 mm was attached as a reflection layer on the back surface to obtain a radio wave absorber. The reflection loss in the said absorber was measured at 7-13 GHz. Results are shown in FIG.
【0053】[0053]
【表1】 [Table 1]
【0054】これらの結果、実施例は比較例に対し、マ
イクロ波領域において高い電波吸収効果が得られ、しか
もその帯域幅は広いといえる。As a result, it can be said that the embodiment has a higher radio wave absorption effect in the microwave region and has a wider bandwidth than the comparative example.
【0055】[0055]
【発明の効果】本発明によると、導電性繊維の短繊維を
有する繊維シートを含んで構成され、電波吸収に適切な
複素誘電率にコントロールでき、繊維シートであるため
使いやすく、アプリケーションの幅が広い電波吸収材を
得ることができる。According to the present invention, a fiber sheet having conductive short fibers is included, and a complex permittivity suitable for electromagnetic wave absorption can be controlled. The fiber sheet is easy to use and has a wide range of applications. A wide wave absorber can be obtained.
【図面の簡単な説明】[Brief description of drawings]
【図1】実施例1に係る電波吸収体の反射損失の測定結
果である。1 is a measurement result of reflection loss of a radio wave absorber according to Example 1. FIG.
【図2】実施例2に係る電波吸収体の反射損失の測定結
果である。FIG. 2 is a measurement result of reflection loss of the radio wave absorber according to the second embodiment.
【図3】実施例3に係る電波吸収体の反射損失の測定結
果である。FIG. 3 is a measurement result of reflection loss of the radio wave absorber according to the third embodiment.
【図4】比較例1に係る電波吸収体の反射損失の測定結
果である。4 is a measurement result of reflection loss of the radio wave absorber according to Comparative Example 1. FIG.
【図5】比較例2に係る電波吸収体の反射損失の測定結
果である。5 is a measurement result of reflection loss of the radio wave absorber according to Comparative Example 2. FIG.
Claims (23)
含んで構成され、かつ、周波数1〜20GHzの範囲内
における複素比誘電率の少なくとも1点が、その複素比
誘電率の実部をεR、虚部をεJとしたとき、下記(1)
〜(4)式で囲まれる領域内にある電波吸収材。 (1)εR=2 (2)εR=50 (3)εJ=0.7εR 1/2 (4)εJ=6.5εR 1/2 1. A complex sheet including a fiber sheet having short fibers of conductive fibers, wherein at least one point of the complex relative permittivity within a frequency range of 1 to 20 GHz is the real part of the complex relative permittivity. When ε R and imaginary part are ε J , the following (1)
~ A radio wave absorber in the area surrounded by the formula (4). (1) ε R = 2 (2) ε R = 50 (3) ε J = 0.7 ε R 1/2 (4) ε J = 6.5 ε R 1/2
含んで構成され、かつ、周波数10GHzにおける複素
比誘電率が、その複素比誘電率の実部をεR、虚部をεJ
としたとき、下記(1)〜(4)式で囲まれる領域内に
ある電波吸収材。 (1)εR=2 (2)εR=50 (3)εJ=0.7εR 1/2 (4)εJ=6.5εR 1/2 2. A complex relative permittivity at a frequency of 10 GHz is constituted by including a fiber sheet having short fibers of conductive fibers, and the real part of the complex relative permittivity is ε R and the imaginary part is ε J.
Then, the electromagnetic wave absorber within the region surrounded by the following formulas (1) to (4). (1) ε R = 2 (2) ε R = 50 (3) ε J = 0.7 ε R 1/2 (4) ε J = 6.5 ε R 1/2
たは2に記載の電波吸収材。3. The radio wave absorber according to claim 1, wherein the conductive fiber is carbon fiber.
囲内、アスペクト比(繊維長/繊維直径)が5以上であ
る、請求項3に記載の電波吸収材。4. The electromagnetic wave absorber according to claim 3, wherein the carbon fiber has a length within a range of 0.1 to 20 mm and an aspect ratio (fiber length / fiber diameter) of 5 or more.
つ導電性繊維が非導電性繊維100重量部に対して0.
1〜10重量部の範囲内で含まれる、請求項1〜4のい
ずれかに記載の電波吸収材。5. A conductive fiber and a non-conductive short fiber are contained, and the conductive fiber has a content of 0.1 to 100 parts by weight of the non-conductive fiber.
The radio wave absorber according to any one of claims 1 to 4, which is contained within a range of 1 to 10 parts by weight.
ポリアミド繊維、ポリフェニレンサルファイド繊維、ポ
リエーテルエーテルケトン繊維、およびポリパラフェニ
レンベンゾビスオキザゾール繊維、ポリ乳酸繊維から選
ばれる少なくとも1種の短繊維である、請求項5に記載
の電波吸収材。6. The non-conductive short fiber is at least one selected from glass fiber, aromatic polyamide fiber, polyphenylene sulfide fiber, polyether ether ketone fiber, polyparaphenylene benzobisoxazole fiber, and polylactic acid fiber. The radio wave absorber according to claim 5, which is a short fiber of.
請求項1〜6のいずれかに記載の電波吸収材。7. The fiber sheet is in the form of a non-woven fabric,
The radio wave absorber according to any one of claims 1 to 6.
の燃焼性試験UL−94安全規格に定める難燃規格V−
0,1またはVTM−0,1を満足している、請求項7
に記載の電波吸収材。8. A non-woven fabric is a flame-retardant standard V-defined by UL-94 safety standard for flammability test of plastic materials for equipment parts.
0,1 or VTM-0,1 is satisfied, 7.
Electromagnetic wave absorber described in.
求項7または8に記載の電波吸収材。9. The radio wave absorber according to claim 7, wherein the non-woven fabric contains flame-retardant pulp.
プから選ばれる少なくとも1種のパルプである、請求項
9に記載の電波吸収材。10. The radio wave absorber according to claim 9, wherein the flame-retardant pulp is at least one kind of pulp selected from aromatic polyamide pulp.
内で含んでいる、請求項9または10に記載の電波吸収
材。11. The radio wave absorber according to claim 9, which contains a flame-retardant pulp in the range of 10 to 30% by weight.
である、請求項7〜11のいずれかに記載の電波吸収
材。12. The radio wave absorber according to claim 7, wherein the non-woven fabric has an electric conductivity of 1 S / cm or less.
の範囲内にある、請求項7〜12のいずれかに記載の電
波吸収材。13. The non-woven fabric has a basis weight of 50 to 200 g / m 2.
13. The radio wave absorber according to claim 7, which is within the range.
配置されている、請求項7〜13のいずれかに記載の電
波吸収材。14. The radio wave absorber according to claim 7, wherein the non-woven fabric comprises a plurality of non-woven fabrics arranged in layers.
項1〜14のいずれかに記載の電波吸収材。15. The radio wave absorber according to claim 1, wherein a resin is compounded and molded.
求項1〜15のいずれかに記載の電波吸収材。16. The radio wave absorber according to claim 1, having a thickness in the range of 1 to 30 mm.
立体形状から選ばれる形状をしている、請求項1〜16
のいずれかに記載の電波吸収材。17. A shape selected from a three-dimensional shape such as a honeycomb shape, a corrugated plate shape, and a pyramid shape.
The electromagnetic wave absorber according to any one of 1.
吸収材を有する電波吸収体。18. A radio wave absorber comprising the radio wave absorber according to claim 1.
波数における複素比誘電率が、その複素比誘電率の実部
をεR、虚部をεJとしたときεR=3〜5εJ≦0.2の
範囲内にある整合層を有している、請求項18に記載の
電波吸収体。19. A complex relative permittivity at a target frequency on at least one surface of a radio wave absorber, where ε R is a real part of the complex relative permittivity and ε J is an imaginary part, ε R = 3 to 5 ε J ≦ The radio wave absorber according to claim 18, which has a matching layer in the range of 0.2.
選ばれる少なくとも1種の布帛を含んでいる、請求項1
9に記載の電波吸収体。20. The matching layer contains at least one kind of fabric selected from woven fabric, knitted fabric and non-woven fabric.
9. The radio wave absorber according to item 9.
繊維、およびポリフェニレンサルファイド繊維、ポリ乳
酸繊維から選ばれる少なくとも1種の繊維を含んでい
る、請求項20に記載の電波吸収体。21. The electromagnetic wave absorber according to claim 20, wherein the cloth contains at least one fiber selected from glass fiber, aromatic polyamide fiber, polyphenylene sulfide fiber, and polylactic acid fiber.
にある、請求項19〜21のいずれかに記載の電波吸収
体。22. The electromagnetic wave absorber according to claim 19, wherein the matching layer has a thickness within a range of 1 to 20 mm.
に、請求項1〜17のいずれかに記載の電波吸収材また
は請求項18〜22のいずれかに記載の電波吸収体を有
する電波遮蔽構造体。23. A radio wave shield structure having the radio wave absorber according to any one of claims 1 to 17 or the radio wave absorber according to any one of claims 18 to 22 on at least one surface of a conductive base material. body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034720A JP4716348B2 (en) | 2002-02-13 | 2003-02-13 | Radio wave absorber |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-35233 | 2002-02-13 | ||
JP2002035233 | 2002-02-13 | ||
JP2002035233 | 2002-02-13 | ||
JP2003034720A JP4716348B2 (en) | 2002-02-13 | 2003-02-13 | Radio wave absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003309395A true JP2003309395A (en) | 2003-10-31 |
JP4716348B2 JP4716348B2 (en) | 2011-07-06 |
Family
ID=29405109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003034720A Expired - Fee Related JP4716348B2 (en) | 2002-02-13 | 2003-02-13 | Radio wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4716348B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005260214A (en) * | 2004-02-12 | 2005-09-22 | Toray Ind Inc | Electromagnetic wave shield material, stereo structure, electromagnetic wave shield property interior material, and image display device |
JP2007291576A (en) * | 2006-04-27 | 2007-11-08 | Teijin Ltd | Thermoconductive filler and compounded molded article by using the same |
JP2017085019A (en) * | 2015-10-30 | 2017-05-18 | 横浜ゴム株式会社 | Radio wave absorber |
JP2017085024A (en) * | 2015-10-30 | 2017-05-18 | 横浜ゴム株式会社 | Method of manufacturing fiber-reinforced plastic sheet |
JP2018098258A (en) * | 2016-12-08 | 2018-06-21 | デュポン帝人アドバンスドペーパー株式会社 | Electromagnetic wave suppression sheet |
WO2019187596A1 (en) * | 2018-03-30 | 2019-10-03 | デュポン帝人アドバンスドペーパー株式会社 | Electromagnetic wave absorbing sheet and method for producing same |
JP2019186507A (en) * | 2018-03-30 | 2019-10-24 | デュポン帝人アドバンスドペーパー株式会社 | Electromagnetic wave absorbing sheet and manufacturing method of the same |
US11444397B2 (en) | 2015-07-07 | 2022-09-13 | Amphenol Fci Asia Pte. Ltd. | Electrical connector with cavity between terminals |
US11469553B2 (en) | 2020-01-27 | 2022-10-11 | Fci Usa Llc | High speed connector |
US11522310B2 (en) | 2012-08-22 | 2022-12-06 | Amphenol Corporation | High-frequency electrical connector |
US11539171B2 (en) | 2016-08-23 | 2022-12-27 | Amphenol Corporation | Connector configurable for high performance |
CN115534478A (en) * | 2021-06-30 | 2022-12-30 | 深圳光启尖端技术有限责任公司 | Composite fiber wave-absorbing paper, wave-absorbing honeycomb structure material and preparation method thereof |
CN115648737A (en) * | 2022-10-31 | 2023-01-31 | 航天材料及工艺研究所 | A light ultra-broadband microwave absorbing material and its preparation method |
US11715914B2 (en) | 2014-01-22 | 2023-08-01 | Amphenol Corporation | High speed, high density electrical connector with shielded signal paths |
US11757215B2 (en) | 2018-09-26 | 2023-09-12 | Amphenol East Asia Electronic Technology (Shenzhen) Co., Ltd. | High speed electrical connector and printed circuit board thereof |
US11757224B2 (en) | 2010-05-07 | 2023-09-12 | Amphenol Corporation | High performance cable connector |
US11799246B2 (en) | 2020-01-27 | 2023-10-24 | Fci Usa Llc | High speed connector |
US11817655B2 (en) | 2020-09-25 | 2023-11-14 | Amphenol Commercial Products (Chengdu) Co., Ltd. | Compact, high speed electrical connector |
US11942716B2 (en) | 2020-09-22 | 2024-03-26 | Amphenol Commercial Products (Chengdu) Co., Ltd. | High speed electrical connector |
US12300936B2 (en) | 2019-02-19 | 2025-05-13 | Amphenol Corporation | High speed connector |
US12300920B2 (en) | 2021-08-13 | 2025-05-13 | Amphenol Commercial Products (Chengdu) Co., Ltd. | High performance card edge connector for high bandwidth transmission |
-
2003
- 2003-02-13 JP JP2003034720A patent/JP4716348B2/en not_active Expired - Fee Related
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005260214A (en) * | 2004-02-12 | 2005-09-22 | Toray Ind Inc | Electromagnetic wave shield material, stereo structure, electromagnetic wave shield property interior material, and image display device |
JP2007291576A (en) * | 2006-04-27 | 2007-11-08 | Teijin Ltd | Thermoconductive filler and compounded molded article by using the same |
US11757224B2 (en) | 2010-05-07 | 2023-09-12 | Amphenol Corporation | High performance cable connector |
US11522310B2 (en) | 2012-08-22 | 2022-12-06 | Amphenol Corporation | High-frequency electrical connector |
US11901663B2 (en) | 2012-08-22 | 2024-02-13 | Amphenol Corporation | High-frequency electrical connector |
US11715914B2 (en) | 2014-01-22 | 2023-08-01 | Amphenol Corporation | High speed, high density electrical connector with shielded signal paths |
US11955742B2 (en) | 2015-07-07 | 2024-04-09 | Amphenol Fci Asia Pte. Ltd. | Electrical connector with cavity between terminals |
US11444397B2 (en) | 2015-07-07 | 2022-09-13 | Amphenol Fci Asia Pte. Ltd. | Electrical connector with cavity between terminals |
JP2017085019A (en) * | 2015-10-30 | 2017-05-18 | 横浜ゴム株式会社 | Radio wave absorber |
JP2017085024A (en) * | 2015-10-30 | 2017-05-18 | 横浜ゴム株式会社 | Method of manufacturing fiber-reinforced plastic sheet |
US12341301B2 (en) | 2016-08-23 | 2025-06-24 | Amphenol Corporation | Connector configurable for high performance |
US11539171B2 (en) | 2016-08-23 | 2022-12-27 | Amphenol Corporation | Connector configurable for high performance |
US10654247B2 (en) | 2016-12-08 | 2020-05-19 | Dupont Teijin Advanced Papers (Japan), Ltd. | Electromagnetic wave suppression sheet |
JP2018098258A (en) * | 2016-12-08 | 2018-06-21 | デュポン帝人アドバンスドペーパー株式会社 | Electromagnetic wave suppression sheet |
WO2019187596A1 (en) * | 2018-03-30 | 2019-10-03 | デュポン帝人アドバンスドペーパー株式会社 | Electromagnetic wave absorbing sheet and method for producing same |
JP2019186507A (en) * | 2018-03-30 | 2019-10-24 | デュポン帝人アドバンスドペーパー株式会社 | Electromagnetic wave absorbing sheet and manufacturing method of the same |
US20210045269A1 (en) * | 2018-03-30 | 2021-02-11 | Dupont Teijin Advanced Papers (Japan), Ltd. | Electromagnetic wave absorbing sheet and method for producing same |
US11757215B2 (en) | 2018-09-26 | 2023-09-12 | Amphenol East Asia Electronic Technology (Shenzhen) Co., Ltd. | High speed electrical connector and printed circuit board thereof |
US12300936B2 (en) | 2019-02-19 | 2025-05-13 | Amphenol Corporation | High speed connector |
US11469554B2 (en) | 2020-01-27 | 2022-10-11 | Fci Usa Llc | High speed, high density direct mate orthogonal connector |
US11799246B2 (en) | 2020-01-27 | 2023-10-24 | Fci Usa Llc | High speed connector |
US11817657B2 (en) | 2020-01-27 | 2023-11-14 | Fci Usa Llc | High speed, high density direct mate orthogonal connector |
US11469553B2 (en) | 2020-01-27 | 2022-10-11 | Fci Usa Llc | High speed connector |
US11942716B2 (en) | 2020-09-22 | 2024-03-26 | Amphenol Commercial Products (Chengdu) Co., Ltd. | High speed electrical connector |
US11817655B2 (en) | 2020-09-25 | 2023-11-14 | Amphenol Commercial Products (Chengdu) Co., Ltd. | Compact, high speed electrical connector |
CN115534478A (en) * | 2021-06-30 | 2022-12-30 | 深圳光启尖端技术有限责任公司 | Composite fiber wave-absorbing paper, wave-absorbing honeycomb structure material and preparation method thereof |
US12300920B2 (en) | 2021-08-13 | 2025-05-13 | Amphenol Commercial Products (Chengdu) Co., Ltd. | High performance card edge connector for high bandwidth transmission |
CN115648737A (en) * | 2022-10-31 | 2023-01-31 | 航天材料及工艺研究所 | A light ultra-broadband microwave absorbing material and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP4716348B2 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003309395A (en) | Radio wave absorption material | |
US6346491B1 (en) | Felt having conductivity gradient | |
RU2091879C1 (en) | Heat- and fire-resistant sheet and its manufacturing process (options) | |
KR102400778B1 (en) | electromagnetic wave suppression sheet | |
Jagatheesan et al. | Fabrics and their composites for electromagnetic shielding applications | |
US6061011A (en) | Nonflammable radio wave absorber | |
JP2010157696A (en) | Radiowave absorber | |
JP2005260214A (en) | Electromagnetic wave shield material, stereo structure, electromagnetic wave shield property interior material, and image display device | |
KR20120050391A (en) | A microwave absorbing structure composed of a dielectric lossy sheet and method thereof | |
JP2006002429A (en) | Radio wave acoustic insulation | |
JP2008277363A (en) | Electromagnetic wave absorber | |
JP2016157814A (en) | Electromagnetic wave absorber | |
JP2004119450A (en) | Radio wave absorber and its manufacturing method | |
JP4357955B2 (en) | Radio wave absorber | |
JP2004193460A (en) | Radio wave absorber | |
JP4011096B2 (en) | Radio wave absorbing nonwoven fabric | |
JPH01155691A (en) | Radio wave absorbing composite material | |
JP6089625B2 (en) | Sheet material for radio wave absorber and radio wave absorber using the same | |
KR20090027379A (en) | Electromagnetic shielding prepreg structure and antenna using the same | |
JP4226140B2 (en) | Non-combustible radio wave absorbing felt and felt with composite panel and metal foil | |
KR100764659B1 (en) | Microwave Shielding Fiber Reinforced Nanocomposite for Outdoor Antenna | |
JPH0453175B2 (en) | ||
KR101717715B1 (en) | Manufacturing method for hybrid carbon fiber, manufacturing method for electromagnetic shielding-insulation material using hybrid carbon fiber and electromagnetic shielding-insulation material manufactured by the same | |
JPH0121784B2 (en) | ||
JP2003011259A (en) | Mineral board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041008 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080704 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090513 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090519 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110324 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |