JP2003309210A - Ceramic circuit board and method of manufacturing the same - Google Patents
Ceramic circuit board and method of manufacturing the sameInfo
- Publication number
- JP2003309210A JP2003309210A JP2002116485A JP2002116485A JP2003309210A JP 2003309210 A JP2003309210 A JP 2003309210A JP 2002116485 A JP2002116485 A JP 2002116485A JP 2002116485 A JP2002116485 A JP 2002116485A JP 2003309210 A JP2003309210 A JP 2003309210A
- Authority
- JP
- Japan
- Prior art keywords
- circuit board
- metal
- ceramic
- plate
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 103
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 138
- 239000002184 metal Substances 0.000 claims abstract description 138
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 238000005219 brazing Methods 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 36
- 238000001816 cooling Methods 0.000 claims abstract description 30
- 230000017525 heat dissipation Effects 0.000 claims description 44
- 239000010949 copper Substances 0.000 claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 230000001052 transient effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000009461 vacuum packaging Methods 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Structure Of Printed Boards (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
(57)【要約】
【課題】 ろう付け接合後のセラミックス基板に発生す
るクラックの防止と熱伝導性および温度サイクル寿命を
改善したセラミックス回路基板およびその製造方法を提
供する。
【解決手段】 厚みが0.2〜0.9mmのセラミック
ス基板11の表面に活性金属を含むろう材14を介して
厚み3mm以下の金属回路板12を設け、またセラミッ
クス基板の裏面には活性金属を含むろう材14を介して
金属放熱板13を設けた接合体であって、この接合体は
−110℃以下で少なくとも1回の冷却処理を施したも
のであり、これにより接合体の室温における反り量は5
0mm当り100μm以下である。また、セラミックス
基板に加わる残留応力が650MPa以下であるセラミ
ックス回路基板。
[PROBLEMS] To provide a ceramic circuit board which prevents cracks generated in a ceramic substrate after brazing and has improved thermal conductivity and temperature cycle life, and a method of manufacturing the same. SOLUTION: A metal circuit board 12 having a thickness of 3 mm or less is provided on a surface of a ceramic substrate 11 having a thickness of 0.2 to 0.9 mm via a brazing material 14 containing an active metal. A metal radiator plate 13 is provided via a brazing material 14 containing at least one of which has been subjected to at least one cooling treatment at a temperature of −110 ° C. or less. Warpage is 5
It is 100 μm or less per 0 mm. Further, a ceramic circuit board having a residual stress applied to the ceramic substrate of 650 MPa or less.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、セラミックス回路
基板およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic circuit board and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、モーター、電力変換機器等の小型
化、大電力化、高性能化の進展に伴い、それに搭載され
る電力半導体素子用回路基板には、より大電力が扱える
高熱伝導性と温度サイクル寿命のより長い高信頼性が要
求されてきている。この要求に対応するため、高熱伝導
性と高信頼性とを具備する電力半導体素子用セラミック
ス回路基板には種々の提案が行われている。2. Description of the Related Art In recent years, with the progress of miniaturization, high power consumption, and high performance of motors, power converters, etc., circuit boards for power semiconductor devices mounted on them have high thermal conductivity capable of handling higher power. And long-term high reliability of temperature cycle life is required. In order to meet this demand, various proposals have been made for ceramic circuit boards for power semiconductor devices having high thermal conductivity and high reliability.
【0003】例えば、特開平9−246691号公報に
は、温度サイクル寿命を改善した金属回路を有するセラ
ミックス回路基板の製造方法が記載されている。これに
は、金属回路板とセラミックス基板とのろう付けによる
接合体を−70℃で冷却処理して残留応力を緩和し、温
度サイクル寿命を改善する方法が開示されている。For example, Japanese Unexamined Patent Publication No. 9-246691 discloses a method of manufacturing a ceramic circuit board having a metal circuit with improved temperature cycle life. It discloses a method of relaxing a residual stress by cooling a joined body obtained by brazing a metal circuit board and a ceramics substrate at −70 ° C. and improving a temperature cycle life.
【0004】[0004]
【発明が解決しようとする課題】大電力を扱うためには
電力用半導体素子を搭載する金属回路板の厚みを厚く
し、熱抵抗を小さくして熱伝導性を良くする必要があ
る。このように厚くした金属回路板をセラミックス基板
にろう付けした接合体は、残留応力と反り量が増大して
セラミックス基板にクラックが発生し易くなると共に、
この接合体を例え−70℃で冷却処理しても残留応力や
反り量の緩和が十分には行われず、温度サイクル寿命が
短いという問題がある。このため、前記ろう付け接合後
のセラミックス基板に発生するクラックの防止を図りな
がら、熱伝導性および温度サイクル寿命の改善が待たれ
ている。In order to handle a large amount of power, it is necessary to increase the thickness of the metal circuit board on which the power semiconductor element is mounted, reduce the thermal resistance, and improve the thermal conductivity. The bonded body in which the metal circuit board thus thickened is brazed to the ceramics substrate increases the residual stress and the amount of warp, and the cracks easily occur on the ceramics substrate.
Even if this bonded body is cooled at -70 ° C, the residual stress and the amount of warpage are not sufficiently relaxed, and there is a problem that the temperature cycle life is short. Therefore, improvement of thermal conductivity and temperature cycle life is awaited while preventing cracks generated in the ceramics substrate after the brazing and bonding.
【0005】本発明の目的は、上記に鑑み、ろう付け接
合後のセラミックス基板に発生するクラックの防止を図
りながら、熱伝導性および温度サイクル寿命を改善した
セラミックス回路基板およびその製造方法を提供するこ
とにある。In view of the above, an object of the present invention is to provide a ceramics circuit board having improved thermal conductivity and temperature cycle life while preventing cracks generated in the ceramics board after brazing and bonding, and a method for manufacturing the same. Especially.
【0006】[0006]
【課題を解決するための手段】本発明者らは上記の目的
を達成するため、金属回路板の厚みと金属放熱板の厚み
との関係、更に金属回路板のろう付けされた面積と金属
放熱板のろう付けされた面積との関係で、金属回路板お
よび金属放熱板とセラミックス基板とのろう付け時に発
生する反り量と残留応力が抑制できること、およびその
発生した反り量と残留応力が、−70℃で冷却処理する
よりも−110℃以下で冷却処理する方が更に緩和でき
ること、すなわち、ろう付け接合後のクラックの防止を
図りながら、セラミックス回路基板の放熱性および温度
サイクル寿命の改善ができることを見出し、本発明に至
った。SUMMARY OF THE INVENTION In order to achieve the above object, the present inventors have studied the relationship between the thickness of a metal circuit board and the thickness of a metal heat dissipation plate, and the brazed area of the metal circuit board and the metal heat dissipation. The relationship between the brazed area of the plate, the amount of warpage and the residual stress that occur when brazing the metal circuit board and the metal heat dissipation plate and the ceramics substrate can be suppressed, and the amount of warpage and the residual stress that occur- Cooling at −110 ° C. or lower can be more relaxed than cooling at 70 ° C., that is, heat dissipation and temperature cycle life of the ceramic circuit board can be improved while preventing cracks after brazing. The present invention has been completed and the present invention has been achieved.
【0007】本発明のセラミックス回路基板は、セラミ
ックス基板の表面にろう材を介して金属回路板を、およ
び前記セラミックス基板の裏面にろう材を介して金属放
熱板をそれぞれ設けた接合体であって、該接合体は−1
10℃以下で冷却処理されて、室温における反り量が5
0mm当り100μm以下であることを特徴とする。The ceramic circuit board of the present invention is a bonded body in which a metal circuit board is provided on the front surface of the ceramic substrate via a brazing material, and a metal radiator plate is provided on the back surface of the ceramic substrate via a brazing material. , The joint is -1
The amount of warpage at room temperature is 5 after cooling at 10 ° C or below.
It is characterized in that it is 100 μm or less per 0 mm.
【0008】また、このときのセラミックス基板に加わ
る残留応力は650MPa以下であることを特徴として
いる。さらに、ここでセラミックス基板の厚みが0.2
〜0.9mm、金属回路板の厚みが3.0mm以下であ
り、金属回路板の厚み(tc)と、金属放熱板の厚み
(tr)との関係がtc>trであり、更に金属回路板
のろう付けされた面積(sc)と金属放熱板のろう付け
された面積(sr)との関係がsc<srであることが
好ましい。The residual stress applied to the ceramic substrate at this time is 650 MPa or less. Furthermore, the thickness of the ceramic substrate is 0.2
˜0.9 mm, the thickness of the metal circuit board is 3.0 mm or less, and the relationship between the thickness (tc) of the metal circuit board and the thickness (tr) of the metal heat dissipation plate is tc> tr. It is preferable that the relationship between the brazed area (sc) and the brazed area (sr) of the metal heat sink is sc <sr.
【0009】本発明のセラミックス回路基板において、
セラミックス基板が窒化珪素または窒化アルミニウムま
たはアルミナであり、金属回路板および金属放熱板が銅
または銅を主成分とする銅合金またはアルミニウムまた
はアルミニウムを主成分とするアルミニウム合金である
ことが望ましい。このとき、上記したろう材としては活
性金属を含むろう材またはAl合金ろう材を用いること
が好ましい。In the ceramic circuit board of the present invention,
It is preferable that the ceramic substrate is silicon nitride, aluminum nitride, or alumina, and the metal circuit board and the metal radiator plate are copper or a copper alloy containing copper as a main component, or aluminum or an aluminum alloy containing aluminum as a main component. At this time, it is preferable to use a brazing material containing an active metal or an Al alloy brazing material as the brazing material.
【0010】本発明のセラミックス回路基板の製造方法
は、セラミックス基板の表面および裏面に金属板をろう
材で接合した後、表面の金属板をエッチングして回路パ
ターンを形成し、裏面の金属板を放熱板として接合体を
造るか、またはセラミックス基板の表面に回路パターン
が形成されている金属回路板および該セラミックス基板
の裏面に金属放熱板をそれぞれ活性金属を含むろう材で
接合して接合体を造り、この接合体を−110℃以下に
冷却することを特徴とする。ここで冷却は、接合体を真
空パックするか、または不活性ガス中で、80℃/分以
下の降温速度で−110℃以下に冷却して20分間以上
保持することが好ましい。According to the method of manufacturing a ceramics circuit board of the present invention, a metal plate is joined to the front surface and the back surface of the ceramics substrate with a brazing material, the metal plate on the front surface is etched to form a circuit pattern, and the metal plate on the back surface is formed. A bonded body is formed as a heat dissipation plate, or a metal circuit board having a circuit pattern formed on the surface of a ceramic substrate and a metal heat dissipation plate are bonded to the back surface of the ceramic substrate with a brazing material containing an active metal to form a bonded body. It is characterized in that it is manufactured and the joined body is cooled to −110 ° C. or lower. Here, the cooling is preferably performed by vacuum-packing the bonded body, or by cooling in an inert gas at a temperature lowering rate of 80 ° C./minute or less to −110 ° C. or less and holding for 20 minutes or more.
【0011】また本発明のセラミックス回路基板の製造
方法は、セラミックス基板の表面および裏面に金属板を
ろう材で接合した後に−110℃以下に冷却して室温に
戻し、表面の金属板をエッチングして回路パターンを形
成し、裏面の金属板を放熱板として接合体を造るか、ま
たは更にこの接合体を−110℃以下に冷却することを
特徴とする。ここで冷却は、接合体を真空パックする
か、または不活性ガス中で、80℃/分以下の降温速度
で−110℃以下に冷却して20分間以上保持すること
が好ましい。尚、上記したろう材としては、活性金属を
含むろう材またはAl合金ろう材を用いることが好まし
い。Further, in the method for manufacturing a ceramics circuit board of the present invention, the metal plates are joined to the front and back surfaces of the ceramics substrate with a brazing material, cooled to -110 ° C. or lower and returned to room temperature, and the metal plate on the surface is etched. And forming a circuit pattern by using the metal plate on the back surface as a heat dissipation plate to form a bonded body, or further cooling the bonded body to −110 ° C. or lower. Here, the cooling is preferably performed by vacuum-packing the bonded body, or by cooling in an inert gas at a temperature lowering rate of 80 ° C./minute or less to −110 ° C. or less and holding for 20 minutes or more. As the brazing material described above, it is preferable to use a brazing material containing an active metal or an Al alloy brazing material.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明例のセラミックス回
路基板の断面図である。本発明のセラミックス回路基板
10は、セラミックス基板11の表面に活性金属を含む
ろう材、またはAl合金ろう材14を介して金属回路板
12を設け、他方セラミックス基板11の裏面には活性
金属を含むろう材、またはAl合金ろう材14を介して
金属放熱板13を夫々設けた接合体となし、この接合体
を−110℃以下で冷却処理して得たものである。この
接合体によれば室温におけるセラミックス基板11の反
り量(tw)は50mm当り100μm以下、またセラ
ミックス基板11に加わる残留応力が650MPa以下
とすることが出来る。尚、反り量は金属回路板、あるい
は金属放熱板のどちら側のものでも良い。そして、残留
応力の集中を防止するためには、金属回路板12および
金属放熱板13の端面および端部コーナー部にはテーパ
ー及び/又はアールが設けられていることが望ましい。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a ceramic circuit board of the present invention. In the ceramic circuit board 10 of the present invention, a metal circuit board 12 is provided on the surface of a ceramic substrate 11 via a brazing material containing an active metal or an Al alloy brazing material 14, while the back surface of the ceramic substrate 11 contains an active metal. This is a joined body in which the metal heat dissipation plates 13 are respectively provided via the brazing material or the Al alloy brazing material 14, and the obtained joined body is cooled at -110 ° C or lower. According to this bonded body, the warp amount (tw) of the ceramic substrate 11 at room temperature can be 100 μm or less per 50 mm, and the residual stress applied to the ceramic substrate 11 can be 650 MPa or less. The amount of warp may be on either side of the metal circuit board or the metal heat dissipation plate. In order to prevent the residual stress from concentrating, it is desirable that the end faces and the end corners of the metal circuit board 12 and the metal heat dissipation plate 13 are provided with taper and / or radius.
【0013】セラミックス回路基板10の反り量が大き
いと、金属放熱板13側に放熱器または機器の筐体にネ
ジまたは低温ろう材等を使用して取り付ける場合、密着
性が悪くなり、放熱性が劣化する。このため、密着性を
良くして放熱性を向上させるためには、50mm当りの
反り量(tw)が更に小さい50μm以下であることが
より好ましい。またセラミックス回路基板10の反り
は、ネジを使用して放熱板等に取り付ける場合、金属回
路板12側が凸(金属放熱板13側が凹)に反っている
よりも、金属回路板12側が凹(金属放熱板13側が
凸)に反っている方が、密着性が良いため放熱性が良く
なる。更に残留応力が緩和されるために温度サイクル寿
命の向上ができるため、より好ましい。When the warp amount of the ceramic circuit board 10 is large, when the metal radiator plate 13 side is attached to the radiator or the housing of the equipment by using screws or low-temperature brazing material, the adhesion is deteriorated and the heat radiation performance is deteriorated. to degrade. Therefore, in order to improve the adhesiveness and improve the heat dissipation, it is more preferable that the warp amount (tw) per 50 mm is 50 μm or less, which is smaller. In addition, when the ceramic circuit board 10 is mounted on a radiator plate or the like using screws, the warp of the ceramic circuit board 10 is concave (metal) on the metal circuit board 12 side rather than convex (metal concave 13 side). When the heat dissipation plate 13 side is convex, the adhesion is better and the heat dissipation is better. Further, since the residual stress is relaxed, the temperature cycle life can be improved, which is more preferable.
【0014】本発明で使用されるセラミックス基板11
としては、窒化珪素、窒化アルミニウム、アルミナ等が
あげられ、その厚みとしては、薄すぎると強度および耐
久性が小さくなり、厚すぎると熱抵抗が大きくなるの
で、0.2〜0.9mm程度であることが好ましい。ま
た、金属回路板12および金属放熱板13としては、
銅、銅を主成分とする銅合金、アルミニウム、アルミニ
ウムを主成分とするアルミニウム合金等があげられ、金
属回路板12の厚みは3.0mm以下であることが好ま
しい。この理由については後述する。The ceramic substrate 11 used in the present invention
Examples of the material include silicon nitride, aluminum nitride, alumina and the like. If the thickness is too thin, the strength and durability will be small, and if it is too thick, the thermal resistance will be large. Preferably there is. Further, as the metal circuit board 12 and the metal heat dissipation plate 13,
Examples thereof include copper, a copper alloy containing copper as a main component, aluminum, and an aluminum alloy containing aluminum as a main component. The thickness of the metal circuit board 12 is preferably 3.0 mm or less. The reason for this will be described later.
【0015】更に、本発明のセラミックス回路基板にお
いて、ろう付け接合で接合体に発生する残留応力の緩和
による接合体の破損および反り防止、並びに温度サイク
ル寿命向上のためには、金属回路板12の厚み(tc)
と金属放熱板13の厚み(tr)との関係がtc>tr
であり、更に金属回路板12のろう付けされた面積(s
c)と金属放熱板13のろう付けされた面積(sr)と
の関係がsc<srであることが好ましい。この理由は
以下のように考えられる。Further, in the ceramic circuit board of the present invention, in order to prevent damage and warpage of the joined body due to relaxation of the residual stress generated in the joined body by brazing, and to improve the temperature cycle life, the metal circuit board 12 is Thickness (tc)
And the thickness (tr) of the metal radiator plate 13 is tc> tr
And the brazed area of the metal circuit board 12 (s
The relationship between c) and the brazed area (sr) of the metal heat dissipation plate 13 is preferably sc <sr. The reason for this is considered as follows.
【0016】ろう付け接合後の接合体の反り方は、金属
回路板12の厚み(tc)と金属放熱板13の厚み(t
r)との関係で変わる。例えば、上記面積がsc=sr
の条件で、上記厚みがtc=trの場合では反りが発
生しない。上記厚みがtc>trの場合では金属回路
板12側が凹(金属放熱板13側が凸)に反る。上記
厚みがtc<trの場合では金属回路板12側が凸(金
属放熱板13側が凹)に反る。更に上記面積がsc<s
r条件で、上記厚みがtc=trか、またはtc<t
rの場合では金属回路板12側が凸(金属放熱板13側
が凹)に反る。上記厚みがtc>trの場合では、反
りが発生しないか、または金属回路板12側が凸(金属
放熱板13側が凹)に反るか、または金属回路板12側
が凹(金属放熱板13側が凸)に反るかのいずれかの状
態になる。尚、反り量は、前記厚みtcとtrとの差が
大きくなればなるほど、また前記面積scとsrとの差
が大きくなればなるほど増加傾向を示す。即ち、少なく
とも金属回路板12側が凹(金属放熱板13側が凸)に
反るように、かつ反り量を少なくコントロールするため
には、必要条件としてのsc<sr、およびtc>tr
の条件の中から最適な定数を選定すれば良い。The warp of the joined body after brazing is determined by the thickness (tc) of the metal circuit board 12 and the thickness (t) of the metal heat dissipation plate 13.
It depends on the relationship with r). For example, the above area is sc = sr
Under the condition, warp does not occur when the thickness is tc = tr. When the thickness is tc> tr, the metal circuit board 12 side is warped to be concave (the metal heat dissipation plate 13 side is convex). When the thickness is tc <tr, the metal circuit board 12 side is convex (the metal heat dissipation plate 13 side is concave). Furthermore, the above area is sc <s
Under the condition of r, the thickness is tc = tr or tc <t.
In the case of r, the metal circuit board 12 side is convex (the metal heat dissipation plate 13 side is concave). If the thickness is tc> tr, no warpage occurs, the metal circuit board 12 side is convex (the metal heat dissipation plate 13 side is concave), or the metal circuit board 12 side is concave (the metal heat dissipation plate 13 side is convex). ) Is either warped. The amount of warp tends to increase as the difference between the thicknesses tc and tr increases and as the difference between the areas sc and sr increases. That is, in order to control at least the metal circuit board 12 side to be concave (the metal heat dissipation plate 13 side is convex) and to control the warp amount to be small, sc <sr and tc> tr are necessary conditions.
The optimum constant may be selected from the conditions.
【0017】本発明におけるセラミックス基板11とし
ては、加わる残留応力に耐える必要が有るため、曲げ強
度が650MPa以上と強く、熱伝導性の良い窒化珪素
基板が、特に好ましい。また金属回路板12および金属
放熱板13としては、電気伝導性、熱伝導性および伸び
率の良い無酸素銅が好ましい。As the ceramic substrate 11 in the present invention, a silicon nitride substrate having a high bending strength of 650 MPa or more and good thermal conductivity is particularly preferable because it must withstand the residual stress applied. Further, as the metal circuit board 12 and the metal heat dissipation plate 13, oxygen-free copper having good electrical conductivity, thermal conductivity and elongation is preferable.
【0018】また、本発明のセラミックス回路基板10
の製造方法は、セラミックス基板11の表面および裏面
に金属板をチタン等の活性金属を含むろう材、またはA
l合金ろう材14を介して接触させ、前記ろう材14が
溶融する温度まで上昇させて接合する。その後は、クラ
ックが発生しないように5℃/分以下の降温速度で室温
まで戻した後、表面の金属板をエッチングして回路パタ
ーンを形成し、裏面の金属板はそのまま放熱板として接
合体(1)を造るか、またはセラミックス基板11の表
面に予め回路パターンがプレス加工などで形成された金
属回路板12および該セラミックス基板11の裏面に金
属放熱板13を前記ろう材14を介して接触させ、前記
ろう材14が溶融する温度まで上昇させて接合する。そ
の後は、クラックが発生しないように5℃/分以下の降
温速度で室温まで戻して接合体(2)を造る。次にこの
接合体を真空パックするか、または不活性ガス中で、前
記接合体にクラックが発生しないように80℃/分以下
の降温速度で−110℃以下に冷却して20分以上保持
し、冷却後の接合体にクラックが発生しないように80
℃/分以下の昇温速度で室温まで戻して製造するもので
ある。尚、残留応力の緩和には、−190℃前後に冷却
することがより好ましい。前記接合体(1)を製造する
際の冷却処理は、回路パターンを形成する前の金属板接
合後に1回のみ実施する方法か、または更に回路パター
ンを形成後にもう1回実施する方法でも良い。特に、回
路パターンを形成する前の金属板接合後に冷却処理する
方法は、残留応力の緩和が回路パターン形成時のクラッ
ク防止にも有効であり、更に回路パターン形成後にも冷
却処理することにより温度サイクル寿命の更なる改善が
期待できる。Further, the ceramic circuit board 10 of the present invention.
In the manufacturing method of A, a metal plate is provided on the front surface and the back surface of the ceramic substrate 11 and a brazing material containing an active metal such as titanium, or A
They are brought into contact with each other via the 1-alloy brazing material 14, and the temperature is raised to a temperature at which the brazing material 14 is melted to join them. After that, after returning to room temperature at a temperature lowering rate of 5 ° C./min or less so that cracks do not occur, the metal plate on the front surface is etched to form a circuit pattern, and the metal plate on the back surface is directly used as a heat dissipation plate to form a bonded body ( 1) or a metal circuit board 12 having a circuit pattern formed in advance on the surface of the ceramic substrate 11 by pressing or the like and a metal radiator plate 13 are brought into contact with the back surface of the ceramic substrate 11 via the brazing material 14. Then, the temperature is raised to a temperature at which the brazing material 14 is melted and the brazing material 14 is bonded. After that, the bonded body (2) is manufactured by returning the temperature to room temperature at a temperature lowering rate of 5 ° C./minute or less so that cracks do not occur. Next, this bonded body is vacuum-packed or cooled in an inert gas to a temperature of -110 ° C. or lower at a temperature lowering rate of 80 ° C./minute or less and kept for 20 minutes or more so that cracks do not occur in the bonded body. , So that cracks do not occur in the joined body after cooling 80
It is manufactured by returning to room temperature at a temperature rising rate of not more than ° C / min. In addition, in order to alleviate the residual stress, it is more preferable to cool to around -190 ° C. The cooling treatment for manufacturing the joined body (1) may be performed only once after the metal plates are joined before forming the circuit pattern, or may be performed again after forming the circuit pattern. In particular, the method of cooling after joining metal plates before forming a circuit pattern is effective in preventing cracks during the formation of a circuit pattern by reducing residual stress. Further improvement of life can be expected.
【0019】[0019]
【実施例】以下、本発明を実施例をあげて具体的に説明
する。
(実施例1〜3)セラミックス基板として寸法が50m
m×30mm×(厚み)0.64mmで熱伝導率が80
W/m・Kの窒化珪素基板の表面に金属回路板として寸法が
40mm×25mm×(厚み)1.0mmの無酸素銅板
と、裏面に金属放熱板として寸法が40mm×25mm
×(厚み)0.8mmの無酸素銅板を、回路パターン形
状および放熱板形状に切断された活性金属を含む銀、
銅、チタンから成る厚み50μmのろう材箔を介して接
触させて1.33Pa以下の真空中で850℃×10分
加熱した後、4℃/分の降温速度で冷却して窒化珪素基
板と無酸素銅板の接合体を得た。EXAMPLES The present invention will be specifically described below with reference to examples. (Examples 1 to 3) 50 m in size as a ceramic substrate
m × 30mm × (thickness) 0.64mm and thermal conductivity is 80
An oxygen-free copper plate with a size of 40 mm x 25 mm x (thickness) of 1.0 mm as a metal circuit board on the surface of a W / mK silicon nitride substrate, and a size of 40 mm x 25 mm as a metal heat dissipation plate on the back surface.
× (thickness) 0.8 mm oxygen-free copper plate, silver containing active metal, which is cut into a circuit pattern shape and a heat dissipation plate shape,
The brazing filler metal foil made of copper and titanium having a thickness of 50 μm is contacted and heated in a vacuum of 1.33 Pa or less at 850 ° C. for 10 minutes, and then cooled at a temperature lowering rate of 4 ° C./minute to obtain no silicon nitride substrate. A bonded body of oxygen copper plates was obtained.
【0020】次に、回路パターンを、回路用金属板の無
酸素銅板をエッチング加工して形成した。ここで金属回
路板のろう付け面積(sc)と金属放熱板のろう付け面
積(sr)との比(sc/sr)を0.8とした。Next, a circuit pattern was formed by etching an oxygen-free copper plate as a circuit metal plate. Here, the ratio (sc / sr) of the brazing area (sc) of the metal circuit board and the brazing area (sr) of the metal heat dissipation plate was 0.8.
【0021】更に、これを真空パックして60℃/分の
降温速度で−110℃以下、具体的には−191℃、−
150℃、−110℃にそれぞれ冷却後、30分間保持
し、その後60℃/分の昇温速度で室温まで戻し、セラ
ミックス回路基板を得た。尚、−191℃の冷却には液
体窒素を冷却材として使用した。Further, this was vacuum packed and at a temperature lowering rate of 60 ° C./min, the temperature was −110 ° C. or less, specifically −191 ° C., −
After cooling to 150 ° C. and −110 ° C., respectively, holding for 30 minutes, and then returning to room temperature at a temperature rising rate of 60 ° C./min to obtain a ceramic circuit board. Liquid nitrogen was used as a coolant for cooling at -191 ° C.
【0022】(比較例1〜4)上記実施例と同様の接合
体を得た後、これを真空パックして60℃/分の降温速
度で−70℃、−50℃、−25℃に冷却後、30分間
保持し、その後60℃/分の昇温速度で室温まで戻し、
セラミックス回路基板を得た。また、同じ接合体で冷却
処理をしていないセラミックス回路基板をそれぞれ比較
用に用意した。(Comparative Examples 1 to 4) After obtaining the same bonded bodies as in the above-mentioned Examples, these were vacuum-packed and cooled to -70 ° C, -50 ° C, -25 ° C at a temperature decreasing rate of 60 ° C / min. After that, hold for 30 minutes, and then return to room temperature at a heating rate of 60 ° C./minute,
A ceramic circuit board was obtained. In addition, ceramic circuit boards that were not cooled with the same bonded body were prepared for comparison.
【0023】(実施例4)上記実施例と同様の接合体を
得た後に、まず1回目の冷却処理を−191℃で行な
い、その後、回路用金属板にエッチング加工して回路パ
ターンを形成した。他は実施例1と同様にしてセラミッ
クス回路基板を得た。(Example 4) After obtaining a bonded body similar to the above-mentioned example, first, the first cooling treatment was performed at -191 ° C, and then a circuit metal plate was etched to form a circuit pattern. . A ceramic circuit board was obtained in the same manner as in Example 1 except for the above.
【0024】(実施例5)上記実施例と同様の接合体を
得た後に、まず1回目の冷却処理を−191℃で行な
い、その後、回路用金属板にエッチング加工して回路パ
ターンを形成した。更にその後、2回目の冷却処理を−
191℃で行なった。他は上記実施例と同様にしてセラ
ミックス回路基板を得た。(Embodiment 5) After obtaining a bonded body similar to that of the above embodiment, first cooling treatment is performed at -191 ° C., and then a metal plate for a circuit is subjected to etching processing to form a circuit pattern. . After that, the second cooling process-
Performed at 191 ° C. A ceramic circuit board was obtained in the same manner as in the above example except for the above.
【0025】(実施例6)予め、回路用金属板をプレス
加工をして造った回路用金属板を用いて接合する方法に
変えた以外は、実施例1と同様にしてセラミックス回路
基板を得た。(Embodiment 6) A ceramic circuit board is obtained in the same manner as in Embodiment 1 except that the method is such that the metal plate for a circuit is preliminarily pressed to be joined. It was
【0026】(実施例7、8)セラミックス基板として
寸法が50mm×30mm×(厚み)0.64mmの窒
化アルミニウム基板およびアルミナ基板のそれぞれの表
面に金属回路板として厚み40mm×25mm×(厚
み)0.6mmの無酸素銅板と、裏面にそれぞれ金属放
熱板として40mm×25mm×(厚み)0.4mmの
無酸素銅板を用いて、実施例1と同様のろう付条件で接
合体を得た後に、まず1回目の冷却処理を−191℃で
行ない、その後、回路用金属板にエッチング加工して回
路パターンを形成し、セラミックス回路基板を得た。(Examples 7 and 8) Ceramic ceramic substrates having dimensions of 50 mm × 30 mm × (thickness) 0.64 mm, aluminum nitride substrates and alumina substrates respectively having metal circuit boards with a thickness of 40 mm × 25 mm × (thickness) 0. After obtaining a bonded body under the same brazing conditions as in Example 1, using an oxygen-free copper plate of 0.6 mm and an oxygen-free copper plate of 40 mm × 25 mm × (thickness) 0.4 mm as a metal radiator plate on the back surface, respectively, First, the first cooling treatment was performed at -191 ° C., and then the circuit metal plate was etched to form a circuit pattern to obtain a ceramic circuit board.
【0027】(比較例5、6)上記実施例7および実施
例8と同じ接合体で冷却処理をしていないセラミックス
回路基板をそれぞれ比較用に用意した。(Comparative Examples 5 and 6) Ceramic circuit boards each having the same bonded body as those in Examples 7 and 8 but not subjected to cooling treatment were prepared for comparison.
【0028】(実施例9、10)セラミックス基板とし
て寸法が50mm×30mm×(厚み)0.64mmの
窒化珪素基板および窒化アルミニウム基板のそれぞれの
表面に金属回路板として厚み40mm×25mm×(厚
み)0.6mmの純アルミニウム板と、裏面にそれぞれ
金属放熱板として40mm×25mm×(厚み)0.4
mmの純アルミニウム板を、Al−Siからなる厚み5
0μmのろう材箔を介して接触させて1.33Pa以下
の真空中で16kPaの荷重を印加しながら、630℃
×10分加熱した後、4℃/分の降温速度で冷却して窒
化珪素基板とアルミニウム板の接合体、および窒化アル
ミニウム基板とアルミニウム板の接合体をそれぞれ得
た。上記接合体を得た後に、まず1回目の冷却処理を−
191℃で行ない、その後、回路用金属板にエッチング
加工して回路パターンを形成した。回路パターン形状お
よびsc/srは実施例1と同様にしてセラミックス回
路基板を得た。(Embodiments 9 and 10) Ceramic substrates having a size of 50 mm × 30 mm × (thickness) of 0.64 mm and silicon nitride substrates and aluminum nitride substrates each having a thickness of 40 mm × 25 mm × (thickness) as metal circuit boards. 0.6mm pure aluminum plate and 40mm x 25mm x (thickness) 0.4 on the back as metal heat sinks
mm pure aluminum plate, thickness 5 made of Al-Si
630 ° C. while contacting through a 0 μm brazing material foil and applying a load of 16 kPa in a vacuum of 1.33 Pa or less.
After heating for × 10 minutes, it was cooled at a temperature decrease rate of 4 ° C./minute to obtain a bonded body of a silicon nitride substrate and an aluminum plate and a bonded body of an aluminum nitride substrate and an aluminum plate, respectively. After obtaining the above-mentioned bonded body, first the first cooling treatment-
The process was performed at 191 ° C., and then the circuit metal plate was etched to form a circuit pattern. The circuit pattern shape and sc / sr were the same as in Example 1 to obtain a ceramics circuit board.
【0029】(比較例7、8)上記実施例9および実施
例10と同じ接合体で冷却処理をしていないセラミック
ス回路基板をそれぞれ比較用に用意した。以上の実施例
および比較例のセラミックス基板、金属回路基板及び金
属放熱板の仕様及び寸法等を表1に示す。(Comparative Examples 7 and 8) Ceramic circuit boards each having the same bonded body as those in Examples 9 and 10 but not subjected to cooling treatment were prepared for comparison. Table 1 shows the specifications and dimensions of the ceramic substrates, metal circuit boards, and metal heat sinks of the above Examples and Comparative Examples.
【0030】[0030]
【表1】 [Table 1]
【0031】次に、このようにして製造されたセラミッ
クス回路基板について、窒化珪素基板の50mm当りの
反り量(A)を測定すると共に、窒化珪素基板に発生す
る残留応力(B)を解析した。また、温度サイクル寿命
(C)試験を、大気中で−40℃×20分保持後→室温
25℃×10分間放置→更に125℃×20分保持後→
25℃×10分間放置を1サイクルとして行い、窒化珪
素基板部にクラック等の不具合が発生するまでのサイク
ル数を測定した。これらの結果を表2に示す。Next, with respect to the ceramic circuit board thus manufactured, the amount of warpage (A) per 50 mm of the silicon nitride substrate was measured, and the residual stress (B) generated in the silicon nitride substrate was analyzed. Also, the temperature cycle life (C) test was held in the atmosphere at −40 ° C. for 20 minutes, left at room temperature 25 ° C. for 10 minutes, and further held at 125 ° C. for 20 minutes.
One cycle was carried out at 25 ° C. for 10 minutes, and the number of cycles until defects such as cracks occurred in the silicon nitride substrate part was measured. The results are shown in Table 2.
【0032】[0032]
【表2】 [Table 2]
【0033】表1に示すように金属板に無酸素銅板を使
用した窒化珪素セラミックス回路基板の場合、残留応
力、反り量および温度サイクル寿命ともに冷却温度が−
70℃以上の比較例よりも−110℃以下の本発明によ
る実施例の方が改善されており、その中でも、−191
℃の実施例が最も改善されることが分かった。As shown in Table 1, in the case of a silicon nitride ceramics circuit board using an oxygen-free copper plate as a metal plate, the residual stress, the amount of warpage, and the temperature cycle life have a cooling temperature of −.
The examples according to the present invention at -110 ° C or lower are improved over the comparative examples at 70 ° C or higher, and among them, -191.
It was found that the ° C example was the most improved.
【0034】次に、上記の実施例1〜3と比較例1〜4
の反り量と冷却温度との関係をグラフ化したものを図2
に示す。これによると、反り量を100μm以下に抑え
るためには、冷却温度を−110℃以下にする必要があ
ることが分かる。Next, the above Examples 1 to 3 and Comparative Examples 1 to 4
Figure 2 shows a graph of the relationship between the amount of warp and the cooling temperature.
Shown in. According to this, in order to suppress the warp amount to 100 μm or less, it is necessary to set the cooling temperature to −110 ° C. or less.
【0035】また、実施例4、5、6のいずれも比較例
よりは残留応力、反り量および温度サイクル寿命ともに
改善されており、その中でも実施例5の本発明例の残留
応力、反り量および温度サイクル寿命が、最も改善され
ていることが分かる。Further, in all of Examples 4, 5 and 6, the residual stress, the amount of warpage and the temperature cycle life were improved as compared with the comparative example. Among them, the residual stress, the amount of warpage and the amount of warpage of the example of the present invention in Example 5 were improved. It can be seen that the temperature cycle life is most improved.
【0036】次に実施例7、8のセラミックス基板に窒
化アルミニウム基板またはアルミナ基板を用いた場合に
も、比較例5、6と比べると、本発明の実施例によるセ
ラミックス回路基板ではいずれも反り量、残留応力およ
び温度サイクル寿命いずれも改善されることがわかる。
ただし窒化アルミニウム基板およびアルミナ基板の曲げ
強度は窒化珪素に比べて低いことから厚い銅板を接合し
た場合には、ろう付時の残留応力によりセラミックス基
板が損傷を受けないように、接合温度や接合する金属板
の厚さ等を適切な条件で選定する必要がある。Next, when an aluminum nitride substrate or an alumina substrate is used as the ceramic substrate of Examples 7 and 8, as compared with Comparative Examples 5 and 6, the ceramic circuit boards according to the Examples of the present invention are not warped. It can be seen that the residual stress and the temperature cycle life are both improved.
However, since the bending strength of the aluminum nitride substrate and the alumina substrate is lower than that of silicon nitride, when a thick copper plate is joined, the joining temperature and joining should be done so that the ceramic substrate is not damaged by the residual stress during brazing. It is necessary to select the thickness of the metal plate under appropriate conditions.
【0037】以上は全て金属板に無酸素銅板を用いた場
合であるが、金属板に純アルミニウム板を用いた場合に
も実施例9、10および比較例7、8から残留応力、温
度サイクル改善に効果がみられることが分かる。The above is the case where the oxygen-free copper plate is used as the metal plate, but when the pure aluminum plate is used as the metal plate, the residual stress and the temperature cycle are improved from Examples 9 and 10 and Comparative Examples 7 and 8. You can see that the effect is seen.
【0038】本実施のセラミックス回路基板は、金属回
路パターン上に半導体素子を低温ろう材や、はんだ等を
用いて実装し、またセラミックス回路基板は金属放熱板
側でヒートシンクまたはCu等の金属製の水冷ジャケッ
トに固定して使用される。この場合、素子が発する熱を
ヒートシンクまで到達させる拡散放熱性能を現す目安と
して熱抵抗がある。In the ceramic circuit board of this embodiment, a semiconductor element is mounted on a metal circuit pattern by using a low temperature brazing material, solder or the like, and the ceramic circuit board is made of a heat sink or a metal such as Cu on the metal radiator plate side. It is used by fixing it to a water cooling jacket. In this case, there is a thermal resistance as a measure of the diffusion heat dissipation performance that allows the heat generated by the element to reach the heat sink.
【0039】この熱抵抗には、ある一定の電力を連続印
加した場合に熱抵抗値が電力印加時間tpに対して飽和
する飽和熱抵抗(熱がヒートシンクまで到達し、熱抵抗
値が飽和開始した時の熱抵抗値を飽和熱抵抗値とし、ま
たこのときの電力印加時間をtp=tp1とする。)
と、一定の電力を時間tp2(tp2<tp1)の短時
間だけ印加した場合に用いられ、熱抵抗値が飽和前であ
る過渡熱抵抗に分けられる。ただし、ここで示す熱抵抗
は、電力印加前後の素子の温度差を印加電力値で除した
ものである。特にモーターおよび電力変換機器等の制御
に用いられる場合には、tp2の短時間に電力が半導体
素子に投入され、同時に短時間に素子からの放出熱を素
早く拡散するために良好な放熱特性が必要になり、この
場合には過渡熱抵抗が小さいことが要求される。即ち、
電力印加時間の増加に対して熱抵抗値の絶対値が小さ
く、過渡熱抵抗(過渡域の熱抵抗値)が飽和値に達する
までの時間(tp1)が長いほど素子の温度上昇が少な
く、放熱性に優れていると言える。Saturation thermal resistance (heat reaches the heat sink and the thermal resistance value starts to saturate) where the thermal resistance value is saturated with respect to the power application time tp when a certain electric power is continuously applied to this thermal resistance. The thermal resistance value at that time is the saturation thermal resistance value, and the power application time at this time is tp = tp1.)
Is used when a constant power is applied for a short time tp2 (tp2 <tp1), and the thermal resistance value is divided into the transient thermal resistance before saturation. However, the thermal resistance shown here is obtained by dividing the temperature difference between the elements before and after the application of power by the applied power value. Especially when it is used to control motors and power conversion equipment, good heat dissipation characteristics are required in order to apply power to the semiconductor element in a short time tp2 and at the same time to quickly dissipate the heat emitted from the element in a short time. In this case, it is required that the transient thermal resistance be small. That is,
The absolute value of the thermal resistance value is small with the increase of the power application time, and the longer the time (tp1) until the transient thermal resistance (transient thermal resistance value) reaches the saturation value, the smaller the temperature rise of the element, and the heat radiation. It can be said that it is excellent in sex.
【0040】ここで半導体素子への投入電力を一定と
し、電力印加時間1ms〜0.5sまで可変にした場合
であって、金属回路板の厚みが1.0mm(金属放熱板
の厚み0.8mm)の実施例1のセラミックス回路基板
の熱抵抗特性の測定例を図3に示す。ただし、ここでは
熱抵抗値で表示する変わりに規格化熱抵抗で示した。こ
の規格化熱抵抗は測定用試料の抵抗値を、同一試料の飽
和熱抵抗値で除したものである。したがって規格化熱抵
抗値が1になった電力印加時間(tp1)で、その試料
の熱抵抗が飽和したと見なした。図3の測定で用いた試
料の場合、電力印加時間0.1sec(=tp1)以上
で熱抵抗値が飽和値に達することがわかる。したがっ
て、この試料の場合、tp=tp1の時の熱抵抗値が飽
和熱抵抗値となる。Here, when the power applied to the semiconductor element is constant and the power application time is variable from 1 ms to 0.5 s, the thickness of the metal circuit board is 1.0 mm (the thickness of the metal heat sink is 0.8 mm). 3) shows an example of measurement of thermal resistance characteristics of the ceramic circuit board of Example 1. However, the standardized thermal resistance is shown here instead of the thermal resistance value. The normalized thermal resistance is the resistance value of the measurement sample divided by the saturation thermal resistance value of the same sample. Therefore, it was considered that the thermal resistance of the sample was saturated at the power application time (tp1) when the normalized thermal resistance value became 1. In the case of the sample used in the measurement of FIG. 3, it can be seen that the thermal resistance value reaches the saturation value when the power application time is 0.1 sec (= tp1) or more. Therefore, in the case of this sample, the thermal resistance value when tp = tp1 becomes the saturation thermal resistance value.
【0041】(実施例11)測定用試料のセラミックス
回路基板は、セラミックス基板に窒化珪素を用い、窒化
珪素基板の寸法が50mm×30mm×(厚み)0.6
4mmであり、その表面の中心から長手方向にそれぞれ
22.5mmの間隔を空けてφ3mmのネジ止め用貫通
穴が加工されている。金属回路板の厚み1.0mmで一
定とし、金属放熱板の寸法が50mm×30mm×(厚
みx:1.0mm以下で可変)であり、また、金属放熱
板の表面の中心から長手方向にそれぞれ22.5mmの
間隔を空けてφ3mmのネジ止め用貫通穴が加工されて
いる。前記金属放熱板の厚み(x)を変化させたセラミ
ックス回路基板の反り量は、金属放熱板側の表面を連続
的に測定して求めた。なお、放熱器として用いたヒート
シンクに取り付られる金属放熱板の全面には、熱伝導性
の良いグリスを厚み50μm塗布してネジ止めして取り
付けた。放熱器は、水冷をして25℃一定にした。また
素子には10mm角で厚み0.5mmの電力半導体素子
を用い低温ろう材で前記セラミックス回路基板の金属回
路板の上に接合して飽和熱抵抗特性が測定できるように
した。(Embodiment 11) The ceramic circuit board of the sample for measurement uses silicon nitride as the ceramic board, and the dimensions of the silicon nitride board are 50 mm × 30 mm × (thickness) 0.6.
It is 4 mm, and through holes for screwing of φ3 mm are machined at intervals of 22.5 mm from the center of the surface in the longitudinal direction. The thickness of the metal circuit board is constant at 1.0 mm, the size of the metal heat dissipation plate is 50 mm x 30 mm x (thickness x: variable at 1.0 mm or less), and the length is different from the center of the surface of the metal heat dissipation plate in the longitudinal direction. Φ3 mm screwing through holes are formed at intervals of 22.5 mm. The amount of warpage of the ceramic circuit board in which the thickness (x) of the metal heat dissipation plate was changed was obtained by continuously measuring the surface on the metal heat dissipation plate side. In addition, grease having a good thermal conductivity was applied to the entire surface of the metal heat sink plate attached to the heat sink used as the heat sink in a thickness of 50 μm, and screwed and attached. The radiator was water-cooled and kept constant at 25 ° C. Further, a power semiconductor element having a 10 mm square and a thickness of 0.5 mm was used as the element, and the element was bonded onto the metal circuit board of the ceramic circuit board with a low temperature brazing material so that the saturation thermal resistance characteristics could be measured.
【0042】金属放熱板の厚みを変化(1.0mm以
下)させて作製した以外は実施例1と同様の接合体を、
−191℃で冷却処理した場合のセラミックス回路基板
の反り量0〜150μmに対する規格化飽和熱抵抗特性
を測定した結果を図2に示す。ここで規格化飽和熱抵抗
とは、反り量が任意の試料の飽和熱抵抗値を、反り量が
0(μm)の試料の飽和熱抵抗値で除したものである。
本実施例による試作試料の測定結果から金属放熱板の厚
みは0.8mmのとき最も反り量の絶対値が0に近くな
り好ましい結果が現われた。そこで、この時の飽和熱抵
抗値を用いて熱抵抗の規格化を行った。勿論これらセラ
ミックス回路基板の中で反り量が0(μm)の回路基板
を用いた場合の飽和熱抵抗の絶対値が最も小さく、反り
量が大きくなるに従い、ヒートシンクとのギャップが大
きくなり飽和熱抵抗値は大きくなる。即ち、ここで示す
規格化飽和熱抵抗が極力小さく、1に近いほど熱を多く
拡散させるのに優れており、反り量が0(μm)の回路
基板の放熱性能に近いと言える。A bonded body similar to that of Example 1 was prepared except that the thickness of the metal radiator plate was changed (1.0 mm or less).
FIG. 2 shows the result of measurement of the normalized saturation thermal resistance characteristic with respect to the warp amount of 0 to 150 μm of the ceramic circuit board when cooled at −191 ° C. Here, the normalized saturation thermal resistance is a value obtained by dividing the saturation thermal resistance value of a sample having an arbitrary warp amount by the saturation thermal resistance value of a sample having a warp amount of 0 (μm).
From the measurement results of the prototype sample according to this example, when the thickness of the metal radiator plate was 0.8 mm, the absolute value of the warp amount was closest to 0, which was a preferable result. Therefore, the thermal resistance was standardized using the saturated thermal resistance value at this time. Of these ceramic circuit boards, of course, the absolute value of the saturation thermal resistance when using a circuit board with a warp amount of 0 (μm) is the smallest, and as the warp amount increases, the gap with the heat sink increases and the saturation thermal resistance increases. The value increases. That is, it can be said that the normalized saturation thermal resistance shown here is as small as possible, and that the closer it is to 1, the more heat is diffused, and the closer to the heat dissipation performance of the circuit board having the warp amount of 0 (μm).
【0043】図2から、規格化飽和熱抵抗は反り量が5
0μmでは反り量が0μmの飽和熱抵抗の約5%増とな
り、反り量が100μmでは約10%増となることが分
かる。そして反り量が100μmを超えると、規格化飽
和熱抵抗が急激に大きくなることが分かる。即ち、飽和
熱抵抗を劣化させないためには、反り量は100μm以
下に抑えることが必要であることが導かれる。これは図
2の冷却温度と反り量との結果に符合する。From FIG. 2, the normalized saturation thermal resistance has a warp amount of 5
It can be seen that when the warp amount is 0 μm, the saturation thermal resistance increases by about 5%, and when the warp amount is 100 μm, the saturation thermal resistance increases by about 10%. It can be seen that when the amount of warpage exceeds 100 μm, the normalized saturation thermal resistance rapidly increases. That is, it is necessary to suppress the amount of warpage to 100 μm or less in order to prevent deterioration of the saturated thermal resistance. This agrees with the result of the cooling temperature and the warp amount in FIG.
【0044】(実施例12)半導体素子への投入電力を
一定とし、電力印加時間1ms〜0.5sまで可変に対
する金属回路板の厚みをパラメータにした場合の熱抵抗
特性の測定結果を図4に示す。図3と同様この評価方法
では電力印加時間に対して過渡熱抵抗が飽和値に達する
までの時間(tp1)が長いほど素子の温度上昇が少な
く、放熱性に優れていると言える。また図4の規格化熱
抵抗は各測定用試料の熱抵抗値を、同一試料の飽和熱抵
抗値で除したものである。したがって規格化熱抵抗値が
1になった電力印加時間(tp1)で、その試料の熱抵
抗が飽和したことを表す。測定用試料はセラミックス基
板に窒化珪素基板を使用し、金属回路板の厚みを0.4
〜4mm(金属放熱板の厚みは実施例11と同様の方法
で最適厚みを決定)に可変し、冷却処理は−191℃で
実施した以外は実施例1と同様にして作製した。次に、
10mm角で厚み0.5mmの電力半導体素子を低温ろ
う材で前記セラミックス回路基板の金属回路板の上に接
合して飽和熱抵抗特性が測定できるようにした。(Embodiment 12) FIG. 4 shows the measurement results of the thermal resistance characteristics when the input power to the semiconductor element is fixed and the thickness of the metal circuit board is variable for varying the power application time from 1 ms to 0.5 s. Show. Similar to FIG. 3, in this evaluation method, the longer the time (tp1) until the transient thermal resistance reaches the saturation value with respect to the power application time, the smaller the temperature rise of the element and the better the heat dissipation. The normalized thermal resistance in FIG. 4 is obtained by dividing the thermal resistance value of each measurement sample by the saturation thermal resistance value of the same sample. Therefore, it means that the thermal resistance of the sample was saturated in the power application time (tp1) when the normalized thermal resistance value became 1. The measurement sample uses a silicon nitride substrate as the ceramic substrate, and the thickness of the metal circuit board is 0.4.
It was produced in the same manner as in Example 1 except that the thickness was changed to 4 mm (the thickness of the metal heat dissipation plate determines the optimum thickness in the same manner as in Example 11) and the cooling treatment was performed at -191 ° C. next,
A 10 mm square and 0.5 mm thick power semiconductor element was bonded onto the metal circuit board of the ceramic circuit board with a low temperature brazing material so that the saturation thermal resistance characteristics could be measured.
【0045】図4から金属回路板の厚みが3mmを超え
ると、規格化熱抵抗値が飽和する電力印加時間tp1の
延びが小さくなることが分かる。即ち、3mmを超える
厚みの金属回路板を用いても放熱性を大きく改善させる
ことが望めないと言うことである。また、3mm以上の
厚みがあると、金属回路板の膨張/収縮がセラミックス
基板を破損させ易くすると共に、素子を固定するための
低温ろう材に悪影響を及ぼし易くなる。更にセラミック
ス回路基板の軽量化や製造費の削減が困難になる等のた
め推奨できない。It can be seen from FIG. 4 that when the thickness of the metal circuit board exceeds 3 mm, the extension of the power application time tp1 at which the normalized thermal resistance value is saturated becomes small. That is, even if a metal circuit board having a thickness of more than 3 mm is used, it is not possible to expect a great improvement in heat dissipation. Further, when the thickness is 3 mm or more, the expansion / contraction of the metal circuit board easily damages the ceramics substrate and easily affects the low temperature brazing material for fixing the element. Furthermore, it is not recommended because it is difficult to reduce the weight of the ceramic circuit board and reduce the manufacturing cost.
【0046】[0046]
【発明の効果】本発明のセラミックス回路基板およびそ
の製造方法によれば、熱抵抗、特に過渡熱抵抗の減少が
できるために熱伝導性が改善できると共に、温度サイク
ル寿命の改善ができる。よって、電力半導体素子用回路
基板の小型化、大電力化、高信頼度化に寄与することが
できる。According to the ceramic circuit board and the method for manufacturing the same of the present invention, the thermal resistance, particularly the transient thermal resistance, can be reduced, so that the thermal conductivity can be improved and the temperature cycle life can be improved. Therefore, it is possible to contribute to miniaturization, high power consumption, and high reliability of the circuit board for the power semiconductor element.
【図1】本発明のセラミックス回路基板の断面図を示
す。FIG. 1 shows a cross-sectional view of a ceramics circuit board of the present invention.
【図2】本発明のセラミックス回路基板の反り量に対す
る規格化飽和熱抵抗および冷却温度特性の一例を示す図
である。FIG. 2 is a diagram showing an example of normalized saturation thermal resistance and cooling temperature characteristics with respect to the amount of warpage of the ceramic circuit board of the present invention.
【図3】本発明のセラミックス回路基板の電力印加時間
に対する規格化熱抵抗特性の一例を示す図である。FIG. 3 is a diagram showing an example of normalized thermal resistance characteristics of the ceramic circuit board of the present invention with respect to power application time.
【図4】本発明のセラミックス回路基板で金属回路板の
厚さを変えた場合の電力印加時間に対する規格化熱抵抗
特性を示す図である。FIG. 4 is a diagram showing normalized thermal resistance characteristics with respect to power application time when the thickness of a metal circuit board is changed in the ceramic circuit board of the present invention.
10:セラミックス回路基板 11:セラミックス基板 12:金属回路板 13:金属放熱板 14:ろう材 10: Ceramics circuit board 11: Ceramics substrate 12: Metal circuit board 13: Metal heat sink 14: brazing material
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/22 H01L 23/12 C (72)発明者 栗原 保敏 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4G026 BA03 BA16 BA17 BB22 BB23 BB27 BF11 BF16 BF20 BF24 BF42 BG02 BG23 BH07 5E338 AA01 AA18 EE02 EE26 5E339 AB06 BC02 BC03 BD06 BE13 5E343 AA24 BB24 BB28 BB55 BB67 CC01 DD76 ER31 ER54 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05K 3/22 H01L 23/12 C (72) Inventor Yasutoshi Kurihara 7-1 Omika-cho, Hitachi-shi, Ibaraki F-term in Hitachi Research Laboratory, Hitachi, Ltd. (reference) 4G026 BA03 BA16 BA17 BB22 BB23 BB27 BF11 BF16 BF20 BF24 BF42 BG02 BG23 BH07 5E338 AA01 AA18 EE02 EE26 5E339 AB06 BC55BD06 BB31 BB76 BB31 BB23 BB23 ER54
Claims (8)
て金属回路板を、および前記セラミックス基板の裏面に
ろう材を介して金属放熱板をそれぞれ設けた接合体であ
って、該接合体は−110℃以下で冷却処理されて、室
温における反り量が50mm当り100μm以下である
ことを特徴とするセラミックス回路基板。1. A joined body in which a metal circuit board is provided on a front surface of a ceramic substrate via a brazing material, and a metal heat dissipation plate is provided on a back surface of the ceramic substrate via a brazing material, the joined body being- A ceramic circuit board which is cooled at 110 ° C. or less and has a warp amount at room temperature of 100 μm or less per 50 mm.
が650MPa以下であることを特徴とする請求項1記
載のセラミックス回路基板。2. The ceramic circuit board according to claim 1, wherein the residual stress applied to the ceramic board is 650 MPa or less.
0.9mm、前記金属回路板の厚みが3.0mm以下で
あることを特徴とする請求項1または2記載のセラミッ
クス回路基板。3. The ceramic substrate has a thickness of 0.2 to
The ceramic circuit board according to claim 1 or 2, wherein the thickness is 0.9 mm and the thickness of the metal circuit board is 3.0 mm or less.
放熱板の厚み(tr)との関係がtc>trであり、更
に金属回路板のろう付けされた面積(sc)と金属放熱
板のろう付けされた面積(sr)との関係がsc<sr
であることを特徴とする請求項1〜3のいずれかに記載
のセラミックス回路基板。4. The relationship between the thickness (tc) of the metal circuit board and the thickness (tr) of the metal heat dissipation plate is tc> tr, and the brazed area (sc) of the metal circuit board and the metal heat dissipation are further defined. The relation with the brazed area (sr) of the plate is sc <sr
The ceramic circuit board according to any one of claims 1 to 3, wherein
窒化アルミニウムまたはアルミナであり、前記金属回路
板および金属放熱板が銅または銅を主成分とする銅合金
またはアルミニウムまたはアルミニウムを主成分とする
アルミニウム合金であることを特徴とする請求項1〜4
のいずれかに記載のセラミックス回路基板。5. The ceramic substrate is silicon nitride, aluminum nitride or alumina, and the metal circuit board and the metal heat dissipation plate are copper or a copper alloy containing copper as a main component or aluminum or an aluminum alloy containing aluminum as a main component. Claims 1 to 4 characterized in that
The ceramic circuit board according to any one of 1.
属板をろう材で接合した後、表面の金属板をエッチング
して回路パターンを形成し、裏面の金属板を放熱板とし
て接合体を造るか、またはセラミックス基板の表面に回
路パターンが形成されている金属回路板および該セラミ
ックス基板の裏面に金属放熱板をそれぞれろう材で接合
して接合体を造り、この接合体を−110℃以下に冷却
することを特徴とするセラミックス回路基板の製造方
法。6. A metal plate is joined to a front surface and a back surface of a ceramic substrate with a brazing material, the front surface metal plate is etched to form a circuit pattern, and a bonded body is formed by using the back surface metal plate as a heat dissipation plate, or Alternatively, a metal circuit board having a circuit pattern formed on the front surface of the ceramics substrate and a metal heat radiating plate on the back surface of the ceramics substrate are respectively joined with a brazing material to form a joined body, and the joined body is cooled to −110 ° C. or lower. A method of manufacturing a ceramics circuit board, comprising:
属板をろう材で接合した後に−110℃以下に冷却して
室温に戻し、表面の金属板をエッチングして回路パター
ンを形成し、裏面の金属板を放熱板として接合体を造る
か、または更にこの接合体を−110℃以下に冷却する
ことを特徴とするセラミックス回路基板の製造方法。7. A metal plate on the back surface is formed by bonding metal plates to the front and back surfaces of a ceramic substrate with a brazing material, cooling to −110 ° C. or lower and returning to room temperature, and etching the metal plate on the front surface to form a circuit pattern. A method for manufacturing a ceramic circuit board, characterized in that the plate is used as a heat dissipation plate to form a bonded body, or the bonded body is further cooled to -110 ° C or lower.
性ガス中で、80℃/分以下の降温速度で−110℃以
下に冷却して20分以上保持することを特徴とする請求
項6または7記載のセラミックス回路基板の製造方法。8. The joined body is vacuum-packed or cooled to −110 ° C. or lower in an inert gas at a temperature lowering rate of 80 ° C./min or lower and held for 20 minutes or longer. Alternatively, the method for manufacturing a ceramics circuit board according to Item 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002116485A JP3922538B2 (en) | 2002-04-18 | 2002-04-18 | Manufacturing method of ceramic circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002116485A JP3922538B2 (en) | 2002-04-18 | 2002-04-18 | Manufacturing method of ceramic circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003309210A true JP2003309210A (en) | 2003-10-31 |
JP3922538B2 JP3922538B2 (en) | 2007-05-30 |
Family
ID=29397180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002116485A Expired - Lifetime JP3922538B2 (en) | 2002-04-18 | 2002-04-18 | Manufacturing method of ceramic circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3922538B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006245479A (en) * | 2005-03-07 | 2006-09-14 | Nichicon Corp | Device for cooling electronic component |
JP2007066995A (en) * | 2005-08-29 | 2007-03-15 | Hitachi Metals Ltd | Ceramic wiring board and its manufacturing method, and semiconductor module |
JPWO2005098942A1 (en) * | 2004-04-05 | 2008-03-06 | 三菱マテリアル株式会社 | Al / AlN bonded body, power module substrate and power module, and method for manufacturing Al / AlN bonded body |
JP2008181939A (en) * | 2007-01-23 | 2008-08-07 | Mitsubishi Materials Corp | Production process of substrate for power module and substrate for power module and power module |
JP2008187145A (en) * | 2007-01-31 | 2008-08-14 | Sanyo Electric Co Ltd | Circuit equipment |
JP2008192705A (en) * | 2007-02-01 | 2008-08-21 | Mitsubishi Materials Corp | Power module substrate, manufacturing method thereof, power module |
JP2009277991A (en) * | 2008-05-16 | 2009-11-26 | Mitsubishi Materials Corp | Substrate for power module, power module, and method of manufacturing substrate for power module |
JP2010010561A (en) * | 2008-06-30 | 2010-01-14 | Mitsubishi Materials Corp | Power module substrate and method of manufacturing the same |
JP2011124585A (en) * | 2011-01-07 | 2011-06-23 | Hitachi Metals Ltd | Ceramic wiring board and manufacturing method and semiconductor module of the same |
US8609993B2 (en) | 2008-05-16 | 2013-12-17 | Mitsubishi Materials Corporation | Power module substrate, power module, and method for manufacturing power module substrate |
JP2014072365A (en) * | 2012-09-28 | 2014-04-21 | Mitsubishi Materials Corp | Manufacturing method of substrate for power module |
EP2838326A1 (en) * | 2013-08-16 | 2015-02-18 | NGK Insulators, Ltd. | Ceramic circuit board and electronic device |
KR101569421B1 (en) * | 2008-03-10 | 2015-11-16 | 히타치 긴조쿠 가부시키가이샤 | Silicon nitride substrate, manufacturing method thereof, silicon nitride circuit board and semiconductor module using same |
WO2017056666A1 (en) * | 2015-09-28 | 2017-04-06 | 株式会社東芝 | Silicon nitride circuit board and semiconductor module using same |
US10308560B2 (en) * | 2015-01-23 | 2019-06-04 | Kabushiki Kaisha Toshiba | High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same |
JPWO2019167942A1 (en) * | 2018-02-27 | 2020-04-16 | 三菱マテリアル株式会社 | Isolated circuit board |
CN112312645A (en) * | 2020-10-28 | 2021-02-02 | 江苏贺鸿智能科技有限公司 | Ceramic heat dissipation circuit board and manufacturing method thereof |
CN116153888A (en) * | 2023-03-17 | 2023-05-23 | 江苏富乐华功率半导体研究院有限公司 | Copper-clad ceramic substrate with micro-channels and preparation method thereof |
EP4254488A1 (en) | 2022-03-29 | 2023-10-04 | Proterial, Ltd. | Ceramic substrate and ceramic divided substrate |
EP4253348A1 (en) | 2022-03-29 | 2023-10-04 | Proterial, Ltd. | Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014003133A (en) * | 2012-06-18 | 2014-01-09 | Mitsubishi Materials Corp | Manufacturing method of substrate for power module |
-
2002
- 2002-04-18 JP JP2002116485A patent/JP3922538B2/en not_active Expired - Lifetime
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8164909B2 (en) | 2004-04-05 | 2012-04-24 | Mitsubishi Materials Corporation | Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material |
JPWO2005098942A1 (en) * | 2004-04-05 | 2008-03-06 | 三菱マテリアル株式会社 | Al / AlN bonded body, power module substrate and power module, and method for manufacturing Al / AlN bonded body |
JP2006245479A (en) * | 2005-03-07 | 2006-09-14 | Nichicon Corp | Device for cooling electronic component |
JP2007066995A (en) * | 2005-08-29 | 2007-03-15 | Hitachi Metals Ltd | Ceramic wiring board and its manufacturing method, and semiconductor module |
JP2008181939A (en) * | 2007-01-23 | 2008-08-07 | Mitsubishi Materials Corp | Production process of substrate for power module and substrate for power module and power module |
JP2008187145A (en) * | 2007-01-31 | 2008-08-14 | Sanyo Electric Co Ltd | Circuit equipment |
JP2008192705A (en) * | 2007-02-01 | 2008-08-21 | Mitsubishi Materials Corp | Power module substrate, manufacturing method thereof, power module |
KR101569421B1 (en) * | 2008-03-10 | 2015-11-16 | 히타치 긴조쿠 가부시키가이샤 | Silicon nitride substrate, manufacturing method thereof, silicon nitride circuit board and semiconductor module using same |
JP2009277991A (en) * | 2008-05-16 | 2009-11-26 | Mitsubishi Materials Corp | Substrate for power module, power module, and method of manufacturing substrate for power module |
US8609993B2 (en) | 2008-05-16 | 2013-12-17 | Mitsubishi Materials Corporation | Power module substrate, power module, and method for manufacturing power module substrate |
US9095062B2 (en) | 2008-05-16 | 2015-07-28 | Mitsubishi Materials Corporation | Power module substrate, power module, and method for manufacturing power module substrate |
US9101063B2 (en) | 2008-05-16 | 2015-08-04 | Mitsubishi Materials Corporation | Power module substrate, power module, and method for manufacturing power module substrate |
JP2010010561A (en) * | 2008-06-30 | 2010-01-14 | Mitsubishi Materials Corp | Power module substrate and method of manufacturing the same |
JP2011124585A (en) * | 2011-01-07 | 2011-06-23 | Hitachi Metals Ltd | Ceramic wiring board and manufacturing method and semiconductor module of the same |
JP2014072365A (en) * | 2012-09-28 | 2014-04-21 | Mitsubishi Materials Corp | Manufacturing method of substrate for power module |
US9439279B2 (en) | 2013-08-16 | 2016-09-06 | Ngk Insulators, Ltd. | Ceramic circuit board and electronic device |
EP2838326A1 (en) * | 2013-08-16 | 2015-02-18 | NGK Insulators, Ltd. | Ceramic circuit board and electronic device |
US10308560B2 (en) * | 2015-01-23 | 2019-06-04 | Kabushiki Kaisha Toshiba | High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same |
JP7000544B2 (en) | 2015-09-28 | 2022-01-19 | 株式会社東芝 | Manufacturing method of semiconductor module |
JP7000545B2 (en) | 2015-09-28 | 2022-01-19 | 株式会社東芝 | Manufacturing method of semiconductor module |
JPWO2017056666A1 (en) * | 2015-09-28 | 2018-07-12 | 株式会社東芝 | Silicon nitride circuit board and semiconductor module using the same |
US10160690B2 (en) | 2015-09-28 | 2018-12-25 | Kabushiki Kaisha Toshiba | Silicon nitride circuit board and semiconductor module using the same |
CN107251214A (en) * | 2015-09-28 | 2017-10-13 | 株式会社东芝 | Silicon nitride circuit substrate and the semiconductor module for having used the silicon nitride circuit substrate |
US20180057412A1 (en) * | 2015-09-28 | 2018-03-01 | Kabushiki Kaisha Toshiba | Silicon nitride circuit board and semiconductor module using the same |
WO2017056666A1 (en) * | 2015-09-28 | 2017-04-06 | 株式会社東芝 | Silicon nitride circuit board and semiconductor module using same |
JP2021052206A (en) * | 2015-09-28 | 2021-04-01 | 株式会社東芝 | Production method of semiconductor module |
JP2021052205A (en) * | 2015-09-28 | 2021-04-01 | 株式会社東芝 | Production method of semiconductor module |
JPWO2019167942A1 (en) * | 2018-02-27 | 2020-04-16 | 三菱マテリアル株式会社 | Isolated circuit board |
CN112312645A (en) * | 2020-10-28 | 2021-02-02 | 江苏贺鸿智能科技有限公司 | Ceramic heat dissipation circuit board and manufacturing method thereof |
CN112312645B (en) * | 2020-10-28 | 2023-06-02 | 江苏贺鸿智能科技有限公司 | Ceramic heat dissipation circuit board and manufacturing method thereof |
EP4254488A1 (en) | 2022-03-29 | 2023-10-04 | Proterial, Ltd. | Ceramic substrate and ceramic divided substrate |
EP4253348A1 (en) | 2022-03-29 | 2023-10-04 | Proterial, Ltd. | Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate |
KR20230140424A (en) | 2022-03-29 | 2023-10-06 | 가부시키가이샤 프로테리아루 | Ceramic substrate, ceramic divided substrate, and method for manufacturing ceramic substrate |
KR20230140425A (en) | 2022-03-29 | 2023-10-06 | 가부시키가이샤 프로테리아루 | Ceramic substrate and ceramic divided substrate |
CN116153888A (en) * | 2023-03-17 | 2023-05-23 | 江苏富乐华功率半导体研究院有限公司 | Copper-clad ceramic substrate with micro-channels and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3922538B2 (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3922538B2 (en) | Manufacturing method of ceramic circuit board | |
CN107408538B (en) | Circuit board and semiconductor device | |
KR102146589B1 (en) | Substrate for power module with heat sink, power module with heat sink, and method for producing substrate for power module with heat sink | |
KR101971756B1 (en) | Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module | |
JP4969738B2 (en) | Ceramic circuit board and semiconductor module using the same | |
EP2980844B1 (en) | Substrate for power modules, substrate with heat sink for power modules, and power module | |
JPH08139420A (en) | Circuit board | |
JPH07202063A (en) | Ceramic circuit board | |
JPH09329395A (en) | Heat sink | |
KR20180059778A (en) | A substrate for a light emitting module, a light emitting module, a substrate for a light emitting module formed with a cooler, and a method for manufacturing a substrate for a light emitting module | |
WO2018021473A1 (en) | Circuit board and semiconductor module | |
JP2004022973A (en) | Ceramic circuit board and semiconductor module | |
JP4360847B2 (en) | Ceramic circuit board, heat dissipation module, and semiconductor device | |
JP2005011922A (en) | Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it | |
JP2013207237A (en) | Manufacturing method of substrate for power module with heat sink | |
JPH11121889A (en) | Circuit board | |
JP2008147309A (en) | Ceramic substrate and semiconductor module using the same | |
JP2009088330A (en) | Semiconductor module | |
JP2003100965A (en) | Circuit board reliability evaluation method and circuit board | |
JP2000101203A (en) | Ceramic circuit board and power module using it | |
JPH08274423A (en) | Ceramic circuit board | |
JP4326706B2 (en) | Circuit board evaluation method, circuit board and manufacturing method thereof | |
JP3537320B2 (en) | Circuit board | |
JPS62216251A (en) | High thermal conductive substrate | |
JP2002137974A (en) | Joining method of ceramic body and copper plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050310 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060406 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3922538 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140302 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |