JP2003308885A - Method of diagnosing deterioration of lithium ion battery and apparatus incorporating the method of diagnosing deterioration - Google Patents
Method of diagnosing deterioration of lithium ion battery and apparatus incorporating the method of diagnosing deteriorationInfo
- Publication number
- JP2003308885A JP2003308885A JP2002116443A JP2002116443A JP2003308885A JP 2003308885 A JP2003308885 A JP 2003308885A JP 2002116443 A JP2002116443 A JP 2002116443A JP 2002116443 A JP2002116443 A JP 2002116443A JP 2003308885 A JP2003308885 A JP 2003308885A
- Authority
- JP
- Japan
- Prior art keywords
- rate
- time
- discharge
- deterioration
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【課題】リチウムイオン電池の劣化因子である正極及び
負極の活物質の劣化及び抵抗成分の増加状態を解析する
劣化診断方法及びその劣化診断方法を内蔵した装置に関
する。
【解決手段】電池の定電流による初期充放電の充放電終
了直前付近のプラトー電圧変化を検出し、この各電圧変
化範囲の初期充放電時における通常の時間率及び長時間
の時間率の各容量確認試験での充放電時間と、サイクル
試験後の前記各電圧変化範囲における通常の時間率及び
長時間の時間率の各容量確認試験での充放電時間とを測
定し、初期充放電時の前記各充放電時間とサイクル試験
後の前記各充放電時間との比率から負極全体及び正極全
体の劣化率と、負極及び正極の各活物質の劣化率を求め
ると共に、前記負極全体及び正極全体の劣化率と負極及
び正極の各活物質の劣化率との差から負極及び正極の各
のインピーダンスの増加率を求めるものである。
The present invention relates to a deterioration diagnosis method for analyzing deterioration of active materials of a positive electrode and a negative electrode, which are deterioration factors of a lithium ion battery, and an increased state of a resistance component, and an apparatus incorporating the deterioration diagnosis method. Kind Code: A1 A change in a plateau voltage in the vicinity of immediately before the end of charge / discharge of an initial charge / discharge due to a constant current of a battery is detected, and each capacity of a normal time rate and a long time rate in the initial charge / discharge of each voltage change range is detected. The charge / discharge time in the confirmation test and the charge / discharge time in each capacity confirmation test of the normal time rate and the long time rate in each of the voltage change ranges after the cycle test were measured, and the charge / discharge time during the initial charge / discharge was measured. From the ratio of each charge / discharge time and each charge / discharge time after the cycle test, the deterioration rate of the entire negative electrode and the positive electrode, and the deterioration rate of each active material of the negative electrode and the positive electrode, and the deterioration of the entire negative electrode and the positive electrode The rate of increase in the impedance of each of the negative electrode and the positive electrode is determined from the difference between the rate and the deterioration rate of each active material of the negative electrode and the positive electrode.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウムイオン電
池の劣化診断方法及びその装置に関するものであり、特
にリチウムイオン電池の電池容量低下の劣化因子である
正極及び負極の活物質の劣化及び抵抗成分の増加状態を
測定することのできるリチウムイオン電池の劣化診断方
法及びその劣化診断方法を内蔵した装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for diagnosing deterioration of a lithium ion battery, and in particular, deterioration of active materials of positive electrode and negative electrode and resistance component which are deterioration factors of decrease in battery capacity of lithium ion battery. The present invention relates to a method for diagnosing deterioration of a lithium-ion battery capable of measuring the increase state of the battery and an apparatus incorporating the method for diagnosing deterioration.
【0002】[0002]
【従来の技術】リチウムイオン電池の充放電の繰り返し
使用により電池容量の低下が生じるが、この電池容量の
低下の主たる要因は、正極及び負極の活物質の劣化及び
正極及び負極の表面に成長する抵抗薄膜による内部イン
ピーダンスの増加である。これらの劣化の程度を検査又
は観測する方法としては、例えば、x線回折法、x線マ
イクロアナライザーなどによる正極,負極の活物質の検
査、x線光電子分光法,インピーダンス法などによる抵
抗薄膜の検査が知られている。2. Description of the Related Art Battery capacity decreases due to repeated charge and discharge of a lithium ion battery. The main causes of this battery capacity decrease are deterioration of the active material of the positive electrode and the negative electrode and growth on the surface of the positive electrode and the negative electrode. This is an increase in internal impedance due to the resistive thin film. As a method for inspecting or observing the degree of these deteriorations, for example, inspection of active materials of positive and negative electrodes by x-ray diffraction method, x-ray microanalyzer, etc., inspection of resistive thin film by x-ray photoelectron spectroscopy, impedance method, etc. It has been known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前述し
た測定方法は、いずれも測定に高価な専用装置や特殊な
付属装置が必要であり、また測定には多くの時間と熟練
を要する。さらに、得られるデータは定性的であって定
量的に把握することは困難であるなどの問題があった。
本発明は、リチウムイオン電池の劣化機構とその劣化因
子の劣化に及ぼす割合を電圧と時間の関数から求める解
析法であり、この劣化診断方法及びその装置は、電池劣
化に関する有益な情報を簡便・短時間に提供可能であっ
て、リチウムイオン電池の研究開発、或いは検査業務等
に極めて有益である。However, all of the above-mentioned measuring methods require expensive dedicated devices and special auxiliary devices for the measurement, and the measuring requires a lot of time and skill. In addition, the data obtained is qualitative and difficult to grasp quantitatively.
The present invention is an analysis method for obtaining a deterioration mechanism of a lithium-ion battery and a ratio of the deterioration factor affecting the deterioration from a function of voltage and time, and this deterioration diagnosis method and its device provide useful information on battery deterioration in a simple and easy manner. It can be provided in a short time, and is extremely useful for research and development of lithium-ion batteries or inspection work.
【0004】[0004]
【課題を解決するための手段】本願の第1の発明である
リチウムイオン電池の劣化診断方法は、リチウムイオン
電池の定電流による初期充放電における通常の時間率充
放電試験の充電終了直前付近及び放電終了直前付近に生
ずるプラトー電圧変化を検出して、該各電圧変化部分の
各下限電圧値と各上限電圧値をそれぞれ測定すると共
に、前記通常の時間率での容量確認試験における前記下
限電圧値から上限電圧値までの充電電圧変化に要した第
1の充電時間及び前記上限電圧値から下限電圧値までの
放電電圧変化に要した第1の放電時間を測定し、かつ前
記初期充放電における長時間の時間率での容量確認試験
を行い前記充電電圧変化に要した第2の充電時間及び前
記放電電圧変化に要した第2の放電時間を測定し、該初
期充放電試験後に前記通常の時間率充放電のサイクル試
験を行い、該サイクル試験後の前記通常の時間率での容
量確認試験における前記充電電圧変化に要した第3の充
電時間及び前記放電電圧変化に要した第3の放電時間を
測定し、かつ前記サイクル試験後における長時間の時間
率での容量確認試験を行い前記充電電圧変化に要した第
4の充電時間及び前記放電電圧変化に要した第4の放電
時間を測定し、前記第1充電時間と前記第3充電時間と
の比率により前記リチウムイオン電池の正極全体の劣化
率と、前記第1放電時間と前記第3放電時間との比率に
より前記リチウムイオン電池の負極全体の劣化率と、前
記第2充電時間と前記第4充電時間との比率により前記
正極の活物質の劣化率と、前記第2放電時間と前記第4
放電時間との比率により前記負極の活物質の劣化率とを
求めると共に、前記正極全体の劣化率から前記正極の活
物質の劣化率を差し引き前記正極のインピーダンス増加
率と、前記負極全体の劣化率から前記負極の活物質の劣
化率を差し引き前記負極のインピーダンス増加率とを求
めるようにしたものである。According to a first aspect of the present invention, there is provided a method for diagnosing deterioration of a lithium-ion battery, which is provided near the end of charge in a normal time rate charge / discharge test in initial charge / discharge with a constant current of a lithium-ion battery. Detecting a plateau voltage change that occurs immediately before the end of discharge, measuring each lower limit voltage value and each upper limit voltage value of each voltage change portion, and lowering the lower limit voltage value in the capacity confirmation test at the normal time rate. To the upper limit voltage value, the first charging time required to change the charging voltage and the first discharging time required to change the discharging voltage from the upper limit voltage value to the lower limit voltage value are measured, and A capacity confirmation test is performed at a time rate of time, a second charging time required for the charging voltage change and a second discharging time required for the discharge voltage change are measured, and after the initial charge / discharge test, A third time required for the charging voltage change and a third charging time required for the charging voltage change in the capacity confirmation test at the normal time ratio after the cycle test after performing a normal time rate charge / discharge cycle test. And the fourth discharge time required for the change in the discharge voltage by performing the capacity confirmation test at a long time rate after the cycle test and measuring the discharge time of Is measured, and the deterioration rate of the entire positive electrode of the lithium ion battery based on the ratio between the first charging time and the third charging time, and the lithium ion battery based on the ratio between the first discharging time and the third discharging time. Of the deterioration rate of the whole negative electrode, and the deterioration rate of the active material of the positive electrode, the second discharge time, and the fourth ratio according to the ratio of the second charging time to the fourth charging time.
The deterioration rate of the active material of the negative electrode is obtained by the ratio with the discharge time, and the impedance increase rate of the positive electrode and the deterioration rate of the entire negative electrode are subtracted from the deterioration rate of the positive electrode as a whole. Is obtained by subtracting the deterioration rate of the active material of the negative electrode from the above.
【0005】本願の第2の発明であるリチウムイオン電
池の劣化診断装置は、リチウムイオン電池の定電流によ
る通常の時間率充放電試験の初期充放電における充電終
了直前付近及び放電終了直前付近に生ずる各プラトー電
圧変化を検出する電圧変化検出手段と、前記の各プラト
ー電圧変化部分の各下限電圧値と各上限電圧値をそれぞ
れ測定し記憶する記憶手段と、前記通常の時間率での容
量確認試験における前記下限電圧値から上限電圧値まで
の充電電圧変化に要した第1の充電時間,及び前記上限
電圧値から下限電圧値までの放電電圧変化に要した第1
の放電時間を測定し記憶する第1の充放電時間記憶手段
と、前記初期充放電状態での長時間の時間率での容量確
認試験における前記充電電圧変化に要した第2の充電時
間、及び前記放電電圧変化に要した第2の放電時間を測
定し記憶する第2の充放電時間記憶手段と、前記初期充
放電試験後の前記通常の時間率充放電のサイクル試験後
の前記通常の時間率での容量確認試験における前記充電
電圧変化に要した第3の充電時間及び前記放電電圧変化
に要した第3の放電時間を測定し記憶する第3の充放電
時間記憶手段と、前記サイクル試験後の前記長時間の時
間率での容量確認試験における前記充電電圧変化に要し
た第4の充電時間及び前記放電電圧変化に要した第4の
放電時間を測定し記憶する第4の充放電時間記憶手段
と、前記第1充電時間と前記第3充電時間との比率と前
記第1放電時間と前記第3放電時間との比率により前記
リチウムイオン電池の正極全体と負極全体の各劣化率を
求める演算手段と、前記第2充電時間と前記第4充電時
間との比率と前記第2放電時間と前記第4放電時間との
比率により前記正極と前記負極の各活物質の劣化率を求
める演算手段と、前記正極全体の劣化率と前記正極の活
物質の劣化率との差と前記負極全体の劣化率と前記負極
の活物質の劣化率との差から前記正極と前記負極の各イ
ンピーダンス増加率を求める演算手段とを備えたもので
ある。A deterioration diagnosing device for a lithium ion battery, which is a second invention of the present application, occurs near the end of charging and near the end of discharging in the initial charge / discharge of a normal time rate charge / discharge test by a constant current of a lithium ion battery. Voltage change detection means for detecting each plateau voltage change, storage means for measuring and storing each lower limit voltage value and each upper limit voltage value of each plateau voltage change portion, and capacity confirmation test at the normal time rate The first charging time required to change the charging voltage from the lower limit voltage value to the upper limit voltage value and the first charging time to change the discharge voltage from the upper limit voltage value to the lower limit voltage value in
First charging / discharging time storage means for measuring and storing the discharging time, and a second charging time required for the charging voltage change in the capacity confirmation test at a long time rate in the initial charging / discharging state, Second charging / discharging time storage means for measuring and storing the second discharging time required for the discharge voltage change, and the normal time after the normal charge / discharge cycle test after the initial charge / discharge test. Charging / discharging time storage means for measuring and storing the third charging time required for the charging voltage change and the third discharging time required for the discharge voltage change in the capacity confirmation test at a rate, and the cycle test. Fourth charge / discharge time for measuring and storing the fourth charge time required for the change in the charge voltage and the fourth discharge time required for the change in the discharge voltage in the capacity confirmation test at the later long time rate. Storage means and during the first charging And a third charging time and a ratio of the first discharging time and the third discharging time to obtain respective deterioration rates of the entire positive electrode and the entire negative electrode of the lithium ion battery, and the second charging time. And a ratio of the fourth charging time and a ratio of the second discharging time and the fourth discharging time to calculate a deterioration rate of each active material of the positive electrode and the negative electrode, and a deterioration rate of the entire positive electrode. A means for calculating the respective impedance increase rates of the positive electrode and the negative electrode from the difference between the deterioration rate of the active material of the positive electrode, the deterioration rate of the entire negative electrode and the deterioration rate of the active material of the negative electrode. Is.
【0006】[0006]
【発明の実施の形態】本発明のリチウムイオン電池の診
断方法の一実施例を図1及び図2に基づいて説明する。
図1は円筒型のリチウムイオン電池の定電流試験におけ
る充放電電圧特性を示すものであり、この充放電電圧特
性の充電及び放電の開始初期と終了間際にそれぞれプラ
トーと言われる電圧変化のピーク1〜4が現れる。この
ピーク1〜4は充放電に伴って可逆的に現れるものであ
り、ピーク1と4は負極(黒鉛炭素)のステージ構造変
化に起因し、ピーク2と3は正極(LiCoO2 )の構
造変化に起因して現れる。本発明はこの各ピークが出現
する電圧範囲に要する時間をサイクルの関数として比較
することにより、活物質の劣化程度を求めることが可能
となることに着目して成されたものである。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method for diagnosing a lithium ion battery according to the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows charge / discharge voltage characteristics of a cylindrical lithium-ion battery in a constant current test, and a peak 1 of a voltage change called a plateau at the beginning and end of charging and discharging of the charge / discharge voltage characteristics. ~ 4 appears. These peaks 1 to 4 appear reversibly with charge and discharge, peaks 1 and 4 are due to the stage structure change of the negative electrode (graphite carbon), and peaks 2 and 3 are due to the structure change of the positive electrode (LiCoO2). Appears due to. The present invention was made by focusing on the fact that it is possible to determine the degree of deterioration of the active material by comparing the time required for the voltage range in which each peak appears as a function of cycle.
【0007】しかし、電池の内部抵抗はサイクル試験と
共に増加し、抵抗成分の増加による分極が大きくなる。
この結果、ピーク1の充電初期及びピーク3の放電初期
は分極の増大に伴って検出できなくなる場合が生じるた
め、正極に起因する劣化の解析はピーク2、同様に負極
に起因する劣化はピーク4を用いて解析するものであ
る。また、電池容量低下の確認試験は、通常8〜10時
間率(通常の時間率)に相当する充放電電流値で行うも
のである。However, the internal resistance of the battery increases with the cycle test, and the polarization increases due to the increase of the resistance component.
As a result, the initial charge at peak 1 and the initial discharge at peak 3 may become undetectable as the polarization increases. Therefore, analysis of deterioration due to the positive electrode is peak 2, and deterioration due to the negative electrode is peak 4 as well. Is to be analyzed. Moreover, the confirmation test of the battery capacity reduction is usually performed at a charge / discharge current value corresponding to a rate of 8 to 10 hours (normal rate).
【0008】図2は、図1に示したピーク2と4の部分
を拡大して、解析の詳細を示すものであり、正極の劣化
は充電末の下限電圧値の4.0Vから上限電圧値の4.
15V、負極の劣化は放電末の上限電圧値の3.75V
から下限電圧値の3.6Vの電圧範囲を基準として、こ
の電圧範囲の変化に要した初期の充放電試験とサイクル
試験経過後との時間差から劣化程度を解析するものであ
る。即ち、初期の充放電試験として例えば3回の充放電
試験の前記電圧範囲の平均充電時間及び放電時間をそれ
ぞれΔTとし、例えば970サイクル試験後の同電圧範
囲に要する充電時間及び放電時間をそれぞれΔTnとし
て、次式(1)から正極及び負極の容量低下率が求めら
れる。FIG. 2 shows the details of the analysis by enlarging the peaks 2 and 4 shown in FIG. 1, and the deterioration of the positive electrode is from the lower limit voltage value of 4.0 V at the end of charging to the upper limit voltage value. 4.
15V, the deterioration of the negative electrode is 3.75V which is the upper limit voltage value at the end of discharge.
Based on the voltage range of 3.6V, which is the lower limit voltage value, as a reference, the degree of deterioration is analyzed from the time difference between the initial charge / discharge test required for the change of the voltage range and after the cycle test. That is, as an initial charge / discharge test, for example, the average charge time and the discharge time in the voltage range of three times of the charge / discharge test are each ΔT, and for example, the charge time and the discharge time required for the same voltage range after the 970 cycle test are each ΔTn. As a result, the capacity reduction rates of the positive electrode and the negative electrode can be obtained from the following equation (1).
【0009】 容量低下率=〔1−(ΔTn/ΔT)〕×100 ……(1)[0009] Capacity decrease rate = [1- (ΔTn / ΔT)] × 100 (1)
【0010】しかし、8〜10時間率に相当する充放電
電流値での容量確認試験から得られる容量低下率には電
流値が大きいため、活物質だけでなく分極成分(抵抗成
分)の影響も含まれた値となる。However, since the current value is large in the capacity decrease rate obtained from the capacity confirmation test at the charge / discharge current value corresponding to the 8 to 10 hour rate, not only the active material but also the polarization component (resistance component) is affected. It will be the included value.
【0011】このため、分極成分の影響を極力排除して
活物質の劣化を見積る(測定する)手段として、30〜
50時間率(長時間の時間率)に相当する極低率での容
量確認試験を並行して行う。この極低率での容量確認試
験も、前述の8〜10時間率による充放電電流値での容
量確認試験の際に検出したピーク2と4のそれぞれの下
限電圧値と上限電圧値との差である電圧範囲を用いるも
のであり、充放電試験の初期時の30〜50時間率によ
る当該電圧範囲の変化に要した充電時間ΔT又は放電時
間ΔTと、サイクル試験経過後の30〜50時間率によ
る当該電圧範囲の変化に要した充電時間ΔTn又は放電
時間ΔTnとの時間差から求めるものである。Therefore, as a means for estimating (measuring) the deterioration of the active material by eliminating the influence of the polarization component as much as possible,
A capacity confirmation test at an extremely low rate corresponding to a 50 hour rate (long time rate) is performed in parallel. Also in the capacity confirmation test at this extremely low rate, the difference between the lower limit voltage value and the upper limit voltage value of each of peaks 2 and 4 detected during the capacity confirmation test at the charge / discharge current value at the aforementioned 8 to 10 hour rate. The charge time ΔT or the discharge time ΔT required for the change of the voltage range by the initial 30 to 50 hour rate of the charge / discharge test, and the 30 to 50 hour rate after the cycle test have elapsed. Is calculated from the time difference from the charging time ΔTn or the discharging time ΔTn required for the change of the voltage range.
【0012】この極低率での容量確認試験により、正極
及び負極の表面に成長した抵抗薄膜を充電電流又は放電
電流は透過するため、その抵抗薄膜の影響を無視し得る
ようにして正極及び負極の活物質の劣化分の容量低下率
として検出するものである。従って、この正極及び負極
の活物質の劣化分の容量低下率を、前述の8〜10時間
率による充放電試験において求めた容量低下率から差し
引いた容量低下率が、正極及び負極の表面に成長した抵
抗薄膜の抵抗成分による容量低下率として見積る(測定
する)ことができる。即ち、通常の8〜10時間率容量
確認試験と共に30〜50時間率の極低率容量試験を併
用することにより、正極及び負極の活物質の劣化及び抵
抗成分の増加を分離し、かつ定量的に測定することを可
能にしたものである。According to the capacity confirmation test at the extremely low rate, the resistance thin film grown on the surface of the positive electrode and the negative electrode transmits the charging current or the discharging current, so that the influence of the resistance thin film can be neglected. This is detected as the capacity decrease rate of the deterioration amount of the active material. Therefore, the capacity decrease rate obtained by subtracting the capacity decrease rate of the deterioration amount of the active material of the positive electrode and the negative electrode from the capacity decrease rate obtained in the charge / discharge test by the above-mentioned 8 to 10 hours rate grows on the surface of the positive electrode and the negative electrode. It can be estimated (measured) as the rate of capacitance decrease due to the resistance component of the resistance thin film. That is, by using an extremely low rate capacity test with a rate of 30 to 50 hours in combination with a normal capacity confirmation test of 8 to 10 hours, deterioration of the active material of the positive electrode and the negative electrode and an increase in the resistance component are separated, and quantitatively determined. It is possible to measure in.
【0013】[0013]
【実施例】本発明のリチウムイオン電池の劣化診断方法
又はその装置を用いて、円筒18650型リウチムイオ
ン電池を充放電サイクルしたものを複数パターン用意
し、解析した結果を図3及び図4に示す。図3は電池容
量低下率に占める各劣化因子の割合を示すデータ表であ
り、図4は図3のに示したデータを棒グラフに表したグ
ラフ図である。EXAMPLE A plurality of patterns of a charge / discharge cycle of a cylindrical 18650 type lithium ion battery were prepared using the method for diagnosing deterioration of a lithium ion battery of the present invention or its apparatus, and the results of analysis are shown in FIGS. 3 and 4. 3 is a data table showing the ratio of each deterioration factor to the battery capacity reduction rate, and FIG. 4 is a bar graph showing the data shown in FIG.
【0014】この試験データは、温度と充放電率との各
試験条件における、電池全体の容量低下率,負極全
体の劣化率,負極活物質の劣化率,負極抵抗成分
(インピーダンス)の増加率(負極全体の劣化率−
負極活物質の劣化率),正極全体の劣化率,正極活
物質の劣化率,正極抵抗成分(インピーダンス)の増
加率(正極全体の劣化率−正極活物質の劣化率)を
示しているものである。この図3及び図4から明らかな
ように,電池の容量低下原因の内訳を定量的に示すこと
ができると共に、解析の精度は、電池の容量低下率に対
して負極全体の劣化率は90〜110%範囲内に含まれ
ているものであり、相当高い精度での試験が可能であ
る。This test data shows that the capacity decrease rate of the entire battery, the deterioration rate of the entire negative electrode, the deterioration rate of the negative electrode active material, and the increase rate of the negative electrode resistance component (impedance) under each test condition of temperature and charge / discharge rate ( Deterioration rate of the entire negative electrode −
The deterioration rate of the negative electrode active material), the deterioration rate of the entire positive electrode, the deterioration rate of the positive electrode active material, and the increase rate of the positive electrode resistance component (impedance) (deterioration rate of the entire positive electrode-deterioration rate of the positive electrode active material). is there. As is clear from FIGS. 3 and 4, the breakdown of the cause of the battery capacity decrease can be quantitatively shown, and the accuracy of the analysis is such that the deterioration rate of the entire negative electrode is 90% to the battery capacity decrease rate. It is included in the 110% range, and the test can be performed with considerably high accuracy.
【0015】次に本発明のリチウムイオン電池の劣化診
断装置を説明する。この劣化診断装置は、リチウムイオ
ン電池の通常の定電流充放電による容量試験装置を用
い、通常の時間率、例えば8〜10時間率により行うも
のである。この容量試験の初期充放電試験の際の充電終
了直前付近及び放電終了直前付近のプラトー電圧変化を
検出する検出手段と、この各電圧変化の下限電圧値と上
限電圧値とを読取り、メモリに記憶させる記憶手段とを
有すると共に、初期充放電試験時とサイクル充放電試験
後の前述した通常の時間率、例えば8〜10時間率での
容量確認試験と長時間の時間率、例えば30〜50時間
率での容量確認試験を行う際の、前述した各電圧変化に
要する充電時間と放電時間を測定する測定手段とこの測
定結果をメモリに記憶させる記憶手段とを有している。Next, a deterioration diagnosis device for a lithium ion battery according to the present invention will be described. This deterioration diagnosing device uses a capacity testing device for charging and discharging a lithium ion battery with a constant current, and is performed at a normal time rate, for example, 8 to 10 hours. In the initial charge / discharge test of this capacity test, a detecting means for detecting a plateau voltage change immediately before the end of charging and immediately before the end of discharging, and a lower limit voltage value and an upper limit voltage value of each voltage change are read and stored in a memory. And a storage means for storing, and a capacity confirmation test at the above-mentioned normal time rate during the initial charge / discharge test and after the cycle charge / discharge test, for example, 8 to 10 hour rate, and a long time rate, for example, 30 to 50 hour. It has a measuring means for measuring the charging time and the discharging time required for each voltage change described above when performing the capacity confirmation test at a rate, and a storage means for storing the measurement result in a memory.
【0016】即ち、初期充放電試験時の前記下限電圧値
から上限電圧値までの充電電圧変化と、前記上限電圧値
から下限電圧値までの放電電圧変化のそれぞれにおける
通常の時間率と長時間の時間率での各充電時間(第1充
電時間と第2充電時間)及び各放電時間(第1放電時間
と第2放電時間)と、サイクル充放電試験後の前記下限
電圧値から上限電圧値までの充電電圧変化と、前記上限
電圧値から下限電圧値までの放電電圧変化のそれぞれに
おける通常の時間率と長時間の時間率での各充電時間
(第3充電時間と第4充電時間)及び各放電時間(第3
放電時間と第4放電時間)とを測定する測定手段及びこ
の測定結果を記憶する記憶手段を有しているものであ
る。That is, during the initial charge / discharge test, the change of the charging voltage from the lower limit voltage value to the upper limit voltage value and the change of the discharge voltage from the upper limit voltage value to the lower limit voltage value are performed at a normal time rate and a long time. Each charging time (first charging time and second charging time) and each discharging time (first discharging time and second discharging time) in time rate, and from the lower limit voltage value to the upper limit voltage value after the cycle charge / discharge test Charging voltage change and the discharge voltage change from the upper limit voltage value to the lower limit voltage value, the charging time (the third charging time and the fourth charging time) at the normal time rate and the long time rate, and Discharge time (3rd
It has a measuring means for measuring the discharging time and the fourth discharging time and a storing means for storing the measurement result.
【0017】また、前述した第1充電時間〜第4充電時
間と、第1放電時間〜第4放電時間とから、正極全体の
劣化率及び負極全体の劣化率,正極の活物質の劣化
率及び負極の活物質の劣化率,正極の表面に成長す
る抵抗薄膜によるインピーダンスの増加率及び負極の
同インピーダンスの増加率を演算する演算回路とを有
している。Further, from the above-mentioned first charging time to fourth charging time and first discharging time to fourth discharging time, the deterioration rate of the entire positive electrode and the entire negative electrode, the deterioration rate of the active material of the positive electrode, and And a calculation circuit for calculating the deterioration rate of the negative electrode active material, the increase rate of impedance due to the resistance thin film growing on the surface of the positive electrode, and the increase rate of the same impedance of the negative electrode.
【0018】即ち、前記式(1)に第1充電時間△Tと
第3充電時間△Tnを代入して、正極全体の劣化率を
求め、第1放電時間△Tと第3放電時間△Tnから同様
に負極全体の劣化率を求める。また、前記式(1)に
第2充電時間△Tと第4充電時間△Tnを代入して、正
極の活物質の劣化率を求め、第2放電時間△Tと第4
放電時間△Tnから同様に負極の活物質の劣化率を求
める。更に、前述した正極全体の劣化率から正極の活
物質の劣化率を差し引き正極のインピーダンスの増加
率を求め、負極全体の劣化率から負極の活物質の劣
化率を差し引き負極のインピーダンスの増加率を求
めるそれぞれの演算回路を有しているものである。That is, by substituting the first charging time ΔT and the third charging time ΔTn into the equation (1), the deterioration rate of the entire positive electrode is obtained, and the first discharging time ΔT and the third discharging time ΔTn are obtained. Similarly, the deterioration rate of the entire negative electrode is obtained. Further, by substituting the second charging time ΔT and the fourth charging time ΔTn into the formula (1), the deterioration rate of the positive electrode active material is obtained, and the second discharging time ΔT and the fourth
Similarly, the deterioration rate of the negative electrode active material is obtained from the discharge time ΔTn. Furthermore, the rate of increase of the impedance of the positive electrode is obtained by subtracting the rate of deterioration of the positive electrode active material from the rate of deterioration of the entire positive electrode described above, and the rate of increase of the impedance of the negative electrode is subtracted from the rate of deterioration of the negative electrode active material from the rate of deterioration of the entire negative electrode. It has respective arithmetic circuits to be obtained.
【0019】図5に前述のリチウムイオン電池の劣化診
断装置による試験,測定,演算の処理工程を示す。図5
において、F1 は初期充放電時の8〜10時間率の要領
測定とプラトー部の所用時間測定、F2 は初期充放電時
の30〜50時間率のプラトー部の所用時間測定、F3
は各種サイクル試験、F4 はサイクル試験後の8〜10
時間率の要領測定とプラトー部の所用時間測定、F5 は
同試験後の30〜50時間率のプラトー部の所用時間測
定、F6 はF1 ,F2 ,F4 及びF5 の各測定データの
演算部で、リチウムイオン電池の容量低下率と共に、容
量低下の要因解析を行う。即ち、正極,負極の各劣化
率,正極,負極の各活物質の劣化率,正極,負極の各イ
ンピーダンスの増加率を求める。F7 で当該電池のサイ
クル試験を終了する。FIG. 5 shows the processing steps of the test, measurement, and calculation by the above-described lithium ion battery deterioration diagnosing device. Figure 5
In the above, F1 is a point measurement of the rate of 8 to 10 hours during initial charge and discharge and time required for the plateau portion, F2 is a time measurement of the plateau section at a rate of 30 to 50 hour during initial charge and discharge, and F3
Indicates various cycle tests, F4 indicates 8 to 10 after the cycle test.
The time rate measurement and the required time measurement of the plateau part, F5 is the required time measurement of the plateau part at the rate of 30 to 50 hours after the test, F6 is the calculation part of each measurement data of F1, F2, F4 and F5. Factor analysis of the capacity decrease is performed along with the capacity decrease rate of the lithium-ion battery. That is, the deterioration rates of the positive electrode and the negative electrode, the deterioration rates of the active materials of the positive electrode and the negative electrode, and the increase rates of the impedances of the positive electrode and the negative electrode are obtained. The cycle test of the battery is completed at F7.
【0020】前述したリチウムイオン電池の劣化診断方
法及びその劣化診断装置の説明では、初期充放電試験時
と例えば970回のサイクル試験終了後に、それぞれ通
常の時間率と長時間の時間率の容量確認試験を行い正極
及び負極の各劣化率を測定しているが、前述のサイクル
試験の途中の、例えば200サイクル,500サイク
ル.800サイクルなどの中途においても同様な測定,
演算により、電池の劣化状態をも診断することが可能で
ある。この診断解析に必要なデータの収集および診断解
析に必要な計算プログラムは、従来の電池充放電試験シ
ステムに容易に組み入れることができ、これによって、
サイクル試験経過に伴う劣化過程を自動的に解析・出力
することを可能としたものである。In the above description of the method for diagnosing the deterioration of the lithium ion battery and the apparatus for diagnosing the deterioration, in the initial charge / discharge test and after the completion of the cycle test of, for example, 970 times, the capacity confirmation at the normal time rate and the long time rate is performed. A test is conducted to measure the respective deterioration rates of the positive electrode and the negative electrode. For example, 200 cycles, 500 cycles, etc. during the cycle test described above. Similar measurement in the middle of 800 cycles,
By calculation, it is possible to diagnose the deterioration state of the battery. The data collection required for this diagnostic analysis and the calculation program required for diagnostic analysis can be easily incorporated into a conventional battery charge / discharge test system, which allows
It is possible to automatically analyze and output the deterioration process accompanying the progress of the cycle test.
【0021】本発明のリチウムイオン電池の劣化診断方
法及びその装置の対象は、主としてリチウムイオン電池
用正極としては遷移金属酸化物(LiCoO2 ,LiN
iO2 ,LiMn2O4 等)を用いる電池系であり、ま
たリチウムイオン電池用負極としては黒鉛系炭素材料を
用いる電池系である。The subject of the method and apparatus for diagnosing deterioration of a lithium-ion battery of the present invention is mainly a transition metal oxide (LiCoO2, LiN) as a positive electrode for a lithium-ion battery.
iO2, LiMn2O4, etc.), and a battery system using a graphite-based carbon material as the negative electrode for a lithium ion battery.
【0022】[0022]
【発明の効果】以上の説明より明らかなように、本発明
は、電池の劣化状況をサイクル試験データとしての電
圧,時間,電流から求めるものであり、従来のように劣
化評価に専用装置や技術の熟練性などを必要とせず、セ
ルサイズにも関係なく安全に、迅速にかつ定量的に評価
し得るもので、リチウムイオン電池の開発の加速化や検
査の効率化に極めて有効に寄与するものである。As is apparent from the above description, the present invention obtains the deterioration state of a battery from voltage, time, and current as cycle test data. It can be safely, promptly and quantitatively evaluated regardless of cell size without the need for skill, etc., and will contribute significantly to accelerating development of lithium-ion batteries and improving inspection efficiency. Is.
【図1】本発明を適用するリチウムイオン電池の代表的
な充放電電圧特性を示す。FIG. 1 shows typical charge / discharge voltage characteristics of a lithium ion battery to which the present invention is applied.
【図2】本発明のリチウムイオン電池の劣化診断の主要
構成である電圧と時間の関係の一例を説明する特性図で
ある。FIG. 2 is a characteristic diagram illustrating an example of a relationship between voltage and time, which is a main configuration for deterioration diagnosis of the lithium-ion battery of the present invention.
【図3】本発明により測定した電圧と時間の関係により
求めた電池容量低下率に占める各劣化因子の割合の一例
を示すデータ表である。FIG. 3 is a data table showing an example of the ratio of each deterioration factor to the battery capacity reduction rate obtained from the relationship between voltage and time measured according to the present invention.
【図4】図3のデータ表に示したデータを棒グラフに表
したグラフ図である。FIG. 4 is a bar graph showing the data shown in the data table of FIG.
【図5】本発明のリチウムイオン電池の劣化診断装置に
おける処理工程図である。FIG. 5 is a process step diagram in the deterioration diagnostic apparatus for a lithium ion battery of the present invention.
Claims (5)
充放電における通常の時間率充放電試験の充電終了直前
付近及び放電終了直前付近に生ずるプラトー電圧変化を
検出して、該各電圧変化部分の各下限電圧値と各上限電
圧値をそれぞれ測定すると共に、前記通常の時間率での
容量確認試験における前記下限電圧値から上限電圧値ま
での充電電圧変化に要した第1の充電時間及び前記上限
電圧値から下限電圧値までの放電電圧変化に要した第1
の放電時間を測定し、かつ前記初期充放電における長時
間の時間率での容量確認試験を行い前記充電電圧変化に
要した第2の充電時間及び前記放電電圧変化に要した第
2の放電時間を測定し、 該初期充放電試験後に前記通常の時間率充放電のサイク
ル試験を行い、該サイクル試験後の前記通常の時間率で
の容量確認試験における前記充電電圧変化に要した第3
の充電時間及び前記放電電圧変化に要した第3の放電時
間を測定し、かつ前記サイクル試験後における長時間の
時間率での容量確認試験を行い前記充電電圧変化に要し
た第4の充電時間及び前記放電電圧変化に要した第4の
放電時間を測定し、 前記第1充電時間と前記第3充電時間との比率により前
記リチウムイオン電池の正極全体の劣化率と、前記第1
放電時間と前記第3放電時間との比率により前記リチウ
ムイオン電池の負極全体の劣化率と、前記第2充電時間
と前記第4充電時間との比率により前記正極の活物質の
劣化率と、前記第2放電時間と前記第4放電時間との比
率により前記負極の活物質の劣化率とを求めると共に、
前記正極全体の劣化率から前記正極の活物質の劣化率を
差し引き前記正極のインピーダンス増加率と、前記負極
全体の劣化率から前記負極の活物質の劣化率を差し引き
前記負極のインピーダンス増加率とを求めるようにした
リチウムイオン電池の劣化診断方法。1. A plateau voltage change that occurs near the end of charge and near the end of discharge in a normal time rate charge / discharge test in the initial charge / discharge of a lithium ion battery with constant current is detected, and each of the voltage change parts is detected. The first charging time and the upper limit voltage required to change the charging voltage from the lower limit voltage value to the upper limit voltage value in the capacity confirmation test at the normal time rate while measuring the lower limit voltage value and each upper limit voltage value respectively. First required to change the discharge voltage from the voltage value to the lower limit voltage value
Second discharge time required for the change in the charging voltage and the second discharge time required for the change in the charging voltage by performing a capacity confirmation test at a long time rate in the initial charge / discharge. After the initial charge / discharge test, the normal time rate charge / discharge cycle test was performed, and the third time required for the charging voltage change in the capacity confirmation test at the normal time rate after the cycle test was performed.
Charging time and the third discharge time required for the discharge voltage change, and a capacity confirmation test at a long time rate after the cycle test was performed to perform the fourth charge time required for the charge voltage change. And a fourth discharge time required for the change in the discharge voltage is measured, and the deterioration rate of the entire positive electrode of the lithium ion battery is determined by the ratio of the first charge time to the third charge time, and the first charge time.
The deterioration rate of the entire negative electrode of the lithium ion battery according to the ratio of the discharge time and the third discharge time, and the deterioration rate of the positive electrode active material according to the ratio of the second charge time and the fourth charge time, While determining the deterioration rate of the active material of the negative electrode by the ratio of the second discharge time and the fourth discharge time,
The impedance increase rate of the positive electrode is subtracted from the deterioration rate of the positive electrode from the deterioration rate of the entire positive electrode, and the impedance increase rate of the negative electrode is subtracted from the deterioration rate of the negative electrode active material from the deterioration rate of the entire negative electrode. A method for diagnosing the deterioration of a lithium-ion battery that is required.
の測定容量と、前記サイクル試験後の測定容量とから前
記リチウムイオン電池の容量低下率を求めるようにした
請求項1に記載のリチウムイオン電池の劣化診断方法。2. The lithium ion according to claim 1, wherein the capacity reduction rate of the lithium ion battery is obtained from the measured capacity at the initial charge / discharge test by the constant current and the measured capacity after the cycle test. Battery deterioration diagnosis method.
の時間率充放電試験の初期充放電における充電終了直前
付近及び放電終了直前付近に生ずる各プラトー電圧変化
を検出する電圧変化検出手段と、 前記の各プラトー電圧変化部分の各下限電圧値と各上限
電圧値をそれぞれ測定し記憶する記憶手段と、 前記通常の時間率での容量確認試験における前記下限電
圧値から上限電圧値までの充電電圧変化に要した第1の
充電時間,及び前記上限電圧値から下限電圧値までの放
電電圧変化に要した第1の放電時間を測定し記憶する第
1の充放電時間記憶手段と、 前記初期充放電状態での長時間の時間率での容量確認試
験における前記充電電圧変化に要した第2の充電時間、
及び前記放電電圧変化に要した第2の放電時間を測定し
記憶する第2の充放電時間記憶手段と、 前記初期充放電試験後の前記通常の時間率充放電のサイ
クル試験後の前記通常の時間率での容量確認試験におけ
る前記充電電圧変化に要した第3の充電時間及び前記放
電電圧変化に要した第3の放電時間を測定し記憶する第
3の充放電時間記憶手段と、 前記サイクル試験後の前記長時間の時間率での容量確認
試験における前記充電電圧変化に要した第4の充電時間
及び前記放電電圧変化に要した第4の放電時間を測定し
記憶する第4の充放電時間記憶手段と、 前記第1充電時間と前記第3充電時間との比率と前記第
1放電時間と前記第3放電時間との比率により前記リチ
ウムイオン電池の正極全体と負極全体の各劣化率を求め
る演算手段と、 前記第2充電時間と前記第4充電時間との比率と前記第
2放電時間と前記第4放電時間との比率により前記正極
と前記負極の各活物質の劣化率を求める演算手段と、 前記正極全体の劣化率と前記正極の活物質の劣化率との
差と、前記負極全体の劣化率と前記負極の活物質の劣化
率との差から前記正極と前記負極の各インピーダンス増
加率を求める演算手段とを備えたリチウムイオン電池の
劣化診断装置。3. A voltage change detecting means for detecting each plateau voltage change occurring immediately before the end of charging and immediately before the end of discharging in the initial charge and discharge of a normal time rate charge and discharge test of a constant current of a lithium ion battery. Storage means for measuring and storing each lower limit voltage value and each upper limit voltage value of each plateau voltage change part, and charging voltage change from the lower limit voltage value to the upper limit voltage value in the capacity confirmation test at the normal time rate. A first charge / discharge time storage means for measuring and storing a first charge time required and a first discharge time required for a discharge voltage change from the upper limit voltage value to the lower limit voltage value; and the initial charge / discharge state. The second charging time required for the charging voltage change in the capacity confirmation test at a long time rate at
And second charging / discharging time storage means for measuring and storing the second discharging time required for the discharge voltage change, and the normal charging rate after the normal charging / discharging cycle test after the initial charging / discharging test. Third charging / discharging time storage means for measuring and storing a third charging time required for the charging voltage change and a third discharging time required for the discharge voltage change in a capacity confirmation test at a time rate; Fourth charging / discharging for measuring and storing a fourth charging time required for the charging voltage change and a fourth discharging time required for the discharge voltage change in the capacity confirmation test at the long time rate after the test. The time storage means, and the deterioration rates of the entire positive electrode and the entire negative electrode of the lithium ion battery based on the ratio of the first charging time to the third charging time and the ratio of the first discharging time to the third discharging time. The calculation means to be calculated, An arithmetic means for obtaining a deterioration rate of each active material of the positive electrode and the negative electrode according to a ratio of the second charging time and the fourth charging time and a ratio of the second discharging time and the fourth discharging time, and the positive electrode. Calculation for obtaining each impedance increase rate of the positive electrode and the negative electrode from the difference between the overall deterioration rate and the deterioration rate of the positive electrode active material, and the difference between the deterioration rate of the entire negative electrode and the deterioration rate of the negative electrode active material. Deterioration diagnosis apparatus for lithium ion battery, comprising:
よる前記初期充放電試験時及び前記サイクル試験後の容
量を測定する手段と、 該初期充放電試験時及びサイクル試験後の測定容量から
容量低下率を求める手段とを備えた請求項3に記載のリ
チウムイオン電池の劣化診断装置。4. A means for measuring the capacity of the lithium-ion battery during the initial charge / discharge test by the constant current and after the cycle test, and the capacity decrease rate from the measured capacity during the initial charge / discharge test and after the cycle test. The deterioration diagnosis device for a lithium ion battery according to claim 3, further comprising:
し、前記長時間の時間率を30〜50時間率とした請求
項1,2,3又は4に記載のリチウムイオン電池の劣化
診断方法及びその劣化診断方法を内蔵した装置。5. The deterioration diagnosis of the lithium ion battery according to claim 1, 2, 3 or 4, wherein the normal time rate is 8 to 10 hour rate and the long time rate is 30 to 50 hour rate. An apparatus incorporating a method and its deterioration diagnosis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002116443A JP4107567B2 (en) | 2002-04-18 | 2002-04-18 | Lithium-ion battery deterioration diagnosis method and apparatus incorporating the deterioration diagnosis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002116443A JP4107567B2 (en) | 2002-04-18 | 2002-04-18 | Lithium-ion battery deterioration diagnosis method and apparatus incorporating the deterioration diagnosis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003308885A true JP2003308885A (en) | 2003-10-31 |
JP4107567B2 JP4107567B2 (en) | 2008-06-25 |
Family
ID=29397167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002116443A Expired - Fee Related JP4107567B2 (en) | 2002-04-18 | 2002-04-18 | Lithium-ion battery deterioration diagnosis method and apparatus incorporating the deterioration diagnosis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4107567B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202567A (en) * | 2005-01-19 | 2006-08-03 | Densei Lambda Kk | Charging method of lithium ion battery |
JP2010249797A (en) * | 2009-03-26 | 2010-11-04 | Primearth Ev Energy Co Ltd | State determination device and control device of secondary battery |
US7859226B2 (en) | 2007-07-17 | 2010-12-28 | Tdk-Lambda Corporation | Method and device for safety protection of secondary battery |
JP2011220917A (en) * | 2010-04-13 | 2011-11-04 | Toyota Motor Corp | Device and method for determining deterioration of lithium ion secondary battery |
WO2012073997A1 (en) * | 2010-11-30 | 2012-06-07 | 本田技研工業株式会社 | Degradation estimation device for secondary battery |
WO2012095913A1 (en) | 2011-01-14 | 2012-07-19 | パナソニック株式会社 | Method for evaluating deterioration of lithium ion secondary cell, and cell pack |
WO2012095894A1 (en) * | 2011-01-14 | 2012-07-19 | トヨタ自動車株式会社 | Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery |
JP2012251806A (en) * | 2011-05-31 | 2012-12-20 | Toshiba Corp | Calculation method, calculation program, calculation system, and calculation device |
WO2013179480A1 (en) * | 2012-06-01 | 2013-12-05 | トヨタ自動車株式会社 | Degradation diagnosis device for cell, degradation diagnosis method, and method for manufacturing cell |
US8686691B2 (en) | 2010-02-22 | 2014-04-01 | Toyota Jidosha Kabushiki Kaisha | Determination system and determination method for determining whether metal lithium is precipitated in a lithium ion secondary battery, and vehicle equipped with the determination system |
US8984943B2 (en) | 2011-06-06 | 2015-03-24 | Hitachi, Ltd. | Inspection apparatus and inspection method for lithium ion secondary battery, and secondary battery module |
JP5731717B2 (en) * | 2012-09-20 | 2015-06-10 | 積水化学工業株式会社 | Storage battery operation control device, storage battery operation control method, and program |
JP2017168361A (en) * | 2016-03-17 | 2017-09-21 | 富士電機株式会社 | Secondary battery device, charge control device, and charge control method |
CN109061490A (en) * | 2018-07-30 | 2018-12-21 | 中国电力科学研究院有限公司 | A kind of prediction echelon is in the method and system of capacity acceleration decling phase using power battery |
KR20200017367A (en) * | 2018-08-08 | 2020-02-18 | 주식회사 민테크 | Apparatus for battery diagnosis |
JP2023169210A (en) * | 2018-09-30 | 2023-11-29 | デイヴィッド ハイルマン | diagnostic lighting device |
CN118655486A (en) * | 2024-08-19 | 2024-09-17 | 比亚迪股份有限公司 | Vehicle battery aging identification method, device, vehicle and storage medium |
-
2002
- 2002-04-18 JP JP2002116443A patent/JP4107567B2/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202567A (en) * | 2005-01-19 | 2006-08-03 | Densei Lambda Kk | Charging method of lithium ion battery |
US7859226B2 (en) | 2007-07-17 | 2010-12-28 | Tdk-Lambda Corporation | Method and device for safety protection of secondary battery |
JP2010249797A (en) * | 2009-03-26 | 2010-11-04 | Primearth Ev Energy Co Ltd | State determination device and control device of secondary battery |
US8741459B2 (en) | 2009-03-26 | 2014-06-03 | Panasonic Ev Energy Co., Ltd. | State judging device and control device of secondary battery |
US8686691B2 (en) | 2010-02-22 | 2014-04-01 | Toyota Jidosha Kabushiki Kaisha | Determination system and determination method for determining whether metal lithium is precipitated in a lithium ion secondary battery, and vehicle equipped with the determination system |
JP2011220917A (en) * | 2010-04-13 | 2011-11-04 | Toyota Motor Corp | Device and method for determining deterioration of lithium ion secondary battery |
WO2012073997A1 (en) * | 2010-11-30 | 2012-06-07 | 本田技研工業株式会社 | Degradation estimation device for secondary battery |
JP5548784B2 (en) * | 2010-11-30 | 2014-07-16 | 本田技研工業株式会社 | Secondary battery deterioration estimation device |
WO2012095894A1 (en) * | 2011-01-14 | 2012-07-19 | トヨタ自動車株式会社 | Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery |
CN103329339A (en) * | 2011-01-14 | 2013-09-25 | 丰田自动车株式会社 | Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery |
WO2012095913A1 (en) | 2011-01-14 | 2012-07-19 | パナソニック株式会社 | Method for evaluating deterioration of lithium ion secondary cell, and cell pack |
JP5594371B2 (en) * | 2011-01-14 | 2014-09-24 | トヨタ自動車株式会社 | Lithium-ion battery degradation rate estimation method and degradation rate estimation apparatus |
JP2012251806A (en) * | 2011-05-31 | 2012-12-20 | Toshiba Corp | Calculation method, calculation program, calculation system, and calculation device |
EP2530482A3 (en) * | 2011-05-31 | 2018-01-03 | Kabushiki Kaisha Toshiba | Battery deterioration-calculation method, system, and apparatus |
US8984943B2 (en) | 2011-06-06 | 2015-03-24 | Hitachi, Ltd. | Inspection apparatus and inspection method for lithium ion secondary battery, and secondary battery module |
JP5804202B2 (en) * | 2012-06-01 | 2015-11-04 | トヨタ自動車株式会社 | Battery deterioration diagnosis device, deterioration diagnosis method, and battery manufacturing method |
WO2013179480A1 (en) * | 2012-06-01 | 2013-12-05 | トヨタ自動車株式会社 | Degradation diagnosis device for cell, degradation diagnosis method, and method for manufacturing cell |
CN104321658A (en) * | 2012-06-01 | 2015-01-28 | 丰田自动车株式会社 | Degradation diagnosis device for cell, degradation diagnosis method, and method for manufacturing cell |
JP5731717B2 (en) * | 2012-09-20 | 2015-06-10 | 積水化学工業株式会社 | Storage battery operation control device, storage battery operation control method, and program |
JP2017168361A (en) * | 2016-03-17 | 2017-09-21 | 富士電機株式会社 | Secondary battery device, charge control device, and charge control method |
CN109061490A (en) * | 2018-07-30 | 2018-12-21 | 中国电力科学研究院有限公司 | A kind of prediction echelon is in the method and system of capacity acceleration decling phase using power battery |
KR20200017367A (en) * | 2018-08-08 | 2020-02-18 | 주식회사 민테크 | Apparatus for battery diagnosis |
KR102749310B1 (en) | 2018-08-08 | 2025-01-02 | 주식회사 민테크 | Apparatus for battery diagnosis |
JP2023169210A (en) * | 2018-09-30 | 2023-11-29 | デイヴィッド ハイルマン | diagnostic lighting device |
CN118655486A (en) * | 2024-08-19 | 2024-09-17 | 比亚迪股份有限公司 | Vehicle battery aging identification method, device, vehicle and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP4107567B2 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6991616B2 (en) | Battery diagnostic device and battery diagnostic method by current pulse method | |
CN104502859B (en) | Method for detecting and diagnosing battery charge and battery health state | |
Weng et al. | A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring | |
JP4107567B2 (en) | Lithium-ion battery deterioration diagnosis method and apparatus incorporating the deterioration diagnosis method | |
US8531158B2 (en) | Method and apparatus for assessing battery state of health | |
US8680815B2 (en) | Method and apparatus for assessing battery state of health | |
CN103675702B (en) | A kind of method of real-time assessment cell health state | |
CN115210593A (en) | Deterioration degree diagnosis device | |
US20160195589A1 (en) | Degradation diagnosis system and degradation diagnosis method for secondary battery | |
Weng et al. | An open-circuit-voltage model of lithium-ion batteries for effective incremental capacity analysis | |
US20210173012A1 (en) | Method and system for estimation of open circuit voltage of a battery cell | |
CN110031770A (en) | A method of quickly obtaining all cell capacities in battery pack | |
CN116298979A (en) | Estimation method and system for health state of lithium ion battery | |
Koleti et al. | The development of optimal charging protocols for lithium-ion batteries to reduce lithium plating | |
WO2021258657A1 (en) | Method and apparatus for acquiring state of health of battery, and storage medium | |
JP2013080703A (en) | Method and system of diagnosing internal state of storage battery by acoustic emission | |
CN113242977A (en) | Estimating SOH and SOC of electrochemical element | |
CN112485693A (en) | Battery health state rapid evaluation method based on temperature probability density function | |
CN113687251A (en) | A fault diagnosis method for abnormal voltage of lithium-ion battery pack based on dual model | |
CN115248379A (en) | A power battery micro-short circuit diagnosis method and system based on multi-scenario fusion | |
CN112415409B (en) | Method and device for estimating battery capacity, storage medium and vehicle | |
Erol | Equivalent Circuit Model for Electrochemical Impedance Spectroscopy of Commercial 18650 Lithium‐Ion Cell Under Over‐Discharge and Overcharge Conditions | |
CN117471324A (en) | Method and device for evaluating consistency of single capacity in battery module | |
CN114527392A (en) | Nondestructive diagnosis method and system for capacity degradation of high-capacity lithium titanate battery | |
JP2022025820A (en) | Degradation estimation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050215 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080328 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |