[go: up one dir, main page]

JP2003307445A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JP2003307445A
JP2003307445A JP2002114548A JP2002114548A JP2003307445A JP 2003307445 A JP2003307445 A JP 2003307445A JP 2002114548 A JP2002114548 A JP 2002114548A JP 2002114548 A JP2002114548 A JP 2002114548A JP 2003307445 A JP2003307445 A JP 2003307445A
Authority
JP
Japan
Prior art keywords
flow
fluid
flow rate
measurement
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002114548A
Other languages
Japanese (ja)
Other versions
JP3922078B2 (en
Inventor
Hajime Miyata
肇 宮田
Yukio Nagaoka
行夫 長岡
Shigeru Iwanaga
茂 岩永
Yoshiaki Inui
善紀 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002114548A priority Critical patent/JP3922078B2/en
Publication of JP2003307445A publication Critical patent/JP2003307445A/en
Application granted granted Critical
Publication of JP3922078B2 publication Critical patent/JP3922078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

(57)【要約】 【課題】 超音波流量計測手段の流路における開閉弁近
傍の流路の屈曲や断面積の減少で発生する偏流を無くし
て、計測精度の向上と小型化を図る。 【解決手段】 計測流路1の計測部分と開閉弁23など
が設けられる流体の導入部との間に設けた継ぎ手管23
の内部に偏流の抑制手段を設けている。これによって、
上流側で生じた偏流が計測部分に影響することが無くな
るため、装置の設計の自由度や配管条件の制限が少なく
なるとともに測定精度が向上する。
(57) [Problem] To improve the measurement accuracy and reduce the size by eliminating the drift caused by the bending or reduction of the cross-sectional area of the flow path near the on-off valve in the flow path of the ultrasonic flow rate measuring means. SOLUTION: A joint pipe 23 provided between a measurement part of a measurement flow path 1 and a fluid introduction part provided with an on-off valve 23 and the like.
Is provided with means for suppressing drift. by this,
Since the drift generated on the upstream side does not affect the measurement portion, the degree of freedom in the design of the apparatus and the restriction on the piping conditions are reduced, and the measurement accuracy is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波により気体
や液体の流量や流速の計測を行う超音波流量計測装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow rate measuring device for measuring the flow rate and flow velocity of gas or liquid by ultrasonic waves.

【0002】[0002]

【従来の技術】従来この種の超音波流量計測装置として
は、例えば特開平9−18591号公報や特開平11−
351926号公報が知られており、図11は特開平9
−18591号公報の例を示す。図11において、被計
測流体を流す計測流路1の中心線を挟んで対向し、かつ
中心線に対して所定角度を有する周面に一対の超音波送
受信器2、3を設けると共に、計測流路1の流体流入口
4に計測流路1と同一方向の向きに、平行に配列された
複数の細管5から構成した整流体6を設けている。そし
て、流体の流れに対して順方向と逆方向に超音波を超音
波送受信器2、3間で送受信して、両方向の伝搬時間差
から流速を計測し、配管の断面積より流量を算出してい
る。このとき、計測流路1に入る流れは整流体6を構成
する細管5によりその流れ方向を計測流路1と同一方向
に規制して、計測部での流線の傾きを低減したり、渦の
発生を抑制して流れの乱れの境界面での超音波の反射や
屈曲による超音波の受信レベルの変動を低減して測定精
度の悪化を防止している。
2. Description of the Related Art Heretofore, as an ultrasonic flow rate measuring device of this type, for example, JP-A-9-18591 and JP-A-11-
No. 3519926 is known, and FIG.
The example of -18591 gazette is shown. In FIG. 11, a pair of ultrasonic transmitters / receivers 2 and 3 are provided on the peripheral surfaces facing each other with the center line of the measurement flow path 1 through which the fluid to be measured flow and having a predetermined angle with respect to the center line. At the fluid inlet 4 of the passage 1, a rectifying body 6 composed of a plurality of thin tubes 5 arranged in parallel is provided in the same direction as the measurement passage 1. Then, ultrasonic waves are transmitted and received between the ultrasonic transceivers 2 and 3 in the forward and reverse directions with respect to the flow of the fluid, the flow velocity is measured from the propagation time difference in both directions, and the flow rate is calculated from the cross-sectional area of the pipe. There is. At this time, the flow entering the measurement flow path 1 is regulated by the thin tube 5 forming the rectifying body 6 so that the flow direction is the same direction as the measurement flow path 1 to reduce the inclination of the flow line in the measurement section, or to reduce the vortex. Is suppressed to reduce the fluctuation of the reception level of the ultrasonic wave due to the reflection and bending of the ultrasonic wave at the boundary surface of the flow turbulence, thereby preventing the deterioration of the measurement accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記従来
の構成では、図12に示すように実際計測に使用する場
合、計測装置の流体の配管上での設置状態においては流
量計測装置を小型化するために必要な短い間隔での流路
の屈曲や細管化、計測部分の上流側に設ける流体導入路
21の開閉弁23部の流路の屈曲、局部的な断面積の変
化などがあり、これらの部位で偏流が発生しやすくな
る。特に計測部分が共通で、上記した計測部以外の配管
状態が個々の必要実態に応じて設計される場合、上記し
た計測流路に設置した整流体のみでは各配管部位で起こ
る複雑な偏流に対して十分な整流効果を発揮することが
困難になってくる。
However, in the above-mentioned conventional configuration, when used for actual measurement as shown in FIG. 12, the flow rate measuring device is miniaturized when the fluid of the measuring device is installed on the pipe. There are bending and thinning of the flow path at a short interval necessary for this, bending of the flow path of the on-off valve 23 part of the fluid introduction path 21 provided on the upstream side of the measurement portion, local cross-sectional area change, etc. Uneven flow tends to occur at the part. Especially when the measurement part is common and the piping conditions other than the above-mentioned measurement parts are designed according to the individual actual requirements, the rectifying body installed in the above-mentioned measurement flow path can be used to eliminate the complicated drift in each piping part. It becomes difficult to exert sufficient rectification effect.

【0004】すなわち導入路の開閉弁部の構成や、配管
の屈曲が大きく違う場合は偏流も大きく変わり、計測流
路に偏流や過流が発生し、この偏流や渦流の発生、発生
位置の変動、消滅等で流量計測の精度が狂うという課題
を有していた。特に導入路内の設計変更などにより、流
れの状態が変わり流量計測の精度を狂わす恐れがあっ
た。
That is, when the structure of the on-off valve of the introduction path or the bend of the pipe is largely different, the non-uniform flow also largely changes, and non-uniform flow or overflow occurs in the measurement flow path. However, there was a problem that the accuracy of flow rate measurement was lost due to disappearance. Especially, due to the design change in the introduction channel, the flow condition may change and the accuracy of flow rate measurement may be affected.

【0005】本発明は上記課題を解決するもので、導入
路内の流路の仕様がまちまちで計測流路の入口に至る流
れの状態が大きく違うことによる流量計測精度の不安定
化の防止を行い、更に計測流路入口に入る前に流れの整
流作用又は流れ方向の規制と整流作用を行って、計測流
路を流れる流体の流量分布の改善を行うことで、導入路
等の配管形状に関係なく高計測精度化を実現することを
目的とする。
The present invention solves the above problems, and prevents the instability of the flow rate measurement accuracy due to the fact that the specifications of the flow passages in the introduction passage are different and the flow state leading to the inlet of the measurement flow passage is greatly different. The flow shape of the fluid flowing through the measurement flow path is improved by performing flow rectification or regulation and rectification of the flow direction before entering the measurement flow path inlet to improve the shape of piping such as the introduction path. The aim is to achieve high measurement accuracy regardless of the situation.

【0006】[0006]

【課題を解決するための手段】前記従来の課題の流量計
測装置を解決するために、本発明の流量計測装置は、開
閉弁、開閉弁下流側流路よりなる導入路と計測流路構成
においてこの両者間に継ぎ手接続部を設けその継ぎ手接
続部に流れの整流機構を設けたものである。
In order to solve the above-mentioned conventional flow rate measuring device, the flow rate measuring device of the present invention has a structure in which an on-off valve, an introduction passage including a downstream passage of the on-off valve and a measurement flow passage are provided. A joint connecting portion is provided between the two, and a flow rectifying mechanism is provided at the joint connecting portion.

【0007】これによって、流体の流れが開閉弁を通過
する時に開閉弁部で曲げられ、開閉弁下流側の流路の対
向壁面に衝突することやその他上記したような理由で生
じる偏流が継ぎ手接続部の整流機構で緩和され、計側流
路入口での流速分布の変動が改善される事になる。
As a result, when the fluid flow passes through the on-off valve, it is bent at the on-off valve portion and collides with the facing wall surface of the flow path on the downstream side of the on-off valve, and the drift caused by the above-mentioned reasons is jointed. It is alleviated by the rectification mechanism of the part, and the fluctuation of the flow velocity distribution at the meter side flow path inlet is improved.

【0008】[0008]

【発明の実施の形態】請求項1に記載の発明は、開閉弁
及び前記開閉弁の下流側に配設した流体制御手段とを有
する導入路と、前記導入路の軸方向から屈曲して配設し
た計測流路と、前記計測流路の流路を挟んだ対向壁面に
設けた少なくとも一対の超音波送受信器と、前記一対の
送受信器間の超音波の伝搬時間を計測する計測制御手段
と、前記計測制御手段からの信号に基づいて流量を算出
する演算手段とを備えてなる超音波流量計測装置におい
て、この流体導入部と計測部との両者間に継ぎ手接続部
を設けこの内部に流体制御部材を内包する事により、導
入路部分で生じた偏流に対し、流れの整流作用を高め、
偏流が整抑制、緩和され、正確な流路測定が可能とな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is characterized in that an inlet passage having an on-off valve and a fluid control means disposed on the downstream side of the on-off valve, and an inlet passage bent in the axial direction of the inlet passage. A measurement flow path provided, at least a pair of ultrasonic transceivers provided on opposite wall surfaces sandwiching the flow path of the measurement flow channel, and measurement control means for measuring the propagation time of ultrasonic waves between the pair of transceivers. In the ultrasonic flow rate measuring device comprising a calculation means for calculating a flow rate based on a signal from the measurement control means, a joint connection part is provided between both the fluid introduction part and the measurement part, and a fluid is provided inside the joint connection part. Inclusion of the control member enhances the flow rectification effect against the uneven flow generated in the introduction path,
Uneven distribution is suppressed and alleviated, and accurate flow path measurement becomes possible.

【0009】請求項2に記載の発明は、流体制御部材が
多孔性を有することで、流体が多孔部を流れることによ
り流体制御部材上流側で偏流を持っていた流れが整流さ
れる。
According to the second aspect of the present invention, since the fluid control member has porosity, the flow of the fluid flowing through the porous portion rectifies the flow having the uneven flow on the upstream side of the fluid control member.

【0010】請求項3に記載の発明は、流体制御部材が
複数の多孔を有する板状部材よりなり、流れが一度板状
部材でせき止められてから多孔内を流れるため、流れの
分布が均一化され導入路部分で発生した偏流が抑制され
る。
According to the third aspect of the invention, the fluid control member comprises a plate-shaped member having a plurality of perforations, and the flow is once blocked by the plate-shaped member and then flows in the pores, so that the flow distribution is uniform. The uneven flow generated in the introduction path portion is suppressed.

【0011】請求項4に記載の発明は、流体制御部材が
網目状をなしており、導入路からの流れがこの流体制御
部材により、細分均一化され、導入路部分で発生した偏
流が抑制される。
According to a fourth aspect of the present invention, the fluid control member has a mesh shape, and the flow from the introduction passage is subdivided and uniformized by this fluid control member, and the drift caused at the introduction passage portion is suppressed. It

【0012】請求項5に記載の発明は、流体制御部材が
複数の筒状の格子よりなり、この格子により継ぎ手流路
内で流れる流れに対して横方向の偏流が抑制される。
In a fifth aspect of the invention, the fluid control member is composed of a plurality of cylindrical lattices, and the lattice suppresses a drift in the lateral direction with respect to the flow in the joint passage.

【0013】請求項6に記載の発明は、流路継ぎ手手段
管路内の流路通過部の一部を遮蔽するように覆う流体制
御部材が配設されるため、導入部からの流れが、一旦流
体制御部回りに迂回して進むため、導入路の形状に関係
なく所定の流れが計測部に流れ、安定した流量測定が可
能となる。
In a sixth aspect of the present invention, since the fluid control member is provided so as to cover a part of the passage passage portion in the passage joint means pipe, the flow from the introduction portion is Since the flow once detours around the fluid control unit, a predetermined flow flows to the measurement unit regardless of the shape of the introduction path, and stable flow rate measurement is possible.

【0014】請求項7に記載の発明は、流路継ぎ手手段
の流体通過部に流れの方向に対して複数の邪魔板を有
し、導入路からの流れに偏流があってもこの邪魔板によ
る流れの抑止作用で偏流抑制になる。
According to a seventh aspect of the present invention, a plurality of baffle plates are provided in the fluid passage portion of the flow path joint means in the flow direction, and even if there is a drift in the flow from the introduction passage, the baffle plates are used. The effect of suppressing the flow is to suppress uneven flow.

【0015】請求項8に記載の発明は、流路継ぎ手手段
内部の流体通過部分の空間が流路の方向に複数の仕切板
により仕切られ流体継ぎ手内での流体の流れが規制・抑
制されるため、偏流などが起こりにくくなる。
According to an eighth aspect of the present invention, the space of the fluid passage portion inside the flow path joint means is partitioned by a plurality of partition plates in the direction of the flow path, and the flow of the fluid in the fluid joint is restricted / suppressed. Therefore, uneven flow is less likely to occur.

【0016】[0016]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明をする。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施例1)図1、2は、本発明の実施例
1における超音波流量計測装置の断面図及び上面一部断
面図を示すものである。
(Embodiment 1) FIGS. 1 and 2 are a sectional view and a partial top sectional view of an ultrasonic flow rate measuring apparatus according to Embodiment 1 of the present invention.

【0018】図1に於いて、21は被計測流体の導入路
であり、流入口22、電磁式またはステッピングモータ
ー式などの開閉弁23、開閉弁下流側流路24で構成さ
れている。開閉弁下流側流路24は開閉弁23の弁座開
口部26より下流側であり、矩形の断面形状を有する。
In FIG. 1, reference numeral 21 denotes an introduction path for the fluid to be measured, which is composed of an inlet 22, an opening / closing valve 23 of an electromagnetic type or a stepping motor type, and an opening / closing valve downstream side passage 24. The on-off valve downstream side flow path 24 is on the downstream side of the valve seat opening 26 of the on-off valve 23 and has a rectangular cross-sectional shape.

【0019】開閉弁23の開閉中心線と開閉弁下流側流
路24の中心軸とはほぼ90度の角度を持っている。ま
た、開閉弁23の駆動部27の取り付け外形寸法を小さ
くするために弁座開口部26が段差28で開閉弁下流側
流路24に入りこみ、弁座開口部26と、弁座開口部2
6に対向する位置にある壁面29との間が狭くなり、こ
の部分の流路断面積を小さくしている。
The opening / closing center line of the opening / closing valve 23 and the central axis of the opening / closing valve downstream side flow path 24 form an angle of approximately 90 degrees. Further, the valve seat opening 26 enters the opening / closing valve downstream side flow path 24 at the step 28 in order to reduce the mounting external dimension of the drive portion 27 of the opening / closing valve 23, and the valve seat opening 26 and the valve seat opening 2 are provided.
The space between the wall surface 29 and the wall surface 29 at a position facing 6 is narrowed, and the flow passage cross-sectional area of this portion is reduced.

【0020】計測路30は曲げ部31、計測流路入口
4、計測流路入口4に設けた整流手段32、計測流路
1、排出曲げ部33よりなる。曲げ部31は、導入路2
1の開閉弁下流側流路24と接続しており、断面が矩形
で、開閉弁下流側流路24に対向する壁面には窪み34
が設けてある。計測流路1は導入路21の開閉弁下流側
流路24の中心軸とほぼ直角をなしている。
The measurement path 30 comprises a bending portion 31, a measurement flow path inlet 4, a rectifying means 32 provided at the measurement flow path inlet 4, a measurement flow path 1, and a discharge bending portion 33. The bent portion 31 is the introduction path 2
1 is connected to the on-off valve downstream side flow passage 24, has a rectangular cross section, and has a recess 34 on the wall surface facing the on-off valve downstream side flow passage 24.
Is provided. The measurement flow path 1 is substantially perpendicular to the central axis of the open / close valve downstream flow path 24 of the introduction path 21.

【0021】整流手段32は流れの乱れに応じて所望の
方向に傾斜させた仕切り板で構成した流れ方向規制手段
7と、微細通路を有するメッシュなどで構成した変動抑
止手段8とで構成されている。
The rectifying means 32 is composed of a flow direction regulating means 7 composed of a partition plate inclined in a desired direction according to the turbulence of the flow, and a fluctuation suppressing means 8 composed of a mesh having fine passages. There is.

【0022】計測流路1は矩形断面を持っており、図2
に示す様に導入路21の方向と直角方向にある壁面には
流路を挟んで一対の超音波送受信器2、3が流路の上流
側と下流側で斜めに対向して装着されている。35は流
体の整流状態を現し、流路内の流速分布が矢印の長さに
比例した状態で現される。36は排出路であり、排出曲
げ部33に接続している。排出路36の流出口37から
被測定流体は流れ出す。また導入路21の開閉弁下流側
流路24と計測路30と排出路36はコの字型をしてい
る。
The measurement flow path 1 has a rectangular cross section and is shown in FIG.
As shown in FIG. 5, a pair of ultrasonic transmitters / receivers 2, 3 are mounted on the wall surface in a direction perpendicular to the direction of the introduction path 21 so as to diagonally face each other on both the upstream side and the downstream side of the flow path with the flow path interposed therebetween. . Reference numeral 35 represents a rectified state of the fluid, and the flow velocity distribution in the flow path is represented in proportion to the length of the arrow. A discharge path 36 is connected to the discharge bending portion 33. The fluid to be measured flows out from the outlet 37 of the discharge path 36. The flow path 24 on the downstream side of the on-off valve, the measurement path 30, and the discharge path 36 of the introduction path 21 are U-shaped.

【0023】38は計測制御手段であり超音波送受信器
2、3間で交互に超音波を送受信させて流体の流れに対
して順方向と逆方向の超音波の伝搬時間の差を一定間隔
を置いて計り、伝搬時間差信号として出力する働きを持
つ。また39は演算手段で前記計測制御手段38からの
伝搬時間差信号を受けて被計測流体の流速及び流量を算
出するものである。更に40はリチウム電池などで構成
される電源手段である。計測制御手段38、演算手段3
9、電源手段40の一部と開閉弁23の駆動部27はコ
の字型で構成される被計測流体の流路の内側の空間に装
着されている。
Reference numeral 38 denotes a measurement control means, which alternately transmits and receives ultrasonic waves between the ultrasonic transmitters and receivers 2 and 3 to set the difference in the propagation time of the ultrasonic waves in the forward and reverse directions with respect to the fluid flow at regular intervals. It has a function of placing it, measuring it, and outputting it as a propagation time difference signal. Further, 39 is a calculation means for receiving the propagation time difference signal from the measurement control means 38 and calculating the flow velocity and flow rate of the fluid to be measured. Further, 40 is a power supply means composed of a lithium battery or the like. Measurement control means 38, calculation means 3
9. A part of the power supply unit 40 and the drive unit 27 of the on-off valve 23 are mounted in the space inside the flow path of the fluid to be measured, which is formed in a U shape.

【0024】本発明の計測装置においては上記した導入
路24と計測路1間は、継ぎ手管25を介して接続され
ている。この継ぎ手管25の内部には導入路で発生する
偏流を抑制するため、流体制御手段41が設けられてい
る。
In the measuring device of the present invention, the introduction path 24 and the measurement path 1 described above are connected via a joint pipe 25. A fluid control means 41 is provided inside the joint pipe 25 in order to suppress a nonuniform flow generated in the introduction path.

【0025】本発明の実施例1における流体制御手段4
1は、多孔性を有する流体の透過性のある物質(例えば
スポンジ状の物)を流体の抑制体を流体通路に充填した
物である。
Fluid control means 4 in Embodiment 1 of the present invention
1 is a substance in which a fluid suppressor for a fluid is filled in a fluid passageway with a porous fluid-permeable substance (for example, a sponge-like substance).

【0026】以上のように構成された超音波流量計測装
置について、以下その動作、作用を説明する。まず、計
測を受ける流体は、導入路21の流入口22から図示し
ない外部配管を経由して流入する。さらに開放されてい
る開閉弁23から弁座開口部26を通り、開閉弁下流側
流路24の対向壁29に突き当たり、方向を変え対向壁
面29に沿って偏流を形成しながら流体制御手段25へ
向かう。この偏流は弁座開口部26から壁面29間の距
離が短く、流路断面積が狭いほど流速が早くなるので壁
面に強く衝突し、強い強度のものとなる。
The operation and action of the ultrasonic flow rate measuring device configured as described above will be described below. First, the fluid to be measured flows from the inflow port 22 of the introduction path 21 through an external pipe (not shown). Further, the open / close valve 23 is opened, passes through the valve seat opening 26, hits the opposing wall 29 of the downstream passage 24 of the on / off valve, changes direction, and forms a drift along the opposing wall surface 29 to the fluid control means 25. Go to This uneven flow has a short distance between the valve seat opening 26 and the wall surface 29, and the narrower the flow passage cross-sectional area, the faster the flow velocity.

【0027】偏流は継ぎ手管25に流れ込み、管内部の
全面に拡散し、流体制御手段41により整流され偏流が
抑制されて下流側の計測流路へ流れ込む。計測流路1の
壁面に設けた一対の超音波送受信器の一方から送信した
超音波は、被計測流体の流速の影響を受けて、流れと順
方向に伝搬する時は早く、流れと逆方向に伝搬する時は
遅く他方の送受信器で受信される。この超音波の送受信
は計測制御手段38で制御されて一対の超音波送受信器
2、3間で交互に行われ、電気信号に変換されて、計測
制御手段38で流体の流れの順方向と逆方向における超
音波の伝搬時間に変換される。伝搬時間差は流体の流速
に比例するのでこれを演算手段39へ伝達する。演算手
段39は計測制御手段38からの信号と、内部に記憶し
ている計測流路の断面積と、機器固有の係数とを演算し
て被計測流体の流速または流量を演算する。
The non-uniform flow flows into the joint pipe 25, diffuses over the entire surface inside the pipe, is rectified by the fluid control means 41, the non-uniform flow is suppressed, and flows into the downstream measurement flow path. The ultrasonic waves transmitted from one of the pair of ultrasonic wave transmitters / receivers provided on the wall surface of the measurement flow path 1 are affected by the flow velocity of the fluid to be measured, and propagate fast in the forward direction and in the reverse direction to the flow. When it propagates to, it is late and is received by the other transceiver. The transmission / reception of this ultrasonic wave is controlled by the measurement control means 38 and is alternately performed between the pair of ultrasonic wave transmitters / receivers 2, 3 and is converted into an electric signal, and the measurement control means 38 reverses the forward direction of the fluid flow. Is converted into the propagation time of ultrasonic waves in the direction. Since the propagation time difference is proportional to the fluid flow velocity, this is transmitted to the computing means 39. The calculation means 39 calculates the flow rate or flow rate of the fluid to be measured by calculating the signal from the measurement control means 38, the cross-sectional area of the measurement flow path stored therein, and the coefficient peculiar to the device.

【0028】以上のように本実施例においては、導入路
21の開閉弁下流側流路24に計測路との間に継ぎ手管
25を設けたことにより、開閉弁23の弁座開口部流路
で発生した偏流を抑制できる作用が生じ計測流路1内の
流体の流れを改善し、超音波計測装置の計測精度の向上
をおこなうことができる。
As described above, in this embodiment, the joint pipe 25 is provided in the flow passage 24 on the downstream side of the on-off valve of the introduction passage 21 and the measurement passage, so that the flow passage of the valve seat opening portion of the on-off valve 23 is provided. The effect of suppressing the non-uniform flow generated in 1. occurs, the flow of the fluid in the measurement flow path 1 can be improved, and the measurement accuracy of the ultrasonic measurement device can be improved.

【0029】また、本実施例では、測定部上流側の設計
変更が行われ導入路の形状が大きく変更され流体の流れ
の状態が変わり、偏流状態が変化しても計測部分にその
流れが流入する前に継ぎ手管25部分の整流作用により
偏流を抑制することができるので、測定性能に影響をお
よぼすことなく計測装置の設計変更の自由度も大きくな
る。
Further, in the present embodiment, the design of the upstream side of the measuring portion is changed, the shape of the introduction path is largely changed, the state of the fluid flow is changed, and even if the non-uniform flow state is changed, the flow flows into the measurement portion. Prior to the operation, since the drift can be suppressed by the rectifying action of the joint pipe 25 portion, the degree of freedom in changing the design of the measuring device can be increased without affecting the measurement performance.

【0030】(実施例2)図3は、本発明の実施例2の
超音波流量計測装置の継ぎ手管25の断面図を示すもの
である。超音波流量計測装置の他の部分は図1と同じで
あるため省略する。図3において、42は図1の流体制
御制御手段41としての一例である多孔を有する板状部
材からなる流体制御手段である。図4は流体制御手段4
2を上部から見た図で板状部材の全面に孔43を設けて
ある。孔43の大きさと、設置密度は流路を流れる流量
と、偏流の大きさにより実験的に決められる。
(Embodiment 2) FIG. 3 is a sectional view of a joint pipe 25 of an ultrasonic flow rate measuring apparatus according to Embodiment 2 of the present invention. The other parts of the ultrasonic flow rate measuring device are the same as those in FIG. In FIG. 3, reference numeral 42 is a fluid control means which is an example of the fluid control control means 41 of FIG. FIG. 4 shows the fluid control means 4
A hole 43 is provided on the entire surface of the plate-shaped member in a view of 2 viewed from above. The size of the holes 43 and the installation density are experimentally determined by the flow rate of the flow passage and the size of the drift.

【0031】以上の様に構成された超音波流量計測装置
において、開閉弁23の弁座開口部26を通過して、対
向壁29に衝突した被計測流体は壁面に沿って下流側へ
流れ、板状部材である流体制御手段42に当たる。流体
制御手段42に設けた孔43を流体が通過するとき通過
抵抗により、過度の流量が流れる事を妨ぐので流体制御
手段42の上流面に沿って偏流が拡散し、全面に設けた
孔43を流れることで、流体制御手段42の下流側では
弱い偏流となる。
In the ultrasonic flow rate measuring device configured as described above, the fluid to be measured which has passed through the valve seat opening 26 of the on-off valve 23 and collided with the facing wall 29 flows downstream along the wall surface, It corresponds to the fluid control means 42 which is a plate-shaped member. When a fluid passes through the hole 43 provided in the fluid control means 42, an excessive flow rate is prevented from flowing due to the passage resistance, so that the uneven flow is diffused along the upstream surface of the fluid control means 42, and the hole 43 provided on the entire surface. Flowing in the flow control means a weak drift on the downstream side of the fluid control means 42.

【0032】(実施例3)本発明の実施例3の超音波流
量計測装置について説明する。超音波流量計測装置の他
の部分は図1と同じであるため説明を省略する。図5は
実施例2における図3の流体制御手段42に相当する流
体制御部材44を上部から見た図でにおいて、44は図
1の流体制御制御手段41としての一例である金網部材
からなる流体制御手段であり、金網部材であるため全面
に一定の孔を有する。孔の大きさと、設置密度は流路を
流れる流量と、偏流の大きさにより実験的に決められ
る。
(Embodiment 3) An ultrasonic flow rate measuring apparatus according to Embodiment 3 of the present invention will be described. The other parts of the ultrasonic flow rate measuring device are the same as those in FIG. FIG. 5 is a view of a fluid control member 44 corresponding to the fluid control means 42 of FIG. 3 in the second embodiment as viewed from above, and 44 is a fluid composed of a wire mesh member which is an example of the fluid control control means 41 of FIG. Since it is a control means and is a wire mesh member, it has a certain number of holes on the entire surface. The size of the holes and the installation density are experimentally determined by the flow rate of the flow passage and the size of the drift.

【0033】以上の様に構成された超音波流量計測装置
において、開閉弁23の弁座開口部26を通過して、対
向壁29に衝突した被計測流体は壁面に沿って下流側へ
流れ、流体制御手段44に当たる。流体制御手段44で
ある金網の孔を流体が通過すると通過抵抗が発生し、過
度の流量が流れる事を妨ぐので流体制御手段44の上流
面に沿って偏流が拡散し、流体制御手段の全体の孔を流
体が流れることとなり、流体制御手段44の下流側では
弱い偏流となる。
In the ultrasonic flow rate measuring device configured as described above, the fluid to be measured which has passed through the valve seat opening 26 of the on-off valve 23 and collides with the facing wall 29 flows downstream along the wall surface, It corresponds to the fluid control means 44. When a fluid passes through the hole of the wire mesh which is the fluid control means 44, a passage resistance is generated and an excessive flow rate is prevented from flowing, so that the uneven flow is diffused along the upstream surface of the fluid control means 44, and the entire fluid control means is formed. The fluid flows through the holes of the above, and a weak nonuniform flow is provided on the downstream side of the fluid control means 44.

【0034】(実施例4)図6は本発明の実施例4の超
音波流量計測装置の流体制御手段の断面図を示すもので
ある。超音波流量計測装置の他の部分は図1と同じであ
るため省略する。図6において、45は図1の流体制御
制御手段41としての一例であり、複数の筒状格子を継
ぎ手管25流路内に収めた物である。図7は流体制御手
段45を上部から見た図で断面が六角形をした孔46が
流路全面に設けてある。
(Embodiment 4) FIG. 6 is a sectional view of a fluid control means of an ultrasonic flow rate measuring apparatus according to Embodiment 4 of the present invention. The other parts of the ultrasonic flow rate measuring device are the same as those in FIG. In FIG. 6, reference numeral 45 is an example of the fluid control control means 41 of FIG. 1, which is a product in which a plurality of tubular lattices are housed in the joint pipe 25 flow path. FIG. 7 is a view of the fluid control means 45 seen from above, and a hole 46 having a hexagonal cross section is provided on the entire surface of the flow path.

【0035】以上の様に構成された超音波流量計測装置
において、開閉弁23の弁座開口部26を通過して、対
向壁31に衝突した被計測流体は壁面に沿って下流側へ
流れ、流体制御手段45の部分で偏流が拡散し、流体制
御手段45の全面に設けた孔46を流体が均等に流れる
こととなり、流体制御手段45の下流側では極めて微弱
な偏流となる。又流体制御手段の筒は流体の流れを流路
の向きに揃えるので、流れに横向きベクトルが無くな
り、乱流、渦等流れの乱れの発生を防ぐ働きをする。次
に流体制御手段45は図7に示すような筒状の格子が六
角形を有するもの以外に、三角形、四角形、丸形などの
形で、流れの方向に長さのある筒の集合体であれば筒状
の格子に含まれる。
In the ultrasonic flow rate measuring device constructed as described above, the fluid to be measured which has passed through the valve seat opening 26 of the on-off valve 23 and collided with the facing wall 31 flows downstream along the wall surface, The uneven flow is diffused in the fluid control means 45, and the fluid flows evenly through the holes 46 provided in the entire surface of the fluid control means 45, so that a very weak uneven flow is formed on the downstream side of the fluid control means 45. Further, since the cylinder of the fluid control means aligns the flow of the fluid in the direction of the flow path, there is no lateral vector in the flow, and it functions to prevent the occurrence of turbulence, turbulence and other turbulence in the flow. Next, the fluid control means 45 is an aggregate of cylinders having a length in the flow direction, such as a triangle, a quadrangle, a circle, etc., in addition to the cylinder having a hexagonal lattice as shown in FIG. If present, it is included in the tubular lattice.

【0036】(実施例5)図8は本発明の実施例5の超
音波流量計測装置の流体制御手段の断面図を示すもので
ある。超音波流量計測装置の他の部分は図1と同じであ
るため省略する。図8において、は流路の一部を遮断す
るように遮断板48が取り付けられており、導入路から
の流れの一部はこの遮断板48にぶつかるため、遮断板
48に沿って流れ、遮断板48周囲より下部に回り込ん
で流れるため、導入路内で偏流がおきても、遮断板48
にぶつかることで偏流が拡散し、流れの偏流を無くすこ
とができる。
(Fifth Embodiment) FIG. 8 is a sectional view of a fluid control means of an ultrasonic flow rate measuring apparatus according to a fifth embodiment of the present invention. The other parts of the ultrasonic flow rate measuring device are the same as those in FIG. In FIG. 8, a blocking plate 48 is attached so as to block a part of the flow path, and a part of the flow from the introduction path collides with this blocking plate 48, and therefore flows along the blocking plate 48 and blocks. Since it flows around the lower part of the plate 48 to the lower part, even if a non-uniform flow occurs in the introduction path, the blocking plate 48
When it hits, the drift is diffused and the drift of the flow can be eliminated.

【0037】(実施例6)図9は本発明の実施例6の超
音波流量計測装置の流体制御手段の断面図を示すもので
ある。超音波流量計測装置の他の部分は図1と同じであ
るため省略する。図9において、継ぎ手管25内の流体
通過部分には、管壁より所定の距離をおいて流れ方向に
対して抵抗となる方向に複数の邪魔板49が設置されて
いる。
(Sixth Embodiment) FIG. 9 is a sectional view of a fluid control means of an ultrasonic flow rate measuring apparatus according to a sixth embodiment of the present invention. The other parts of the ultrasonic flow rate measuring device are the same as those in FIG. In FIG. 9, a plurality of baffle plates 49 are installed in the fluid passage portion in the joint pipe 25 at a predetermined distance from the pipe wall in a direction that becomes a resistance against the flow direction.

【0038】導入路からの流れがこの継ぎ手管25を通
過するためにはこの邪魔板をかいくぐり通過しなければ
ならず、流体通過の抵抗となり導入路で発生した偏流を
押さえる効果がある。
In order for the flow from the introduction passage to pass through the joint pipe 25, it has to pass slightly through this baffle plate, which serves as a resistance against the passage of fluid and has the effect of suppressing the uneven flow generated in the introduction passage.

【0039】(実施例7)図10は本発明の実施例7の
超音波流量計測装置の流体制御手段の断面図を示すもの
である。超音波流量計測装置の他の部分は図1と同じで
あるため省略する。継ぎ手管25の流体通過部分には、
流路方向に仕切り板50を設けてあり導入路からの流れ
がこの継ぎ手管25を通過するために流路管内の偏流
が、それぞれの仕切板50で分散され、仕切板50に沿
って流れることにより、流体制御手段45の下流側では
極めて微弱な偏流となる。又流体制御手段の仕切は流体
の流れを流路の向きに揃えるので、流れに横向きベクト
ルが無くなり、乱流、渦等流れの乱れの発生を防ぐ働き
をする。
(Embodiment 7) FIG. 10 is a sectional view of a fluid control means of an ultrasonic flow rate measuring apparatus according to Embodiment 7 of the present invention. The other parts of the ultrasonic flow rate measuring device are the same as those in FIG. In the fluid passage portion of the joint pipe 25,
A partition plate 50 is provided in the flow path direction, and the flow from the introduction path passes through this joint pipe 25, so that the uneven flow in the flow path pipe is dispersed by each partition plate 50 and flows along the partition plate 50. As a result, the flow becomes extremely weak on the downstream side of the fluid control unit 45. Further, since the partition of the fluid control means aligns the flow of the fluid in the direction of the flow path, there is no lateral vector in the flow, and it functions to prevent the occurrence of turbulence such as turbulence and vortex.

【0040】[0040]

【発明の効果】以上のように、請求項1から8記載の発
明によれば、流体制御手段の上流側の開閉弁の弁座開口
部近辺で発生する強力な偏流の抑制、解消を行うことが
でき、計測流路入口に設けた整流手段の働きを補強して
計測流路に流れる流体を整流化することができるので、
流体流路の設計変更や仕様の違いがあっても計測部分の
計測性能に影響を与えることが無く、超音波流量計測装
置の小型化と精度向上を行うことができる。
As described above, according to the first to eighth aspects of the present invention, the strong drift that occurs near the valve seat opening of the on-off valve upstream of the fluid control means is suppressed and eliminated. Since it is possible to reinforce the function of the rectifying means provided at the inlet of the measurement flow channel to rectify the fluid flowing in the measurement flow channel,
Even if there is a change in the design of the fluid flow path or a difference in specifications, the measurement performance of the measurement part is not affected, and the ultrasonic flow rate measuring device can be downsized and its accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における超音波流量計測装置
の断面図
FIG. 1 is a sectional view of an ultrasonic flow rate measuring device according to a first embodiment of the present invention.

【図2】同装置の一部破断上面図FIG. 2 is a partially cutaway top view of the device.

【図3】本発明の実施例2における超音波流量計測装置
の継ぎ手管を示す断面図
FIG. 3 is a sectional view showing a joint pipe of an ultrasonic flow rate measuring device according to a second embodiment of the present invention.

【図4】同装置の流体制御手段の継ぎ手管を示す平面図FIG. 4 is a plan view showing a joint pipe of a fluid control means of the device.

【図5】本発明の実施例3における超音波流量計測装置
の流体制御手段の継ぎ手管を示す平面図
FIG. 5 is a plan view showing a joint pipe of a fluid control means of an ultrasonic flow rate measuring device according to a third embodiment of the present invention.

【図6】本発明の実施例4における超音波流量計測装置
の継ぎ手管を示す断面図
FIG. 6 is a sectional view showing a joint pipe of an ultrasonic flow rate measuring device according to a fourth embodiment of the present invention.

【図7】同装置の流体制御手段の平面図FIG. 7 is a plan view of a fluid control means of the device.

【図8】本発明の実施例5における超音波流量計測装置
の継ぎ手管を示す断面図
FIG. 8 is a sectional view showing a joint pipe of an ultrasonic flow rate measuring device according to a fifth embodiment of the present invention.

【図9】本発明の実施例6における超音波流量計測装置
の継ぎ手管を示す断面図
FIG. 9 is a sectional view showing a joint pipe of an ultrasonic flow rate measuring device according to a sixth embodiment of the present invention.

【図10】本発明の実施例7における超音波流量計測装
置の継ぎ手管を示す断面図
FIG. 10 is a sectional view showing a joint pipe of an ultrasonic flow rate measuring device according to a seventh embodiment of the present invention.

【図11】従来の超音波流量計測装置の整流部と計測流
路の上面図
FIG. 11 is a top view of a rectifying unit and a measurement flow path of a conventional ultrasonic flow rate measuring device.

【図12】従来の他の超音波流量計測装置の流路の断面
FIG. 12 is a sectional view of a flow path of another conventional ultrasonic flow rate measuring device.

【符号の説明】[Explanation of symbols]

1 計測流路 2、3 一対の超音波送受信器 4 計測流路入口部 21 導入路 23 開閉弁 24 開閉弁下流側流路 25 継ぎ手管 38 計測制御手段 39 演算手段 41 流体制御手段 1 measurement channel A couple of ultrasonic transceivers 4 Measurement channel inlet 21 Introduction route 23 Open / close valve 24 Open / close valve downstream flow path 25 joint pipe 38 measurement control means 39 computing means 41 fluid control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩永 茂 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 乾 善紀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2F030 CF01 2F031 AB09 2F035 DA19    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigeru Iwanaga             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yoshinori Inui             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 2F030 CF01                 2F031 AB09                 2F035 DA19

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 開閉弁を有する導入路と、計測流路の対
向壁面に設けた少なくとも一対の超音波送受信器と、前
記導入路の後端と前記計測流路の入口部とを接合する流
路継ぎ手手段と、前記流路継ぎ手手段の流体通過部に設
けた流体制御部材と、前記超音波送受信器間の超音波の
伝搬時間を計測する計測制御手段と、前記計測制御手段
からの信号に基づいて流量を算出する演算手段とを備え
てなる超音波流量計測装置。
1. A flow for joining an introduction path having an on-off valve, at least a pair of ultrasonic transmitter-receivers provided on opposite wall surfaces of the measurement flow path, and a rear end of the introduction path and an inlet section of the measurement flow path. A path joint means, a fluid control member provided in a fluid passage portion of the flow path joint means, a measurement control means for measuring the propagation time of ultrasonic waves between the ultrasonic transmitters and receivers, and a signal from the measurement control means. An ultrasonic flow rate measuring device, comprising: an arithmetic means for calculating a flow rate based on the flow rate.
【請求項2】 流体制御部材は多孔性を有する請求項1
記載の超音波流量計測装置。
2. The fluid control member has porosity.
The ultrasonic flow rate measuring device described.
【請求項3】 流体制御部材は板状部材よりなる請求項
2記載の超音波流量計測装置。
3. The ultrasonic flow rate measuring device according to claim 2, wherein the fluid control member is a plate-shaped member.
【請求項4】 流体制御部材は網目構造の部材よりなる
請求項2記載の超音波流量計測装置。
4. The ultrasonic flow rate measuring device according to claim 2, wherein the fluid control member is a member having a mesh structure.
【請求項5】 流体制御部材は複数の筒状の格子からな
る請求項2記載の超音波流量計測装置。
5. The ultrasonic flow rate measuring device according to claim 2, wherein the fluid control member comprises a plurality of cylindrical lattices.
【請求項6】 流路継ぎ手手段の流路通過部の一部を遮
蔽するように覆う流体制御部材を有する請求項1記載の
超音波流量計測装置。
6. The ultrasonic flow rate measuring device according to claim 1, further comprising a fluid control member which covers a part of the passage passage portion of the passage joint means so as to shield the passage passage portion.
【請求項7】 流路継ぎ手手段の管路内に流体の流れに
抗する方向に複数の邪魔板を有する請求項1記載の超音
波流量計測装置。
7. The ultrasonic flow rate measuring device according to claim 1, wherein a plurality of baffle plates are provided in a pipe line of the flow path joint means in a direction against a flow of fluid.
【請求項8】 流路継ぎ手手段の流体が通過する管路内
が流体の流れ方向に複数の仕切板により仕切られている
請求項1記載の超音波流量計測装置。
8. The ultrasonic flow rate measuring device according to claim 1, wherein the inside of the passage through which the fluid of the flow passage joint means passes is partitioned by a plurality of partition plates in the fluid flow direction.
JP2002114548A 2002-04-17 2002-04-17 Ultrasonic flow measuring device Expired - Lifetime JP3922078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114548A JP3922078B2 (en) 2002-04-17 2002-04-17 Ultrasonic flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114548A JP3922078B2 (en) 2002-04-17 2002-04-17 Ultrasonic flow measuring device

Publications (2)

Publication Number Publication Date
JP2003307445A true JP2003307445A (en) 2003-10-31
JP3922078B2 JP3922078B2 (en) 2007-05-30

Family

ID=29396315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114548A Expired - Lifetime JP3922078B2 (en) 2002-04-17 2002-04-17 Ultrasonic flow measuring device

Country Status (1)

Country Link
JP (1) JP3922078B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122346A (en) * 2006-11-15 2008-05-29 Ricoh Elemex Corp Flowmeter
JP2009229407A (en) * 2008-03-25 2009-10-08 Yamatake Corp Flowmeter and joint member of the same
JP2015148525A (en) * 2014-02-07 2015-08-20 愛知時計電機株式会社 ultrasonic gas meter
EP2962073A4 (en) * 2013-02-27 2016-12-14 Daniel Measurement & Control Inc ULTRASOUND FLOW MEASUREMENT WITH TURBULENT LAMINAR TRANSITION FLOW CONTROL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375519B2 (en) * 2016-01-12 2018-08-22 パナソニックIpマネジメント株式会社 Gas meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122346A (en) * 2006-11-15 2008-05-29 Ricoh Elemex Corp Flowmeter
JP2009229407A (en) * 2008-03-25 2009-10-08 Yamatake Corp Flowmeter and joint member of the same
EP2962073A4 (en) * 2013-02-27 2016-12-14 Daniel Measurement & Control Inc ULTRASOUND FLOW MEASUREMENT WITH TURBULENT LAMINAR TRANSITION FLOW CONTROL
US10012521B2 (en) 2013-02-27 2018-07-03 Daniel Measurement And Control, Inc. Ultrasonic flow metering with laminar to turbulent transition flow control
JP2015148525A (en) * 2014-02-07 2015-08-20 愛知時計電機株式会社 ultrasonic gas meter

Also Published As

Publication number Publication date
JP3922078B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
KR100488272B1 (en) Ultrasonic flowmeter
KR100694937B1 (en) Ultrasonic Fluid Meter
JP2010164558A (en) Device for measuring flow of fluid
JP4578406B2 (en) Flow measuring device
JP2004264064A (en) Ultrasonic flow meter
JP2014077679A (en) Flow meter
JP2003307445A (en) Ultrasonic flow meter
JP3511959B2 (en) Inlet / outlet symmetric flow meter
JP6306434B2 (en) Ultrasonic flow meter
CN101424552B (en) Ultrasonic flow measuring instrument
JP2019196905A (en) Ultrasonic flowmeter
JP3922021B2 (en) Ultrasonic flow measuring device
JP2004279224A (en) Ultrasonic flow meter
EP0503462A2 (en) Fluidic vibrating type flowmeter
JP3922044B2 (en) Ultrasonic flow measuring device
JP2009264906A (en) Flow meter
JP3824236B2 (en) Ultrasonic flow measuring device
JP2003065817A (en) Ultrasonic flow meter
JP3514259B1 (en) Ultrasonic flow meter
JP4084236B2 (en) Ultrasonic flow meter
JPH11351926A (en) Ultrasonic flow meter
JP2004251700A (en) Fluid measurement device
JP3781424B2 (en) Ultrasonic flow measuring device
JP7312121B2 (en) ultrasonic flow meter
JP2001208585A (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R151 Written notification of patent or utility model registration

Ref document number: 3922078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term