JP2003303727A - Method of manufacturing magnetic core - Google Patents
Method of manufacturing magnetic coreInfo
- Publication number
- JP2003303727A JP2003303727A JP2002110883A JP2002110883A JP2003303727A JP 2003303727 A JP2003303727 A JP 2003303727A JP 2002110883 A JP2002110883 A JP 2002110883A JP 2002110883 A JP2002110883 A JP 2002110883A JP 2003303727 A JP2003303727 A JP 2003303727A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic core
- amorphous alloy
- dispersion
- coating
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000576 coating method Methods 0.000 claims abstract description 45
- 239000011248 coating agent Substances 0.000 claims abstract description 44
- 239000007788 liquid Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 30
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 26
- 239000006185 dispersion Substances 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000000137 annealing Methods 0.000 claims description 21
- 239000011342 resin composition Substances 0.000 claims description 10
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 7
- 229920006015 heat resistant resin Polymers 0.000 claims description 4
- 239000002612 dispersion medium Substances 0.000 claims description 3
- 239000000839 emulsion Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 229920005989 resin Polymers 0.000 abstract description 12
- 239000011347 resin Substances 0.000 abstract description 12
- 238000009413 insulation Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract 2
- 238000007796 conventional method Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 10
- 239000005300 metallic glass Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000009503 electrostatic coating Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 229910008423 Si—B Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910020674 Co—B Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910017076 Fe Zr Inorganic materials 0.000 description 1
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910007744 Zr—N Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229940113088 dimethylacetamide Drugs 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、外表面が被覆膜で被覆
されたアモルファス合金薄帯から構成される磁気コアの
製造方法に関し、より詳細には、コア損特性が改善され
た磁気コアの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic core composed of an amorphous alloy ribbon having an outer surface coated with a coating film, and more particularly to a magnetic core having improved core loss characteristics. Manufacturing method.
【0002】[0002]
【従来の技術】アモルファス合金は、鉄やボロン、珪素
などを原材料に、溶融状態から急激に冷却することで製
造される非結晶の固体であり、通常は厚さ約0.01〜
0.1ミリメートル程度の薄帯として得ることができ
る。アモルファス合金は原子の配列に規則性がないラン
ダム構造であり、高い透磁率や小さい保磁力、対応周波
数領域が広く高周波領域まで使用することが可能である
など、軟磁性材料として優れた特性を有している。ま
た、磁束が通る際のエネルギー損失(ヒステリシス損)
が少なく、薄帯の膜厚が珪素鋼帯と比べて薄いため、コ
ア損(ヒステリシス損と渦電流損の和)を低減すること
ができる。このため、アモルファス合金薄帯を積層して
製造される磁気コアは、その優れた特性を利用してトラ
ンスなどとして多くの電気・電子機器に用いられてお
り、磁気特性だけでなく部品の小型化や軽量化としても
大きく貢献している。また省エネルギーの観点から、磁
気コアの一つであるアモルファス鉄心を用いた変圧器に
近年高い注目が集まってきている。2. Description of the Related Art Amorphous alloys are amorphous solids produced by rapidly cooling from a molten state using iron, boron, silicon, etc. as raw materials, and usually have a thickness of about 0.01-
It can be obtained as a ribbon of about 0.1 mm. Amorphous alloy has a random structure with no regular arrangement of atoms, and has excellent characteristics as a soft magnetic material, such as high magnetic permeability, small coercive force, and a wide frequency range corresponding to a wide range of frequencies. is doing. Also, energy loss (hysteresis loss) when the magnetic flux passes.
Since the thickness of the ribbon is smaller than that of the silicon steel strip, the core loss (sum of hysteresis loss and eddy current loss) can be reduced. For this reason, magnetic cores manufactured by laminating amorphous alloy ribbons are used in many electric and electronic devices as transformers, etc. by utilizing their excellent characteristics. It also contributes greatly to weight reduction. Further, from the viewpoint of energy saving, a transformer using an amorphous iron core, which is one of the magnetic cores, has been attracting much attention in recent years.
【0003】アモルファス合金を用いた磁気コアは、一
般的に次のように製造されている。まずアモルファス合
金薄帯を、巻回したり重ね合わせたりするなどの方法で
所定の形状を有する磁気コアの前駆材を作成する。次い
で特定の磁気特性を発現させるために所定の焼鈍熱処理
を施す。焼鈍熱処理の条件は発現させたい磁気特性によ
って異なるが、概ね不活性雰囲気下において温度330
〜440℃程度、時間0.1〜100時間の高温長時間
で行われることが一般的である。A magnetic core using an amorphous alloy is generally manufactured as follows. First, a precursor of a magnetic core having a predetermined shape is prepared by a method of winding or superposing an amorphous alloy ribbon. Next, a predetermined annealing heat treatment is performed to develop a specific magnetic property. The conditions of the annealing heat treatment differ depending on the magnetic characteristics to be expressed, but the temperature is generally 330 ° C in an inert atmosphere.
Generally, it is performed at about 440 ° C. for about 0.1 to 100 hours at high temperature for a long time.
【0004】この様にして製造された磁気コアに、導線
をコイル状に巻回してトランスなどの部品として使われ
るが、磁気コアと導線の絶縁性を図るために、エポキシ
樹脂などの熱硬化性樹脂を粉体静電塗装などにて、磁気
コアの外表面を被覆する方法が一般的に用いられてい
る。しかし形成された被覆膜により、磁気コアを構成し
ているアモルファス合金薄帯間の絶縁性が低減し、特に
周波数が高い領域においてはうず電流損失などに影響を
与えて、コア損特性が低減する問題がある。A conductor wire is wound around the magnetic core manufactured as described above in a coil shape and used as a component such as a transformer. In order to insulate the magnetic core from the conductor wire, thermosetting resin such as epoxy resin is used. A method of coating the outer surface of the magnetic core with a resin by powder electrostatic coating or the like is generally used. However, the formed coating film reduces the insulation between the amorphous alloy ribbons that make up the magnetic core, and affects the eddy current loss, especially in the high frequency region, reducing core loss characteristics. I have a problem to do.
【0005】この問題を解決する方法として、薄帯の表
面に無機酸化物による絶縁被膜を形成する方法(特開昭
61−10212)、ポリイミドフィルム等の耐熱絶縁
フィルムを薄帯に重ねて巻回する方法(特開平01−3
08013)が開示されている。しかし前者の場合、特
殊な方法に絶縁被膜を形成する必要があり、工程が煩雑
となるばかりでなく、コストも高いという問題を抱え
る。また後者の場合、少なくとも5〜10ミクロン以上
の厚さのフィルムを用いることとなり、実質的に磁気コ
アに占める合金部分の割合である占積率がフィルムを用
いない場合に比べて大幅に低下し、磁気コアとしての機
能に影響する問題がある。As a method for solving this problem, a method of forming an insulating film of an inorganic oxide on the surface of the ribbon (Japanese Patent Laid-Open No. 61-10212), a heat-resistant insulating film such as a polyimide film, etc. Method (Japanese Patent Laid-Open No. 01-3
08013) is disclosed. However, in the former case, it is necessary to form an insulating coating by a special method, which not only complicates the process but also raises the problem of high cost. In the latter case, a film having a thickness of at least 5 to 10 μm is used, and the space factor, which is substantially the proportion of the alloy portion in the magnetic core, is significantly reduced as compared with the case where the film is not used. , There is a problem that affects the function as a magnetic core.
【0006】[0006]
【本発明が解決しようとする課題】本発明の目的は、上
記従来技術の問題点に鑑み、占積率を下げることなく簡
易的で安価な方法でアモルファス合金薄帯間の絶縁性を
持たせ、樹脂等の被覆膜によって外表面が被覆されてい
てもコア損特性の低減が小さい磁気コアの製造方法を提
供することにある。SUMMARY OF THE INVENTION In view of the above problems of the prior art, an object of the present invention is to provide an insulating property between amorphous alloy ribbons by a simple and inexpensive method without lowering the space factor. Another object of the present invention is to provide a method of manufacturing a magnetic core in which the core loss characteristic is less reduced even when the outer surface is coated with a coating film of resin or the like.
【0007】[0007]
【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意検討を重ねた結果、外表面が被覆
膜で被覆された磁気コアの製造方法において、外表面を
被覆膜で被覆する前に、平均粒子径500ナノメートル
以下の粒子が分散した分散液を磁気コアに含浸させるこ
とによりコア損特性の低減を抑制できることを見い出
し、本発明を完成した。As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have studied the outer surface of a magnetic core in a method for producing a magnetic core having the outer surface covered with a coating film. The present invention has been completed by discovering that reduction of core loss characteristics can be suppressed by impregnating a magnetic core with a dispersion liquid in which particles having an average particle diameter of 500 nm or less are dispersed before coating with a covering film.
【0008】すなわち、本発明は、以下の[1]〜
[7]に記載した事項により特定される。That is, the present invention provides the following [1] to
It is specified by the items described in [7].
【0009】[1] 外表面が被覆膜で被覆されたアモ
ルファス合金薄帯から構成される磁気コアの製造方法に
おいて、外表面を被覆膜で被覆する前に、平均粒子径5
00ナノメートル以下の粒子が分散した分散液を、該磁
気コアのアモルファス合金薄帯間に含浸させることを特
徴とする磁気コアの製造方法。[1] In a method for producing a magnetic core composed of an amorphous alloy ribbon having an outer surface coated with a coating film, an average particle diameter of 5 is obtained before coating the outer surface with the coating film.
A method for producing a magnetic core, comprising impregnating a dispersion liquid in which particles having a diameter of 00 nanometer or less are dispersed between the amorphous alloy ribbons of the magnetic core.
【0010】[2] 分散液が、コロイダル無機酸化物
分散液である[1]記載の磁気コアの製造方法。[2] The method for producing a magnetic core according to [1], wherein the dispersion is a colloidal inorganic oxide dispersion.
【0011】[3] 分散媒が、有機溶媒である[2]
記載のコロイダル無機酸化物分散液。[3] The dispersion medium is an organic solvent [2]
The colloidal inorganic oxide dispersion described.
【0012】[4] 分散液が、有機エマルションであ
る[1]記載の磁気コアの製造方法。[4] The method for producing a magnetic core according to [1], wherein the dispersion is an organic emulsion.
【0013】[5] 焼鈍熱処理を施す前の磁気コアに
分散液を含浸させ、次いで耐熱性樹脂を含む樹脂組成物
を付与し、次いで特定の磁気特性を発現させるために行
う所定の焼鈍熱処理を施して、該樹脂組成物による被覆
と該焼鈍熱処理とを同一工程で行う[1]記載の磁気コ
アの製造方法。[5] The magnetic core before being subjected to the annealing heat treatment is impregnated with the dispersion liquid, then the resin composition containing the heat-resistant resin is applied, and then a predetermined annealing heat treatment is carried out for exhibiting specific magnetic characteristics. The method for producing a magnetic core according to [1], in which the coating with the resin composition and the annealing heat treatment are performed in the same step.
【0014】[6] 焼鈍熱処理を施した後の磁気コア
に分散液を含浸させ、次いで樹脂組成物を付与して被覆
を施す[1]記載の磁気コアの製造方法。[6] The method for producing a magnetic core according to [1], wherein the magnetic core after the annealing heat treatment is impregnated with the dispersion, and then the resin composition is applied to coat the magnetic core.
【0015】[7] [1]〜[6]記載の方法で製造
される磁気コア。[7] A magnetic core manufactured by the method described in [1] to [6].
【0016】[0016]
【発明の実施の形態】本発明の磁気コアの製造方法は、
外表面が被覆膜で被覆されたアモルファス合金薄帯から
構成される磁気コアの製造方法に関し、外表面を被覆膜
で被覆する前に、平均粒子径500ナノメートル以下の
粒子が分散した分散液を、磁気コアのアモルファス合金
薄帯間に含浸させることを特徴とする磁気コアの製造方
法である。BEST MODE FOR CARRYING OUT THE INVENTION A method of manufacturing a magnetic core according to the present invention comprises:
A method for producing a magnetic core composed of an amorphous alloy ribbon having an outer surface coated with a coating film, comprising: a dispersion in which particles having an average particle size of 500 nm or less are dispersed before coating the outer surface with the coating film. A method for producing a magnetic core is characterized in that the liquid is impregnated between the amorphous alloy ribbons of the magnetic core.
【0017】本発明に関するアモルファス合金薄帯とし
ては、軟磁性材料が対象となる。例えば、Fe系やCo
系などの非晶質金属材料、Fe系やCo系などのナノ結
晶質金属材料などが挙げられる。具体的には例えば、F
e系非晶質金属材料としては、Fe−Si−B系、Fe
−B系、Fe−P−C系などのFe−半金属系非晶質金
属材料や、Fe−Zr系、Fe−Hf系、Fe−Ti系
などのFe−遷移金属系非晶質金属材料などを挙げるこ
とができ、またCo系非晶質金属材料としては、Co−
Si−B系、Co−B系などの非晶質金属材料を挙げる
ことができる。また、非晶質金属材料を熱処理によりナ
ノサイズに結晶化させたナノ結晶質金属材料において
は、Fe−Si−B−Cu−Nb系、Fe−B−Cu−
Nb系、Fe−Zr−B−(Cu)系、Fe−Zr−N
b−B−(Cu)系、Fe−Zr−P−(Cu)系、F
e−Zr−Nb−P−(Cu)系、Fe−Ta−C系、
Fe−Al−Si−Nb−B系、Fe−Al−Si−N
i−Nb−B系、Fe−Al−Nb−B系、Co−Ta
−C系などを挙げることができる。これらはいずれも、
特定の磁気特性を発現させるために、通常使用される前
に所定の条件において焼鈍熱処理を施す。焼鈍熱処理の
条件は用いる材料の種類や発現させたい磁気特性によっ
て異なるが、非晶質金属材料では温度範囲が概ね300
〜500℃、ナノ結晶質金属材料では温度範囲が概ね4
00〜700℃とするのが一般的である。本発明の磁気
コアにおいて用いるアモルファス合金薄帯の厚さは、1
0〜100ミクロンであることが好ましく、10〜40
ミクロンであることがより好ましい。As the amorphous alloy ribbon according to the present invention, a soft magnetic material is targeted. For example, Fe-based or Co
Examples thereof include an amorphous metal material such as a Fe-based or Co-based nanocrystalline metallic material. Specifically, for example, F
As the e-based amorphous metal material, Fe-Si-B system, Fe
Fe-semi-metal type amorphous metal materials such as -B type and Fe-PC type, and Fe-transition metal type amorphous metal materials such as Fe-Zr type, Fe-Hf type and Fe-Ti type And the like. Examples of the Co-based amorphous metal material include Co-
Amorphous metal materials such as Si-B type and Co-B type can be mentioned. Further, in a nanocrystalline metal material obtained by crystallizing an amorphous metal material into a nanosize by heat treatment, Fe-Si-B-Cu-Nb system, Fe-B-Cu-
Nb type, Fe-Zr-B- (Cu) type, Fe-Zr-N
b-B- (Cu) system, Fe-Zr-P- (Cu) system, F
e-Zr-Nb-P- (Cu) system, Fe-Ta-C system,
Fe-Al-Si-Nb-B system, Fe-Al-Si-N
i-Nb-B system, Fe-Al-Nb-B system, Co-Ta
-C type etc. can be mentioned. These are all
In order to develop specific magnetic properties, an annealing heat treatment is performed under predetermined conditions before being normally used. The annealing heat treatment conditions vary depending on the type of material used and the magnetic characteristics to be exhibited, but the temperature range for amorphous metal materials is about 300.
~ 500 ° C, temperature range is about 4 for nanocrystalline metallic materials
Generally, the temperature is set to 00 to 700 ° C. The thickness of the amorphous alloy ribbon used in the magnetic core of the present invention is 1
It is preferably 0 to 100 microns, and 10 to 40
More preferably, it is micron.
【0018】本発明において用いる分散液は、平均粒子
径500ナノメートル以下の粒子が分散した分散液であ
る。分散している粒子の平均粒子径が500ナノメート
ルを超える場合、磁気コアに分散液を含浸させた際に粒
子が磁気コアを構成しているアモルファス合金薄帯の薄
帯間に十分に挿入されず、絶縁性を十分に図れないため
に本発明の効果を十分に得ることができなくなる恐れが
ある。平均粒子径は300ナノメートル以下であること
がより好ましく、100ナノメートル以下であることが
さらに好ましい。分散液における粒子の凝集性について
は、本発明の効果が損なわれない範囲であれば特に限定
されるものではないが、凝集性は低い方が好ましく、凝
集せずに個々の粒子が独立して分散していることがより
好ましい。本発明における平均粒子径は、体積基準の平
均粒子径であり、SEMやTEM等の顕微鏡観察、また
はレーザ回折・散乱法を用いた粒子径分布を測定するこ
とにより算出することができる。後者の具体的手法とし
ては、一般に用いられている粒子径測定器(日機装社マ
イクロトラックシリーズ、島津製作所社製レーザ回折式
粒度分布測定装置 SALDシリーズなど)を挙げるこ
とができる。The dispersion used in the present invention is a dispersion in which particles having an average particle diameter of 500 nm or less are dispersed. When the average particle diameter of the dispersed particles exceeds 500 nanometers, when the magnetic core is impregnated with the dispersion liquid, the particles are sufficiently inserted between the thin ribbons of the amorphous alloy thin ribbons forming the magnetic core. In addition, since the insulating property cannot be sufficiently achieved, the effect of the present invention may not be sufficiently obtained. The average particle diameter is more preferably 300 nanometers or less, further preferably 100 nanometers or less. The cohesiveness of the particles in the dispersion liquid is not particularly limited as long as the effect of the present invention is not impaired, but the cohesiveness is preferably low, and individual particles can be independently aggregated without aggregation. It is more preferable that they are dispersed. The average particle diameter in the present invention is a volume-based average particle diameter, and can be calculated by observing with a microscope such as SEM or TEM, or by measuring a particle diameter distribution using a laser diffraction / scattering method. Specific examples of the latter method include commonly used particle size measuring devices (Microtrac series manufactured by Nikkiso Co., Ltd., laser diffraction particle size distribution measurement device SALD series manufactured by Shimadzu Corp., etc.).
【0019】本発明において用いる分散液としては、具
体的にはコロイダル無機酸化物分散液を好適に用いるこ
とができ、より具体的にはコロイダルシリカ分散液、コ
ロイダルチタニア分散液、コロイダルジルコニア分散液
を好適に用いることができる。これら分散液の分散媒と
しては、具体的には有機溶媒を好適に用いることがで
き、より具体的にはメタノール、エタノール、イソピロ
ピルアルコール、メチルエチルケトン、アセトン、エチ
レングリコール、ジメチルアセトアミドを好適に用いる
ことができる。このようなコロイダル無機酸化物分散液
の具体例としては、日産化学株式会社製のオルガノシリ
カゾル、スノーテックス(登録商標)を好適に例示する
ことができる。また本発明において用いる分散液として
は、具体的には有機エマルションを好適に用いることが
できる。As the dispersion liquid used in the present invention, specifically, colloidal inorganic oxide dispersion liquid can be preferably used, and more specifically, colloidal silica dispersion liquid, colloidal titania dispersion liquid, colloidal zirconia dispersion liquid. It can be preferably used. As a dispersion medium of these dispersions, specifically, an organic solvent can be preferably used, and more specifically, methanol, ethanol, isopropyl alcohol, methyl ethyl ketone, acetone, ethylene glycol, dimethyl acetamide are preferably used. be able to. As specific examples of such a colloidal inorganic oxide dispersion, organosilica sol and Snowtex (registered trademark) manufactured by Nissan Chemical Industries, Ltd. can be preferably exemplified. As the dispersion liquid used in the present invention, specifically, an organic emulsion can be preferably used.
【0020】本発明の磁気コアの製造方法において、磁
気コアのアモルファス合金薄帯間に分散液を含浸させる
操作は、磁気コアの外表面を被覆膜で被覆する操作より
前に行われる。磁気コアのアモルファス合金薄帯間に分
散液を含浸させる操作が、磁気コアの外表面を被覆膜で
被覆する操作より前に行われれば、例えば磁気特性を発
現させるための焼鈍熱処理などの他の操作等の序列など
は特に限定されるものではない。例えば、あらかじめ焼
鈍熱処理を施した後に分散液を含浸させ、次いで外表面
を被覆膜で被覆する方法、分散液を含浸させた後に焼鈍
熱処理を施し、次いで外表面を被覆膜で被覆する方法な
ど、その他の操作についてその序列は限定されない。In the method for producing a magnetic core of the present invention, the operation of impregnating the dispersion liquid between the amorphous alloy ribbons of the magnetic core is performed before the operation of coating the outer surface of the magnetic core with the coating film. If the operation of impregnating the dispersion liquid between the amorphous alloy ribbons of the magnetic core is performed before the operation of coating the outer surface of the magnetic core with the coating film, for example, annealing heat treatment for expressing the magnetic characteristics, etc. The order of operations and the like is not particularly limited. For example, a method of performing annealing heat treatment in advance and then impregnating the dispersion liquid, and then coating the outer surface with a coating film, a method of impregnating the dispersion liquid, performing annealing heat treatment, and then coating the outer surface with a coating film. The order of other operations is not limited.
【0021】本発明の磁気コアの製造方法において、磁
気コアの外表面を被覆する被覆膜の種類や被覆方法につ
いて、本発明の効果を損なわない範囲であれば、特に限
定されるものではなく、公知のいずれの技術をも採用す
ることができる。例えば、エポキシ樹脂等の熱硬化性樹
脂などを粉体静電塗装等の手法を用いて磁気コア外表面
にコーティングする方法などを、具体的に例示すること
ができる。In the method for producing a magnetic core of the present invention, the kind and the coating method of the coating film for coating the outer surface of the magnetic core are not particularly limited as long as the effects of the present invention are not impaired. Any known technique can be adopted. For example, a method of coating the outer surface of the magnetic core with a thermosetting resin such as an epoxy resin using a method such as powder electrostatic coating can be specifically exemplified.
【0022】本発明の磁気コアの製造方法において、磁
気コアのアモルファス合金薄帯間に分散液を含浸させる
方法は、本発明の効果が得られれば特に限定されるもの
ではない。例えば、分散液に磁気コアを浸ける方法、減
圧状態で分散液に磁気コアを浸ける方法などの公知のい
ずれの手法をも用いることができる。含浸させる分散液
に量は、本発明の効果が得られる範囲であれば特に限定
されるものではないが、アモルファス合金薄帯間の空隙
の10体積%以上であることが好ましく、30体積%以
上であることがより好ましい。In the method for producing the magnetic core of the present invention, the method of impregnating the dispersion liquid between the amorphous alloy ribbons of the magnetic core is not particularly limited as long as the effects of the present invention can be obtained. For example, any known method such as a method of immersing the magnetic core in the dispersion or a method of immersing the magnetic core in the dispersion under reduced pressure can be used. The amount of the dispersion liquid to be impregnated is not particularly limited as long as the effect of the present invention can be obtained, but it is preferably 10% by volume or more of the voids between the amorphous alloy ribbons, and 30% by volume or more. Is more preferable.
【0023】本発明の磁気コアの製造方法として、焼鈍
熱処理を施す前の磁気コアに分散液を含浸させ、次いで
耐熱性樹脂を含む樹脂組成物を付与し、次いで特定の磁
気特性を発現させるために行う所定の焼鈍熱処理を施し
て、樹脂組成物による被覆と焼鈍熱処理とを同一工程で
行う方法を好適に挙げることができる。耐熱性樹脂とし
ては、焼鈍熱処理において十分な耐熱性を有する樹脂で
あれば特に限定されるものではないが、ポリイミド系樹
脂、ポリエーテルイミド系樹脂、ポリアミドイミド系樹
脂、ポリアミド系樹脂、ポリスルホン系樹脂、ポリエー
テルケトン系樹脂を好適に用いることができ、これらか
ら選ばれる1種または2種以上を併用して用いることが
できる。In the method for producing the magnetic core of the present invention, the magnetic core before being subjected to the annealing heat treatment is impregnated with the dispersion liquid, then the resin composition containing the heat resistant resin is applied, and then the specific magnetic characteristics are expressed. A preferable example is a method of performing the predetermined annealing heat treatment performed in step 1, and performing the coating with the resin composition and the annealing heat treatment in the same step. The heat resistant resin is not particularly limited as long as it is a resin having sufficient heat resistance in annealing heat treatment, but a polyimide resin, a polyetherimide resin, a polyamideimide resin, a polyamide resin, a polysulfone resin. , And polyetherketone resins can be preferably used, and one kind or two or more kinds selected from these can be used in combination.
【0024】本発明の磁気コアの製造方法として、焼鈍
熱処理を施した後の磁気コアに分散液を含浸させ、次い
で樹脂組成物を付与して被覆を施す方法を好適に挙げる
ことができる。付与する樹脂組成物、付与する方法など
に関しては、特に限定されるものではないが、例えばエ
ポキシ樹脂の粉体静電塗装などを例示することができ
る。As a method for producing the magnetic core of the present invention, a method of suitably impregnating the magnetic core after the annealing heat treatment with the dispersion, and then applying the resin composition to coat the magnetic core can be suitably mentioned. The resin composition to be applied and the method of applying are not particularly limited, and examples thereof include powder electrostatic coating of epoxy resin.
【0025】[0025]
【実施例】以下、本発明を実施例により詳細に説明す
る。EXAMPLES The present invention will be described in detail below with reference to examples.
【0026】[0026]
【実施例1】原子比でFe:Si:B=78:9:13
の組成のアモルファス合金薄帯(幅10ミリメートル、
厚さ25ミクロン)を巻回し、厚さ10ミリメートル、
内径15ミリメートル、外径25ミリメートル、重さ1
9.5gの磁気コアを用意した。日産化学株式会社製オ
ルガノシリカゾルMA−ST−Mにこの磁気コアを完全
に浸漬させ、約10キロパスカルの減圧下で10分間放
置して磁気コアのアモルファス合金薄帯間にオルガノシ
リカゾルを含浸させた。なお日産化学株式会社製オルガ
ノシリカゾルMA−ST−MをTEM観察したところ、
平均粒子径は26ナノメートルであり、日産化学株式会
社のカタログ値20〜30ナノメートルに一致した。次
いで、宇部興産株式会社製ポリイミドパウダーUIP−
Rを、通常の粉体静電塗装法にてオルガノシリカゾルを
含浸させた磁気コアの外表面に被覆し、その後窒素雰囲
気下で30℃から400℃まで1時間かけて一定速度で
昇温し、430℃で2時間保持して焼鈍熱処理を行った
後、放冷した。得られた磁気コアは、外表面の全面が均
一な被覆膜で覆われた状態であった。周波数100キロ
ヘルツ、磁束密度0.1テスラの条件でコア損失を測定
したところ、45W/kgであった。なお同等の磁気コ
アを、オルガノシリカゾルを含浸させず、またポリイミ
ド樹脂粒子で被覆させずに熱処理を施して作成したブラ
ンクの磁気コアのコア損失は35W/kgであり、本発
明の方法で得られる磁気コアのコア損失はブランクのそ
れに比べて29%増と、ブランクに比べた増大率が低レ
ベルにとどまる優れた磁気コアであった。Example 1 Atomic ratio of Fe: Si: B = 78: 9: 13
Amorphous alloy ribbon of composition (width 10 mm,
Thickness of 25 micron), thickness of 10 mm,
Inner diameter 15 mm, outer diameter 25 mm, weight 1
A magnetic core of 9.5 g was prepared. This magnetic core was completely immersed in Nissan Chemical Organosilica sol MA-ST-M and left under reduced pressure of about 10 kPa for 10 minutes to impregnate the organosilica sol between the amorphous alloy ribbons of the magnetic core. . In addition, when TEM observation of Nissan Chemical Co., Ltd. organo silica sol MA-ST-M,
The average particle diameter was 26 nanometers, which corresponded to the catalog value of 20-30 nanometers manufactured by Nissan Chemical Industries, Ltd. Next, Ube Industries, Ltd. polyimide powder UIP-
R was coated on the outer surface of a magnetic core impregnated with an organosilica sol by a usual powder electrostatic coating method, and then heated from 30 ° C. to 400 ° C. in a nitrogen atmosphere at a constant rate over 1 hour, After holding at 430 ° C. for 2 hours to perform annealing heat treatment, it was allowed to cool. The obtained magnetic core was in a state where the entire outer surface was covered with a uniform coating film. When the core loss was measured under the conditions of a frequency of 100 kHz and a magnetic flux density of 0.1 tesla, it was 45 W / kg. The core loss of a blank magnetic core produced by heat-treating an equivalent magnetic core without being impregnated with an organosilica sol and without being covered with polyimide resin particles was 35 W / kg, which was obtained by the method of the present invention. The core loss of the magnetic core was 29% higher than that of the blank, and it was an excellent magnetic core in which the rate of increase compared to the blank remained at a low level.
【0027】[0027]
【実施例2】被覆に用いる樹脂としてポリイミドパウダ
ーに代えて、三井化学株式会社製アルマテックスPD7
690とドデカン2酸をグリシジル基/カルボン酸基が
当量比で1/1となるように配合したエポキシ粉体塗料
を用いた以外は、実施例1と同様にしてオルガノシリカ
ゾルを含浸させた後にエポキシ樹脂による被覆を実施し
て磁気コアを作成し、コア損失を測定した。その結果4
8W/kgと低く、ブランクと比べて37%増と、ブラ
ンクに比べた増大率が低レベルにとどまる優れた磁気コ
アであった。Example 2 Instead of polyimide powder as a resin used for coating, ALMATEX PD7 manufactured by Mitsui Chemicals, Inc.
After impregnating the organosilica sol in the same manner as in Example 1 except that the epoxy powder coating material in which 690 and dodecanedioic acid were mixed so that the equivalent ratio of glycidyl group / carboxylic acid group was 1/1, the epoxy resin A magnetic core was prepared by coating with a resin, and the core loss was measured. As a result 4
The magnetic core was as low as 8 W / kg and increased by 37% compared with the blank, which was an excellent magnetic core in which the rate of increase compared to the blank remained at a low level.
【0028】[0028]
【比較例1】アドマテックス社の球状シリカ微粒子アド
マファインSO−C3を純水に10重量%となるように
均一に分散させ、分散液を得た。なおアドマファインS
O−C3をSEMにより観察したところ、平均粒子径は
820ナノメートルであった。この分散液を用いた以外
は実施例1と同様にしてポリイミド樹脂による被覆を施
して磁気コアを作成し、コア損失を測定した。その結果
98W/kgと高く、ブランクに比べて180%増と、
コア損失が劣るものであった。Comparative Example 1 Admatex spherical silica fine particles Admafine SO-C3 were uniformly dispersed in pure water to a concentration of 10% by weight to obtain a dispersion liquid. Admafine S
When O-C3 was observed by SEM, the average particle diameter was 820 nanometers. A magnetic core was prepared by coating with a polyimide resin in the same manner as in Example 1 except that this dispersion was used, and the core loss was measured. As a result, it was as high as 98 W / kg, an increase of 180% compared to the blank,
The core loss was inferior.
【0029】[0029]
【比較例2】分散液による含浸を行わない以外は実施例
1と同様にしてポリイミド樹脂による被覆を施して磁気
コアを作成し、コア損失を測定した。その結果105W
/kgと高く、ブランクに比べて200%増と、コア損
失が劣るものであった。Comparative Example 2 A magnetic core was prepared by coating with a polyimide resin in the same manner as in Example 1 except that impregnation with the dispersion liquid was not performed, and the core loss was measured. As a result 105W
/ Kg, which was 200% higher than that of the blank, and the core loss was inferior.
【0030】[0030]
【発明の効果】本発明の磁気コアの製造方法は、外表面
を被覆膜で被覆する前に特定の分散液を磁気コアのアモ
ルファス合金薄帯間に含浸させる方法であり、操作自体
は非常に簡易で分散液自体も高価なものを用いる必要も
ない。また既に巻回してあるコアにそのまま適用するこ
とができ、占積率を低減させることもない。従って現行
のプロセスをほとんど変えることなく適用することがで
きる優れた方法である。The method for producing a magnetic core of the present invention is a method of impregnating the amorphous alloy ribbon of the magnetic core with a specific dispersion liquid before coating the outer surface with a coating film, and the operation itself is very Moreover, it is not necessary to use a simple and expensive dispersion liquid itself. Further, it can be applied as it is to a core that has already been wound, and the space factor is not reduced. Therefore, it is an excellent method that can be applied without changing the existing process.
【0031】本発明の製造方法によって製造される磁気
コアは、外表面を被覆膜で被覆する前に特定の分散液を
磁気コアのアモルファス合金薄帯間に含浸させているた
め、含浸させない従来の手法で製造される磁気コアに比
べて、占積率を維持しつつコア損特性の低減が小さいと
いう優れた性能を有する磁気コアである。これは、分散
液に含有される粒子によって磁気コアのアモルファス合
金薄帯間の絶縁性が向上しているためであると推察され
る。In the magnetic core manufactured by the manufacturing method of the present invention, the specific dispersion liquid is impregnated between the amorphous alloy ribbons of the magnetic core before coating the outer surface with the coating film. Compared with the magnetic core manufactured by the above method, the magnetic core has an excellent performance that the space loss is maintained and the reduction of the core loss characteristic is small. It is speculated that this is because the particles contained in the dispersion improve the insulation between the amorphous alloy ribbons of the magnetic core.
Claims (7)
ス合金薄帯から構成される磁気コアの製造方法におい
て、外表面を被覆膜で被覆する前に、平均粒子径500
ナノメートル以下の粒子が分散した分散液を、該磁気コ
アのアモルファス合金薄帯間に含浸させることを特徴と
する磁気コアの製造方法。1. A method for producing a magnetic core composed of an amorphous alloy ribbon, the outer surface of which is coated with a coating film, wherein the average particle size is 500 before the outer surface is coated with the coating film.
A method for producing a magnetic core, which comprises impregnating a dispersion liquid in which particles having a diameter of nanometer or less are dispersed between the amorphous alloy ribbons of the magnetic core.
である請求項1記載の磁気コアの製造方法。2. The method for producing a magnetic core according to claim 1, wherein the dispersion is a colloidal inorganic oxide dispersion.
のコロイダル無機酸化物分散液。3. The colloidal inorganic oxide dispersion according to claim 2, wherein the dispersion medium is an organic solvent.
項1記載の磁気コアの製造方法。4. The method for producing a magnetic core according to claim 1, wherein the dispersion is an organic emulsion.
を含浸させ、次いで耐熱性樹脂を含む樹脂組成物を付与
し、次いで特定の磁気特性を発現させるために行う所定
の焼鈍熱処理を施して、該樹脂組成物による被覆と該焼
鈍熱処理とを同一工程で行う請求項1記載の磁気コアの
製造方法。5. A magnetic core before being subjected to annealing heat treatment is impregnated with the dispersion liquid, then a resin composition containing a heat-resistant resin is applied, and then a predetermined annealing heat treatment is carried out for exhibiting specific magnetic characteristics. The method of manufacturing a magnetic core according to claim 1, wherein the coating with the resin composition and the annealing heat treatment are performed in the same step.
液を含浸させ、次いで樹脂組成物を付与して被覆を施す
請求項1記載の磁気コアの製造方法。6. The method for producing a magnetic core according to claim 1, wherein the magnetic core after the annealing heat treatment is impregnated with the dispersion liquid, and then the resin composition is applied to coat the magnetic core.
気コア。7. A magnetic core manufactured by the method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002110883A JP2003303727A (en) | 2002-04-12 | 2002-04-12 | Method of manufacturing magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002110883A JP2003303727A (en) | 2002-04-12 | 2002-04-12 | Method of manufacturing magnetic core |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003303727A true JP2003303727A (en) | 2003-10-24 |
Family
ID=29393881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002110883A Pending JP2003303727A (en) | 2002-04-12 | 2002-04-12 | Method of manufacturing magnetic core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003303727A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7821177B2 (en) | 2007-03-20 | 2010-10-26 | Nippon Soken, Inc. | Laminated core |
-
2002
- 2002-04-12 JP JP2002110883A patent/JP2003303727A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7821177B2 (en) | 2007-03-20 | 2010-10-26 | Nippon Soken, Inc. | Laminated core |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102282633B (en) | Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip | |
CN1914697B (en) | Dust core and manufacturing method thereof | |
JP5368686B2 (en) | Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core | |
JP5664934B2 (en) | Soft magnetic alloy and magnetic component using the same | |
WO2016204008A1 (en) | Magnetic-substance powder and production process therefor, magnetic core and production process therefor, and coil component | |
TW201817897A (en) | Soft magnetic alloy and magnetic device | |
CN101641455A (en) | Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon | |
WO2019208768A1 (en) | Powder for magnetic cores, magnetic core using same, and coil component | |
WO2021103466A1 (en) | Method for preparing soft magnetic composite material with high magnetic conductivity and low loss, and magnet ring thereof | |
US20230298788A1 (en) | Fe-based nanocrystal soft magnetic alloy and magnetic component | |
JP7603811B2 (en) | Soft magnetic powder, and its preparation method and use | |
JP7655001B2 (en) | Manufacturing method of wound magnetic core, and wound magnetic core | |
EP3579254A1 (en) | Powder compact core, method for manufacturing powder compact core, electric/electronic component provided with powder compact core, and electric/electronic apparatus having electric/electronic component mounted therein | |
JP2022008547A (en) | Si-CONTAINING Fe-BASED ALLOY POWDER PROVIDED WITH SiO2-CONTAINING COATING FILM AND MANUFACTURING METHOD THEREOF | |
EP0528883B1 (en) | Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation | |
CN103227020A (en) | Powder mixture for dust cores | |
KR20150049672A (en) | Ferromagnetic nano metal powder | |
JP2018070935A (en) | Nanocrystal alloy powder and magnetic component | |
JP2006241569A (en) | High saturated magnetic flux density low loss magnetic alloy and magnetic component using the same | |
WO2021103467A1 (en) | Method for preparing high-performance soft magnetic composite material and magnetic ring thereof | |
Lee et al. | Effects of surface oxidation on the magnetic properties of Fe-based amorphous metal powder made by atomization methods | |
JP2003303727A (en) | Method of manufacturing magnetic core | |
JP2023126149A (en) | Annular magnetic material for noise countermeasure | |
JP2008297622A (en) | Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core | |
JP4851640B2 (en) | Amorphous core for accelerator and accelerator using the same |