JP2003300100A - Method and system for freeze-drying sludge - Google Patents
Method and system for freeze-drying sludgeInfo
- Publication number
- JP2003300100A JP2003300100A JP2002105965A JP2002105965A JP2003300100A JP 2003300100 A JP2003300100 A JP 2003300100A JP 2002105965 A JP2002105965 A JP 2002105965A JP 2002105965 A JP2002105965 A JP 2002105965A JP 2003300100 A JP2003300100 A JP 2003300100A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- water
- freeze
- closed space
- freezing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 197
- 238000004108 freeze drying Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000007710 freezing Methods 0.000 claims abstract description 29
- 230000008014 freezing Effects 0.000 claims abstract description 29
- 238000000926 separation method Methods 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 123
- 238000001816 cooling Methods 0.000 claims description 46
- 238000011084 recovery Methods 0.000 claims description 18
- 238000010298 pulverizing process Methods 0.000 claims description 13
- 238000005057 refrigeration Methods 0.000 claims description 7
- 239000010419 fine particle Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 7
- 239000000843 powder Substances 0.000 abstract 1
- 230000007704 transition Effects 0.000 abstract 1
- 238000000227 grinding Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 235000019645 odor Nutrition 0.000 description 5
- 238000004065 wastewater treatment Methods 0.000 description 5
- 239000010865 sewage Substances 0.000 description 4
- 238000000859 sublimation Methods 0.000 description 4
- 230000008022 sublimation Effects 0.000 description 4
- 239000000701 coagulant Substances 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 241000736199 Paeonia Species 0.000 description 2
- 235000006484 Paeonia officinalis Nutrition 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- -1 First Substances 0.000 description 1
- 101100408296 Autographa californica nuclear polyhedrosis virus AC24 gene Proteins 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000010806 kitchen waste Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Drying Of Solid Materials (AREA)
- Treatment Of Sludge (AREA)
- Disintegrating Or Milling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、下水処理設備から
排出される下水汚泥、又は工場排水処理設備等から排出
される余剰汚泥等の汚泥を凍結させ、該汚泥中の水分を
分離除去する汚泥の凍結乾燥処理方法及びそのシステム
に関する。TECHNICAL FIELD The present invention relates to a sludge for freezing sewage sludge discharged from a sewage treatment facility, or excess sludge discharged from a factory wastewater treatment facility, and separating and removing water in the sludge. Freeze-drying method and system thereof.
【0002】[0002]
【従来の技術】下水処理設備等から排出される汚泥は含
水率が非常に高いため嵩高く、産業廃棄物の排出量の半
分近くを占めると言われている。排出される汚泥の殆ど
は脱水・焼却処理されて埋立てにより処分されている
が、近年汚泥中の有効成分が着眼されつつあり、燃料や
レンガ等のリサイクル商品として有効利用することが推
進されている。何れにしても、汚泥の処理に最も不可欠
な処理工程として汚泥の濃縮、脱水及び乾燥処理が挙げ
られ、汚泥中の水分を抜き取り減容化して出来る限り乾
燥物に近い形で排出されることが望まれており、かかる
処理において種々の方法が開発、実用化されている。2. Description of the Related Art Sludge discharged from sewage treatment facilities is bulky because it has a very high water content, and is said to account for almost half of the amount of industrial waste discharged. Most of the discharged sludge is dehydrated and incinerated and disposed of by landfill, but in recent years active ingredients in sludge have been focused on, and effective use as recycled products such as fuel and bricks has been promoted. There is. In any case, the most essential treatment process for sludge treatment is sludge concentration, dewatering, and drying. The water in the sludge is extracted to reduce the volume, and the sludge is discharged in a form as close to the dry matter as possible. It is desired, and various methods have been developed and put to practical use in such processing.
【0003】一般的に、汚泥の水分分離方法としては、
まず重力による沈降分離、加圧浮上、若しくは遠心分離
等により含水率98%程度の汚泥を約95%の含水率ま
で濃縮した後、遠心分離機、フィルタプレス、ベルトプ
レス等の機械的手段により約70〜80%まで脱水し、
次に加熱乾燥、天日乾燥等により乾燥させる方法が採ら
れている。しかしながら、従来の方法では濃縮・脱水効
率の低さ、薬剤投入による環境汚染・高コスト化、焼却
による煤塵の発生、汚泥成分の変質等の問題点が指摘さ
れている。Generally, as a method for separating water from sludge,
First, sludge with a water content of about 98% is concentrated to a water content of about 95% by sedimentation separation by gravity, floatation under pressure, centrifugal separation, etc., and then mechanical means such as a centrifuge, filter press, belt press, etc. Dehydrated to 70-80%,
Next, a method of drying by heat drying, sun drying, etc. is adopted. However, it has been pointed out that the conventional methods have problems such as low efficiency of concentration / dehydration, environmental pollution / increased cost due to introduction of chemicals, generation of soot and dust by incineration, and alteration of sludge components.
【0004】そこで、近年汚泥の濃縮、脱水及び乾燥に
おける水分分離方法として凍結融解法が開発され、実用
化されつつある。これは、水を凍結させる際に水以外の
不純物を排除して結晶化する性質を利用したもので、汚
泥を緩慢冷却して該汚泥中に含有される水分を氷の結晶
として成長させることにより、汚泥成分が濃縮されて水
分と分離することが可能となる。かかる方法を用いて汚
泥の脱水を行う排水処理装置が特開2000−2464
1公報に開示されている。図3に示されるようにかかる
排水処理装置01では、一次貯留槽02に貯められた厨
芥及び汚水からなる排水に、排水処理槽04の浄化処理
部022にて凝集及び分解処理を施した後、沈降部02
3にて汚泥固形分を沈降させる。そして、該沈降汚泥0
24を氷蓄熱槽03に導き、ここで熱交換器030を介
して熱併給装置06から供給される冷熱により該汚泥を
凍結融解する。Therefore, in recent years, a freeze-thaw method has been developed and put into practical use as a water separation method in the concentration, dehydration and drying of sludge. This utilizes the property of removing impurities other than water to crystallize when freezing water, by slowly cooling the sludge and growing the water content contained in the sludge as ice crystals. The sludge component can be concentrated and separated from water. A wastewater treatment device for dehydrating sludge using such a method is disclosed in JP-A-2000-2464.
1 publication. In the wastewater treatment device 01 as shown in FIG. 3, after the wastewater consisting of kitchen waste and wastewater stored in the primary storage tank 02 is subjected to coagulation and decomposition treatment in the purification treatment unit 022 of the wastewater treatment tank 04, Settling section 02
At 3, sludge solids are settled. And the settling sludge 0
24 is led to the ice heat storage tank 03, where the sludge is frozen and thawed by the cold heat supplied from the heat cogeneration device 06 via the heat exchanger 030.
【0005】前記氷蓄熱槽03で汚泥中の固形分と分離
された水分は前記排水処理槽04に返送され、一方水分
が分離されて濃縮された固形分は乾燥装置05に導か
れ、加熱乾燥されて容器07に回収される。前記氷蓄熱
槽03で汚泥の解凍時に回収された冷熱は、前記乾燥装
置05での水蒸気回収や外部へ冷熱を供給する空間ユニ
ット08に使用することができる。このように、凍結融
解処理による汚泥濃縮方法によれば、汚泥水からの固形
物の分離と水の再利用と蓄熱によるエネルギ有効利用を
同時に行うことができる。The water separated from the solid content in the sludge in the ice heat storage tank 03 is returned to the waste water treatment tank 04, while the solid content separated from the water and concentrated is guided to the drying device 05 and heated and dried. It is collected and collected in the container 07. The cold heat recovered when the sludge is thawed in the ice heat storage tank 03 can be used for the steam recovery in the drying device 05 and the space unit 08 for supplying the cold heat to the outside. As described above, according to the sludge concentration method by freeze-thaw treatment, it is possible to separate solid matter from sludge water, reuse water, and effectively use energy by storing heat.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、前記特
開2000−24641公報を代表とする凍結融解方法
は、凍結時に汚泥の内部まで冷熱を伝達するのにかなり
の時間を要し、大容量の汚泥水を処理することが困難で
ある上に、凍結した水分に不純物が付着、混入しやす
く、得られる水の純度が低くなり再利用できる範囲が限
られてしまう。また、脱水効果に限界があるため凍結融
解処理の後段に乾燥手段を設けなければならず、装置の
大型化、高コスト化が避けられない。したがって、本発
明はかかる従来技術の問題に鑑み、短時間での凍結乾燥
処理が可能であるとともに汚泥の含水率を容易に調製可
能な汚泥の凍結乾燥処理方法及びそのシステムを提供す
ることを目的とする。However, the freeze-thaw method typified by the above-mentioned Japanese Patent Laid-Open No. 2000-24641 requires a considerable amount of time to transfer cold heat to the inside of the sludge at the time of freezing, and has a large capacity of sludge. It is difficult to treat water, and impurities are likely to be attached to and mixed with frozen water, resulting in low purity of water and limited reusable range. Further, since the dehydration effect is limited, a drying means must be provided in the latter stage of the freeze-thaw treatment, which inevitably increases the size and cost of the device. Therefore, in view of the problems of the prior art, it is an object of the present invention to provide a sludge freeze-drying treatment method and system capable of performing freeze-drying treatment in a short time and easily adjusting the water content of sludge. And
【0007】[0007]
【課題を解決するための手段】そこで、本発明はかかる
課題を解決するために、請求項1記載の発明は、汚泥中
に含有される水分を凍結分離する汚泥の凍結乾燥処理方
法において、第1の閉鎖空間内に冷却空気を噴射して該
空間内に投入した汚泥中の水分を凍結させながら、前記
冷却空気にて発生させた旋回流により該汚泥を粉砕して
微細化する工程と、前記第1の閉鎖空間から負圧状態に
保持された第2の閉鎖空間に前記汚泥を導くとともに、
該第2の閉鎖空間にて前記汚泥から凍結により生成した
細粒氷を昇華させて水分を分離する工程と、からなるこ
とを特徴とする。In order to solve the above problems, the present invention provides a method for freeze-drying sludge by freeze-separating water contained in sludge. A step of pulverizing the sludge by swirling flow generated by the cooling air while injecting cooling air into the closed space of No. 1 to freeze water in the sludge thrown into the space; While guiding the sludge from the first closed space to the second closed space held in a negative pressure state,
And sublimating fine-grained ice produced by freezing from the sludge in the second closed space to separate water.
【0008】かかる発明は、冷却空気により旋回流を発
生させて汚泥を微細な粒子に破砕しながら凍結している
ため急速な凍結が実現でき、汚泥処理の短縮化が図れる
とともに、汚泥と水分とを容易に分離することができる
ため高効率で以って汚泥を処理できる。また、汚泥中に
含有される水分及び空気中の水分を氷結、粉砕させた後
に昇華させているため確実な水分分離が可能となり、省
エネルギ化も期待できる。さらに、汚泥凍結乾燥処理の
全工程が密閉空間内で行われているため悪臭の発生を抑
制することができ、また凝集剤等の薬剤投入の必要がな
いため環境に与える影響を最小限に抑えることができ
る。According to the invention, since the swirling flow is generated by the cooling air to freeze the sludge while crushing it into fine particles, rapid freezing can be realized, the sludge treatment can be shortened, and the sludge and the water content can be reduced. Since sludge can be easily separated, sludge can be treated with high efficiency. Further, since the water contained in the sludge and the water in the air are frozen, crushed, and then sublimated, reliable water separation is possible, and energy saving can be expected. Furthermore, since the entire process of freeze-drying sludge is performed in a closed space, it is possible to suppress the generation of offensive odors, and since it is not necessary to add chemicals such as coagulants, the impact on the environment is minimized. be able to.
【0009】また、請求項2記載のように、前記第2の
閉鎖空間にて水分を分離した汚泥を前記第1の閉鎖空間
に戻入し、必要に応じて汚泥を追加投入しながら含水率
が所定値に達するまで該汚泥を循環させることが好まし
い。このように、汚泥中からの水分回収率が必要量に達
するまで汚泥を循環させることにより、汚泥の水分含有
量を必要値に設定することが容易にでき、回収汚泥の再
利用が簡単に行えるようになる。Further, as described in claim 2, the sludge from which water is separated in the second closed space is returned to the first closed space, and the moisture content is increased while additionally adding sludge as necessary. It is preferable to circulate the sludge until it reaches a predetermined value. In this way, by circulating the sludge until the moisture recovery rate from the sludge reaches the required amount, it is possible to easily set the water content of the sludge to the required value, and to easily reuse the recovered sludge. Like
【0010】請求項3記載の発明は、前記第2の閉鎖空
間にて汚泥から分離した水分を含む空気を冷却して、該
空気中の水分を凝縮させて分離させる工程を具え、水分
が除去された冷却空気を前記第1の閉鎖空間に返送して
前記汚泥の凍結及び旋回流の発生に利用することを特徴
とする。かかる発明によれば、前記冷却空気を排出する
ことなく閉鎖空間内で循環させることにより外部への悪
臭の漏出を防止できるとともに、冷熱の供給を最小限に
抑えることができるため省エネルギ化に貢献する。The invention according to claim 3 comprises the step of cooling the air containing water separated from the sludge in the second closed space and condensing and separating the water in the air, and the water is removed. The cooled cooling air is returned to the first closed space and used for freezing the sludge and generating a swirling flow. According to this invention, it is possible to prevent leakage of a bad odor to the outside by circulating the cooling air in the closed space without discharging it, and contribute to energy saving because the supply of cold heat can be minimized. To do.
【0011】さらに、請求項4記載の発明は、前記水分
を分離した汚泥の含水率が所定値に達したときに、前記
第1の閉鎖空間に昇温空気を導入して前記汚泥を回収す
ることを特徴とする。このように、昇華により前記汚泥
と分離した水を回収することにより純度の高い水を回収
することができ、該回収水の再利用の幅が広がる。ま
た、前記冷却空気の生成に冷凍サイクルの凝縮器側を利
用し、汚泥回収時の高温空気の生成には該冷凍サイクル
の蒸発器側を利用することが好ましく、これにより冷却
と昇温とを同一装置で行うことができ省スペース化が可
能となる。尚、前記冷却手段とは別に加熱ヒータを設け
ても良いことは勿論である。Further, in the invention according to claim 4, when the water content of the sludge from which the water has been separated reaches a predetermined value, heated air is introduced into the first closed space to recover the sludge. It is characterized by In this way, by collecting the water separated from the sludge by sublimation, highly pure water can be recovered, and the range of reuse of the recovered water is expanded. Further, it is preferable to use the condenser side of the refrigeration cycle for generation of the cooling air, and to use the evaporator side of the refrigeration cycle for generation of high temperature air during sludge recovery. The same device can be used, and space can be saved. Needless to say, a heater may be provided separately from the cooling means.
【0012】請求項5乃至7記載の発明は、前記した発
明とほぼ同様の効果、作用を得ることができる汚泥凍結
乾燥処理システムに関する発明で、請求項5記載の発明
は、冷却空気の導入により旋回流を生じせしめて、該旋
回流により投入汚泥中の水分を凍結しながら該汚泥を粉
砕して微細化する凍結粉砕装置と、該凍結粉砕装置から
負圧吸引により細粒汚泥を吸引する手段と、該吸引され
た汚泥から前記凍結により生成した細粒氷を分離する汚
泥分離器とからなり、前記汚泥分離器での汚泥からの細
粒氷分離が、前記負圧を利用して主として細粒氷の水蒸
気への相変化により行われることを特徴とする。The invention according to claims 5 to 7 is an invention relating to a sludge freeze-drying treatment system capable of obtaining substantially the same effects and actions as the above-mentioned invention, and the invention according to claim 5 is the introduction of cooling air. A freezing and pulverizing device for generating a swirling flow and pulverizing the sludge by freezing the water in the input sludge by the swirling flow, and a means for sucking fine-grained sludge from the freeze pulverizing device by negative pressure suction And a sludge separator that separates the fine-grained ice generated by freezing from the sucked sludge, and the fine-grained ice separation from the sludge in the sludge separator is mainly performed by using the negative pressure. It is characterized in that it is carried out by a phase change of grain ice into water vapor.
【0013】また、請求項6記載の発明は、前記汚泥分
離器から排出される汚泥を、前記凍結粉砕装置に戻入す
る汚泥返送路を設け、該汚泥の含水率が所定値に達する
まで循環させることを特徴とする。請求項7記載の発明
は、前記汚泥分離器にて分離された水蒸気を冷凍サイク
ルからの冷熱により凝縮させて回収する水回収手段を設
け、該水回収手段により水分除去された冷却空気を前記
凍結粉砕装置に導入する冷却空気返送路を設けたことを
特徴とする。Further, in the invention according to claim 6, a sludge return passage for returning the sludge discharged from the sludge separator to the freeze pulverizer is provided, and is circulated until the water content of the sludge reaches a predetermined value. It is characterized by According to a seventh aspect of the present invention, water recovery means is provided for condensing and recovering the water vapor separated by the sludge separator by cold heat from the refrigeration cycle, and the cooling air from which water has been removed by the water recovery means is frozen. It is characterized in that a cooling air return passage introduced into the crushing device is provided.
【0014】[0014]
【発明の実施の形態】以下、図面を参照して本発明の好
適な実施例を例示的に詳しく説明する。但しこの実施例
に記載されている構成部品の寸法、材質、形状、その相
対的配置等は特に特定的な記載がない限りは、この発明
の範囲をそれに限定する趣旨ではなく、単なる説明例に
過ぎない。図1は本発明の第1実施形態にかかる汚泥の
凍結乾燥処理システムの全体概略構成図、図2は本発明
の第2実施形態にかかる汚泥の凍結乾燥処理システムの
全体概略構成図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be exemplarily described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto unless specifically stated otherwise, and are merely illustrative examples. Not too much. FIG. 1 is an overall schematic configuration diagram of a sludge freeze-drying treatment system according to a first embodiment of the present invention, and FIG. 2 is an overall schematic configuration diagram of a sludge freeze-drying treatment system according to a second embodiment of the present invention.
【0015】本実施形態における凍結乾燥処理システム
は下水処理設備等から排出される下水汚泥の処理に適し
ているが、汚泥の含水率、種類に関らず何れの汚泥にも
適用可能である。図1において、10は最初沈殿池にて
沈降分離処理を施された汚泥を一時的に貯留する汚泥タ
ンクで、不図示の汚泥投入手段と汚泥投入量制御手段と
を具備している。11は冷却空気噴射口を具えたチャン
バ、12は供給される汚泥を凍結しながら粉砕する凍結
粉砕装置、13は汚泥中の固形物を分離回収する汚泥分
離器、14は真空ポンプ、15はブロワ、16は熱交換
器18を具えた冷凍機、17は汚泥から分離された水を
回収して乾燥冷却空気を生成する水回収装置、19は水
タンク、20は前記汚泥分離器13で回収された汚泥を
冷却空気とともに前記凍結粉砕装置12内に供給するホ
ッパエジェクタである。The freeze-drying treatment system in this embodiment is suitable for treating sewage sludge discharged from sewage treatment equipment and the like, but can be applied to any sludge regardless of the water content and type of sludge. In FIG. 1, reference numeral 10 is a sludge tank for temporarily storing sludge that has been first subjected to sedimentation and separation treatment in a settling tank, and includes sludge charging means and sludge charging amount control means (not shown). Reference numeral 11 is a chamber equipped with a cooling air injection port, 12 is a freeze-grinding device for crushing the supplied sludge while freezing, 13 is a sludge separator for separating and collecting solid matter in the sludge, 14 is a vacuum pump, and 15 is a blower. , 16 is a refrigerator equipped with a heat exchanger 18, 17 is a water recovery device for recovering water separated from sludge to generate dry cooling air, 19 is a water tank, 20 is recovered by the sludge separator 13. This is a hopper ejector for supplying the sludge with cooling air into the freeze-grinding device 12.
【0016】前記凍結粉砕装置12は、前記チャンバ1
1と冷却空気噴射口を介して連結されるとともに汚泥投
入口及び細粒汚泥含有空気排出口を具え、開閉弁によっ
て密閉系閉鎖空間が形成されるように構成されている。
かかる凍結粉砕装置12内では、前記冷却空気噴射口か
ら供給される冷却空気により旋回流が発生し、該閉鎖空
間内に存在する粒子は凍結粉砕装置12の側壁若しくは
粒子同士衝突しながら粉砕、微細化される。このとき、
前記旋回流は、例えば前記凍結粉砕装置12に斜角に取
り付けられた冷却空気噴射口から所定風速にて噴射され
る冷却空気によって形成されることが好ましい。The freeze-grinding device 12 includes the chamber 1
1 and a cooling air injection port, and is provided with a sludge inlet and a fine-grained sludge-containing air outlet, and an on-off valve forms a closed system closed space.
In the freeze-pulverization device 12, a swirling flow is generated by the cooling air supplied from the cooling air jet port, and the particles present in the closed space are pulverized by colliding with the side wall of the freeze-pulverization device 12 or the particles. Be converted. At this time,
It is preferable that the swirl flow is formed by, for example, cooling air that is jetted at a predetermined wind speed from a cooling air jet port that is obliquely attached to the freeze-grinding device 12.
【0017】前記汚泥分離器13は直径数μm程度の粒
子まで分離可能な機能を有し、例えば重力、遠心力、慣
性力、電気力等を利用した固気分離手段を具えた装置で
あれば何れでも良いが、特に遠心力サイクロン型分離器
が好適である。前記冷凍機16は冷凍サイクルを具備
し、前記水回収装置17に延設される熱交換器18に冷
熱若しくは温熱を供給することで該水回収装置17を通
過する空気の温度調製を行っている。つまり、冷却空気
を生成する場合には熱交換器18を前記冷凍サイクルの
蒸発器側に接続し、高温空気生成の場合には凝縮器側に
接続することで、適宜必要な熱エネルギを供給してい
る。尚、前記冷凍機16には、前記したように冷熱と温
熱を発生、利用できる冷凍サイクル若しくはヒートポン
プ等の熱サイクル装置が好ましいが、ダクトヒータ等の
温熱源を別に設ける構成でもよい。The sludge separator 13 has a function of separating particles having a diameter of about several μm, and is a device provided with a solid-gas separation means utilizing gravity, centrifugal force, inertial force, electric force, etc. Either may be used, but a centrifugal cyclone type separator is particularly preferable. The refrigerator 16 has a refrigeration cycle, and adjusts the temperature of the air passing through the water recovery device 17 by supplying cold heat or warm heat to a heat exchanger 18 extended to the water recovery device 17. . That is, when the cooling air is generated, the heat exchanger 18 is connected to the evaporator side of the refrigeration cycle, and when the high temperature air is generated, the heat exchanger 18 is connected to the condenser side to appropriately supply necessary heat energy. ing. The refrigerator 16 is preferably a refrigerating cycle or a heat cycle device such as a heat pump capable of generating and utilizing cold heat and warm heat as described above, but may be provided with a separate heat source such as a duct heater.
【0018】ここで、かかる第1実施形態におけるフロ
ーを説明すると、まずホッパエジェクタ20の後方バル
ブ35、汚泥分離器13の下方バルブ36及びブロワ1
5の後方バルブ37を開とし、真空ポンプ14の下方の
バルブ38を閉とし、さらにホッパエジェクタ20の後
方に位置する三方バルブ39を循環方向とし、凍結粉砕
装置12−汚泥分離器13−ホッパエジェクタ20の循
環径路、及び凍結粉砕装置12−汚泥分離器13−水回
収装置17−ホッパエジェクタ20の循環径路を開放状
態とする。そして、前記ブロワ15及び冷凍機16の運
転を開始するとともに、前記凍結粉砕装置12の汚泥投
入口を開いて前記汚泥タンク10から汚泥を所定量投入
する。The flow of the first embodiment will be described. First, the rear valve 35 of the hopper ejector 20, the lower valve 36 of the sludge separator 13 and the blower 1 are described.
5, the rear valve 37 of the vacuum pump 14 is opened, the valve 38 below the vacuum pump 14 is closed, the three-way valve 39 located behind the hopper ejector 20 is in the circulation direction, and the freeze-grinding device 12-sludge separator 13-hopper ejector is used. The circulation path of 20 and the circulation path of the freeze-grinding device 12-sludge separator 13-water recovery device 17-hopper ejector 20 are opened. Then, while the operation of the blower 15 and the refrigerator 16 is started, the sludge inlet of the freeze-pulverization device 12 is opened and a predetermined amount of sludge is introduced from the sludge tank 10.
【0019】汚泥を投入した後、インバータで風速を調
節しながら前記チャンバ11より冷却空気噴射口を介し
て前記凍結粉砕装置12内へ冷却空気を導入する。前記
凍結粉砕装置12内へ導入された冷却空気は旋回流26
を形成し、該旋回流26により予め投入された汚泥は飛
散しながら凍結する。このとき、前記冷却空気旋回流2
6によって汚泥に冷熱が均一に伝達され急速に凍結が進
行する。ここで汚泥の凍結とは該汚泥内部に含まれる水
分の凍結のことであり、汚泥は粒氷を含有した状態で存
在することとなる。After the sludge is charged, cooling air is introduced from the chamber 11 into the freeze-grinding device 12 through the cooling air injection port while adjusting the wind speed with an inverter. The cooling air introduced into the freeze pulverizer 12 is swirled 26
And the sludge previously charged by the swirling flow 26 is scattered and frozen. At this time, the cooling air swirl flow 2
Cold heat is evenly transferred to the sludge by 6 and freezing progresses rapidly. Here, freezing of sludge means freezing of water contained in the sludge, and the sludge is present in a state of containing granular ice.
【0020】また、前記凍結とともに、前記粒氷を含有
する汚泥は前記旋回流26によって凍結粉砕装置12の
内壁若しくは汚泥同士で激しく衝突し、次第に細粒子に
粉砕されていく。そして、微細化された汚泥の一部は前
記旋回流から脱して細粒汚泥含有空気30として汚泥分
離器13に移送され、ここで該汚泥中の細粒氷若しくは
粉砕により汚泥と分離されて、空気中に存在する細粒氷
が相変化により昇華されて水蒸気として汚泥と分離さ
れ、該水蒸気を含む水分含有空気32は冷凍機16側へ
排出される。一方、前記水分含有空気32と分離された
汚泥は前記汚泥分離器13の底部から排出され、前記ホ
ッパエジェクタ20にて前記水回収装置17を経て乾燥
した冷却空気33と混合されて前記凍結粉砕装置12に
返送される。In addition to the freezing, the sludge containing the ice cubes is violently collided by the swirling flow 26 between the inner walls of the freeze-grinding device 12 or sludges and gradually pulverized into fine particles. Then, a part of the finely sludge is removed from the swirling flow and transferred to the sludge separator 13 as fine-grain sludge-containing air 30, where it is separated from the sludge by fine-grain ice in the sludge or crushing. The fine-grained ice present in the air is sublimated by the phase change and separated from the sludge as water vapor, and the water-containing air 32 containing the water vapor is discharged to the refrigerator 16 side. On the other hand, the sludge separated from the water-containing air 32 is discharged from the bottom of the sludge separator 13, mixed with the cooling air 33 dried by the hopper ejector 20 through the water recovery device 17, and then the freeze pulverizer. Returned to 12.
【0021】さて、前記水回収装置17に導入された水
分含有空気32は、前記冷凍機16から熱交換器18を
介して供給される冷熱により凝縮して水に相変化し、適
宜水タンク19へ回収される。そして、水分が分離除去
されるとともに熱交換器18により冷却された冷却空気
33は再び前記ホッパエジェクタ20を経て汚泥ととも
に前記凍結粉砕装置12に導入される。以上のように、
汚泥の含水率が所定値に達するまで汚泥及び冷却空気を
循環させる。The moisture-containing air 32 introduced into the water recovery device 17 is condensed by the cold heat supplied from the refrigerator 16 via the heat exchanger 18 to undergo a phase change into water, and the water tank 19 is appropriately added. Be recovered to. Then, the cooling air 33, from which water has been separated and removed and which has been cooled by the heat exchanger 18, is again introduced into the freeze-grinding device 12 together with the sludge through the hopper ejector 20. As mentioned above,
The sludge and cooling air are circulated until the water content of the sludge reaches a specified value.
【0022】そして、汚泥の含水率が所定値に達したら
前記汚泥分離器13の下方バルブ36を閉とし、前記冷
凍機16の冷凍サイクルを凝縮器側に接続して高温空気
を生成するとともにブロワ15のインバータ周波数を上
げて凍結粉砕装置12の乾燥汚泥回収部40から乾燥汚
泥を回収する。尚、汚泥の含水率が必要値に達しないと
きには、ブロワ15の後方バルブ37及びホッパエジェ
クタ20の後方バルブ35を閉とするとともに、真空ポ
ンプ14の下方バルブ38を開放して該真空ポンプ14
を起動させる。このように、より一層減圧することで相
変化が低温で起こり、粒氷を容易に水蒸気とすることが
できる。When the water content of sludge reaches a predetermined value, the lower valve 36 of the sludge separator 13 is closed and the refrigeration cycle of the refrigerator 16 is connected to the condenser side to generate high temperature air and blower. The inverter frequency of 15 is increased and the dried sludge is collected from the dried sludge collecting section 40 of the freeze-grinding device 12. When the water content of the sludge does not reach the required value, the rear valve 37 of the blower 15 and the rear valve 35 of the hopper ejector 20 are closed, and the lower valve 38 of the vacuum pump 14 is opened to close the vacuum pump 14.
To start. In this way, by further reducing the pressure, a phase change occurs at a low temperature, and the grain ice can be easily converted to water vapor.
【0023】このようにして、冷却空気及び汚泥を循環
させることにより初期の含水率とは無関係に、必要に応
じて汚泥の乾燥度を高くすることができる。さらにかか
る凍結乾燥処理は密閉空間で行われるため臭気が外部に
漏出することがなく、また凝集剤等の薬剤投入が必要な
いため環境へ与える影響が少ない。また、得られた汚泥
は乾燥固形物として再利用し易くなる。By circulating the cooling air and the sludge in this way, the dryness of the sludge can be increased as necessary, regardless of the initial water content. Furthermore, since the freeze-drying process is performed in a closed space, odor does not leak to the outside, and since it is not necessary to add a chemical agent such as a coagulant, it has little influence on the environment. Moreover, the obtained sludge becomes easy to reuse as a dry solid.
【0024】図2に示される第2実施形態は、前記第1
実施形態と同様に凍結粉砕装置12と、汚泥分離器13
と、真空ポンプ14と、ブロワ15と、冷凍機16と、
水回収装置17と、ホッパエジェクタ20とから構成さ
れる。尚、かかる実施形態において、前記第1実施形態
とほぼ同様の構成部分は説明を省略する。前記凍結粉砕
装置12は、汚泥投入口と細粒汚泥含有空気排出口と冷
却空気噴射口とを具え、該冷却空気噴射口から導入され
る冷却空気によって旋回流が発生する構成となってい
る。かかる凍結粉砕装置12は略円環形状で環内部に空
洞を有する密閉構造をしており、該凍結粉砕装置12に
導入された冷却空気は該空洞の側壁に沿って旋回しなが
ら環部を循環するように構成されている。The second embodiment shown in FIG. 2 is the first embodiment described above.
Similar to the embodiment, the freeze-grinding device 12 and the sludge separator 13
A vacuum pump 14, a blower 15, a refrigerator 16,
It is composed of a water recovery device 17 and a hopper ejector 20. In this embodiment, the description of the same components as those in the first embodiment will be omitted. The freeze-grinding device 12 has a sludge inlet, a fine-grained sludge-containing air outlet, and a cooling air jet, and a swirling flow is generated by the cooling air introduced from the cooling air jet. The freezing and pulverizing device 12 has a substantially annular shape and has a closed structure having a cavity inside the ring, and the cooling air introduced into the freezing and pulverizing device 12 circulates in the annulus while swirling along the side wall of the cavity. Is configured to.
【0025】また、前記凍結粉砕装置12の冷却空気噴
射口側、細粒汚泥含有空気排出口側及び該凍結粉砕装置
12内部には温度検出器22、23、24が設置されて
おり、該温度検出器により測定された温度に基づきコン
トローラ21で以って前記冷凍機16での冷熱供給量及
び前記汚泥タンク10からの汚泥投入量を制御してい
る。さらに、前記真空ポンプ14に具備された圧力計2
5により前記汚泥分離器13内の圧力を所定圧力に保持
するように構成されている。このように、前記凍結粉砕
装置12内での汚泥凍結温度及び前記汚泥分離器13内
の気圧をコントローラで制御して最も効率良くかつ確実
に汚泥の凍結促進及び水分分離が行われるようにすると
よい。Further, temperature detectors 22, 23, 24 are installed at the cooling air injection port side of the freeze-pulverizing device 12, the fine-grain sludge-containing air discharge port side and inside the freeze-pulverizing device 12, respectively, and the temperature is Based on the temperature measured by the detector, the controller 21 controls the cold heat supply amount in the refrigerator 16 and the sludge input amount from the sludge tank 10. Further, the pressure gauge 2 provided in the vacuum pump 14
5, the pressure inside the sludge separator 13 is maintained at a predetermined pressure. As described above, the sludge freezing temperature in the freezing and crushing device 12 and the atmospheric pressure in the sludge separator 13 may be controlled by the controller so that the freezing promotion and water separation of the sludge can be performed most efficiently and reliably. .
【0026】[0026]
【実施例】本実施例では図2に示した第2実施形態の凍
結乾燥処理システムに基づき、下水処理設備の最終沈殿
池から採取した初沈汚泥(MLSS濃度:10,900
mg/L)を予め約90〜95%の含水率に調製した汚
泥を用いて処理を行った際の測定結果を示す。汚泥の凍
結粉砕時には前記ブロワ15のインバータ周波数(IN
V)を55Hz、凍結粉砕装置12の冷却空気噴射口付
近での冷却空気温度(温度検出器22で検出される温
度)を−15℃、汚泥投入量を60mL/分、処理時間
を夫々30分間に設定した。EXAMPLE In this example, based on the freeze-drying treatment system of the second embodiment shown in FIG. 2, the first settling sludge (MLSS concentration: 10,900) collected from the final settling tank of the sewage treatment equipment.
The measurement result when sludge prepared in advance to have a water content of about 90 to 95% (mg / L) is treated is shown. When freeze-grinding sludge, the inverter frequency (IN
V) is 55 Hz, the cooling air temperature (temperature detected by the temperature detector 22) near the cooling air injection port of the freeze-grinding device 12 is −15 ° C., the sludge input amount is 60 mL / min, and the treatment time is 30 minutes each. Set to.
【0027】また、乾燥(昇華)処理では、前記温度検
出器22の温度を4℃に設定し、INVを55Hzで6
時間運転した。尚、汚泥投入には含水率90%でモーノ
ポンプを、95〜99%でローラポンプを夫々使用し
た。また、かかるシステムに設置された温度検出器2
3、24、及び圧力計25等により汚泥の凍結乾燥処理
における装置内部の温度、及びブロワ風量を計測し、さ
らに回収処理後の乾燥汚泥及び分離水の回収率を求め
た。In the drying (sublimation) process, the temperature of the temperature detector 22 is set to 4 ° C. and the INV is 6 at 55 Hz.
I drove for hours. In addition, a mohno pump with a water content of 90% and a roller pump with a water content of 95 to 99% were used for sludge charging. In addition, the temperature detector 2 installed in such a system
The temperature inside the device and the blower air volume in the freeze-drying treatment of sludge were measured by 3, 24, and a pressure gauge 25, and the recovery rate of the dried sludge and the separated water after the recovery treatment was obtained.
【0028】その結果、含水率90〜95%に調製した
汚泥は、昇華現象による汚泥と水分の分離が確認でき、
さらに含水率が低くなる程凍結乾燥に要する時間が短縮
され、効率的に処理が行われた。分離水の回収率は約1
50%〜270%であり、空気中の水分も同時に回収さ
れたことが判る。ここから、本装置は汚泥の凍結乾燥処
理だけでなく汚泥から効率的に水分を除去、回収し、そ
の分離水を再利用できる可能性が示唆された。As a result, in the sludge prepared to have a water content of 90 to 95%, separation of water from the sludge due to the sublimation phenomenon was confirmed,
Furthermore, the lower the water content, the shorter the time required for freeze-drying and the more efficient the treatment. Separation water recovery rate is about 1
It is 50% to 270%, and it can be seen that water in the air was also recovered at the same time. From this, it was suggested that this device could not only freeze-dry the sludge but also efficiently remove and recover water from the sludge and reuse the separated water.
【0029】[0029]
【発明の効果】以上記載のごとく本発明によれば、冷却
空気により旋回流を発生させて汚泥を微細な粒子に破砕
しながら凍結しているため、急速な凍結が実現でき汚泥
処理時間の短縮化が図れるとともに、汚泥と水分とを容
易に分離することができるため高効率で以って汚泥を処
理できる。また、汚泥中に含有される水分及び空気中の
水分を氷結、粉砕させた後に昇華させているため確実な
水分分離が可能となり、省エネルギ化も期待できる。さ
らに、汚泥凍結乾燥処理の全工程が密閉空間内で行われ
ているため悪臭の発生を抑制することができ、また凝集
剤等の薬剤投入の必要がないため環境に与える影響を最
小限に抑えることができる。As described above, according to the present invention, a swirling flow is generated by cooling air to freeze sludge while crushing it into fine particles, so that rapid freezing can be realized and the sludge treatment time can be shortened. As a result, sludge and water can be easily separated, so that sludge can be treated with high efficiency. Further, since the water contained in the sludge and the water in the air are frozen, crushed, and then sublimated, reliable water separation is possible, and energy saving can be expected. Furthermore, since the entire process of freeze-drying sludge is performed in a closed space, it is possible to suppress the generation of offensive odors, and since it is not necessary to add chemicals such as coagulants, the impact on the environment is minimized. be able to.
【0030】また、汚泥中の含水率が必要値に達するま
で汚泥を循環させることにより、汚泥の水分含有量を必
要値に設定することが容易にでき、回収汚泥の再利用が
簡単に行えるようになる。また、前記冷却空気を排出す
ることなく閉鎖空間内で循環させることにより外部への
悪臭の漏出を防止できるとともに、冷熱の供給を最小限
に抑えることができるため省エネルギ化に貢献する。さ
らにまた、昇華により前記汚泥と分離した水を回収する
ことにより、純度の高い水を回収することができ、該回
収水の再利用の幅が広がる。By circulating the sludge until the water content in the sludge reaches the required value, it is possible to easily set the water content of the sludge to the required value and to easily reuse the recovered sludge. become. Further, by circulating the cooling air in the closed space without discharging it, it is possible to prevent leakage of a bad odor to the outside, and it is possible to minimize the supply of cold heat, which contributes to energy saving. Furthermore, by recovering the water separated from the sludge by sublimation, highly pure water can be recovered, and the range of reuse of the recovered water is widened.
【図1】 本発明の第1実施形態にかかる汚泥濃縮装置
の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a sludge concentrating device according to a first embodiment of the present invention.
【図2】 本発明の第2実施形態にかかる汚泥濃縮装置
の全体概略構成図である。FIG. 2 is an overall schematic configuration diagram of a sludge concentrating device according to a second embodiment of the present invention.
【図3】 従来の汚泥濃縮装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a conventional sludge concentrating device.
10 汚泥タンク 11 チャンバ 12 凍結粉砕装置 13 汚泥分離器 14 真空ポンプ 15 ブロワ 16 冷凍機 17 水回収装置 18 熱交換器 19 水タンク 20 ホッパエジェクタ 21 コントローラ 22、23、24 温度検出器 25 圧力計 30 細粒汚泥含有空気 32 水分含有空気 33 冷却空気 10 Sludge tank 11 chambers 12 Freezing and crushing equipment 13 Sludge separator 14 Vacuum pump 15 Blower 16 refrigerator 17 Water recovery device 18 heat exchanger 19 water tank 20 hopper ejector 21 Controller 22, 23, 24 Temperature detector 25 pressure gauge 30 Air containing fine sludge 32 Moisture-containing air 33 Cooling air
───────────────────────────────────────────────────── フロントページの続き (72)発明者 真田 勝 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 中島 義人 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 Fターム(参考) 3L113 AA09 AC21 AC24 AC59 AC60 AC67 BA37 CA02 DA06 DA10 4D059 AA03 AA05 BD01 BD34 BD40 BE39 BE51 BF05 BF15 BJ09 BJ17 BK11 BK30 CA01 CB30 4D067 CG04 EE27 EE32 EE35 GA03 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masaru Sanada 2-13-1, Peony, Koto-ku, Tokyo Stock market Shamaegawa Works (72) Inventor Yoshito Nakajima 2-13-1, Peony, Koto-ku, Tokyo Stock market Shamaegawa Works F-term (reference) 3L113 AA09 AC21 AC24 AC59 AC60 AC67 BA37 CA02 DA06 DA10 4D059 AA03 AA05 BD01 BD34 BD40 BE39 BE51 BF05 BF15 BJ09 BJ17 BK11 BK30 CA01 CB30 4D067 CG04 EE27 EE32 EE35 GA03
Claims (7)
汚泥の凍結乾燥処理方法において、 第1の閉鎖空間内に冷却空気を噴射して該空間内に投入
した汚泥中の水分を凍結させながら、前記冷却空気にて
発生させた旋回流により該汚泥を粉砕して微細化する工
程と、前記第1の閉鎖空間から負圧状態に保持された第
2の閉鎖空間に前記汚泥を導くとともに、該第2の閉鎖
空間にて前記汚泥から凍結により生成した細粒氷を昇華
させて水分を分離する工程と、からなることを特徴とす
る汚泥の凍結乾燥処理方法。1. A method for freeze-drying sludge, which freezes and separates water contained in sludge, wherein cooling air is jetted into the first closed space to freeze the water contained in the sludge. Meanwhile, a step of pulverizing the sludge by the swirling flow generated by the cooling air to make it fine, and guiding the sludge from the first closed space to the second closed space held in a negative pressure state And a step of sublimating fine-grained ice generated from the sludge by freezing in the second closed space to separate water, and a freeze-drying treatment method of sludge.
汚泥を前記第1の閉鎖空間に戻入し、必要に応じて汚泥
を追加投入しながら含水率が所定値に達するまで該汚泥
を循環させることを特徴とする請求項1記載の汚泥の凍
結乾燥処理方法。2. The sludge from which water has been separated in the second closed space is returned to the first closed space, and the sludge is further added as necessary until the water content reaches a predetermined value. The method for lyophilizing sludge according to claim 1, which is circulated.
た水分を含む空気を冷却して、該空気中の水分を凝縮さ
せて分離させる工程を具え、水分が除去された冷却空気
を前記第1の閉鎖空間に返送して前記汚泥の凍結及び旋
回流の発生に利用することを特徴とする請求項1若しく
は2記載の汚泥の凍結乾燥処理方法。3. A step of cooling the air containing water separated from the sludge in the second closed space to condense and separate the water in the air, wherein the cooling air from which the water is removed is cooled. The method for freeze-drying sludge according to claim 1 or 2, wherein the sludge is returned to the first closed space and used for freezing the sludge and generating a swirling flow.
値に達したときに、前記第1の閉鎖空間に昇温空気を導
入して前記汚泥を回収することを特徴とする請求項1乃
至3の何れか一に記載の汚泥の凍結乾燥処理方法。4. The sludge is recovered by introducing heated air into the first closed space when the water content of the sludge separated from the water reaches a predetermined value. 4. The method for freeze-drying sludge according to any one of 3 to 3.
めて、該旋回流により投入汚泥中の水分を凍結しながら
該汚泥を粉砕して微細化する凍結粉砕装置と、該凍結粉
砕装置から負圧吸引により細粒汚泥を吸引する手段と、
該吸引された汚泥から前記凍結により生成した細粒氷を
分離する汚泥分離器とからなり、 前記汚泥分離器での汚泥からの細粒氷分離が、前記負圧
を利用して主として細粒氷の水蒸気への相変化により行
われることを特徴とする汚泥の凍結乾燥処理システム。5. A freezing and pulverizing device for producing a swirling flow by introducing cooling air, and crushing the sludge into fine particles while freezing the water in the input sludge by the swirling flow; Means for sucking fine-grained sludge by pressure suction,
The sludge separator for separating the fine-grained ice produced by the freezing from the sucked sludge, the fine-grained ice separation from the sludge in the sludge separator is mainly the fine-grained ice using the negative pressure. A freeze-drying treatment system for sludge, which is characterized in that it is carried out by a phase change of water vapor to steam.
前記凍結粉砕装置に戻入する汚泥返送路を設け、該汚泥
の含水率が所定値に達するまで循環させることを特徴と
する請求項5記載の汚泥の凍結乾燥処理システム。6. The sludge discharged from the sludge separator,
The sludge freeze-drying treatment system according to claim 5, wherein a sludge return passage for returning to the freezing and crushing device is provided and is circulated until the water content of the sludge reaches a predetermined value.
冷凍サイクルからの冷熱により凝縮させて回収する水回
収手段を設け、該水回収手段により水分除去された冷却
空気を前記凍結粉砕装置に導入する冷却空気返送路を設
けたことを特徴とする請求項5若しくは6記載の汚泥の
凍結乾燥処理システム。7. A water recovery means is provided for condensing and recovering the water vapor separated by the sludge separator by cold heat from a refrigeration cycle, and the cooling air from which water has been removed by the water recovery means is fed to the freeze pulverizer. The freeze-drying treatment system for sludge according to claim 5 or 6, wherein a cooling air return passage to be introduced is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002105965A JP3755031B2 (en) | 2002-04-09 | 2002-04-09 | Sludge freeze-drying treatment method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002105965A JP3755031B2 (en) | 2002-04-09 | 2002-04-09 | Sludge freeze-drying treatment method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003300100A true JP2003300100A (en) | 2003-10-21 |
JP3755031B2 JP3755031B2 (en) | 2006-03-15 |
Family
ID=29390426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002105965A Expired - Fee Related JP3755031B2 (en) | 2002-04-09 | 2002-04-09 | Sludge freeze-drying treatment method and system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3755031B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101593159B1 (en) * | 2015-07-24 | 2016-02-11 | 김몽필 | cooling systems and method of the ultrafine grinders |
CN105859093A (en) * | 2016-04-28 | 2016-08-17 | 湖南科技大学 | Low energy consumption vacuum freeze-drying method capable of recovering and utilizing energy for sludge |
CN107285593A (en) * | 2017-07-06 | 2017-10-24 | 四川天润德环境工程有限公司 | A kind of sewage source heat pump and equipment associated with sludge drying |
CN114688864A (en) * | 2020-12-31 | 2022-07-01 | 浙江同景新能源集团有限公司 | Cold trap ice melting and water draining method and system of freeze-drying equipment |
CN114716003A (en) * | 2022-03-29 | 2022-07-08 | 中国化学工程第十一建设有限公司 | Preparation method of sludge micro powder, sludge micro powder and device |
WO2023089920A1 (en) * | 2021-11-19 | 2023-05-25 | 月島機械株式会社 | Slurry dewatering/drying system and dewatering/drying method |
CN120169491A (en) * | 2025-05-22 | 2025-06-20 | 山西中远设计工程有限公司 | Fine particle coal slime crusher capable of preventing broken particles from adhering to inner wall |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103480476B (en) * | 2013-09-18 | 2015-08-26 | 江苏泰格油墨有限公司 | A kind of sand mill cold cooling unit |
KR101979904B1 (en) * | 2018-01-31 | 2019-08-28 | 임병하 | Sludge treatment apparatus and method for sludge treatment |
-
2002
- 2002-04-09 JP JP2002105965A patent/JP3755031B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101593159B1 (en) * | 2015-07-24 | 2016-02-11 | 김몽필 | cooling systems and method of the ultrafine grinders |
CN105859093A (en) * | 2016-04-28 | 2016-08-17 | 湖南科技大学 | Low energy consumption vacuum freeze-drying method capable of recovering and utilizing energy for sludge |
CN107285593A (en) * | 2017-07-06 | 2017-10-24 | 四川天润德环境工程有限公司 | A kind of sewage source heat pump and equipment associated with sludge drying |
CN114688864A (en) * | 2020-12-31 | 2022-07-01 | 浙江同景新能源集团有限公司 | Cold trap ice melting and water draining method and system of freeze-drying equipment |
WO2023089920A1 (en) * | 2021-11-19 | 2023-05-25 | 月島機械株式会社 | Slurry dewatering/drying system and dewatering/drying method |
JP2023075618A (en) * | 2021-11-19 | 2023-05-31 | 月島ホールディングス株式会社 | System and method of dehydrating/drying slurry |
JP7402853B2 (en) | 2021-11-19 | 2023-12-21 | 月島機械株式会社 | Slurry dehydration drying system and dehydration drying method |
CN114716003A (en) * | 2022-03-29 | 2022-07-08 | 中国化学工程第十一建设有限公司 | Preparation method of sludge micro powder, sludge micro powder and device |
CN114716003B (en) * | 2022-03-29 | 2024-01-26 | 中国化学工程第十一建设有限公司 | Preparation method of sludge micropowder, sludge micropowder and device |
CN120169491A (en) * | 2025-05-22 | 2025-06-20 | 山西中远设计工程有限公司 | Fine particle coal slime crusher capable of preventing broken particles from adhering to inner wall |
Also Published As
Publication number | Publication date |
---|---|
JP3755031B2 (en) | 2006-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101467204B1 (en) | Method of integration of concentration-dehydration and aerobic air-drying of sewage sludge | |
KR100965932B1 (en) | Control system for efficient drying and bad smell of organic waste | |
US3323575A (en) | Apparatus and process for dehydrating waste solids concentrates | |
RU2075708C1 (en) | Method and device for drying solid materials | |
KR101479958B1 (en) | Method and apparatus for aerobically air-drying sludge filter cakes | |
WO2022061958A1 (en) | Harmless and resourceful integrated treatment method and system for oil sludge | |
JP3755031B2 (en) | Sludge freeze-drying treatment method and system | |
EP0913360A1 (en) | Intermittent continuous method for recovering refined activated carbon from waste tyres and the like and the device therefor | |
CN102276131B (en) | A kind of sludge secondary vapor compression drying method | |
CN105254147A (en) | Triple utilization device and method for exhaust steam waste heat produced during superheat steam drying of sludge | |
KR101006466B1 (en) | Closed Loop Sludge Air Dryer | |
KR101284232B1 (en) | Feed production apparatus using garbage | |
KR101442796B1 (en) | Method for recycling the food residue | |
KR100734092B1 (en) | Food waste disposal system using own energy | |
CN106854031B (en) | Sludge recycling treatment method and treatment system thereof | |
CN114149323B (en) | A kind of processing method of paraben | |
CN105254148A (en) | Dual utilization device and method for exhaust steam waste heat produced during superheat steam drying of sludge | |
CN205133368U (en) | Triple devices that utilize of mud superheated steam drying exhaust steam waste heat | |
WO2005073136B1 (en) | Night-soil treatment apparatus | |
KR20030072873A (en) | An organic waste drying system | |
CN212451137U (en) | Energy-saving sludge drying device | |
CN102728597A (en) | Method and apparatus used for separating and recovering PIA waste residue solvent | |
JPH11319892A (en) | Waste water treatment and waste water treating device | |
JP3646183B2 (en) | Treatment method of organic sludge | |
JP2004050120A (en) | Organic waste treating equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050817 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
LAPS | Cancellation because of no payment of annual fees |