JP2003298088A - Silicon based thin film photoelectric converter - Google Patents
Silicon based thin film photoelectric converterInfo
- Publication number
- JP2003298088A JP2003298088A JP2002100664A JP2002100664A JP2003298088A JP 2003298088 A JP2003298088 A JP 2003298088A JP 2002100664 A JP2002100664 A JP 2002100664A JP 2002100664 A JP2002100664 A JP 2002100664A JP 2003298088 A JP2003298088 A JP 2003298088A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- thin film
- layer
- light
- light scattering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、薄膜光電変換装置
の変換効率の改善に関するもので、特に電極層または光
電変換ユニット間に配置する光散乱層に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement in conversion efficiency of a thin film photoelectric conversion device, and more particularly to a light scattering layer arranged between electrode layers or photoelectric conversion units.
【0002】[0002]
【従来の技術】近年、例えば多結晶シリコンや微結晶シ
リコンのような結晶質シリコンを含む薄膜を利用した光
電変換装置の開発が精力的に行われている。これらの光
電変換装置の開発では、安価な基板上に低温プロセスで
良質の結晶質シリコン薄膜を形成することによる低コス
ト化と高効率化の両立が目的となっている。こうした光
電変換装置は、太陽電池、光センサなど、さまざまな用
途への応用が期待されている。2. Description of the Related Art In recent years, a photoelectric conversion device using a thin film containing crystalline silicon such as polycrystalline silicon or microcrystalline silicon has been vigorously developed. In the development of these photoelectric conversion devices, the objective is to achieve both low cost and high efficiency by forming a good quality crystalline silicon thin film on an inexpensive substrate by a low temperature process. Such photoelectric conversion devices are expected to be applied to various applications such as solar cells and optical sensors.
【0003】光電変換装置の一例として、基板上に、透
明電極と、一導電型層、結晶質シリコン系光電変換層お
よび逆導電型層を含む光電変換ユニットと、光反射性金
属層を含む裏面電極とを順次形成した構造を有するもの
が知られている。この光電変換装置では、光電変換層が
薄いと光吸収係数の小さな長波長領域の光が十分に吸収
されないため、光電変換量は本質的に光電変換層の膜厚
によって制約を受ける。そこで、光電変換層を含む光電
変換ユニットに入射した光をより有効に利用するため
に、光入射側の透明電極に表面凹凸(表面テクスチャ)
構造を設けて光を光電変換ユニット内へ散乱させ、さら
に金属電極で反射した光を乱反射させる工夫がなされて
いる。As an example of a photoelectric conversion device, a transparent electrode, a photoelectric conversion unit including one conductive type layer, a crystalline silicon-based photoelectric conversion layer and an opposite conductive type layer on a substrate, and a back surface including a light reflective metal layer. A structure having a structure in which electrodes are sequentially formed is known. In this photoelectric conversion device, when the photoelectric conversion layer is thin, light in the long wavelength region having a small light absorption coefficient is not sufficiently absorbed, and thus the amount of photoelectric conversion is essentially limited by the film thickness of the photoelectric conversion layer. Therefore, in order to more effectively use the light incident on the photoelectric conversion unit including the photoelectric conversion layer, the transparent electrode on the light incident side has surface irregularities (surface texture).
A structure is provided to scatter light into the photoelectric conversion unit, and to diffusely reflect the light reflected by the metal electrode.
【0004】また、薄膜光電変換装置の変換効率を高め
るための他の手段として、裏面金属層と薄膜半導体層の
間に適当な光学的性質を有する透明層を介在させ、多重
干渉効果により裏面金属反射層の反射率を高める方法が
ある。例えば、薄膜半導体層と金属層との間に透明層と
して酸化亜鉛(ZnO)を介在させる場合がある。As another means for improving the conversion efficiency of the thin film photoelectric conversion device, a transparent layer having appropriate optical properties is interposed between the back surface metal layer and the thin film semiconductor layer, and the back surface metal layer is formed by the multiple interference effect. There is a method of increasing the reflectance of the reflective layer. For example, zinc oxide (ZnO) may be interposed as a transparent layer between the thin film semiconductor layer and the metal layer.
【0005】さらに、金属層と透明層の2層からなる裏
面反射層に、テクスチャ構造を組み合わせることも知ら
れていた。Further, it has been known to combine a textured structure with a back reflection layer composed of two layers, a metal layer and a transparent layer.
【0006】[0006]
【発明が解決しようとする課題】 入射した光を散乱さ
せることを目的に、光入射側透明電極の表面凹凸の深さ
を大きくした場合、その上に形成する導電型層であるp
層の膜厚に分布ができ、開放電圧(Voc)が低下す
る。また、光電変換層として結晶質シリコンを用いた薄
膜光電変換装置の場合は、凹凸の深さが大きいと、凹部
から結晶粒界が発生しやすくなり、光電変換層の膜質の
低下や内部短絡を起こしやすくなってしまう等の問題点
があった。When the depth of the surface irregularities of the light incident side transparent electrode is increased for the purpose of scattering the incident light, the p-type conductive layer is formed thereon.
The thickness of the layer has a distribution, and the open circuit voltage (Voc) is reduced. Further, in the case of a thin film photoelectric conversion device using crystalline silicon as the photoelectric conversion layer, if the depth of the unevenness is large, crystal grain boundaries are likely to be generated from the recesses, and deterioration of the film quality of the photoelectric conversion layer and internal short circuit may occur. There was a problem that it was easy to wake up.
【0007】また、裏面金属反射層の反射率を高めるた
めに介在させる透明層についても表面凹凸が形成されて
いれば、光閉じ込め効果が得られる。しかし、基板上に
直接形成する電極の場合とは異なり、薄膜光電変換ユニ
ット上に形成する場合は、形成方法や温度条件等の制約
から、所望の表面凹凸構造を高い精度で形成することは
難しかった。Further, if the surface unevenness is formed also in the transparent layer which is interposed to increase the reflectance of the back metal reflection layer, the light confining effect can be obtained. However, unlike the case where the electrode is directly formed on the substrate, when it is formed on the thin film photoelectric conversion unit, it is difficult to form a desired surface irregularity structure with high accuracy due to restrictions such as the forming method and temperature conditions. It was
【0008】[0008]
【課題を解決するための手段】 本発明者等は上記課題
に鑑み鋭意検討を行った結果、光電変換ユニット側から
順に、光散乱層,光反射性金属層を配置した電極層を少
なくとも1つ有し、更に該光散乱層が屈折率1.7以下
の材料を含んで構成された薄膜光電変換装置を見出し
た。Means for Solving the Problems As a result of intensive studies made by the present inventors in view of the above problems, as a result, at least one electrode layer in which a light scattering layer and a light reflective metal layer are arranged in order from the photoelectric conversion unit side is provided. Further, they have found a thin film photoelectric conversion device in which the light scattering layer is configured to include a material having a refractive index of 1.7 or less.
【0009】また、2つ以上の光電変換ユニットを有
し、その内の1つ以上の光電変換ユニット間に光散乱層
を有し、更に該光散乱層が屈折率1.7以下の材料を含
んで構成されている薄膜光電変換装置を見出した。Further, it has two or more photoelectric conversion units, and has a light scattering layer between one or more photoelectric conversion units, and the light scattering layer is made of a material having a refractive index of 1.7 or less. The inventors have found a thin film photoelectric conversion device including the above.
【0010】この様な構成によれば、光電変換ユニット
の光吸収量を増加させることが可能となり、より高い光
電変換効率を有する光電変換装置を提供することが可能
となる。According to this structure, the amount of light absorbed by the photoelectric conversion unit can be increased, and a photoelectric conversion device having higher photoelectric conversion efficiency can be provided.
【0011】また、本発明の一つの態様によれば、前記
光散乱層中の屈折率1.7以下の材料が透明絶縁性薄膜
であり、表面被覆率30〜70%で配置されていること
を特徴としている。この様な構成によれば、屈折率が
1.7以下の材料が絶縁性であった場合でも、必要な導
電性と光散乱を両立することが可能となる。Further, according to one aspect of the present invention, the material having a refractive index of 1.7 or less in the light scattering layer is a transparent insulating thin film and is arranged with a surface coverage of 30 to 70%. Is characterized by. With such a configuration, even when the material having a refractive index of 1.7 or less is insulative, it is possible to achieve both required conductivity and light scattering.
【0012】本発明の薄膜光電変換装置に用いられる光
電変換ユニットとしては、少なくとも1つの結晶質シリ
コン系光電変換ユニットを含むことが好ましい。The photoelectric conversion unit used in the thin film photoelectric conversion device of the present invention preferably includes at least one crystalline silicon photoelectric conversion unit.
【0013】また、本発明の薄膜光電変換装置に用いら
れる光散乱層に含まれる透明導電性薄膜は、主原料とし
て酸化亜鉛、酸化錫、またはインジウム錫酸化物の透明
導電性酸化物を少なくとも1つ含むことが好ましい。The transparent conductive thin film contained in the light scattering layer used in the thin film photoelectric conversion device of the present invention contains at least one transparent conductive oxide such as zinc oxide, tin oxide or indium tin oxide as a main raw material. It is preferable to include one.
【0014】さらに、光散乱層に含まれる透明絶縁性薄
膜は、主原料として酸化珪素からなることが好ましい。Further, the transparent insulating thin film contained in the light scattering layer is preferably made of silicon oxide as a main raw material.
【0015】[0015]
【発明の実施の形態】 本発明の一つの実施の形態によ
る薄膜光電変換装置の模式的な断面図を図1に示す。以
下、図1を用いて本発明を詳細に説明するが、本発明は
これに限定されるものではない。FIG. 1 shows a schematic cross-sectional view of a thin film photoelectric conversion device according to one embodiment of the present invention. Hereinafter, the present invention will be described in detail with reference to FIG. 1, but the present invention is not limited to this.
【0016】図1に示す薄膜光電変換装置は、透明基板
1上に第一の電極層2(通常、透明電極が使用され
る)、光電変換ユニット10、第二の電極層が形成され
ている。ここで、第二の電極層は、光散乱層3と光反射
性金属層4から構成されており(必要に応じ他の層を介
在させることも可能である)、特に図1においては光散
乱層3は、更に第一の透明導電性薄膜3a、透明絶縁性
薄膜3b、第二の透明導電性薄膜3cから形成されてい
る。図1の薄膜光電変換装置は、透明基板1側から入射
する光5を光電変換ユニット10により光電変換するも
のである。In the thin film photoelectric conversion device shown in FIG. 1, a first electrode layer 2 (usually a transparent electrode is used), a photoelectric conversion unit 10, and a second electrode layer are formed on a transparent substrate 1. . Here, the second electrode layer is composed of the light-scattering layer 3 and the light-reflecting metal layer 4 (it is possible to interpose other layers if necessary), and in particular, in FIG. The layer 3 is further formed of a first transparent conductive thin film 3a, a transparent insulating thin film 3b, and a second transparent conductive thin film 3c. The thin film photoelectric conversion device of FIG. 1 photoelectrically converts light 5 incident from the transparent substrate 1 side by a photoelectric conversion unit 10.
【0017】透明基板1は、ガラスやフィルム等が用い
られるが、光電変換層へより多くの太陽光を透過し吸収
させるために、できるだけ透明であることが好ましい。
同様の意図から、太陽光が入射する基板表面での光反射
ロスを低減させるために無反射コーティングを行うと高
効率化が図れる。The transparent substrate 1 is made of glass, film, or the like, but is preferably as transparent as possible in order to transmit and absorb more sunlight into the photoelectric conversion layer.
From the same intention, if a non-reflection coating is applied to reduce the light reflection loss on the surface of the substrate on which sunlight is incident, the efficiency can be improved.
【0018】第一の電極層2としては、透明導電性酸化
物(TCO)が用いられ、例えば酸化錫(SnO2)か
らなる平均粒径が200〜900nmの表面凹凸を有す
る導電性の膜が熱CVD法により形成される。TCOと
しては、SnO2、インジウム錫酸化物(ITO)、酸
化亜鉛(ZnO)などが用いられる。第一の電極層2は
単層構造でも多層構造であってもよい。この第一の電極
層2は光電変換装置の光入射側に位置することから、基
板同様に透明であることが好ましく、例えば透明基板1
と第一の電極層2をあわせた層の透過率は、500〜1
100nmの波長の光に対して80%以上であることが
好ましい。As the first electrode layer 2, a transparent conductive oxide (TCO) is used. For example, a conductive film made of tin oxide (SnO 2 ) having surface irregularities with an average particle size of 200 to 900 nm is used. It is formed by the thermal CVD method. SnO 2 , indium tin oxide (ITO), zinc oxide (ZnO), or the like is used as the TCO. The first electrode layer 2 may have a single layer structure or a multilayer structure. Since the first electrode layer 2 is located on the light incident side of the photoelectric conversion device, it is preferably transparent like the substrate. For example, the transparent substrate 1
And the first electrode layer 2 have a combined transmittance of 500 to 1
It is preferably 80% or more with respect to light having a wavelength of 100 nm.
【0019】第一の電極層2上には、光電変換ユニット
10が形成される(但し、必ずしも直接第一の電極層に
接触している必要はない)。特に光電変換ユニット10
としては、結晶質シリコン系光電変換ユニットであるこ
とが好ましい。光電変換ユニット10は図示したように
1つでもよいが、2つ以上積層してもよい。なお、本願
明細書における、「結晶質」,「微結晶」との用語は、
部分的に非晶質を含むものも含むものとする。また、本
願明細書における「結晶質シリコン系光電変換ユニッ
ト」との用語は、真性光電変換層102が結晶質である
ことを意味するものであり、一導電型層101、逆導電
型層103が結晶質でもそうでなくてもよいものとす
る。The photoelectric conversion unit 10 is formed on the first electrode layer 2 (however, it is not always necessary to directly contact the first electrode layer). In particular, the photoelectric conversion unit 10
Is preferably a crystalline silicon-based photoelectric conversion unit. The photoelectric conversion unit 10 may be one as shown in the drawing, but may be a laminate of two or more. In this specification, the terms "crystalline" and "microcrystalline" mean
A partially amorphous material is also included. In addition, the term “crystalline silicon-based photoelectric conversion unit” in the present specification means that the intrinsic photoelectric conversion layer 102 is crystalline, and the one conductivity type layer 101 and the opposite conductivity type layer 103 are the same. It may or may not be crystalline.
【0020】図1に示す光電変換ユニット10は、一導
電型層101、真性光電変換層102および逆導電型層
103を有している。一導電型層101はp型層でもn
型層でもよく、これに対応して逆導電型層103はn型
層またはp型層になる。ただし、通常の光電変換装置で
は光の入射側にp型層が配置されるので、一般的に一導
電型層101はp型層、逆導電型層103はn型層であ
る。通常、p型層やn型層の導電型層は光電変換ユニッ
ト内に拡散電位を生じさせる役割を果たし、この拡散電
位の大きさによって薄膜光電変換装置の特性の一つであ
る開放端電圧(Voc)が左右される。しかし、これら
の導電型層は光電変換には寄与しない不活性な層であ
り、導電型層にドープされた不純物によって吸収される
光は基本的に発電に寄与しない。従って、p層やn層の
導電型層の膜厚は、十分な拡散電位を生じさせる範囲内
で可能な限り薄くすることが好ましい。The photoelectric conversion unit 10 shown in FIG. 1 has a one conductivity type layer 101, an intrinsic photoelectric conversion layer 102, and an opposite conductivity type layer 103. The one conductivity type layer 101 is a p-type layer
The opposite conductivity type layer 103 may be an n-type layer or a p-type layer. However, since a p-type layer is arranged on the light incident side in a normal photoelectric conversion device, the one-conductivity type layer 101 is generally a p-type layer and the opposite conductivity-type layer 103 is an n-type layer. Usually, the p-type layer and the n-type conductive layer play a role of generating a diffusion potential in the photoelectric conversion unit, and the open-end voltage (one of the characteristics of the thin film photoelectric conversion device, which depends on the magnitude of the diffusion potential, Voc) is influenced. However, these conductivity type layers are inactive layers that do not contribute to photoelectric conversion, and the light absorbed by the impurities doped in the conductivity type layer basically does not contribute to power generation. Therefore, it is preferable that the film thickness of the p-type and n-type conductive layers is made as thin as possible within a range in which a sufficient diffusion potential is generated.
【0021】光電変換ユニット10として結晶質シリコ
ン系薄膜光電変換ユニットが形成される場合は、pin
型の順に基板温度を400℃以下とした低温のプラズマ
CVD法により各半導体層を積層して形成することが好
ましい。具体的には、例えば導電型決定不純物原子であ
るボロンが0.01原子%以上ドープされたp型微結晶
シリコン系層101、光電変換層となる真性結晶質シリ
コン層102、および導電型決定不純物原子であるリン
が0.01原子%以上ドープされたn型微結晶シリコン
系層103をこの順に堆積すればよい。しかし、これら
各層は上記に限定されず、例えばp型層として非晶質シ
リコン膜や、非晶質または微結晶のシリコンカーバイ
ド、シリコンゲルマニウムなどの合金材料を用いてもよ
い。なお、導電型(p型、n型)微結晶シリコン系層の
膜厚は3nm以上100nm以下が好ましく、5nm以
上50nm以下がさらに好ましい。When a crystalline silicon-based thin film photoelectric conversion unit is formed as the photoelectric conversion unit 10, a pin is used.
It is preferable to form the semiconductor layers by stacking them in the order of the molds by a low temperature plasma CVD method in which the substrate temperature is 400 ° C. or lower. Specifically, for example, a p-type microcrystalline silicon-based layer 101 doped with 0.01 atom% or more of boron, which is a conductivity-type determining impurity atom, an intrinsic crystalline silicon layer 102 that serves as a photoelectric conversion layer, and a conductivity-type determining impurity. The n-type microcrystalline silicon-based layer 103 doped with 0.01 atomic% or more of atomic phosphorus may be deposited in this order. However, each of these layers is not limited to the above, and for example, an amorphous silicon film or an alloy material such as amorphous or microcrystalline silicon carbide or silicon germanium may be used as the p-type layer. The thickness of the conductive type (p-type, n-type) microcrystalline silicon-based layer is preferably 3 nm or more and 100 nm or less, and more preferably 5 nm or more and 50 nm or less.
【0022】また、「シリコン系」の材料には、非晶質
または結晶質のシリコンに加え、非晶質または結晶質の
シリコンカーバイドやシリコンゲルマニウムなど、シリ
コンを50%以上含む半導体材料も該当するものとす
る。Further, the "silicon-based" material includes not only amorphous or crystalline silicon but also semiconductor materials containing 50% or more of silicon such as amorphous or crystalline silicon carbide and silicon germanium. I shall.
【0023】真性光電変換層102である結晶質シリコ
ン光電変換層は、一般的に400℃以下の低温で形成す
ることにより、結晶粒界や粒内における欠陥を終端させ
て不活性化させる水素原子を多く含む。この観点から、
光電変換層102の水素含有量は1〜30原子%の範囲
内にあることが好ましい。この層は、導電型決定不純物
原子の密度が1×1018cm-3以下で、実質的に真性半
導体薄膜として形成される。さらに、真性結晶質シリコ
ン層に含まれる結晶粒の多くは、第一の電極層側から柱
状に延びて成長し、その膜面に平行に(110)の優先
配向面を有することが好ましい。なぜなら、このような
結晶配向を有する結晶質シリコン薄膜は、第一の電極層
(透明電極)2の表面が実質的に平坦である場合でも、
その上に堆積される光電変換ユニットの表面は微細な凹
凸を含む表面テクスチャ構造を示す。更に、第一の電極
層(透明電極)2の表面が凹凸を含む表面テクスチャ構
造を有する場合、光電変換ユニットの表面は、第一の電
極層(透明電極)2の表面に比べて凹凸の粒径の小さな
テクスチャ構造が生じるため、広範囲の波長領域の光を
反射させるのに適した光閉じ込め効果の大きな構造とな
り好ましい。また、真性結晶質シリコン層の膜厚は0.
1μm以上10μm以下が好ましい。ただし、薄膜光電
変換ユニット10としては、太陽光の主波長域(400
〜1200nm)に吸収を有するものが好ましいため、
真性結晶質シリコン層に代えて、合金材料である非晶質
シリコンカーバイド層(例えば10原子%以下の炭素を
含有する非晶質シリコンからなる非晶質シリコンカーバ
イド層)や非晶質シリコンゲルマニウム層(例えば30
原子%以下のゲルマニウムを含有する非晶質シリコンか
らなる非晶質シリコンゲルマニウム層)を形成してもよ
い。The crystalline silicon photoelectric conversion layer, which is the intrinsic photoelectric conversion layer 102, is generally formed at a low temperature of 400 ° C. or lower, and hydrogen atoms that terminate defects at crystal grain boundaries or grains and inactivate them. Including a lot. From this perspective,
The hydrogen content of the photoelectric conversion layer 102 is preferably in the range of 1 to 30 atom%. This layer has a conductivity type determining impurity atom density of 1 × 10 18 cm −3 or less and is substantially formed as an intrinsic semiconductor thin film. Furthermore, it is preferable that most of the crystal grains contained in the intrinsic crystalline silicon layer grow in a columnar shape from the first electrode layer side and grow, and have a (110) preferred orientation plane parallel to the film surface thereof. This is because the crystalline silicon thin film having such a crystal orientation can be formed even if the surface of the first electrode layer (transparent electrode) 2 is substantially flat.
The surface of the photoelectric conversion unit deposited thereon has a surface texture structure including fine irregularities. Further, when the surface of the first electrode layer (transparent electrode) 2 has a surface texture structure including irregularities, the surface of the photoelectric conversion unit has irregular grains as compared with the surface of the first electrode layer (transparent electrode) 2. Since a texture structure having a small diameter is generated, a structure having a large light trapping effect suitable for reflecting light in a wide wavelength range is preferable. The thickness of the intrinsic crystalline silicon layer is 0.
It is preferably 1 μm or more and 10 μm or less. However, as the thin film photoelectric conversion unit 10, the main wavelength region of the sunlight (400
Since those having absorption at ~ 1200 nm) are preferable,
Instead of the intrinsic crystalline silicon layer, an amorphous silicon carbide layer which is an alloy material (for example, an amorphous silicon carbide layer made of amorphous silicon containing 10 atomic% or less of carbon) or an amorphous silicon germanium layer (Eg 30
An amorphous silicon germanium layer made of amorphous silicon containing germanium in an amount of atomic% or less may be formed.
【0024】図1では、以上のようにして光電変換ユニ
ット10を形成した後、本発明の特徴となる光散乱層3
が形成されており、更に光散乱層3は、第一の透明導電
性薄膜3aと透明絶縁性薄膜3bと第二の透明導電性薄
膜3cから形成されている。光電変換ユニットにおける
光吸収を高めるためには、光散乱層において効率よく光
散乱が行われることが重要である。この為には光散乱層
に、光電変換ユニット構成材料の屈折率に対し、よりか
け離れた値の屈折率を有する材料を配置することが好ま
しく、特に屈折率1.7以下の材料を用いることが好ま
しい。具体的には、SiO2、MgF2、CaF2等を積
層するのが好ましく、この中でも、屈折率が小さく、か
つ太陽光の主波長領域で光吸収が少ない透明材料である
SiO2(屈折率約1.5)が好適である。また、これ
らの光散乱性の高い材料は、光が光電変換ユニットを透
過してから、光散乱を受けて再度光電変換ユニットに入
射するまでの間に光が吸収されてしまう割合を低くする
為、より光電変換ユニットに近い側、特に界面に近い位
置に配置することが有利である。In FIG. 1, after the photoelectric conversion unit 10 is formed as described above, the light scattering layer 3 which is a feature of the present invention.
Further, the light scattering layer 3 is formed of a first transparent conductive thin film 3a, a transparent insulating thin film 3b, and a second transparent conductive thin film 3c. In order to increase the light absorption in the photoelectric conversion unit, it is important that light is efficiently scattered in the light scattering layer. For this purpose, it is preferable to dispose a material having a refractive index that is far away from the refractive index of the photoelectric conversion unit constituent material in the light scattering layer, and it is particularly preferable to use a material having a refractive index of 1.7 or less. preferable. Specifically, it is preferable to stack SiO 2 , MgF 2 , CaF 2, and the like. Among these, SiO 2 (refractive index, which is a transparent material having a small refractive index and little light absorption in the main wavelength region of sunlight) About 1.5) is preferred. In addition, these materials having high light scattering properties reduce the rate of light being absorbed between the time when light is transmitted through the photoelectric conversion unit and the time when the light is scattered and enters the photoelectric conversion unit again. It is advantageous to dispose on the side closer to the photoelectric conversion unit, particularly on the position closer to the interface.
【0025】一方、電極の一部である光散乱層には、膜
厚方向に電流を流す必要があるため、上記の屈折率1.
7以下の材料が比較的絶縁性の高い材料、即ち透明絶縁
性薄膜3bである場合には、これら材料に特定の配置を
取らせる必要があり、例えば表面被覆率を制御すること
で、膜厚方向の電流の流れを確保することができる。特
に、膜厚方向の電流の流れの確保と光散乱の程度の関係
から、表面被覆率は30〜70%、より好ましくは50
〜70%であることが好ましい。この様な方法は、屈折
率1.7以下の材料として、SiO2を使用する際に有
効である。また、同様の理由、更に生産性の点から、例
えばSiO2の様な透明絶縁性薄膜の膜厚は1〜50n
mが好ましく、5〜30nmがより好ましい。On the other hand, in the light-scattering layer which is a part of the electrode, it is necessary to pass a current in the film thickness direction.
When the material of 7 or less is a material having a relatively high insulating property, that is, the transparent insulating thin film 3b, it is necessary to allow these materials to have a specific arrangement. For example, by controlling the surface coverage, the film thickness can be increased. It is possible to secure the flow of electric current in the direction. In particular, the surface coverage is 30 to 70%, more preferably 50, from the viewpoint of ensuring the flow of current in the film thickness direction and the degree of light scattering.
It is preferably ˜70%. Such a method is effective when using SiO 2 as a material having a refractive index of 1.7 or less. Further, for the same reason and from the viewpoint of productivity, the film thickness of the transparent insulating thin film such as SiO 2 is 1 to 50 n.
m is preferable and 5-30 nm is more preferable.
【0026】また、光散乱層3に適度な導電性を持たせ
るために、前記透明絶縁性薄膜3b以外に、透明導電性
薄膜を配置させることが好ましい。透明導電性薄膜自体
にも光散乱層としての機能を持たせるには、屈折率が2
程度の透明導電性酸化物薄膜、例えばZnO、Sn
O2、ITO等により形成するのが好ましく、透明絶縁
性薄膜(例えばSiO2)を透明導電性酸化物層で挟む
構造とすることがより好ましい。光散乱層3全体として
は、30〜150nmの範囲内の厚さであることが好ま
しく、50〜110nmがより好ましい。これよりも薄
すぎれば、十分な光散乱効果と多重干渉効果が得られ
ず、逆に厚すぎれば光散乱層内での吸収ロスによる影響
が発生する。良好な導電性を確保するために光電変換ユ
ニット10と透明絶縁性薄膜3bとの間に透明導電性薄
膜3aを形成する場合、透明導電性薄膜3aの厚さは5
nm以上が好ましいが、無くてもよい。Further, in order to give the light scattering layer 3 proper conductivity, it is preferable to dispose a transparent conductive thin film in addition to the transparent insulating thin film 3b. In order for the transparent conductive thin film itself to also have a function as a light scattering layer, the refractive index should be 2
Transparent conductive oxide thin film, for example, ZnO, Sn
It is preferably formed of O 2 , ITO or the like, and more preferably has a structure in which a transparent insulating thin film (eg, SiO 2 ) is sandwiched between transparent conductive oxide layers. The light scattering layer 3 as a whole preferably has a thickness within the range of 30 to 150 nm, more preferably 50 to 110 nm. If it is thinner than this, a sufficient light scattering effect and multiple interference effect cannot be obtained, while if it is too thick, the effect of absorption loss in the light scattering layer occurs. When the transparent conductive thin film 3a is formed between the photoelectric conversion unit 10 and the transparent insulating thin film 3b to ensure good conductivity, the thickness of the transparent conductive thin film 3a is 5
It is preferably not less than nm, but may be omitted.
【0027】光散乱層3を光電変換ユニット10上に形
成させる方法は特に限定されないが、下地となる光電変
換ユニット10にダメージが少なく低温で形成できる方
法が望ましい。例えば、200℃以下の条件でスパッタ
法やMOCVD法により形成することが好ましい。特
に、光電変換ユニット10上に直接形成する透明導電性
薄膜3aは、MOCVD法によって形成することが好適
である。The method for forming the light-scattering layer 3 on the photoelectric conversion unit 10 is not particularly limited, but it is preferable to use a method that can form the light-scattering layer 3 at a low temperature with little damage to the underlying photoelectric conversion unit 10. For example, it is preferably formed by a sputtering method or a MOCVD method under the condition of 200 ° C. or lower. In particular, the transparent conductive thin film 3a directly formed on the photoelectric conversion unit 10 is preferably formed by MOCVD.
【0028】光反射性金属層4としては、Al、Ag、
Au、Cu、PtおよびCrから選ばれる少なくとも一
つの材料からなる少なくとも一層を配置することが好ま
しく、その形成方法としてはスパッタ法または蒸着法が
利用できる。As the light-reflecting metal layer 4, Al, Ag,
It is preferable to dispose at least one layer made of at least one material selected from Au, Cu, Pt, and Cr, and a sputtering method or a vapor deposition method can be used as a formation method thereof.
【0029】本発明のもう一つの実施の形態によるハイ
ブリッド型薄膜光電変換装置の模式的な断面図を図2に
示すが、本発明はこれに限定されるものではない。A schematic cross-sectional view of a hybrid type thin film photoelectric conversion device according to another embodiment of the present invention is shown in FIG. 2, but the present invention is not limited to this.
【0030】図2に示す薄膜光電変換装置は、透明基板
1上に、第一の電極層(通常、透明電極が使用される)
2、第一の光電変換ユニット20、透明導電性薄膜6
a、透明絶縁性薄膜6b、透明導電性薄膜6cからなる
光散乱層6、第二の光電変換ユニット21、透明導電層
7、及び光反射性金属層4が順次積層された構造を有し
ている。In the thin film photoelectric conversion device shown in FIG. 2, a first electrode layer (usually a transparent electrode is used) on a transparent substrate 1.
2, first photoelectric conversion unit 20, transparent conductive thin film 6
a, a light-scattering layer 6 composed of a transparent insulating thin film 6b, a transparent conductive thin film 6c, a second photoelectric conversion unit 21, a transparent conductive layer 7, and a light-reflecting metal layer 4 are sequentially stacked. There is.
【0031】光電変換ユニットは図示したように2つで
もよいが、3つ以上積層してもよい。また、3つ以上の
光電変換ユニットを積層した場合、光散乱層6は各光電
変換ユニット間に形成されてもよいが、1層でもよい。Two photoelectric conversion units may be provided as shown in the figure, but three or more photoelectric conversion units may be laminated. When three or more photoelectric conversion units are stacked, the light scattering layer 6 may be formed between the photoelectric conversion units, but may be one layer.
【0032】2つ以上の光電変換ユニットを積層した薄
膜光電変換装置(通常、タンデム型薄膜光電変換装置と
呼ばれる)では、光電変換装置の光入射側に大きなバン
ドギャップを有する光電変換ユニットを配置し、その後
ろに順に小さなバンドギャップを有する(例えばSi−
Ge合金の)光電変換ユニットを配置することにより、
入射光の広い波長範囲にわたって光電変換を可能にし、
これによって装置全体としての変換効率の向上が図られ
る。タンデム型薄膜光電変換装置の中でも、非晶質光電
変換ユニットと結晶質光電変換ユニットを積層したもの
はハイブリッド型薄膜光電変換装置と称されるが、この
場合には、上記の理由から、第一の光電変換ユニットと
して非晶質光電変換ユニットを配置し、第二の光電変換
ユニットとして結晶質光電変換ユニットを配置すること
が好ましい。In a thin film photoelectric conversion device in which two or more photoelectric conversion units are laminated (usually called a tandem type thin film photoelectric conversion device), a photoelectric conversion unit having a large band gap is arranged on the light incident side of the photoelectric conversion device. , Followed by a small band gap in that order (eg Si-
By arranging the photoelectric conversion unit (of Ge alloy),
Enables photoelectric conversion over a wide wavelength range of incident light,
This improves the conversion efficiency of the entire device. Among the tandem type thin film photoelectric conversion devices, one in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are laminated is called a hybrid type thin film photoelectric conversion device. It is preferable to dispose an amorphous photoelectric conversion unit as the photoelectric conversion unit and the crystalline photoelectric conversion unit as the second photoelectric conversion unit.
【0033】図2の第一の光電変換ユニット20として
非晶質シリコン系光電変換ユニットを形成し、第二の光
電変換ユニット21として結晶質シリコン系薄膜光電変
換ユニットを形成する場合には、いずれもpin型の順
に基板温度を400℃以下とした低温のプラズマCVD
法により形成することが好ましい。When an amorphous silicon type photoelectric conversion unit is formed as the first photoelectric conversion unit 20 and a crystalline silicon type thin film photoelectric conversion unit is formed as the second photoelectric conversion unit 21 in FIG. Also, low temperature plasma CVD in which the substrate temperature is 400 ° C. or less in the order of the pin type.
It is preferably formed by a method.
【0034】中間層として用いられる光散乱層6は、光
散乱層6に到達した光の一部を光散乱層6よりも光入射
側に位置する光電変換ユニット(例えば第一の光電変換
ユニット20)へ反射させ、残りの光を後方に位置する
光電変換ユニット(例えば第二の光電変換ユニット2
1)へ透過させる役割を果たす。光散乱層において効率
よく光散乱させる為には光散乱層に、光電変換ユニット
構成材料の屈折率に対し、よりかけ離れた値の屈折率を
有する材料を配置することが好ましく、特に屈折率1.
7以下の材料を用いることが好ましい。具体的には、S
iO2、MgF2、CaF2等を積層するのが好ましく、
この中でも、屈折率が小さく、かつ太陽光の主波長領域
で光吸収が少ない透明材料であるSiO2(屈折率約
1.5)が好適である。The light scattering layer 6 used as the intermediate layer is a photoelectric conversion unit (for example, the first photoelectric conversion unit 20) in which a part of the light reaching the light scattering layer 6 is located on the light incident side of the light scattering layer 6. ), And the remaining light is reflected to the rear of the photoelectric conversion unit (for example, the second photoelectric conversion unit 2).
It plays a role of transmitting to 1). In order to efficiently scatter light in the light scattering layer, it is preferable to dispose a material having a refractive index far from the refractive index of the photoelectric conversion unit constituent material in the light scattering layer, and particularly, the refractive index of 1.
It is preferable to use a material of 7 or less. Specifically, S
It is preferable to stack iO 2 , MgF 2 , CaF 2, etc.,
Among these, SiO 2 (refractive index about 1.5), which is a transparent material having a small refractive index and little light absorption in the main wavelength region of sunlight, is preferable.
【0035】一方、光散乱層6には、膜厚方向に電流を
流す必要があるため、上記の屈折率1.7以下の材料が
比較的絶縁性の高い材料、即ち透明絶縁性薄膜6bであ
る場合には、これら材料に特定の配置を取らせる必要が
あり、例えば表面被覆率を制御することで、膜厚方向の
電流の流れを確保することができる。特に、膜厚方向の
電流の流れの確保と光散乱の程度の関係から、表面被覆
率は30〜70%、より好ましくは50〜70%である
ことが好ましい。この様な方法は、屈折率1.7以下の
材料として、SiO2を使用する際に有効である。On the other hand, since it is necessary to pass a current through the light-scattering layer 6 in the film thickness direction, the material having a refractive index of 1.7 or less is a material having a relatively high insulating property, that is, the transparent insulating thin film 6b. In some cases, it is necessary to allow these materials to have a specific arrangement. For example, by controlling the surface coverage, the flow of current in the film thickness direction can be secured. In particular, the surface coverage is preferably 30 to 70%, more preferably 50 to 70% from the viewpoint of ensuring the flow of current in the film thickness direction and the degree of light scattering. Such a method is effective when using SiO 2 as a material having a refractive index of 1.7 or less.
【0036】また、光散乱層6に適度な導電性を持たせ
るために、前記透明絶縁性薄膜6b以外に、透明導電性
薄膜を配置させることが好ましい。透明導電性薄膜自体
にも光散乱層としての機能を持たせるには、屈折率が2
程度の透明導電性酸化物薄膜、例えばZnO、Sn
O2、ITO等により形成するのが好ましく、透明絶縁
性薄膜(例えばSiO2)を透明導電性酸化物層で挟む
構造とすることがより好ましい。光散乱層6全体として
は、第二の電極層の一部として用いる場合よりも薄い1
0〜100nmの範囲30〜150nmの範囲内の厚さ
であることが好ましく、20〜70nmがより好まし
い。これよりも薄すぎれば、十分な光散乱効果と多重干
渉効果が得られず、逆に厚すぎれば光散乱層内での吸収
ロスによる影響が発生する。Further, in order to give the light scattering layer 6 proper conductivity, it is preferable to dispose a transparent conductive thin film in addition to the transparent insulating thin film 6b. In order for the transparent conductive thin film itself to also have a function as a light scattering layer, the refractive index should be 2
Transparent conductive oxide thin film, for example, ZnO, Sn
It is preferably formed of O 2 , ITO or the like, and more preferably has a structure in which a transparent insulating thin film (eg, SiO 2 ) is sandwiched between transparent conductive oxide layers. The light scattering layer 6 as a whole is thinner than the case where it is used as a part of the second electrode layer.
The thickness is preferably in the range of 0 to 100 nm, 30 to 150 nm, and more preferably 20 to 70 nm. If it is thinner than this, a sufficient light scattering effect and multiple interference effect cannot be obtained, while if it is too thick, the effect of absorption loss in the light scattering layer occurs.
【0037】第二の光電変換ユニット21上には、透明
導電層7と光反射性金属層4からなる第二の電極層が形
成される。透明導電層7の代わりに、図1で用いた光散
乱層を適用しても構わない。A second electrode layer composed of the transparent conductive layer 7 and the light-reflecting metal layer 4 is formed on the second photoelectric conversion unit 21. Instead of the transparent conductive layer 7, the light scattering layer used in FIG. 1 may be applied.
【0038】本説明では、基板側から光を入射する構造
を採用しているが、逆に基板上に第二の電極層、光電変
換ユニットを形成した後に第一の電極層を形成するよう
な構造であってもよい。In this description, the structure in which light is incident from the substrate side is adopted, but conversely, the first electrode layer is formed after the second electrode layer and the photoelectric conversion unit are formed on the substrate. It may be a structure.
【0039】[0039]
【実施例】以下、本発明を比較例とともにいくつかの実
施例に基づいて詳細に説明するが、本発明はその趣旨を
超えない限り以下の記載例に限定されるものではない。EXAMPLES The present invention will be described below in detail with reference to some examples together with comparative examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
【0040】(実施例1)実施例1として、図1に示さ
れる薄膜光電変換装置で、特に光電変換ユニットが結晶
質シリコン系光電変換ユニットであるものを作製した。(Example 1) As Example 1, a thin film photoelectric conversion device shown in FIG. 1 was produced, in which the photoelectric conversion unit was a crystalline silicon photoelectric conversion unit.
【0041】厚み1.1mm、127mm角のガラス基
板1上に、第一の電極層(透明電極)2として厚さ80
0nmのピラミッド状SnO2膜を熱CVD法にて形成
した。得られた第一の電極層(透明電極)2のシート抵
抗は約9Ω/□であった。この第一の電極層(透明電
極)2の上に、厚さ15nmのp型微結晶シリコン層1
01、厚さ2.0μmの真性結晶質シリコン光電変換層
102、及び厚さ15nmのn型微結晶シリコン層10
3からなる結晶質シリコン光電変換ユニット10を順次
プラズマCVD法で形成した。結晶質シリコン光電変換
ユニットを形成した後、基板を大気中に取り出し、光散
乱層3の第一の透明導電性薄膜3aとしてMOCVD法
により150℃の温度で厚さ5nmのZnO膜を形成し
た。MOCVD法にて形成する際、ドーパントとしてB
2H6ガスを用いた。続いて、透明絶縁性薄膜3bとして
スパッタ法により150℃の温度で厚さ4nmのSiO
2膜を形成した。この時、表面被覆率を制御するため
に、直径2mmの穴を多数あけたメタルマスクを用い
た。SiO2の被覆率は、50%であった。その後、第
二の透明導電性薄膜3cとして、3aと同様に厚さ80
nmのZnO膜を形成した。On the glass substrate 1 having a thickness of 1.1 mm and 127 mm square, the first electrode layer (transparent electrode) 2 having a thickness of 80 is formed.
A 0 nm pyramidal SnO 2 film was formed by the thermal CVD method. The sheet resistance of the obtained first electrode layer (transparent electrode) 2 was about 9 Ω / □. A p-type microcrystalline silicon layer 1 having a thickness of 15 nm is formed on the first electrode layer (transparent electrode) 2.
01, 2.0 μm thick intrinsic crystalline silicon photoelectric conversion layer 102, and 15 nm thick n-type microcrystalline silicon layer 10
The crystalline silicon photoelectric conversion unit 10 composed of 3 was sequentially formed by the plasma CVD method. After forming the crystalline silicon photoelectric conversion unit, the substrate was taken out into the atmosphere, and a ZnO film having a thickness of 5 nm was formed as the first transparent conductive thin film 3a of the light scattering layer 3 by the MOCVD method at a temperature of 150 ° C. When forming by MOCVD method, B as a dopant
2 H 6 gas was used. Subsequently, as the transparent insulating thin film 3b, SiO 4 having a thickness of 4 nm is formed at a temperature of 150 ° C. by a sputtering method.
Two films were formed. At this time, in order to control the surface coverage, a metal mask having a large number of holes with a diameter of 2 mm was used. The coverage of SiO 2 was 50%. Then, as the second transparent conductive thin film 3c, the thickness 80
nm ZnO film was formed.
【0042】最後に、第二の電極層4として厚さ300
nmのAgをスパッタ法にて形成した。Finally, the second electrode layer 4 has a thickness of 300.
nm Ag was formed by the sputtering method.
【0043】以上のようにして得られた結晶質シリコン
系薄膜光電変換装置(受光面積1cm2)にAM1.5
の光を100mW/cm2の光量で照射して出力特性を
測定したところ、開放電圧(Voc)が0.52V、短
絡電流密度(Jsc)が24.7mA/cm2、曲線因
子(F.F.)が70.4%、そして変換効率が9.0
4%であった。AM1.5 was applied to the crystalline silicon thin film photoelectric conversion device (light receiving area 1 cm 2 ) obtained as described above.
When the output characteristics were measured by irradiating the light of 100 mW / cm 2 with a light amount of 100 mW / cm 2 , the open circuit voltage (Voc) was 0.52 V, the short circuit current density (Jsc) was 24.7 mA / cm 2 , and the fill factor (F.F. .) Is 70.4% and the conversion efficiency is 9.0.
It was 4%.
【0044】(実施例2〜8)実施例2〜8において
も、実施例1と同様に結晶質シリコン系薄膜光電変換装
置を作製した。ただし、実施例1と異なるのは、光散乱
層3の透明導電性薄膜3a及び透明絶縁性薄膜3bの膜
厚、透明絶縁性薄膜3bの表面被覆率である。(Examples 2 to 8) In Examples 2 to 8 as well, a crystalline silicon-based thin film photoelectric conversion device was manufactured in the same manner as in Example 1. However, what is different from Example 1 is the film thickness of the transparent conductive thin film 3a and the transparent insulating thin film 3b of the light scattering layer 3, and the surface coverage of the transparent insulating thin film 3b.
【0045】実施例1と同様に、それぞれの実施例にて
得られた結晶質シリコン系薄膜光電変換装置(受光面積
1cm2)の各出力特性を測定した。得られた結果を表
1に示す。In the same manner as in Example 1, each output characteristic of the crystalline silicon thin film photoelectric conversion device (light receiving area 1 cm 2 ) obtained in each Example was measured. The results obtained are shown in Table 1.
【0046】(比較例1)比較例1として、図1におけ
る光散乱層3の代わりに単一の透明導電層を形成した結
晶質シリコン系薄膜光電変換装置を作製した。単一の透
明導電層として、MOCVD法により150℃の温度で
厚さ100nmのZnO膜を形成した。MOCVD法に
て形成する際、ドーパントとしてB2H6ガスを用いた。
その他の構成については、実施例1と同様にして作製
し、同様の出力特性測定を行った。得られた結果を表1
に示す。Comparative Example 1 As Comparative Example 1, a crystalline silicon-based thin film photoelectric conversion device in which a single transparent conductive layer was formed instead of the light scattering layer 3 in FIG. 1 was produced. As a single transparent conductive layer, a 100 nm thick ZnO film was formed at a temperature of 150 ° C. by the MOCVD method. When forming by the MOCVD method, using a B 2 H 6 gas as a dopant.
Other configurations were produced in the same manner as in Example 1, and the same output characteristics were measured. The results obtained are shown in Table 1.
Shown in.
【0047】[0047]
【表1】 [Table 1]
【0048】表1の結果より、実施例1〜8はいずれも
比較例1に比べ、JscおよびEff.ともに向上して
いる。From the results shown in Table 1, all of Examples 1 to 8 were compared with Comparative Example 1 in Jsc and Eff. Both are improving.
【0049】実施例1〜4は、透明絶縁性薄膜3bの膜
厚を変化させているが、膜厚が厚くなるにつれてJsc
の値も増加している。透明絶縁性薄膜3bは厚いほど光
散乱効果が大きくなることから、入射光は光電変換ユニ
ットとの界面近傍にある屈折率の最も小さな透明絶縁性
薄膜3bで反射、散乱されていると考えられる。そのた
め、透明導電性薄膜と光反射性金属層の界面での反射が
主である比較例1に比べて、透明導電性薄膜内での吸収
ロスも減少していると考えられる。一方、透明絶縁性薄
膜3bの膜厚は厚くなるにつれて、若干ではあるがF.
F.が低下する傾向が見られる。これは透明絶縁性薄膜
3bが厚くなったことにより、光散乱層の導電性が低下
したと考えられる。従って、実施例1〜4の場合は、透
明絶縁性薄膜3bの膜厚が10nmのときにJscと
F.F.のバランスがとれ、最もEff.が高くなって
いる。In Examples 1 to 4, the thickness of the transparent insulating thin film 3b is changed, but Jsc increases as the film thickness increases.
The value of is also increasing. Since the thicker the transparent insulating thin film 3b, the greater the light scattering effect, it is considered that the incident light is reflected and scattered by the transparent insulating thin film 3b having the smallest refractive index in the vicinity of the interface with the photoelectric conversion unit. Therefore, it is considered that the absorption loss in the transparent conductive thin film is reduced as compared with Comparative Example 1 in which the reflection is mainly at the interface between the transparent conductive thin film and the light reflective metal layer. On the other hand, as the thickness of the transparent insulating thin film 3b increases, the F.
F. Is seen to decrease. It is considered that this is because the transparent insulating thin film 3b became thicker and the conductivity of the light scattering layer was lowered. Therefore, in Examples 1 to 4, when the thickness of the transparent insulating thin film 3b was 10 nm, the Jsc and F. F. Balance and the most Eff. Is high.
【0050】実施例5は、光電変換ユニット上に形成さ
れる透明導電性薄膜3aの膜厚を薄くしたものである。
実施例6は、透明導電性薄膜3aを挿入せず、更に透明
絶縁性薄膜3bの表面被覆率を30%にしたものであ
る。表1には示していないが、透明絶縁性薄膜3bの表
面被覆率が50%のままで、透明導電性薄膜3aを挿入
しないものは、F.F.が大幅に低下し、比較例1より
もEff.が低いものとなった。従って、透明導電性薄
膜3aの膜厚は5nm以上が好ましい。実施例6より、
透明導電性薄膜3aを挿入しない場合は、透明絶縁性薄
膜3bの膜厚を薄くし、更に表面被覆率を低下させるこ
とにより、F.F.は維持できるる。しかし、光散乱効
果を得るためには、表面被覆率30%以上が好ましい。In the fifth embodiment, the transparent conductive thin film 3a formed on the photoelectric conversion unit is thinned.
In Example 6, the transparent conductive thin film 3a was not inserted, and the surface coverage of the transparent insulating thin film 3b was set to 30%. Although not shown in Table 1, those having the surface coverage of the transparent insulating thin film 3b of 50% and the transparent conductive thin film 3a not inserted are described in F.I. F. Significantly decreased, and Eff. Became low. Therefore, the thickness of the transparent conductive thin film 3a is preferably 5 nm or more. From Example 6,
When the transparent conductive thin film 3a is not inserted, the film thickness of the transparent insulating thin film 3b is reduced, and the surface coverage is further reduced. F. Can be maintained. However, in order to obtain the light scattering effect, the surface coverage is preferably 30% or more.
【0051】実施例3、7および8の比較から、透明絶
縁性薄膜3bでの光反射効果を有効に得るためには、透
明絶縁性薄膜3bの表面被覆率が50%以上であること
が好ましい。また、屈折率が最も小さな透明絶縁性薄膜
3bの不連続性が光散乱効果を高めているとも考えられ
るので、50〜70%の表面被覆率が好ましい。From the comparison of Examples 3, 7 and 8, in order to effectively obtain the light reflecting effect of the transparent insulating thin film 3b, the surface coverage of the transparent insulating thin film 3b is preferably 50% or more. . Further, since it is considered that the discontinuity of the transparent insulating thin film 3b having the smallest refractive index enhances the light scattering effect, a surface coverage of 50 to 70% is preferable.
【0052】(実施例9)実施例9としては、図2に示
されるようなハイブリッド型薄膜光電変換装置を作製し
た。実施例1で用いた第一の電極層(透明電極)2付き
ガラス基板上に、厚さ15nmのp型非晶質シリコンカ
ーバイド層201、厚さ0.25μmの真性非晶質シリ
コン光電変換層202、及び厚さ15nmのn型微結晶
シリコン層203を順次プラズマCVD法で形成した。
続いて、光散乱層6を実施例1と同様の方法にて形成し
た。ただし、ZnOからなる透明導電性薄膜6aは10
nm、SiO2からなる透明絶縁性薄膜6bは10n
m、ZnOからなる透明導電性薄膜6cは10nmの膜
厚とした。引き続き、プラズマCVD法にて、厚さ15
nmのp型微結晶シリコン層211、厚さ2.0μmの
真性結晶質シリコン光電変換層212、及び厚さ15n
mのn型微結晶シリコン層213を順次形成した。その
後、透明導電層7として厚さ90nmのZnOと、光反
射性金属層4として厚さ300nmのAgをスパッタ法
にて順次形成した。Example 9 As Example 9, a hybrid type thin film photoelectric conversion device as shown in FIG. 2 was produced. On the glass substrate with the first electrode layer (transparent electrode) 2 used in Example 1, a p-type amorphous silicon carbide layer 201 having a thickness of 15 nm and an intrinsic amorphous silicon photoelectric conversion layer having a thickness of 0.25 μm were used. 202 and an n-type microcrystalline silicon layer 203 having a thickness of 15 nm were sequentially formed by a plasma CVD method.
Subsequently, the light scattering layer 6 was formed by the same method as in Example 1. However, the transparent conductive thin film 6a made of ZnO is 10
nm, the transparent insulating film 6b consisting of SiO 2 10n
The transparent conductive thin film 6c made of m and ZnO had a film thickness of 10 nm. Succeedingly, with plasma CVD method, thickness 15
nm p-type microcrystalline silicon layer 211, 2.0 μm thick intrinsic crystalline silicon photoelectric conversion layer 212, and 15 n thick
An n-type microcrystalline silicon layer 213 of m was sequentially formed. After that, ZnO having a thickness of 90 nm was formed as the transparent conductive layer 7, and Ag having a thickness of 300 nm was sequentially formed as the light reflective metal layer 4 by the sputtering method.
【0053】実施例1と同様の方法にて、得られたハイ
ブリッド型薄膜光電変換装置(受光面積1cm2)の出
力特性を測定したところ、Vocが1.34V、Jsc
が12.1mA/cm2、F.F.が72.4%、そし
て変換効率が11.7%であった。The output characteristics of the obtained hybrid type thin film photoelectric conversion device (light receiving area 1 cm 2 ) were measured by the same method as in Example 1. Voc was 1.34 V, Jsc
Of 12.1 mA / cm 2 , F.I. F. Was 72.4% and the conversion efficiency was 11.7%.
【0054】(比較例2)比較例2においては、実施例
9と同様の手順にて非晶質シリコン光電変換ユニットを
形成した後、基板を大気中に取り出し、光散乱層6の代
わりにスパッタ法にて150℃の温度で厚さ30nmの
ZnO膜を形成した以外は同じ方法でハイブリッド型薄
膜光電変換装置を作製した。Comparative Example 2 In Comparative Example 2, after the amorphous silicon photoelectric conversion unit was formed by the same procedure as in Example 9, the substrate was taken out into the atmosphere and sputtered instead of the light scattering layer 6. A hybrid type thin film photoelectric conversion device was produced by the same method except that a ZnO film having a thickness of 30 nm was formed at a temperature of 150 ° C. by the method.
【0055】以上のようにして得られたシリコン系薄膜
光電変換装置(受光面積1cm2)を、実施例1と同様
の方法にて出力特性したところ、Vocが1.32V、
Jscが11.7mA/cm2、F.F.が71.8
%、そして変換効率が11.1%であった。The output characteristics of the silicon-based thin film photoelectric conversion device (light receiving area: 1 cm 2 ) obtained as described above were measured in the same manner as in Example 1. Voc was 1.32 V.
Jsc is 11.7 mA / cm 2 , F.I. F. Is 71.8
%, And the conversion efficiency was 11.1%.
【0056】実施例9は比較例2に比べ、Jscが上昇
している。これは中間層として、光散乱層を挿入したこ
とにより、入射光が光散乱層内で不連続に介在する低屈
折率層にて一部光入射側に位置する光電変換ユニットに
反射され光入射側に位置する光電変換ユニットの感度が
上昇したこと、および光散乱層よりも後方に位置する光
電変換ユニットにも光散乱層で吸収されること無く透過
した光が光散乱層と裏面電極間で散乱し、効率よく吸収
されたことによると考えられる。また、実施例9では、
光散乱層形成時に光電変換ユニットへのダメージが少な
いMOCVD法を使用したため、VocおよびF.F.
が向上したと考えられる。In Example 9, Jsc is higher than in Comparative Example 2. This is because by inserting a light scattering layer as an intermediate layer, incident light is partially reflected by the photoelectric conversion unit located on the light incident side in the low refractive index layer which is discontinuously interposed in the light scattering layer and is incident on the light. The sensitivity of the photoelectric conversion unit located on the side is increased, and the light transmitted without being absorbed by the light scattering layer in the photoelectric conversion unit located behind the light scattering layer is transmitted between the light scattering layer and the back electrode. It is thought that it was scattered and efficiently absorbed. In addition, in Example 9,
Since the MOCVD method, which causes less damage to the photoelectric conversion unit when the light scattering layer is formed, Voc and F.I. F.
Is considered to have improved.
【0057】[0057]
【発明の効果】以上詳細に説明したように、本発明によ
れば、薄膜光電変換装置において、光電変換ユニットと
光反射性金属層の間に屈折率1.7以下の材料を含んで
構成される光散乱層を挿入することにより、変換効率の
改善された薄膜光電変換装置を提供することができる。
また、この該光散乱層を中間層としてハイブリッド型光
電変換装置に挿入した場合、非晶質シリコン層の膜厚を
増やすことなく非晶質シリコン光電変換ユニットによっ
て発生する電流を増加させることができる。もしくは、
同一の電流値を得るために必要な非晶質シリコン層の膜
厚を薄くできることから、非晶質シリコン層の膜厚増加
に応じて顕著となる光劣化による非晶質シリコン光電変
換ユニットの特性低下を押さえたハイブリッド型薄膜光
電変換装置の提供が可能となる。As described in detail above, according to the present invention, the thin film photoelectric conversion device is configured to include a material having a refractive index of 1.7 or less between the photoelectric conversion unit and the light reflective metal layer. It is possible to provide a thin film photoelectric conversion device having improved conversion efficiency by inserting a light scattering layer.
When the light scattering layer is inserted as an intermediate layer into a hybrid photoelectric conversion device, the current generated by the amorphous silicon photoelectric conversion unit can be increased without increasing the thickness of the amorphous silicon layer. . Or
Since the thickness of the amorphous silicon layer required to obtain the same current value can be reduced, the characteristics of the amorphous silicon photoelectric conversion unit due to photodegradation that becomes noticeable as the thickness of the amorphous silicon layer increases. It is possible to provide a hybrid type thin film photoelectric conversion device that suppresses the decrease.
【図1】本発明に係る薄膜光電変換装置の一例を示す断
面図。FIG. 1 is a sectional view showing an example of a thin film photoelectric conversion device according to the present invention.
【図2】本発明に係るハイブリッド型薄膜光電変換装置
の一例を示す断面図。FIG. 2 is a sectional view showing an example of a hybrid-type thin film photoelectric conversion device according to the present invention.
1 透明基板 2 第一の電極層 10 光電変換ユニット 101 一導電型層 102 真性光電変換層 103 逆導電型層 3 光散乱層 3a 第一の透明導電性薄膜 3b 透明絶縁性薄膜 3c 第二の透明導電性薄膜 4 光反射性金属層 5 太陽光 20 第一の光電変換ユニット 201 一導電型層 202 真性光電変換層 203 逆導電型層 21 第二の光電変換ユニット 211 一導電型層 212 真性光電変換層 213 逆導電型層 6 光散乱層 6a 透明導電性酸化物層 6b 絶縁性酸化物層 6c 透明導電性酸化物層 7 透明導電層 1 transparent substrate 2 First electrode layer 10 Photoelectric conversion unit 101 One conductivity type layer 102 Intrinsic photoelectric conversion layer 103 reverse conductivity type layer 3 Light scattering layer 3a First transparent conductive thin film 3b Transparent insulating thin film 3c Second transparent conductive thin film 4 Light reflective metal layer 5 sunlight 20 First photoelectric conversion unit 201 One conductivity type layer 202 Intrinsic photoelectric conversion layer 203 Reverse conductivity type layer 21 Second photoelectric conversion unit 211 One conductivity type layer 212 Intrinsic photoelectric conversion layer 213 Reverse conductivity type layer 6 Light scattering layer 6a Transparent conductive oxide layer 6b Insulating oxide layer 6c Transparent conductive oxide layer 7 Transparent conductive layer
Claims (13)
層,光反射性金属層を配置した電極層を少なくとも1つ
有し、更に該光散乱層が屈折率1.7以下の材料を含ん
で構成されていることを特徴とする薄膜光電変換装置。1. At least one electrode layer in which a light scattering layer and a light reflecting metal layer are arranged in this order from the photoelectric conversion unit side, and the light scattering layer further contains a material having a refractive index of 1.7 or less. A thin-film photoelectric conversion device having a structure.
の内の1つ以上の光電変換ユニット間に光散乱層を有
し、更に該光散乱層が屈折率1.7以下の材料を含んで
構成されていることを特徴とする薄膜光電変換装置。2. A photoelectric conversion unit comprising two or more photoelectric conversion units, a light scattering layer between at least one photoelectric conversion unit, and the light scattering layer further comprising a material having a refractive index of 1.7 or less. A thin-film photoelectric conversion device characterized in that it is configured to include.
料が透明絶縁性薄膜であり、表面被覆率30〜70%で
配置されていることを特徴とする請求項1,2記載の薄
膜光電変換装置。3. The material according to claim 1, wherein the material having a refractive index of 1.7 or less in the light scattering layer is a transparent insulating thin film and is arranged with a surface coverage of 30 to 70%. Thin film photoelectric conversion device.
絶縁性薄膜を含んで構成されていることを特徴とする、
請求項1から3の各項に記載の薄膜光電変換装置。4. The light-scattering layer includes a transparent conductive thin film and a transparent insulating thin film.
The thin film photoelectric conversion device according to each of claims 1 to 3.
と透明絶縁性薄膜と第二の透明導電性薄膜を含んで構成
されていることを特徴とする、請求項1から4の各項に
記載の薄膜光電変換装置。5. The light scattering layer according to claim 1, wherein the light scattering layer includes a first transparent conductive thin film, a transparent insulating thin film, and a second transparent conductive thin film. The thin-film photoelectric conversion device described in each item.
以上、150nm以下であることを特徴とする、請求項
1から5の各項に記載の薄膜光電変換装置。6. The thickness of the light scattering layer in the electrode layer is 30 nm.
As described above, the thickness is 150 nm or less, and the thin film photoelectric conversion device according to each of claims 1 to 5.
層の厚みが、10nm以上、100nm以下であること
を特徴とする、請求項1から6の各項に記載の薄膜光電
変換装置。7. The thin-film photoelectric conversion device according to claim 1, wherein the thickness of the light scattering layer arranged between the photoelectric conversion units is 10 nm or more and 100 nm or less.
つ以上の結晶質シリコン系光電変換ユニットを含むこと
を特徴とする請求項1から7の各項に記載の薄膜光電変
換装置。8. The photoelectric conversion unit has at least one
8. The thin film photoelectric conversion device according to claim 1, comprising one or more crystalline silicon photoelectric conversion units.
つの非晶質光電変換ユニットおよび少なくとも1つの結
晶質光電変換ユニットを含むことを特徴とする請求項1
から8の各項に記載の薄膜光電変換装置。9. The photoelectric conversion unit has at least one
4. One amorphous photoelectric conversion unit and at least one crystalline photoelectric conversion unit.
8. The thin-film photoelectric conversion device described in each item 1 to 8.
膜が、酸化亜鉛、酸化錫、またはインジウム錫酸化物か
ら選ばれる少なくとも1つの透明導電性酸化物を含んで
形成されていることを特徴とする請求項1から9の各項
に記載の薄膜光電変換装置。10. The transparent conductive thin film included in the light scattering layer is formed by including at least one transparent conductive oxide selected from zinc oxide, tin oxide, and indium tin oxide. The thin film photoelectric conversion device according to each of claims 1 to 9.
膜が、酸化珪素を含んで形成されていることを特徴とす
る請求項1から11の各項に記載の薄膜光電変換装置。11. The thin-film photoelectric conversion device according to claim 1, wherein the transparent insulating thin film included in the light-scattering layer contains silicon oxide.
層,光反射性金属層を配置した電極層を少なくとも1つ
有し、更に該光散乱層が透明導電性薄膜および透明絶縁
性薄膜を含んで構成されていることを特徴とする薄膜光
電変換装置。12. The photoelectric conversion unit has at least one electrode layer in which a light scattering layer and a light reflecting metal layer are arranged in this order from the photoelectric conversion unit side, and the light scattering layer further includes a transparent conductive thin film and a transparent insulating thin film. And a thin film photoelectric conversion device.
その内の1つ以上の光電変換ユニット間に光散乱層を有
し、更に該光散乱層が透明導電性薄膜および透明絶縁性
薄膜を含んで構成されていることを特徴とする薄膜光電
変換装置。13. Having two or more photoelectric conversion units,
A thin-film photoelectric conversion device having a light-scattering layer between one or more photoelectric conversion units therein, and the light-scattering layer further including a transparent conductive thin film and a transparent insulating thin film. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002100664A JP4222500B2 (en) | 2002-04-02 | 2002-04-02 | Silicon-based thin film photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002100664A JP4222500B2 (en) | 2002-04-02 | 2002-04-02 | Silicon-based thin film photoelectric conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003298088A true JP2003298088A (en) | 2003-10-17 |
JP4222500B2 JP4222500B2 (en) | 2009-02-12 |
Family
ID=29388451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002100664A Expired - Fee Related JP4222500B2 (en) | 2002-04-02 | 2002-04-02 | Silicon-based thin film photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4222500B2 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005088734A1 (en) * | 2004-03-17 | 2005-09-22 | Kaneka Corp | Thin film photoelectric converter |
WO2005093856A1 (en) * | 2004-03-26 | 2005-10-06 | Kaneka Corporation | Process for producing thin film photoelectric converter |
JP2006120737A (en) * | 2004-10-19 | 2006-05-11 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion element |
JP2006128478A (en) * | 2004-10-29 | 2006-05-18 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion device |
EP1670065A1 (en) * | 2004-12-10 | 2006-06-14 | Mitsubishi Heavy Industries, Ltd. | Light-scattering film and optical device using the same |
JP2006310348A (en) * | 2005-04-26 | 2006-11-09 | Sanyo Electric Co Ltd | Stacked photovoltaic device |
WO2007074683A1 (en) * | 2005-12-26 | 2007-07-05 | Kaneka Corporation | Stacked photoelectric transducer |
JP2008506249A (en) * | 2004-07-07 | 2008-02-28 | サン−ゴバン グラス フランス | Solar cell and solar module |
JP2008258540A (en) * | 2007-04-09 | 2008-10-23 | Shin Etsu Chem Co Ltd | Method for producing single crystal silicon solar cell and single crystal silicon solar cell |
JP2008270562A (en) * | 2007-04-20 | 2008-11-06 | Sanyo Electric Co Ltd | Multi-junction type solar cell |
EP2091085A2 (en) * | 2008-02-12 | 2009-08-19 | SCHOTT Solar GmbH | Photovoltaic module and method for its production |
WO2009119129A1 (en) * | 2008-03-28 | 2009-10-01 | 三菱重工業株式会社 | Photoelectric conversion device and method for manufacturing the same |
WO2009119125A1 (en) * | 2008-03-28 | 2009-10-01 | 三菱重工業株式会社 | Photoelectric converter |
WO2010004811A1 (en) * | 2008-07-07 | 2010-01-14 | 三菱電機株式会社 | Thin film solar cell and manufacturing method thereof |
JP2010141198A (en) * | 2008-12-12 | 2010-06-24 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion device |
WO2010104041A1 (en) * | 2009-03-12 | 2010-09-16 | 三菱電機株式会社 | Thin film solar cell and production method thereof |
US20100282297A1 (en) * | 2007-10-30 | 2010-11-11 | Sanyo Electric Co., Ltd. | Solar cell |
WO2011044766A1 (en) * | 2009-10-14 | 2011-04-21 | Guo Jianguo | Thin-film photovoltaic cell with external voltage source that provides electric field effect |
KR20110070539A (en) * | 2009-12-18 | 2011-06-24 | 엘지디스플레이 주식회사 | Thin film solar cell and manufacturing method thereof |
JP2011181837A (en) * | 2010-03-03 | 2011-09-15 | Kaneka Corp | Photoelectric conversion device |
WO2012073941A1 (en) * | 2010-11-29 | 2012-06-07 | シャープ株式会社 | Photoelectric conversion element |
EP2293348A3 (en) * | 2009-09-04 | 2012-06-13 | Kisco | Photovoltaic device and method for manufacturing the same |
JP2012151438A (en) * | 2011-01-14 | 2012-08-09 | Lg Electronics Inc | Thin film solar cell and manufacturing method of the same |
JP2012191187A (en) * | 2011-02-21 | 2012-10-04 | Semiconductor Energy Lab Co Ltd | Photoelectric conversion device |
JP2013520001A (en) * | 2010-02-10 | 2013-05-30 | タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ | Lamination system for producing solar cells on a metal substrate, and method for producing the lamination system |
US20130160846A1 (en) * | 2011-05-13 | 2013-06-27 | Sanyo Electric Co., Ltd. | Photovoltaic device |
US20140124030A1 (en) * | 2011-06-30 | 2014-05-08 | Kaneka Corporation | Thin film solar cell and method for manufacturing same |
JP5554409B2 (en) * | 2010-06-21 | 2014-07-23 | 三菱電機株式会社 | Photoelectric conversion device |
US9224886B2 (en) * | 2010-02-10 | 2015-12-29 | Lg Electronics Inc. | Silicon thin film solar cell |
CN105449013A (en) * | 2014-09-19 | 2016-03-30 | 株式会社东芝 | Photoelectric conversion device, and solar cell |
-
2002
- 2002-04-02 JP JP2002100664A patent/JP4222500B2/en not_active Expired - Fee Related
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005088734A1 (en) * | 2004-03-17 | 2005-09-22 | Kaneka Corp | Thin film photoelectric converter |
WO2005093856A1 (en) * | 2004-03-26 | 2005-10-06 | Kaneka Corporation | Process for producing thin film photoelectric converter |
JP2008506249A (en) * | 2004-07-07 | 2008-02-28 | サン−ゴバン グラス フランス | Solar cell and solar module |
JP2006120737A (en) * | 2004-10-19 | 2006-05-11 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion element |
JP2006128478A (en) * | 2004-10-29 | 2006-05-18 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion device |
EP1670065A1 (en) * | 2004-12-10 | 2006-06-14 | Mitsubishi Heavy Industries, Ltd. | Light-scattering film and optical device using the same |
US8129611B2 (en) | 2004-12-10 | 2012-03-06 | Mitsubishi Heavy Industries, Ltd. | Light-scattering film and optical device using the same |
US7952018B2 (en) * | 2005-04-26 | 2011-05-31 | Sanyo Electric Co., Ltd. | Stacked photovoltaic apparatus |
JP2006310348A (en) * | 2005-04-26 | 2006-11-09 | Sanyo Electric Co Ltd | Stacked photovoltaic device |
JP5180590B2 (en) * | 2005-12-26 | 2013-04-10 | 株式会社カネカ | Stacked photoelectric conversion device |
WO2007074683A1 (en) * | 2005-12-26 | 2007-07-05 | Kaneka Corporation | Stacked photoelectric transducer |
US7851695B2 (en) | 2005-12-26 | 2010-12-14 | Kaneka Corporation | Stacked-type photoelectric conversion device |
JP2008258540A (en) * | 2007-04-09 | 2008-10-23 | Shin Etsu Chem Co Ltd | Method for producing single crystal silicon solar cell and single crystal silicon solar cell |
JP2008270562A (en) * | 2007-04-20 | 2008-11-06 | Sanyo Electric Co Ltd | Multi-junction type solar cell |
US20100282297A1 (en) * | 2007-10-30 | 2010-11-11 | Sanyo Electric Co., Ltd. | Solar cell |
EP2091085A2 (en) * | 2008-02-12 | 2009-08-19 | SCHOTT Solar GmbH | Photovoltaic module and method for its production |
EP2091085A3 (en) * | 2008-02-12 | 2012-12-12 | SCHOTT Solar AG | Photovoltaic module and method for its production |
WO2009119129A1 (en) * | 2008-03-28 | 2009-10-01 | 三菱重工業株式会社 | Photoelectric conversion device and method for manufacturing the same |
WO2009119125A1 (en) * | 2008-03-28 | 2009-10-01 | 三菱重工業株式会社 | Photoelectric converter |
KR100981900B1 (en) * | 2008-03-28 | 2010-09-13 | 미츠비시 쥬고교 가부시키가이샤 | Photoelectric conversion device and method for manufacturing the same |
WO2010004811A1 (en) * | 2008-07-07 | 2010-01-14 | 三菱電機株式会社 | Thin film solar cell and manufacturing method thereof |
JP5127925B2 (en) * | 2008-07-07 | 2013-01-23 | 三菱電機株式会社 | Thin film solar cell and manufacturing method thereof |
JP2010141198A (en) * | 2008-12-12 | 2010-06-24 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion device |
WO2010104041A1 (en) * | 2009-03-12 | 2010-09-16 | 三菱電機株式会社 | Thin film solar cell and production method thereof |
JP5197845B2 (en) * | 2009-03-12 | 2013-05-15 | 三菱電機株式会社 | Thin film solar cell and manufacturing method thereof |
EP2293348A3 (en) * | 2009-09-04 | 2012-06-13 | Kisco | Photovoltaic device and method for manufacturing the same |
US8916771B2 (en) | 2009-09-04 | 2014-12-23 | Intellectual Discovery Co., Ltd. | Photovoltaic device and method for manufacturing the same |
WO2011044766A1 (en) * | 2009-10-14 | 2011-04-21 | Guo Jianguo | Thin-film photovoltaic cell with external voltage source that provides electric field effect |
KR101626364B1 (en) | 2009-12-18 | 2016-06-02 | 엘지디스플레이 주식회사 | Thin film solar cell and method for fabricaitng the same |
KR20110070539A (en) * | 2009-12-18 | 2011-06-24 | 엘지디스플레이 주식회사 | Thin film solar cell and manufacturing method thereof |
JP2013520001A (en) * | 2010-02-10 | 2013-05-30 | タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ | Lamination system for producing solar cells on a metal substrate, and method for producing the lamination system |
KR101584376B1 (en) * | 2010-02-10 | 2016-01-12 | 엘지전자 주식회사 | Silicon thin film solar cell |
US9224886B2 (en) * | 2010-02-10 | 2015-12-29 | Lg Electronics Inc. | Silicon thin film solar cell |
JP2011181837A (en) * | 2010-03-03 | 2011-09-15 | Kaneka Corp | Photoelectric conversion device |
JP5554409B2 (en) * | 2010-06-21 | 2014-07-23 | 三菱電機株式会社 | Photoelectric conversion device |
WO2012073941A1 (en) * | 2010-11-29 | 2012-06-07 | シャープ株式会社 | Photoelectric conversion element |
JP2012151438A (en) * | 2011-01-14 | 2012-08-09 | Lg Electronics Inc | Thin film solar cell and manufacturing method of the same |
JP2012191187A (en) * | 2011-02-21 | 2012-10-04 | Semiconductor Energy Lab Co Ltd | Photoelectric conversion device |
US9437758B2 (en) | 2011-02-21 | 2016-09-06 | Semiconductor Energy Laboratory Co., Ltd. | Photoelectric conversion device |
US20130160846A1 (en) * | 2011-05-13 | 2013-06-27 | Sanyo Electric Co., Ltd. | Photovoltaic device |
US20140124030A1 (en) * | 2011-06-30 | 2014-05-08 | Kaneka Corporation | Thin film solar cell and method for manufacturing same |
CN105449013A (en) * | 2014-09-19 | 2016-03-30 | 株式会社东芝 | Photoelectric conversion device, and solar cell |
US9985146B2 (en) | 2014-09-19 | 2018-05-29 | Kabushiki Kaisha Toshiba | Photoelectric conversion device, and solar cell |
Also Published As
Publication number | Publication date |
---|---|
JP4222500B2 (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4222500B2 (en) | Silicon-based thin film photoelectric conversion device | |
US20080223436A1 (en) | Back reflector for use in photovoltaic device | |
US20080105293A1 (en) | Front electrode for use in photovoltaic device and method of making same | |
US20080105298A1 (en) | Front electrode for use in photovoltaic device and method of making same | |
WO2003065462A1 (en) | Tandem thin-film photoelectric transducer and its manufacturing method | |
JP2001308354A (en) | Stacked solar cell | |
JP5243697B2 (en) | Transparent conductive film for photoelectric conversion device and manufacturing method thereof | |
WO2005011002A1 (en) | Silicon based thin film solar cell | |
JP3706835B2 (en) | Thin film photoelectric converter | |
WO2006057160A1 (en) | Thin film photoelectric converter | |
JP2006319068A (en) | Multi-junction silicon-based thin film photoelectric conversion device and manufacturing method thereof | |
JP2000252500A (en) | Silicon thin-film photoelectric conversion device | |
JP5291633B2 (en) | Silicon-based thin film photoelectric conversion device and manufacturing method thereof | |
JP2002118273A (en) | Integrated hybrid thin film photoelectric conversion device | |
WO2008063305A2 (en) | Front electrode for use in photovoltaic device and method of making same | |
JP3025392B2 (en) | Thin film solar cell and manufacturing method | |
JP4940327B2 (en) | Photoelectric conversion device | |
JP5144949B2 (en) | Substrate for thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device including the same | |
JP2000252501A (en) | Manufacture of silicon thin film optoelectric transducer device | |
JPWO2006046397A1 (en) | Substrate for thin film photoelectric conversion device and integrated thin film photoelectric conversion device using the same | |
WO2005109526A1 (en) | Thin film photoelectric converter | |
WO2006006359A1 (en) | Thin-film photoelectric converter | |
JP3196155B2 (en) | Photovoltaic device | |
JP2010272651A (en) | Thin-film solar cell and method of manufacturing the same | |
JP2010103347A (en) | Thin film photoelectric converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080723 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080917 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080917 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081113 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |