JP2003293056A - Phosphor bronze strip with excellent press workability - Google Patents
Phosphor bronze strip with excellent press workabilityInfo
- Publication number
- JP2003293056A JP2003293056A JP2002096387A JP2002096387A JP2003293056A JP 2003293056 A JP2003293056 A JP 2003293056A JP 2002096387 A JP2002096387 A JP 2002096387A JP 2002096387 A JP2002096387 A JP 2002096387A JP 2003293056 A JP2003293056 A JP 2003293056A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor bronze
- less
- bendability
- strip
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000906 Bronze Inorganic materials 0.000 title claims abstract description 62
- 239000010974 bronze Substances 0.000 title claims abstract description 62
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 title claims abstract description 62
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 238000005096 rolling process Methods 0.000 claims abstract description 21
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 20
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000005530 etching Methods 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 238000000137 annealing Methods 0.000 claims description 52
- 239000013078 crystal Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 29
- 238000005097 cold rolling Methods 0.000 claims description 27
- 238000004080 punching Methods 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000010008 shearing Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 238000005482 strain hardening Methods 0.000 description 10
- 238000001953 recrystallisation Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000010949 copper Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 230000018199 S phase Effects 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 102220253765 rs141230910 Human genes 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910009038 Sn—P Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- BSPSZRDIBCCYNN-UHFFFAOYSA-N phosphanylidynetin Chemical compound [Sn]#P BSPSZRDIBCCYNN-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は端子・コネクタ等の電子
部品用に用いられる高強度銅合金、特には、高強度りん
青銅条に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength copper alloy, especially a high-strength phosphor bronze strip used for electronic parts such as terminals and connectors.
【0002】[0002]
【従来の技術】C5210、C5191(JIS合金番
号)などのりん青銅あるいはC2600(JIS合金番
号)等の銅合金は、優れた加工性と機械的強度を有する
ため、電子部品用材料として端子・コネクタなどの用途
で広く用いられている。一方、近年は部品の軽薄・短小
化の進展が従前にもまして著しく、これに伴いベリリウ
ム銅、チタン銅、コルソン系合金等の高強度型銅合金の
ニーズが増している。しかしながら、電子部品用銅合金
としては、比較的新しいこれら高強度型の銅合金は、市
場での需給、流通に関する制限があり、例えばグローバ
ルスタンダード重視の市場では問題がある。また、これ
ら高強度銅合金は、価格がりん青銅等の従来型銅合金よ
り高価であることも好ましくない。これらの観点から、
従来銅合金の中でも高い機械的強度を有すると言われて
きたりん青銅について、強度や加工性のさらなる改良が
求められるようになった。2. Description of the Related Art Phosphor bronze such as C5210 and C5191 (JIS alloy number) or copper alloy such as C2600 (JIS alloy number) have excellent workability and mechanical strength, and are therefore used as terminals and connectors for electronic parts. It is widely used in applications such as. On the other hand, in recent years, the progress of lightness, thinness, and miniaturization of parts has been more remarkable than ever, and along with this, there is an increasing need for high-strength copper alloys such as beryllium copper, titanium copper, and Corson alloy. However, as copper alloys for electronic parts, these relatively high-strength copper alloys, which are relatively new, have restrictions on supply and demand in the market and distribution, and there is a problem in, for example, a market that emphasizes global standards. It is also not preferable that these high strength copper alloys are more expensive than conventional copper alloys such as phosphor bronze. From these perspectives,
Phosphor bronze, which has been said to have high mechanical strength among copper alloys, has been required to have further improved strength and workability.
【0003】加工性については、打抜き加工と曲げ加工
が特に重要である。プレスで繰り返し打抜き加工を行う
と、プレスのポンチが材料により摩耗し、せん断面形態
が悪化する。そのためある回数をプレスすると、金型を
研摩し再調整することが必要になる。プレス速度も、生
産性向上の観点から一層早いものとなっていることか
ら、打抜き加工時の金型摩耗が少ない材料の重要性は益
々高いものとなっている。またコンタクトの小型化によ
り、材料は高強度で、かつ曲げ半径が小さい過酷な曲げ
が行われるため、曲げ部ではクラックが入り易くなって
いる。また、打抜き性と曲げ性は相反する特性であり、
感覚的には、脆い材料は打抜き易いが割れやすく、逆に
粘い材料では曲げ易いものの、打抜き性が悪く、金型摩
耗が早いと見られる傾向がある。For workability, punching and bending are particularly important. When punching is repeatedly performed by the press, the punch of the press is worn by the material, and the shear surface morphology deteriorates. Therefore, after pressing a certain number of times, it becomes necessary to grind and readjust the mold. Since the pressing speed is also faster from the viewpoint of improving productivity, the importance of materials with less die wear during punching is becoming more and more important. Further, due to the downsizing of the contacts, the material is subjected to severe bending with a high strength and a small bending radius, so that cracks are likely to occur in the bent portion. In addition, punchability and bendability are contradictory properties,
From a sensory point of view, a brittle material is easy to punch, but it is easily cracked, and a viscous material is easy to bend, but the punchability is poor and the mold wear tends to be fast.
【0004】[0004]
【発明が解決しようとする課題】本発明は、りん青銅条
において、コネクタ用端子等電子部品のプレス加工に要
求される、プレス加工性特には打抜き性と曲げ性を改善
することにある。さらに、これらを維持しつつ、高強度
化を図る技術を提供する。SUMMARY OF THE INVENTION It is an object of the present invention to improve the press workability, particularly punchability and bendability, required for press working of electronic parts such as connector terminals in a phosphor bronze strip. Further, a technique for increasing the strength while maintaining these is provided.
【0005】[0005]
【課題を改善するための手段】本発明者らは、りん青銅
条の成分、組織、加工条件を調整することにより上記プ
レス加工性を飛躍的に改善したものである。すなわち、
(1) 質量割合(ppm)でS:20〜100pp
m、Mn、Ca、Mg、Alの含有量が合計で50pp
m以下であることを特徴とする打抜き性に優れたりん青
銅条。
(2) 圧延方向に対して平行方向の切断面をエッチン
グしたとき、エッチング痕の長さの総和が5mm/mm
2以上であることを特徴とする打抜き性に優れたりん青
銅条。
(3) 圧延方向に対して平行方向の切断面の金属組織
中に硫化銅相が1〜3%の範囲で存在していることを特
徴とする打抜き性に優れたりん青銅条。
(4) クリアランス4〜10%でせん断試験した場合
の塑性変形比率が50%以下であることを特徴とする
(1)〜(3)のりん青銅条。The present inventors have dramatically improved the press workability by adjusting the composition, structure, and processing conditions of the phosphor bronze strip. That is, (1) S: 20 to 100 pp in mass ratio (ppm)
The total content of m, Mn, Ca, Mg, Al is 50 pp
A phosphor bronze strip excellent in punching characteristics, characterized by having a length of m or less. (2) When etching a cut surface parallel to the rolling direction, the total length of etching marks is 5 mm / mm.
Phosphor bronze strip with excellent punchability, characterized by 2 or more. (3) A phosphor bronze strip having excellent punchability, characterized in that the copper sulfide phase is present in the range of 1 to 3% in the metal structure of the cut surface parallel to the rolling direction. (4) The phosphor bronze strip of (1) to (3), which has a plastic deformation ratio of 50% or less when subjected to a shear test with a clearance of 4 to 10%.
【0006】(5) 質量割合(ppm)で、S:20
〜100ppm、Mn、Ca、Mg、Alの含有量が合
計で50ppm以下かつZnを100〜1000ppm
含有することを特徴とする曲げ性及び打抜き性が共に優
れたりん青銅条。(5) Mass ratio (ppm), S: 20
~ 100 ppm, the total content of Mn, Ca, Mg, Al is 50 ppm or less and Zn is 100 to 1000 ppm
A phosphor bronze strip that is excellent in both bendability and punchability, which is characterized by containing it.
【0007】(6) 425℃で10000秒間焼鈍し
た後の平均結晶粒径(mGS)が5μm以下、かつその
結晶粒径のばらつきの標準偏差(σGS)が1/3mG
S以下であり、かつ、その冷間圧延された銅合金条の引
張強さと0.2%耐力との差違が80MPa以内である
ことを特徴とする曲げ性及び打抜き性が共に優れたりん
青銅条。
(7) 425℃で10000秒間焼鈍した後の平均結
晶粒径(mGS)が5μm以下、かつその結晶粒径のば
らつきの標準偏差(σGS)が1/3mGS以下であ
り、かつ、その冷間圧延された銅合金条の引張強さと
0.2%耐力との差違が80MPa以内であることを特
徴とする曲げ性及び打抜き性が共に優れた(1)〜
(5)に記載のりん青銅条。(6) The average grain size (mGS) after annealing at 425 ° C. for 10,000 seconds is 5 μm or less, and the standard deviation (σGS) of variations in the grain size is 1/3 mG.
Phosphor bronze strip having excellent bendability and punchability, characterized in that the difference between the tensile strength and the 0.2% proof stress of the cold rolled copper alloy strip is S or less and is 80 MPa or less. . (7) The average grain size (mGS) after annealing at 425 ° C. for 10,000 seconds is 5 μm or less, and the standard deviation (σGS) of variations in the grain size is 1/3 mGS or less, and the cold rolling is performed. The difference between the tensile strength and the 0.2% proof stress of the formed copper alloy strip was within 80 MPa, and both the bendability and the punchability were excellent (1) to
The phosphor bronze strip described in (5).
【0008】(8) 加工度45%以上の冷間圧延条を
最終再結晶焼鈍して結晶粒径(mGS)を3μm以下で
かつそのばらつき標準偏差(σGS)を2μm以下と
し、続いて加工度10〜45%の最終の冷間圧延を施し
たことを特徴とする曲げ性および打抜き性が共に優れた
りん青銅条。
(9) 加工度45%以上の冷間圧延条を最終再結晶焼
鈍して結晶粒径(mGS)を3μm以下でかつそのばら
つき標準偏差(σGS)を2μm以下とし、続いて加工
度10〜45%の最終の冷間圧延を施したことを特徴と
する(1)から(5)に記載の曲げ性および打抜き性が
共に優れたりん青銅条。(8) A cold rolled strip having a workability of 45% or more is finally recrystallized and annealed so that the crystal grain size (mGS) is 3 μm or less and the variation standard deviation (σGS) thereof is 2 μm or less. A phosphor bronze strip excellent in both bendability and punchability, which is characterized by being subjected to a final cold rolling of 10 to 45%. (9) A cold-rolled strip having a workability of 45% or more is finally recrystallized and annealed so that the crystal grain size (mGS) is 3 μm or less and the variation standard deviation (σGS) is 2 μm or less, and subsequently the workability is 10 to 45. % Final cold rolling, the phosphor bronze strip excellent in both bendability and punchability described in (1) to (5).
【0009】(10) 加工度X(%)の最終冷間圧延
を施した引張強さがTS0(MPa)の冷間圧延材を、
引張強さTSa(MPa)がTSa<TS0−Xとなる
まで歪取焼鈍を施すことを特徴とする第1項から第9項に
記載の曲げ性および打抜き性が共に優れたりん青銅条。(10) A cold-rolled material having a tensile strength of TS 0 (MPa), which has been subjected to final cold rolling with a workability of X (%),
Phosphor bronze having excellent bendability and punchability according to any one of items 1 to 9, characterized in that strain relief annealing is performed until the tensile strength TS a (MPa) becomes TS a <TS 0 −X. Article.
【0010】[0010]
【発明の実施の形態】(1) 打抜き加工においては、
板材がポンチとダイスでせん断される過程、すなわちポ
ンチストローク工程で、せん断変形部に亀裂の開始点が
形成される。この亀裂開始点を起点として亀裂がせん断
変形部を伝播し、板を貫通することにより打抜き加工が
行われる。この亀裂が開始するまでの間、ポンチとダイ
スの刃先は材料の表面と強く摩擦する。この時、金型の
刃先には材料表面との凝着磨耗や異物粒子による引っか
き磨耗が生じて、刃先が次第に損耗する。したがって、
亀裂はせん断過程でできるだけ早く形成されるのがよ
い。BEST MODE FOR CARRYING OUT THE INVENTION (1) In punching,
In the process in which the plate material is sheared by the punch and the die, that is, in the punch stroke process, a crack starting point is formed in the shear deformation portion. The crack propagates through the shear deformation portion starting from this crack start point and penetrates the plate to perform punching. Until the crack begins, the punch and die cutting edges rub strongly against the surface of the material. At this time, the blade edge of the die is subject to adhesive wear with the material surface and scratch abrasion due to foreign particles, and the blade edge is gradually worn away. Therefore,
Cracks should be formed as soon as possible during the shearing process.
【0011】一方、りん青銅中にSが存在する場合、S
のりん青銅への固溶度が低いために(状態図参照)、母
相中にCu2S相が現れる。この相は、母相より脆いた
めに、せん断変形時に母相に優先して亀裂の起点となる
ことができる。このSは20ppm以上添加することに
より、亀裂の開始時点の早期化を生じさせることができ
る。基本的にはSの含有量が多いほど良好であるが、1
00ppmを超えて添加すると、板、条製品での曲げ加
工性、および板条製品の製造過程における圧延加工性を
低下させることから、100ppm以下の添加量とす
る。なお、Sはりん青銅インゴットの溶解、鋳造時に硫
化銅等の原料として添加するほか、溶湯に接する木炭、
カーボン原料、スクラップ中のプレス油極圧剤等にも含
まれているため、これらからの混入を意図的に制御する
ことも有効である。On the other hand, when S is present in phosphor bronze, S
Since Cu has a low solid solubility in phosphor bronze (see the phase diagram), a Cu 2 S phase appears in the mother phase. Since this phase is more brittle than the parent phase, it can be the starting point of cracks prior to the parent phase during shear deformation. By adding 20 ppm or more of this S, it is possible to cause the crack start point to be accelerated. Basically, the higher the S content, the better, but 1
If added in excess of 00 ppm, bending workability in plate and strip products and rolling processability in the production process of strip products are deteriorated, so the addition amount is set to 100 ppm or less. In addition, S is added as a raw material such as copper sulfide at the time of melting the phosphor bronze ingot, casting, and charcoal in contact with the molten metal,
Since it is also contained in the carbon raw material and the press oil extreme pressure agent in scrap, it is also effective to intentionally control the mixture from these.
【0012】Mn、Ca、MgおよびAlは、通常りん
青銅の添加元素ではなく、上述のように製造過程でコン
タミとして入るものであるが、これらの元素を合計で5
0ppm以上含むと、前述のCu2Sの相を安定的に亀
裂の起点として機能を有する状態で分散させることがで
きないので、合計で50ppm以下に制御する必要があ
る。Mn, Ca, Mg and Al are not usually added elements of phosphor bronze but enter as a contaminant in the manufacturing process as described above.
When it is contained in an amount of 0 ppm or more, it is impossible to stably disperse the above-described Cu 2 S phase in a state of having a function as a crack starting point, so it is necessary to control the total to 50 ppm or less.
【0013】(2) 一方で、硫化銅を含む硫化物相
は、材料の断面を硫酸系エッチング液等でエッチングす
ると、同部が優先的にエッチングされピット状に微細な
陥没痕を形成する。この断面を光学顕微鏡の暗視野像で
観察すると、エッチング痕が白く点状あるいは線状に散
在して認められる。圧延方向に対して平行方向の切断面
について、硫酸の水溶液にて常温で数秒ないし30秒程
度エッチングし、上記の方法で観察したエッチング痕の
長さの総和が断面積1mm2当たり5mm以上であると
(1)と同様の理由により、そのりん青銅条の打抜き性
が著しく改善される。(2) On the other hand, in the sulfide phase containing copper sulfide, when the cross section of the material is etched with a sulfuric acid-based etching solution or the like, the same portion is preferentially etched to form fine recessed marks in a pit shape. When this cross section is observed with a dark field image of an optical microscope, etching marks are white and scattered in dots or lines. The cut surface parallel to the rolling direction was etched with an aqueous solution of sulfuric acid at room temperature for about several seconds to 30 seconds, and the total etching length observed by the above method was 5 mm or more per 1 mm 2 of cross-sectional area. For the same reasons as in (1) and (1), the punchability of the phosphor bronze strip is remarkably improved.
【0014】(3) さらに、圧延方向に対して平行方
向の切断面から、硫化銅相の厚さを以下の方法で求め、
硫化銅相の面積比率を推定することができる。EPMA
の加速電圧を15kV、試料面での電子ビーム径を1μ
mに調整し、硫化銅相をビームが横切った時の硫黄のX
線強度の変化を測定する。X線強度がバックグラウンド
から立ち上がり、ピークを描き、再びバックグラウンド
に戻るまでの距離を硫化銅相の厚さと規定する。硫化銅
相の長さは、SEM写真から測定し、硫化銅相の面積を
求めた。その結果、硫化銅相の合計面積は全体の1〜3
%とするのがよい。それ以下では打抜き性の改善が認め
られず、それ以上では、曲げ性の低下等の弊害が問題と
なるからである。なお、(1)〜(3)はいずれも、り
ん青銅内部のCu2S相のせん断変形時の亀裂の発生起
点としての有効性を利用しようとする点で共通するが、
それぞれは相関はあるものの常に一義的な相関関係を有
するものではない。すなわち、同じSの含有量のりん青
銅でもその製造工程での熱処理と圧延の組み合わせによ
り、固溶量、硫化銅相の形態、分布状態は異なる。(3) Further, the thickness of the copper sulfide phase is obtained from the cross section parallel to the rolling direction by the following method,
The area ratio of the copper sulfide phase can be estimated. EPMA
Acceleration voltage of 15kV, electron beam diameter on the sample surface is 1μ
X of sulfur when the beam crosses the copper sulfide phase after adjusting to m
Measure the change in line intensity. The distance until the X-ray intensity rises from the background, draws a peak, and returns to the background again is defined as the thickness of the copper sulfide phase. The length of the copper sulfide phase was measured from the SEM photograph to determine the area of the copper sulfide phase. As a result, the total area of the copper sulfide phase is 1 to 3 of the total.
It is good to set it as%. This is because improvement in punching property is not observed below that and adverse effects such as decrease in bendability become a problem above that. Note that (1) to (3) are common in that they try to utilize the effectiveness of the Cu 2 S phase inside the phosphor bronze as a crack initiation point during shear deformation,
Each of them has a correlation but does not always have a unique correlation. That is, even for phosphor bronze having the same S content, the amount of solid solution, the form of the copper sulfide phase, and the distribution state differ depending on the combination of heat treatment and rolling in the manufacturing process.
【0015】(4) プレス打ち抜き性の良否は、せん
断試験による塑性変形量から求めた塑性変形率によって
も特定することができる。塑性変形量とは、せん断変形
部に亀裂の開始点が形成され、この開始点が起点になり
亀裂がせん断変形部を伝播し板を貫通するまでのポンチ
移動距離である。塑性変形比率は、塑性変形量を材料の
板厚で徐した値(%)であり、普遍性を有する。せん断
試験は、せん断試験機の上型(ポンチ)を引張試験機の
クロスヘッドに取り付け、これを降下させてダイス上の
材料に一定径の孔を打ち抜き、この時のポンチストロー
クを伸び計で、ポンチ荷重を引張試験機のロードセルで
測定し、変位−荷重曲線を作成するものである。変位−
荷重曲線中、初期の直線部位は弾性変形域に対応し、そ
の後のせん断変形を経て、破断が生じた時に荷重が直線
的に降下する。塑性変形量は、初期の弾性変形域の直線
から外れる点と、破断時の荷重下降直線から外れる点と
の間の距離である。塑性変形量の測定には材料板厚に対
するクリアランスの影響が大きいため、クリアランスを
4〜10%となるようにポンチを選定する必要がある。
塑性変形比率が50%以下であるりん青銅条は、コネク
タのコンクト等を加工する高速プレス時における金型磨
耗を低減することができる。(4) The quality of the punchability can be specified by the plastic deformation rate obtained from the plastic deformation amount by the shear test. The amount of plastic deformation is a punch moving distance at which a crack starting point is formed in the shear deforming portion, the starting point serves as a starting point, and the crack propagates through the shear deforming portion and penetrates the plate. The plastic deformation ratio is a value (%) obtained by dividing the amount of plastic deformation by the plate thickness of the material, and has universality. In the shear test, the upper die (punch) of the shear tester is attached to the crosshead of the tensile tester, and this is lowered to punch a hole of a certain diameter in the material on the die, and the punch stroke at this time is measured with an extensometer. The punch load is measured by a load cell of a tensile tester, and a displacement-load curve is created. Displacement −
In the load curve, the initial linear portion corresponds to the elastic deformation region, and after the shear deformation thereafter, the load linearly drops when the fracture occurs. The amount of plastic deformation is the distance between the point that deviates from the initial straight line in the elastic deformation region and the point that deviates from the load drop line at the time of breaking. Since the influence of the clearance on the material plate thickness is large in measuring the amount of plastic deformation, it is necessary to select the punch so that the clearance is 4 to 10%.
A phosphor bronze strip having a plastic deformation ratio of 50% or less can reduce die wear during high-speed pressing for processing a connector contact or the like.
【0016】(5) S:20〜100ppm、Mn、
Ca、Mg、Alの含有量が合計で50ppm以下であ
ることを特徴とするりん青銅は、上述の通り、硫化銅相
を母相中に散在させることによって良好な打ち抜き性を
有する。この合金にZnを100〜1000ppm添加
したりん青銅は、硫化銅の一部が亜鉛硫化物に変化し、
圧延と焼鈍の繰り返しによる薄肉化加工中に硫化物相の
分断化が促進される。この硫化物相の分断化により、曲
げ性が改善され、打ち抜き性、曲げ性共に優れたりん青
銅が得られる。Znが100ppm以下では亜鉛硫化物
への変化が少ないので、曲げ性は改善されない。Znが
1000ppm以上では、硫化銅相の減少により打ち抜
き性が劣化することから、添加量は1000ppm以下
が良い。(5) S: 20 to 100 ppm, Mn,
As described above, the phosphor bronze characterized in that the total content of Ca, Mg, and Al is 50 ppm or less has good punchability by interspersing the copper sulfide phase in the mother phase. In phosphor bronze obtained by adding 100 to 1000 ppm of Zn to this alloy, a part of copper sulfide is changed to zinc sulfide,
Fragmentation of the sulfide phase is promoted during thinning by repeated rolling and annealing. Due to the division of the sulfide phase, the bendability is improved, and phosphor bronze having excellent punchability and bendability can be obtained. When Zn is 100 ppm or less, the change to zinc sulfide is small, and therefore the bendability is not improved. When Zn is 1000 ppm or more, the punching property deteriorates due to the decrease of the copper sulfide phase, so the addition amount is preferably 1000 ppm or less.
【0017】(6) りん青銅条において、425℃で
10000秒間焼鈍した後の平均結晶粒径(mGS)が
5μm以下、その結晶粒径のばらつきの標準偏差(σG
S)が1/3mGS以下であり、かつ、その冷間圧延さ
れたりん青銅条の引張強さと0.2%耐力との差違が8
0MPa以内であることを規定する。なお、本発明にお
いて、結晶粒径の測定は、JIS H 0501に準じ
た切断法により行う。具体的には、所定長さの直線線分
により完全に横断される結晶粒数を数え、その切断長さ
の平均値を結晶粒径とした。そのばらつきの指標である
標準偏差は、切断長さの標準偏差ではなく、その結晶粒
径の標準偏差である。(6) Phosphor bronze strips have an average crystal grain size (mGS) of 5 μm or less after annealing at 425 ° C. for 10,000 seconds, and a standard deviation (σG) of variations in the crystal grain size.
S) is 1/3 mGS or less, and the difference between the tensile strength and 0.2% proof stress of the cold rolled phosphor bronze strip is 8
It is specified to be within 0 MPa. In the present invention, the crystal grain size is measured by a cutting method according to JIS H0501. Specifically, the number of crystal grains completely traversed by a straight line segment of a predetermined length was counted, and the average value of the cut lengths was taken as the crystal grain size. The standard deviation, which is an index of the variation, is not the standard deviation of the cutting length but the standard deviation of the crystal grain size.
【0018】粒界強化および転位強化、すなわち熱処理
と圧延加工により高強度化した最終製品では、結晶粒界
を現出することができない。冷間加工により金属条を変
形させると、その進展に伴い、結晶粒内部での局部的変
形の差異が顕著になり、せん断帯、マイクロバンド等の
各種の変形帯が現れる。これらの変形帯によって、冷間
加工前に再結晶で形成された粒界は不連続的になり、そ
の断面をエッチングして光学顕微鏡で観察しても結晶組
織は不明瞭なものとなる。冷間加工度が20%程度で
も、透過型電子顕微鏡像で組織を観察すると、冷間加工
前の再結晶粒界の一部が残存していることが観察される
が、既にセル組織で覆われており、正確に結晶粒径を特
定することはできない。このことが、冷間圧延材の特性
改善を行うことの大きな障害であった。In the final product, which has been strengthened by grain boundary strengthening and dislocation strengthening, that is, heat treatment and rolling, crystal grain boundaries cannot be revealed. When a metal strip is deformed by cold working, the difference in local deformation inside the crystal grains becomes remarkable with the progress thereof, and various deformation bands such as shear bands and micro bands appear. Due to these deformation zones, the grain boundaries formed by recrystallization before cold working become discontinuous, and even if the cross section is etched and observed with an optical microscope, the crystal structure becomes unclear. Even when the cold working ratio is about 20%, when observing the structure with a transmission electron microscope image, it is observed that some of the recrystallized grain boundaries before the cold working remain, but it is already covered by the cell structure. Therefore, the grain size cannot be accurately specified. This is a major obstacle to improving the properties of the cold rolled material.
【0019】本発明では、冷間加工後の再結晶挙動が、
曲げ性と強度とを共に備えるりん青銅の特性と相関があ
ることを見出した。 この相関は、材料の特定に有効で
ある。即ち、本発明の銅合金は、引張強さと0.2%耐
力との差が80MPa以下であり、かつ優れた曲げ性を
兼備しており、更に425℃にて10000秒間焼鈍し
たときの平均結晶粒径(mGS)が5μm以下、かつそ
の結晶粒径の標準偏差(σGS)が1/3mGS以下で
ある。In the present invention, the recrystallization behavior after cold working is
It has been found that there is a correlation with the properties of phosphor bronze, which has both bendability and strength. This correlation is effective in identifying the material. That is, the copper alloy of the present invention has a difference in tensile strength and 0.2% proof stress of 80 MPa or less, and also has excellent bendability, and further has an average crystallinity when annealed at 425 ° C. for 10,000 seconds. The grain size (mGS) is 5 μm or less, and the standard deviation (σGS) of the crystal grain size is 1/3 mGS or less.
【0020】一般的に、焼鈍後に冷間加工を行い、加工
度を増加させていくと、引張強さと0.2%耐力との差
は減少していくが、それと共に延性が低下し、曲げ加工
で割れが発生し易くなる。ところが、本発明は、最終圧
延前の最終焼鈍条件とその前の冷間加工条件を調整する
ことにより、その延性の低下が少なくなることを見出し
た。従来のりん青銅では結晶粒径が大きく成長してしま
う425℃×10000秒間の条件で焼鈍を行い、平均
結晶粒径(mGS)が5μm以下になるりん青銅製品
は、高強度で優れた曲げ性を兼備する。 更に望ましく
は425℃×10000秒間焼鈍後の平均結晶粒径(m
GS)が3μm以下であれば、一層引張強さと曲げ性と
の関係が改善される。しかし、平均結晶粒径(mGS)
が5μm以下であっても結晶粒径がばらついていては、
その効果は低い。 後述するが、製造方法を厳密に制御
し、均一な微細組織としなければならない。 そのばら
つきの許容範囲は結晶粒径の標準偏差で、1/3mGS
以下でなければならない。 標準偏差(σGS)が1/
3mGSを超えると、曲げ性の改善効果が小さいためで
ある。この条件の特性を有するりん青銅は、プレス打抜
き性と曲げ性を共に兼備する。Generally, when cold working is performed after annealing to increase the workability, the difference between the tensile strength and the 0.2% proof stress decreases, but along with that, the ductility decreases and the bending Cracks easily occur during processing. However, the present invention has found that the ductility is less reduced by adjusting the final annealing condition before the final rolling and the cold working condition before the final rolling. Phosphor bronze products with an average crystal grain size (mGS) of 5 μm or less are annealed under the condition of 425 ° C. × 10,000 seconds where the crystal grain size of the conventional phosphor bronze grows greatly. Combine. More desirably, the average crystal grain size (m
When GS) is 3 μm or less, the relationship between tensile strength and bendability is further improved. However, the average grain size (mGS)
If the crystal grain size varies even if is less than 5 μm,
Its effect is low. As will be described later, the manufacturing method must be strictly controlled to form a uniform fine structure. The allowable range of the variation is the standard deviation of the crystal grain size, which is 1/3 mGS
Must be: Standard deviation (σGS) is 1 /
This is because if it exceeds 3 mGS, the effect of improving bendability is small. The phosphor bronze having the characteristics of this condition has both press punching property and bendability.
【0021】(7) (1)〜(4)の発明は、打抜き
性のみを改善したことにより、曲げ性の僅かの低下を避
けることができない。(6)の特性を兼備することによ
り、打抜き性と曲げ性とを共に著しく改善することがで
きる。(7) In the inventions (1) to (4), only the punchability is improved, so that a slight decrease in bendability cannot be avoided. By combining the characteristics of (6), both punching property and bendability can be significantly improved.
【0022】(8) 高強度りん青銅条の製造方法に関
するものである。冷間圧延と焼鈍を繰返して製造するり
ん青銅条において、最終の冷間圧延とその前の最終焼
鈍、さらにその前の冷間圧延工程を規定した高強度りん
青銅の製造方法に関するものである。本発明は、最終焼
鈍での結晶粒微細化による高強度化を狙ったものであ
る。冷間圧延前の材料厚さをt0とし、冷間圧延後の材
料厚さをtとしX=(t0−t)/t0×100(%)
で定義される冷間圧延加工度Xを45%以上としたの
は、Xが45%未満であると、最終焼鈍の熱処理条件を
調整しても、最終焼鈍後の結晶粒径が微細化しにくいか
らである。 また、焼鈍後の平均結晶粒径(mGS)を
3μm以下とし、かつその粒径のばらつきである標準偏
差(σGS)を2μm以下としたのは、焼鈍時の加熱温
度プロフィルを厳密に制御して、均一微細結晶粒組織と
する必要があるためである。厳密には結晶粒径は正規分
布していないが、平均結晶粒径(mGS)が3μm、そ
の標準偏差(σGS)が2μmの場合、個々の結晶粒径
の99%以上がmGS+3σ、すなわち9μm以下であ
ることをいう。さらに、再結晶組織中に8μm以上の径
の結晶粒が混在することは必ずしも好ましくはなく、結
晶粒径の標準偏差が1.5μm以下であることが望まし
い。(8) The present invention relates to a method for producing a high-strength phosphor bronze strip. In a phosphor bronze strip manufactured by repeating cold rolling and annealing, the present invention relates to a method for manufacturing high-strength phosphor bronze which defines the final cold rolling, the final annealing before that, and the cold rolling step before that. The present invention aims to increase the strength by refining the crystal grains in the final annealing. The material thickness before cold rolling is t 0, and the material thickness after cold rolling is t, X = (t 0 −t) / t 0 × 100 (%)
The degree of cold rolling workability X defined by the above is set to 45% or more. If X is less than 45%, the crystal grain size after final annealing is difficult to be refined even if the heat treatment conditions of final annealing are adjusted. Because. Further, the average grain size (mGS) after annealing is set to 3 μm or less and the standard deviation (σGS), which is the variation of the grain size, is set to 2 μm or less, because the heating temperature profile during annealing is strictly controlled. This is because it is necessary to have a uniform fine crystal grain structure. Strictly speaking, the crystal grain size is not normally distributed, but when the average crystal grain size (mGS) is 3 μm and the standard deviation (σGS) is 2 μm, 99% or more of the individual crystal grain sizes are mGS + 3σ, that is, 9 μm or less. It means that. Further, it is not always preferable that crystal grains having a diameter of 8 μm or more are mixed in the recrystallized structure, and it is desirable that the standard deviation of the crystal grain size is 1.5 μm or less.
【0023】最終焼鈍前の冷間圧延加工度を大きくする
程、最終焼鈍後の再結晶組織の粒径は小さくなり易い
が、同時に核発生やその後の2次再結晶挙動が大きくば
らついて混粒になり易くなる。特に、銅濃度が高い純銅
型再結晶組織を有する銅合金ではその傾向が強い。逆
に、4mass%以上のSnを含むりん青銅では、比較
的強加工後の再結晶粒が整粒化し易い。これらを考慮し
て、合金系毎に焼鈍条件、即ち、温度、時間、及び温度
プロフィールを最適化して、上記再結晶組織にする必要
がある。 平均結晶粒径を3μm以下、及びその標準偏
差2μm以下のいずれかの規定を外れると、最終冷間圧
延での高い加工硬化能は得られない。平均結晶粒径を3
μm以下、及びその標準偏差2μm以下の状態で加工度
10〜45%の最終冷間加工を行うと、高強度で曲げ性
の優れた銅合金となる。10%未満の加工度では、最終
焼鈍後の平均結晶粒径が10μm程度とする従来の銅合
金でも、良好な曲げ性を有し、結晶粒微細化の効果が小
さい。 また、45%を超えた加工度では、曲げ性が低
下し、曲げ加工されるコンタクト等の金属部材としての
使用範囲が狭められることになる。As the cold rolling workability before the final annealing is increased, the grain size of the recrystallized structure after the final annealing is apt to be small, but at the same time, the nucleation and the secondary recrystallization behavior thereafter are largely varied, and thus the mixed grains are mixed. It becomes easy to become. This tendency is particularly strong in a copper alloy having a pure copper type recrystallized structure with a high copper concentration. On the contrary, in the case of phosphor bronze containing 4 mass% or more of Sn, the recrystallized grains after relatively strong working are likely to be sized. Taking these factors into consideration, it is necessary to optimize the annealing conditions, that is, the temperature, time, and temperature profile for each alloy system to obtain the above recrystallized structure. If the average crystal grain size is out of the range of 3 μm or less and the standard deviation thereof is 2 μm or less, high work hardening ability in the final cold rolling cannot be obtained. Average grain size is 3
When the final cold working with a working ratio of 10 to 45% is carried out in a state of not more than μm and its standard deviation of not more than 2 μm, a copper alloy having high strength and excellent bendability is obtained. When the workability is less than 10%, even a conventional copper alloy having an average crystal grain size after final annealing of about 10 μm has good bendability and the grain refining effect is small. Further, if the workability exceeds 45%, the bendability is lowered, and the range of use as a metal member such as a contact to be bent is narrowed.
【0024】(9)(1)〜(4)の発明は、打抜き性
のみを改善したことにより、曲げ性の僅かの低下を避け
ることができない。(8)の特性を兼備することによ
り、打抜き性と曲げ性とを共に著しく改善することがで
きる。(9) In the inventions (1) to (4), only the punching property is improved, so that a slight decrease in bendability cannot be avoided. By combining the characteristics of (8), both punching property and bendability can be significantly improved.
【0025】(10)上記の銅合金において、最終圧延
後に歪取焼鈍を行い、その歪取焼鈍における引張強さの
低下量を規定するもので、その規定は、歪取焼鈍前の引
張強さをTS0(MPa)、歪取焼鈍後の引張強さをT
Sa(MPa)として、TSa<TS0−X(最終冷間
圧延の加工度(%))とする。りん青銅、洋白等は歪取
焼鈍が施されることがある。歪取焼鈍は、最終圧延前に
施す再結晶焼鈍とは異なり、冷間加工により低下した延
性(加工性)を回復させ、合せてばね性等を向上させる
目的で、例えば、ばね用りん青銅(C5210:JIS
H 3130)等に、一般的に行われている。この歪
取焼鈍は、最終圧延後にテンションアニーリングライン
等により、必要に応じて施すことができる。即ち、上述
の発明に係るりん青銅は、歪取焼鈍後においても、従来
技術で製造したりん青銅より高強度で曲げ性が優れてい
る。さらに、結晶粒径が小さい焼鈍材を冷間圧延した場
合、延性を回復するためには、最終加工度に応じた歪取
焼鈍を行うことが有効である。特に曲げ性を改善するに
は、最終冷間圧延加工度をX%とし、引張強さTS
0(MPa)の冷間圧延材について、歪取焼鈍後の引張
強さTSa(MPa)がTSa<TS0−Xとなる条件
にて歪取焼鈍を行う。例えば、最終加工度50%で80
0MPaまで加工硬化した冷間圧延材の場合、この材料
を歪取焼鈍して、750MPa未満となるまで歪取焼鈍
を施すと、曲げ性が良い材料を得ることができる。(10) In the above copper alloy, stress relief annealing is performed after final rolling, and the amount of decrease in tensile strength in the stress relief annealing is regulated. The regulation is the tensile strength before strain relief annealing. Is TS 0 (MPa), and the tensile strength after strain relief annealing is T
As S a (MPa), TS a <TS 0 −X (working ratio (%) of final cold rolling). Phosphor bronze, nickel silver, etc. may be subjected to stress relief annealing. The stress relief annealing is different from the recrystallization annealing performed before the final rolling, for the purpose of recovering the ductility (workability) lowered by cold working and also improving the spring property, for example, a phosphor bronze for spring ( C5210: JIS
H 3130) and the like. This strain relief annealing can be performed as necessary with a tension annealing line or the like after the final rolling. That is, the phosphor bronze according to the above invention has higher strength and better bendability than the phosphor bronze produced by the conventional technique even after the strain relief annealing. Further, when an annealed material having a small grain size is cold-rolled, it is effective to perform strain relief annealing according to the final workability in order to recover ductility. In particular, to improve bendability, the final cold rolling workability is set to X% and the tensile strength TS
For the cold rolled material of 0 (MPa), strain relief annealing is performed under the condition that the tensile strength TS a (MPa) after strain relief annealing is TS a <TS 0 −X. For example, 80 at the final processing rate of 50%
In the case of a cold-rolled material that has been work hardened to 0 MPa, strain relieving annealing of this material and strain relieving annealing to less than 750 MPa can provide a material with good bendability.
【0026】[0026]
【実施例】(1)実施例1
請求項1〜4に係る発明に関する例である。表1に示し
た組成のりん青銅をベースとして、S、Mn、Ca、M
g、Alを添加し、大気中にて木炭被覆し溶解後、鋳造
し、100mmW×40mmt×150mmlの寸法の
鋳塊を作製した。 この鋳塊を75%N2+25%H2
雰囲気中にて700℃で1時間均質化焼鈍した後、表面
の錫偏析層をグラインダーで研摩除去し、成分分析を行
なった。 その後冷間圧延と再結晶焼鈍を必要に応じて
複数回繰り返して、0.2mm厚さの板を得た。最終焼
鈍前の冷間圧延加工度、最終の再結晶焼鈍での結晶粒
径、及び最終冷間圧延加工度等を同じにして、加工履歴
の差を生じないように調整した。成分値、板の断面をエ
ッチングして測定したエッチング痕総長さ、EPMAで
測定した硫化銅相の面積率、及びせん断試験で得られた
塑性変形比率を表1に示す。比較例と比べて、本発明例
は塑性変形比率が低く、プレス打ち抜き性が良好であ
る。EXAMPLES (1) Example 1 This is an example of the invention according to claims 1 to 4. Based on phosphor bronze having the composition shown in Table 1, S, Mn, Ca, M
g and Al were added, and charcoal was coated and melted in the atmosphere and then cast to prepare an ingot having a size of 100 mm W × 40 mm t × 150 mm 1 . This ingot is made into 75% N 2 + 25% H 2
After homogenizing and annealing at 700 ° C. for 1 hour in the atmosphere, the tin segregation layer on the surface was removed by grinding with a grinder, and the components were analyzed. Thereafter, cold rolling and recrystallization annealing were repeated a plurality of times as needed to obtain a plate having a thickness of 0.2 mm. The degree of cold rolling before the final annealing, the grain size in the final recrystallization annealing, the degree of the final cold rolling and the like were set to be the same so as not to cause a difference in the working history. Table 1 shows the component values, the total etching trace length measured by etching the cross section of the plate, the area ratio of the copper sulfide phase measured by EPMA, and the plastic deformation ratio obtained by the shear test. Compared with the comparative example, the example of the present invention has a low plastic deformation ratio and good press punchability.
【0027】[0027]
【表1】 [Table 1]
【0028】(2)実施例2
請求項5に係る発明に関する例である。りん青銅の成分
をベースとして、S、Mn、Ca、Mg、Al、Znを
添加した成分で、加工履歴の差を生じないように最終焼
鈍前の冷間圧延加工度、最終の再結晶焼鈍での結晶粒
径、及び最終冷間圧延加工度等を同じにして実施例1と
同様な方法にて試験片を調整した。曲げ性(r/t)は
10mmw×100mmlの寸法の試験片を圧延方向と
直角に採取しW曲げ試験(JIS H 3110)を各
種曲げ半径で行い、割れの発生しない最小の曲げ半径比
(r(曲げ半径)/t(試験片厚さ))を求めた。な
お、W曲げ試験の曲げ軸は圧延方向と平行方向である。
比較例において、塑性変形比率が低いものはr/tが大
きく、r/tが小さいものは塑性変形比率が高いが、本
発明例は塑性変形比率が低く、r/tも小さいことか
ら、プレス打ち抜き性と曲げ性が共に優れている。(2) Embodiment 2 This is an example relating to the invention according to claim 5. Based on the composition of phosphor bronze, with S, Mn, Ca, Mg, Al, and Zn added, the cold rolling process before final annealing and the final recrystallization annealing are performed so that there is no difference in processing history. A test piece was prepared in the same manner as in Example 1 with the same crystal grain size, final cold rolling workability, and the like. The bendability (r / t) is 10 mm w x 100 mm l . A test piece having a size of 10 mm w x 100 mm l is sampled at right angles to the rolling direction, and a W bending test (JIS H 3110) is performed at various bending radii. (R (bending radius) / t (test piece thickness)) was determined. The bending axis of the W bending test is parallel to the rolling direction.
In the comparative example, the one having a low plastic deformation ratio has a large r / t, and the one having a small r / t has a high plastic deformation ratio, but the present invention example has a low plastic deformation ratio and a small r / t. Excellent punchability and bendability.
【0029】[0029]
【表2】 [Table 2]
【0030】(3)実施例3
請求項6に係る発明に関する例である。表3に示した組
成のりん青銅で、S、Mn、Ca、Mg、Al、Znを
添加せずに、実施例1と同様な方法にて試験片を調整し
た。ただし、実施例3では、最終焼鈍前の冷間圧延加工
度、最終の再結晶焼鈍での結晶粒径、及び最終冷間圧延
加工度等は調整し、加工履歴の差を生じさせた。その特
性を表3に示す。引張強さ(TS:MPa)、0.2%
耐力(YS:MPa)は13B号試験片(JIS Z
2201)を圧延方向と並行に採取し、引張試験(JI
S Z2241)により求めた。(3) Third Embodiment This is an example of the invention according to claim 6. Using phosphor bronze having the composition shown in Table 3, a test piece was prepared in the same manner as in Example 1 without adding S, Mn, Ca, Mg, Al and Zn. However, in Example 3, the cold rolling workability before the final annealing, the crystal grain size in the final recrystallization annealing, the final cold rolling workability and the like were adjusted to cause a difference in working history. The characteristics are shown in Table 3. Tensile strength (TS: MPa), 0.2%
The proof stress (YS: MPa) is 13B test piece (JIS Z
2201) was sampled in parallel with the rolling direction and the tensile test (JI
S Z2241).
【0031】結晶粒径は、切断法(JIS H 050
1)により、所定長さの線分により完全に切られる結晶
粒数を数え、その切断長さの平均値を結晶粒径とし、結
晶粒径の標準偏差(σGS)は、その結晶粒径の標準偏
差である。すなわち、圧延方向に直角方向の断面組織を
走査型電子顕微鏡像(SEM像)により、4000倍に
拡大し、50μmの長さの直線線分において、線と粒界
との交点の数から1を引いたもので線分を割った値を結
晶粒径とし、10本の線分について測定して得られた各
々の結晶粒径の平均を本願における平均結晶粒径(Mg
S)、各々の結晶粒径の標準偏差を本願における標準偏
差(σGS)とした。比較例(従来材)と比較し、本発明
例は強度が同等であれば打ち抜き性と曲げ性が良好であ
る。The crystal grain size is determined by the cutting method (JIS H 050
According to 1), the number of crystal grains that are completely cut by a line segment of a predetermined length is counted, and the average value of the cut length is defined as the crystal grain size. The standard deviation (σGS) of the crystal grain size is It is the standard deviation. That is, the cross-sectional structure perpendicular to the rolling direction was magnified 4000 times by a scanning electron microscope image (SEM image), and in a straight line segment having a length of 50 μm, 1 was calculated from the number of intersections of the line and the grain boundary. The value obtained by dividing the line segment by the subtracted value is defined as the crystal grain size, and the average of the crystal grain sizes obtained by measuring the 10 line segments is the average crystal grain size (Mg
S), and the standard deviation of each crystal grain size was defined as the standard deviation (σGS) in the present application. As compared with the comparative example (conventional material), the inventive example has good punching property and bendability as long as the strength is the same.
【0032】[0032]
【表3】 [Table 3]
【0033】(4)実施例4
請求項7に係る発明に関する例である。表1、2の発明
例に示した1〜16の成分のコイルを、最終焼鈍前の冷
間圧延加工度、最終の再結晶焼鈍での結晶粒径、及び最
終冷間圧延加工度等は調整し、加工履歴の差を生じさせ
た実施例3と同様な方法にて試験片を調整した。比較例
(従来材)と比較し、本発明例は強度が同等であれば打
ち抜き性と曲げ性が良好である。(4) Fourth Embodiment This is an example of the invention according to claim 7. For the coils of the components 1 to 16 shown in the invention examples of Tables 1 and 2, the cold rolling workability before final annealing, the crystal grain size in the final recrystallization annealing, the final cold rolling workability, etc. are adjusted. Then, the test piece was adjusted by the same method as in Example 3 in which a difference in processing history was generated. As compared with the comparative example (conventional material), the inventive example has good punching property and bendability as long as the strength is the same.
【0034】[0034]
【表4】 [Table 4]
【0035】(5)実施例5
請求項8に係る発明について検証した。表3は結果であ
る。比較例は従来の例で、最終焼鈍前の冷間圧延加工
度、最終焼鈍での平均結晶粒径が本発明から外れる例で
あるが、本発明例は、比較例の従来材に比べて、強度が
高く、しかもr/tが低く、曲げ性が良好である。(5) Example 5 The invention according to claim 8 was verified. Table 3 shows the results. Comparative example is a conventional example, cold rolling workability before final annealing, the average crystal grain size in the final annealing is an example deviating from the present invention, the present invention example, compared to the conventional material of the comparative example, It has high strength, low r / t, and good bendability.
【0036】[0036]
【表5】 [Table 5]
【0037】(6)実施例6
請求項10の歪取焼鈍の効果について調査した。表6は
調査結果である。実施例3〜実施例5において製造した
試験片を各種条件にて歪取焼鈍を行い、特性の評価を行
った。歪取焼鈍による引張強さ(TS)の低下量を併せ
て表示した。発明例No.39、41、43、45と比
較例No.27は錫濃度8.0〜8.2mass%の材
料である。本発明例の引張強さ(TS)が721〜85
0MPa、曲げ性(r/t)が0.5であるのに対し、
比較例は、引張強さ(TS)が755MPa、r/tが
1と本発明が高強度で曲げ性も良好であることがわか
る。また、発明例No.40、42、44、46と比較
例No.28は錫濃度10.0〜10.2mass%の
材料であるが発明例の引張強さ(TS)が820〜85
9MPa、曲げ性(r/t)が0.5であるのに対し、
比較例は、引張強さ(TS)が830MPa、r/tが
1.5と、本発明が高強度で曲げ性も良好であることが
わかる。以上のように、歪取焼鈍を施すことにより、本
発明材は比較例の従来材よりも明確に高強度で、曲げ性
を改善することができる。 すなわち同程度の強度であ
れば、曲げ性が著しく改善される。また、同程度の曲げ
性であれば、大幅な強度アップが得られる。(6) Example 6 The effect of the stress relief annealing of claim 10 was investigated. Table 6 shows the survey results. The test pieces produced in Examples 3 to 5 were subjected to strain relief annealing under various conditions to evaluate the characteristics. The amount of decrease in tensile strength (TS) due to strain relief annealing is also shown. Invention Example No. 39, 41, 43, 45 and Comparative Example Nos. 27 is a material having a tin concentration of 8.0 to 8.2 mass%. The tensile strength (TS) of the example of the present invention is 721 to 85.
While 0 MPa and bendability (r / t) are 0.5,
In the comparative example, the tensile strength (TS) is 755 MPa and the r / t is 1, indicating that the present invention has high strength and good bendability. In addition, invention example No. 40, 42, 44, 46 and Comparative Example No. No. 28 is a material having a tin concentration of 10.0 to 10.2 mass%, and the tensile strength (TS) of the invention example is 820 to 85.
Whereas 9 MPa and bendability (r / t) are 0.5,
In the comparative example, the tensile strength (TS) is 830 MPa and the r / t is 1.5, which shows that the present invention has high strength and good bendability. As described above, by performing the strain relief annealing, the material of the present invention has distinctly higher strength than the conventional material of the comparative example, and the bendability can be improved. That is, if the strength is about the same, the bendability is remarkably improved. Further, if the bendability is the same, a significant increase in strength can be obtained.
【0038】[0038]
【表6】 [Table 6]
【0039】[0039]
【発明の効果】本発明によれば、りん青銅の曲げ性を損
なわずに高強度化を図ることができ、電子部品用の端子
・コネクタ用として銅合金に要求されていた高レベルの
特性が選られた。また、高錫りん青銅(Cu−10ma
ss%Sn−P:CDA52400)においては、従来
曲げ性が劣るために参入できなかったベリリウム銅等の
独占市場である、高強度銅合金の分野への進出が可能と
なった。According to the present invention, it is possible to increase the strength without impairing the bendability of phosphor bronze, and to achieve the high level characteristics required for copper alloys for terminals and connectors for electronic parts. Was chosen. In addition, high tin phosphor bronze (Cu-10ma
ss% Sn-P: CDA52400) has made it possible to enter the field of high-strength copper alloys, which is an exclusive market for beryllium copper and the like, which could not enter due to poor bendability.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 623 C22F 1/00 623 624 624 625 625 630 630A 630K 660 660Z 661 661A 681 681 682 682 685 685Z 686 686B 694 694A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 623 C22F 1/00 623 624 624 624 625 625 630 630A 630K 660 660Z 661 661A 681 681 682 568 682 682 686 686B 694 694A
Claims (10)
0ppm、Mn、Ca、Mg、Alの含有量が合計で5
0ppm以下であることを特徴とする打抜き性に優れた
りん青銅条。1. A mass ratio (ppm) of S: 20 to 10
The total content of 0 ppm, Mn, Ca, Mg, Al is 5
A phosphor bronze strip excellent in punching characteristics, characterized by being 0 ppm or less.
ッチングしたとき、エッチング痕の長さの総和が5mm
/mm2以上であることを特徴とする打抜き性に優れた
りん青銅条。2. When etching a cut surface parallel to the rolling direction, the total length of etching marks is 5 mm.
/ Mm 2 or more, a phosphor bronze strip with excellent punching characteristics.
属組織中に硫化銅相が1〜3%の範囲で存在しているこ
とを特徴とする打抜き性に優れたりん青銅条。3. A phosphor bronze strip having excellent punchability, wherein the copper sulfide phase is present in the range of 1 to 3% in the metal structure of the cut surface parallel to the rolling direction.
た場合の塑性変形比率が50%以下であることを特徴と
する請求項1から請求項3に記載のりん青銅条。4. The phosphor bronze strip according to claim 1, which has a plastic deformation ratio of 50% or less when subjected to a shear test with a clearance of 4 to 10%.
0ppm、Mn、Ca、Mg、Alの含有量が合計で5
0ppm以下かつZnを100〜1000ppm含有す
ることを特徴とする曲げ性及び打抜き性が共に優れたり
ん青銅条。5. A mass ratio (ppm) of S: 20 to 10
The total content of 0 ppm, Mn, Ca, Mg, Al is 5
A phosphor bronze strip excellent in both bendability and punchability, which is characterized by containing 0 ppm or less and 100 to 1000 ppm of Zn.
平均結晶粒径(mGS)が5μm以下、かつその結晶粒
径のばらつきの標準偏差(σGS)が1/3mGS以下
であり、かつ、その冷間圧延された銅合金条の引張強さ
と0.2%耐力との差違が80MPa以内であることを
特徴とする曲げ性及び打抜き性が共に優れたりん青銅
条。6. The average grain size (mGS) after annealing at 425 ° C. for 10,000 seconds is 5 μm or less, and the standard deviation (σGS) of variations in the grain size is 1/3 mGS or less, and A phosphor bronze strip excellent in both bendability and punchability, characterized in that the difference between the tensile strength and 0.2% proof stress of the cold rolled copper alloy strip is within 80 MPa.
平均結晶粒径(mGS)が5μm以下、かつその結晶粒
径のばらつきの標準偏差(σGS)が1/3mGS以下
であり、かつ、その冷間圧延された銅合金条の引張強さ
と0.2%耐力との差違が80MPa以内であることを
特徴とする請求項1から請求項5に記載の曲げ性及び打
抜き性が共に優れたりん青銅条。7. The average grain size (mGS) after annealing at 425 ° C. for 10,000 seconds is 5 μm or less, and the standard deviation (σGS) of variations in grain size is 1/3 mGS or less, and The phosphor bronze excellent in both bendability and punchability according to claim 1, wherein the difference between the tensile strength and the 0.2% proof stress of the cold-rolled copper alloy strip is within 80 MPa. Article.
晶焼鈍して結晶粒径(mGS)を3μm以下でかつその
ばらつき標準偏差(σGS)を2μm以下とし、続いて
加工度10〜45%の最終の冷間圧延を施したことを特
徴とする曲げ性および打抜き性が共に優れたりん青銅
条。8. A cold-rolled strip having a workability of 45% or more is finally recrystallized and annealed so that the crystal grain size (mGS) is 3 μm or less and the variation standard deviation (σGS) thereof is 2 μm or less. A phosphor bronze strip excellent in both bendability and punchability, which is characterized by being subjected to a final cold rolling of 45%.
晶焼鈍して結晶粒径(mGS)を3μm以下でかつその
ばらつき標準偏差(σGS)を2μm以下とし、続いて
加工度10〜45%の最終の冷間圧延を施したことを特
徴とする請求項1から請求項5に記載の曲げ性および打
抜き性が共に優れたりん青銅条。9. A cold-rolled strip having a workability of 45% or more is finally recrystallized and annealed to have a crystal grain size (mGS) of 3 μm or less and a variation standard deviation (σGS) of 2 μm or less. A phosphor bronze strip excellent in both bendability and punching property according to claim 1, which has been subjected to final cold rolling of up to 45%.
引張強さがTS0(MPa)の冷間圧延材を、引張強さ
TSa(MPa)がTSa<TS0−Xとなるまで歪取
焼鈍を施すことを特徴とする請求項1から請求項9に記
載の曲げ性および打抜き性が共に優れたりん青銅条。10. A cold-rolled material having a tensile strength of TS 0 (MPa) subjected to final cold rolling with a workability of X (%), and a tensile strength TS a (MPa) of TS a <TS 0 −. The phosphor bronze strip excellent in both bendability and punching property according to claim 1, which is subjected to stress relief annealing until it becomes X.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002096387A JP2003293056A (en) | 2002-03-29 | 2002-03-29 | Phosphor bronze strip with excellent press workability |
KR10-2003-0018355A KR100527994B1 (en) | 2002-03-29 | 2003-03-25 | Phosphor bronze strip for terminal and connector with excellent punching formability, and phosphor bronze strip for terminal and connector with excellent bending formability and punching formability and method of manufacturing the same |
US10/397,259 US20030188809A1 (en) | 2002-03-29 | 2003-03-27 | Phosphor bronze strip with excellent press formability |
CNB031084214A CN100543161C (en) | 2002-03-29 | 2003-03-31 | Phosphor bronze strip with excellent press workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002096387A JP2003293056A (en) | 2002-03-29 | 2002-03-29 | Phosphor bronze strip with excellent press workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003293056A true JP2003293056A (en) | 2003-10-15 |
Family
ID=28671830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002096387A Pending JP2003293056A (en) | 2002-03-29 | 2002-03-29 | Phosphor bronze strip with excellent press workability |
Country Status (4)
Country | Link |
---|---|
US (1) | US20030188809A1 (en) |
JP (1) | JP2003293056A (en) |
KR (1) | KR100527994B1 (en) |
CN (1) | CN100543161C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006283060A (en) * | 2005-03-31 | 2006-10-19 | Dowa Mining Co Ltd | Copper alloy material and manufacturing method thereof |
US7972709B2 (en) | 2006-05-29 | 2011-07-05 | JX Nippon Mining & Metals Co., Ltd. | Cu-Zn alloy strip superior in thermal peel resistance of Sn plating and Sn plating strip thereof |
JP2012522382A (en) * | 2009-03-26 | 2012-09-20 | ケメット エレクトロニクス コーポレーション | Leaded multilayer ceramic capacitor with low ESL and ESR |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006093233A1 (en) * | 2005-03-02 | 2006-09-08 | The Furukawa Electric Co., Ltd. | Copper alloy and method for production thereof |
CN112593115A (en) * | 2020-12-21 | 2021-04-02 | 杭州昶海电力科技有限公司 | Processing technology of high-voltage switch contact piece |
CN116121585B (en) * | 2022-09-09 | 2025-02-14 | 中铝科学技术研究院有限公司 | Tin-phosphor bronze alloy strip and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03104845A (en) * | 1989-09-18 | 1991-05-01 | Nippon Mining Co Ltd | Method for manufacturing high-strength phosphor bronze with good bendability |
JPH0456755A (en) * | 1990-06-25 | 1992-02-24 | Nikko Kyodo Co Ltd | Manufacture of phosphor bronze excellent in bendability |
JPH07331363A (en) * | 1994-06-01 | 1995-12-19 | Nikko Kinzoku Kk | High strength and high conductivity copper alloy |
WO1996027685A1 (en) * | 1995-03-03 | 1996-09-12 | Taiho Kogyo Co., Ltd. | Sliding material and method of surface treatment thereof |
JPH09157775A (en) * | 1995-09-27 | 1997-06-17 | Nikko Kinzoku Kk | Copper alloy for electronic equipment |
JP2000273561A (en) * | 1999-03-24 | 2000-10-03 | Sumitomo Metal Mining Co Ltd | Copper base alloy for terminal and its production |
-
2002
- 2002-03-29 JP JP2002096387A patent/JP2003293056A/en active Pending
-
2003
- 2003-03-25 KR KR10-2003-0018355A patent/KR100527994B1/en not_active Expired - Fee Related
- 2003-03-27 US US10/397,259 patent/US20030188809A1/en not_active Abandoned
- 2003-03-31 CN CNB031084214A patent/CN100543161C/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006283060A (en) * | 2005-03-31 | 2006-10-19 | Dowa Mining Co Ltd | Copper alloy material and manufacturing method thereof |
US7972709B2 (en) | 2006-05-29 | 2011-07-05 | JX Nippon Mining & Metals Co., Ltd. | Cu-Zn alloy strip superior in thermal peel resistance of Sn plating and Sn plating strip thereof |
JP2012522382A (en) * | 2009-03-26 | 2012-09-20 | ケメット エレクトロニクス コーポレーション | Leaded multilayer ceramic capacitor with low ESL and ESR |
Also Published As
Publication number | Publication date |
---|---|
KR20030078670A (en) | 2003-10-08 |
CN1448524A (en) | 2003-10-15 |
US20030188809A1 (en) | 2003-10-09 |
CN100543161C (en) | 2009-09-23 |
KR100527994B1 (en) | 2005-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4729680B2 (en) | Copper-based alloy with excellent press punchability | |
JP5191725B2 (en) | Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector | |
JP5260992B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP4177104B2 (en) | High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same | |
JP3717321B2 (en) | Copper alloy for semiconductor lead frames | |
JP6355672B2 (en) | Cu-Ni-Si based copper alloy and method for producing the same | |
JP5261691B2 (en) | Copper-base alloy with excellent press punchability and method for producing the same | |
CN105283567B (en) | Electronic electric equipment copper alloy, electronic electric equipment copper alloy thin plate, electronic electric equipment conducting element and terminal | |
JP2003293056A (en) | Phosphor bronze strip with excellent press workability | |
JPH10195562A (en) | Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production | |
JP6670277B2 (en) | Cu-Ni-Si based copper alloy with excellent mold wear | |
JP2001152303A (en) | Copper or copper-based alloy excellent in press workability and method for producing the same | |
JP6542817B2 (en) | Copper alloy for electronic materials | |
JP2007186799A (en) | Copper or copper-based alloy with excellent press-workability and manufacturing method therefor | |
JP4875772B2 (en) | Copper alloy sheet for electrical and electronic parts and method for producing the same | |
JP6845884B2 (en) | Cu-Ni-Si copper alloy strip with excellent mold wear resistance | |
JP6845885B2 (en) | Cu-Ni-Si copper alloy strip with excellent mold wear resistance | |
JP2503793B2 (en) | Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies | |
JP4461269B2 (en) | Copper alloy with improved conductivity and method for producing the same | |
JP6811199B2 (en) | Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance | |
JP4154131B2 (en) | High-strength phosphor bronze for fork-type contacts and method for producing the same | |
JP6879971B2 (en) | Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material | |
JP7034112B2 (en) | Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials | |
JP2014019888A (en) | High strength copper alloy material, and method of manufacturing the same | |
JP6816056B2 (en) | Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040927 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070419 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090113 |