[go: up one dir, main page]

JP2003289864A - Histamine dehydrogenase gene, new recombinant dna and method for producing histamine dehydrogenase - Google Patents

Histamine dehydrogenase gene, new recombinant dna and method for producing histamine dehydrogenase

Info

Publication number
JP2003289864A
JP2003289864A JP2002098118A JP2002098118A JP2003289864A JP 2003289864 A JP2003289864 A JP 2003289864A JP 2002098118 A JP2002098118 A JP 2002098118A JP 2002098118 A JP2002098118 A JP 2002098118A JP 2003289864 A JP2003289864 A JP 2003289864A
Authority
JP
Japan
Prior art keywords
histamine
histamine dehydrogenase
dna
ala
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002098118A
Other languages
Japanese (ja)
Inventor
Ikuko Masuda
郁子 増田
Mikio Joka
幹雄 場家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP2002098118A priority Critical patent/JP2003289864A/en
Publication of JP2003289864A publication Critical patent/JP2003289864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a histamine dehydrogenase gene suitably available for histamine assay, a new recombinant DNA and a method for producing the histamine dehydrogenase. <P>SOLUTION: Disclosed is a histamine dehydrogenase gene encoding a protein of following (a) or (b): (a) a protein consisting of an amino acid sequence represented by SEQ ID NO.1 (refer to the specification) ; (b) a protein consisting of an amino acid sequence in which one or a plurality of amino acids are deleted, substituted or added from/for/to the amino acid sequence (a) and having a histamine dehydrogenase activity. Disclosed are also a new recombinant DNA featured by inserting the histamine dehydrogenase gene into a vector DNA, a transformant or transductant including the recombinant DNA, and a method for producing the histamine dehydrogenase featured by culturing the transformant or the transductant in a medium and by obtaining the histamine dehydrogenase from the culture preparation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品産業、水産
業、食品衛生、医療及び分析機器産業等の広い分野で行
われるヒスタミンの定量に、好適に利用可能なヒスタミ
ンデヒドロゲナーゼの遺伝子、新規な組み換え体DNA
及びヒスタミンデヒドロゲナーゼの製造法に関するもの
である。
TECHNICAL FIELD The present invention relates to a histamine dehydrogenase gene and a novel recombinant which can be preferably used for histamine quantification performed in a wide range of fields such as food industry, fishery industry, food hygiene, medical treatment and analytical instrument industry. Body DNA
And a method for producing histamine dehydrogenase.

【0002】[0002]

【従来の技術】ヒスタミンは、細菌ばかりでなく動物、
植物の殆どすべての組織に存在する。そして、ヒスタミ
ンはそれらの細胞の増殖、核酸及びタンパク質合成、酵
素活性の調節等生物的機能において多岐にわたり関与し
ていることが明らかにされている。また、ヒスタミン
は、血圧降下、平滑筋収縮、腺分泌促進等、人体におい
て種々の生理作用をおこす作用のあることが明らかにな
っており、特にアレルギー反応における伝達物質の役割
をしており、ヒスタミンは、アレルギー反応の診断及び
病態解析の手掛かりとなることから重要視されている。
ヒスタミンは、分子式C、分子量111であ
り、後述の「化1」に示す化学反応式に記載の化学構造
式を有するアミンである。そして、ヒスタミンは、新鮮
な魚介類や食肉には殆ど存在せず、その腐敗過程におい
て出現し、ヒスチジン脱炭酸酵素活性の強い微生物等に
汚染されることにより、蛋白質組織中の遊離アミノ酸の
ヒスチジンから後述の「化1」に示す脱炭酸作用(化学
反応式)で生成される。
BACKGROUND OF THE INVENTION Histamine is used not only for bacteria but also for animals.
It is present in almost all tissues of plants. It has been revealed that histamine is involved in a wide variety of biological functions such as cell proliferation, nucleic acid and protein synthesis, and regulation of enzyme activity. In addition, histamine has been shown to have various physiological actions in the human body such as hypotension, smooth muscle contraction, and glandular secretion promotion. In particular, histamine plays a role as a transmitter in allergic reactions. Is important because it can be a clue for diagnosing allergic reactions and analyzing pathological conditions.
Histamine is an amine having a molecular formula of C 5 H 9 N 3 and a molecular weight of 111 and having a chemical structural formula described in the chemical reaction formula shown in “Chemical Formula 1” below. Histamine, which is rarely found in fresh seafood and meat, appears in the spoilage process and is contaminated with histidine-decarboxylase-active microorganisms, resulting in the free amino acid histidine in protein tissues. It is generated by the decarboxylation action (chemical reaction formula) shown in "Chemical formula 1" described below.

【0003】[0003]

【化1】 [Chemical 1]

【0004】更にまた、ヒスタミンは、時にアレルギー
食中毒の原因となる。食品が腐敗する過程では微生物の
作用により、タンパク質、核酸、多糖類、脂肪等種々の
食品成分が分解され、アンモニア、硫化水素、アミン
類、有機酸類等多種類の腐敗産物が生成される。特に遊
離アミノ酸を多量に含む魚介類では、アミノ酸を前駆物
質とするアミン類が極めて初期に生成されるため、鮮度
低下が顕著でない時期でもこれらアミンを多量に含んだ
ものを食してしまう恐れがある。アミンのうち食品衛生
上注意しなければならないのは先に述べたヒスタミン
で、これを含んだ食品を摂取すると、顔面などに熱感、
頭痛、じん麻疹等が現われ、時には下痢あるいは嘔吐と
いった症状を伴い、アレルギー様の食中毒を起こすとさ
れている。従って、ヒスタミンの定量は、食品衛生上重
要であるばかりでなく、食品の腐敗の程度を知る手掛か
りとなる。
Furthermore, histamine sometimes causes allergic food poisoning. In the process of spoiling foods, various food components such as proteins, nucleic acids, polysaccharides and fats are decomposed by the action of microorganisms, and various kinds of spoilage products such as ammonia, hydrogen sulfide, amines and organic acids are produced. Especially in fish and shellfish that contain a large amount of free amino acids, amines that use amino acids as precursors are generated very early, so there is a risk of eating those that contain a large amount of these amines even when the freshness decline is not significant. . Of the amines, what must be noted in food hygiene is histamine described above, and when ingesting food containing this, a feeling of heat on the face,
Headache, urticaria, etc. appear, sometimes accompanied by symptoms such as diarrhea or vomiting, and allergy-like food poisoning is said to occur. Therefore, the determination of histamine is not only important for food hygiene but also provides a clue as to the extent of food spoilage.

【0005】このようなことから、食品産業、水産業、
食品衛生、医療及び分析機器産業等の広い分野で行われ
るヒスタミンの定量に、好適に利用可能なヒスタミンデ
ヒドロゲナーゼを得ることは産業上極めて重要な意義を
有する。ヒスタミンデヒドロゲナーゼの製造は、従来よ
り、例えば、リゾビウム(Rhizobium)属に属
し、ヒスタミンに特異的に作用するという特徴を有し下
記の理化学的性質を有するヒスタミンデヒドロゲナーゼ
生産能を有する菌株を培地に培養し、その培養物から該
ヒスタミンデヒドロゲナーゼを採取することにより行わ
れていた(特開2001−157579号公報参照)
。しかしながら上記ヒスタミンデヒドロゲナーゼの製
造法では生産量が不充分であるばかりでなく、酵素を菌
株から抽出する工程で界面活性剤を添加しなければなら
ず、精製工程が煩雑となり、回収率が低くなる等の問題
点があった。
From the above, the food industry, the fishery industry,
Obtaining histamine dehydrogenase, which can be suitably used for quantifying histamine performed in a wide range of fields such as food hygiene, medical treatment and analytical instrument industries, has an extremely important industrial significance. The production of histamine dehydrogenase has hitherto been carried out, for example, by culturing in a medium, a strain having a histamine dehydrogenase-producing ability, which belongs to the genus Rhizobium and is characterized by acting specifically on histamine and having the following physicochemical properties. , The histamine dehydrogenase was collected from the culture (see JP 2001-157579 A).
. However, in the above method for producing histamine dehydrogenase, not only is the production amount insufficient, but a surfactant must be added in the step of extracting the enzyme from the strain, the purification step becomes complicated, and the recovery rate becomes low, etc. There was a problem.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来技術の問題を解決すべくなされたものであり、その
目的とするところは、ヒスタミンデヒドロゲナーゼ遺伝
子、新規な組み換え体DNA及びヒスタミンデヒドロゲ
ナーゼの製造法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems of the prior art, and its object is to obtain a histamine dehydrogenase gene, a novel recombinant DNA and a histamine dehydrogenase. To provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】そこで本発明者等は、上
記課題に鑑み種々検討した結果、リゾビウム(Rhiz
obium)・エスピー4−7由来のヒスタミンデヒド
ロゲナーゼ遺伝子を単離及び構造決定することに成功
し、ヒスタミンデヒドロゲナーゼをコードする遺伝子を
ベクターDNAに挿入した組み換え体DNAを得た。こ
の組み換え体DNAをエッシェリシア(Escheri
chia)属に属する菌株に含ませたヒスタミンデヒド
ロゲナーゼ生産能を有する菌株を作製し、培地に培養す
ると、効率よくヒスタミンデヒドロゲナーゼが生産され
ること等を見出し、これらの知見に基づき、本発明を完
成した。即ち、第1の発明は、以下の(a)又は(b)
のタンパク質をコードするヒスタミンデヒドロゲナーゼ
遺伝子である。 (a)配列番号1に示されるアミノ酸配列からなるタン
パク質 (b)アミノ酸配列(a)において、1もしくは複数の
アミノ酸が欠失、置換もしくは付加されたアミノ酸配列
からなり、かつヒスタミンデヒドロゲナーゼ活性を有す
るタンパク質 第2の発明は、以下の(a)又は(b)のDNAからな
るヒスタミンデヒドロゲナーゼ遺伝子である。 (a)配列番号2に示される塩基配列からなるDNA (b)(a)の塩基配列からなるDNAと相補的な塩基
配列からなるDNAとストリンジェントな条件下でハイ
ブリダイズし、かつヒスタミンデヒドロゲナーゼ活性を
有するタンパク質をコードするDNA 第3の発明は、 上記のヒスタミンデヒドロゲナーゼ遺
伝子をベクターDNAに挿入したことを特徴とする新規
な組み換え体DNAである。第4の発明は、上記の組み
換え体DNAを含む形質転換体又は形質導入体である。
第5の発明は、上記形質転換体又は形質導入体を培地に
培養し、培養物からヒスタミンデヒドロゲナーゼを採取
することを特徴とするヒスタミンデヒドロゲナーゼの製
造法である。
The inventors of the present invention have made various studies in view of the above-mentioned problems, and as a result, Rhizobium (Rhiz)
We succeeded in isolating and structurally determining the histamine dehydrogenase gene derived from S. obium sp. 4-7 and obtained a recombinant DNA in which the gene encoding histamine dehydrogenase was inserted into vector DNA. This recombinant DNA was transformed into Escherichia (Escheri).
The present invention was completed based on these findings and found that when a strain having a histamine dehydrogenase-producing ability contained in a strain belonging to the genus Chia) is produced and cultured in a medium, histamine dehydrogenase is efficiently produced. . That is, the first invention is the following (a) or (b)
Is a histamine dehydrogenase gene encoding the protein of. (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 (b) a protein consisting of the amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence (a), and having histamine dehydrogenase activity The second invention is a histamine dehydrogenase gene consisting of the following DNA (a) or (b). (A) DNA consisting of the nucleotide sequence shown in SEQ ID NO: 2 (b) Hybridizing with DNA consisting of the nucleotide sequence complementary to the DNA consisting of the nucleotide sequence of (a) under stringent conditions, and histamine dehydrogenase activity A DNA encoding a protein having: A third invention is a novel recombinant DNA characterized in that the above-mentioned histamine dehydrogenase gene is inserted into a vector DNA. A fourth invention is a transformant or transductant containing the above recombinant DNA.
A fifth invention is a method for producing histamine dehydrogenase, which comprises culturing the above transformant or transductant in a medium and collecting histamine dehydrogenase from the culture.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のヒスタミンデヒドロゲナーゼ遺伝子は、例え
ば、次のようにして単離することができる。先ず、リゾ
ビウム・エスピー 4−7(FERM BP−6861)を、例え
ば、特開2001−157579号公報記載の方法等に
より培養し、得られた菌株から染色体DNAを抽出す
る。菌体からの染色体DNAの調製は、例えば、Cur
rentProtocols in Molecular
Biology (WILEYInterscienc
e, 1989)記載の方法等により行うことができ
る。次いで、上記微生物を、例えば、特開2001−1
57579号公報記載の方法等により培養し、ヒスタミ
ンデヒドロゲナーゼを精製することにより、ヒスタミン
デヒドロゲナーゼを得ることができる。得られたヒスタ
ミンデヒドロゲナーゼを、変性条件下でリジルエンドペ
プチダ−ゼ(和光純薬工業社製)処理し、断片化する。
上記断片を、例えば、Capcell Pak C18
SG300(資生堂社製)等を用いた逆相高速液体クロ
マトグラフィーにより分取し、数種の断片ペプチドにつ
いてアミノ酸配列を、例えば、Procise 492
プロテインシーケンサー(アプライドバイオシステムズ
社製)等を用いて決定する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The histamine dehydrogenase gene of the present invention can be isolated, for example, as follows. First, Rhizobium sp. 4-7 (FERM BP-6861) is cultured by, for example, the method described in JP 2001-157579 A, and chromosomal DNA is extracted from the obtained strain. The chromosomal DNA is prepared from the bacterial cells by, for example, Cur
rentProtocols in Molecular
Biology (WILEYInterscience
e, 1989) and the like. Then, the above-mentioned microorganism is treated, for example, in Japanese Patent Laid-Open No. 2001-1.
The histamine dehydrogenase can be obtained by culturing by the method described in Japanese Patent No. 57579 or the like and purifying the histamine dehydrogenase. The resulting histamine dehydrogenase is treated with lysyl endopeptidase (manufactured by Wako Pure Chemical Industries, Ltd.) under denaturing conditions and fragmented.
The above fragment is, for example, Capcell Pak C18
It was fractionated by reverse-phase high performance liquid chromatography using SG300 (manufactured by Shiseido Co., Ltd.) and the like, and the amino acid sequences of several kinds of fragment peptides were determined, eg, Procise 492
It is determined using a protein sequencer (manufactured by Applied Biosystems) or the like.

【0009】上記アミノ酸配列をもとにポリメラーゼ連
鎖反応(以下、PCRと略称する。)用プライマーを作
製する。この際コドンの縮重を考慮し、複数の塩基が縮
重している箇所については混合塩基を使用してプライマ
ーを作製する。作製したプライマーを用いて、先に取得
したリゾビウム・エスピー4−7の染色体DNAを鋳型
としたPCRを行なう。増幅されたDNA断片を、ベク
ターDNA、例えば、pT7Blue T Vector
(宝酒造社製)等に組み込み、組み換え体プラスミドを
得る。該プラスミド中の挿入DNAの塩基配列を、例え
ば、マルチキャピラリーDNA解析システムCEQ20
00(ベックマン・コールター社製)等を用いて決定
し、PCRのプライマー設計に用いたペプチドのアミノ
酸配列を正しくコードする塩基配列を両端に有するもの
を選択する。上記の如くして得られた増幅DNA断片
は、本発明のヒスタミンデヒドロゲナーゼ遺伝子の一部
分(部分遺伝子)である。そして、得られたDNAの塩
基配列に基づき、インバースPCR用の新たなPCRプ
ライマ−を合成する。
A polymerase chain reaction (hereinafter abbreviated as PCR) primer is prepared based on the above amino acid sequence. At this time, in consideration of the degeneracy of codons, a mixed base is used to prepare a primer for a portion where a plurality of bases are degenerate. Using the prepared primers, PCR is performed using the previously obtained chromosomal DNA of Rhizobium sp. 4-7 as a template. The amplified DNA fragment is used as a vector DNA, for example, pT7Blue T Vector.
(Manufactured by Takara Shuzo) or the like to obtain a recombinant plasmid. The nucleotide sequence of the inserted DNA in the plasmid can be determined by, for example, the multicapillary DNA analysis system CEQ20.
00 (manufactured by Beckman Coulter, Inc.) and the like, and those having at both ends a nucleotide sequence that correctly encodes the amino acid sequence of the peptide used for the PCR primer design are selected. The amplified DNA fragment obtained as described above is a part (partial gene) of the histamine dehydrogenase gene of the present invention. Then, a new PCR primer for inverse PCR is synthesized based on the base sequence of the obtained DNA.

【0010】次いで、染色体DNAを種々の制限酵素に
より完全消化した後、通常のアガロースゲル電気泳動法
に供し、上記部分遺伝子をプローブとしたサザンブロッ
ト分析を行う。その結果、ヒスタミンデヒドロゲナーゼ
遺伝子を含有するDNA断片の鎖長が決定できる。次い
で、サザンブロット分析に使用した制限酵素により染色
体DNAを酵素処理した後、セルフライゲーションさせ
る。これを鋳型として上述のプライマーを用いてインバ
ースPCRを行う。複数のDNA断片が増幅された場合
は、先のサザンブロット分析で得られた鎖長から推定さ
れる大きさの増幅DNA断片が、ヒスタミンデヒドロゲ
ナーゼ遺伝子を含有するDNA断片である。これらのD
NA断片の塩基配列を決定して連結させることにより、
ヒスタミンデヒドロゲナーゼ遺伝子の全塩基配列が決定
できる。次いで、その塩基配列を有する遺伝子によって
翻訳されるポリペプチドのアミノ酸配列を確定する。こ
のアミノ酸配列は、配列番号1に示される通りである。
このようにして確定されたアミノ酸配列をコードする遺
伝子が本発明のヒスタミンデヒドロゲナーゼ遺伝子であ
る。なお、配列番号1に示されるアミノ酸配列におい
て、1もしくは複数、好ましくは、数個のアミノ酸が欠
失、置換もしくは付加されており、かつ、ヒスタミンデ
ヒドロゲナーゼ活性をもたらすアミノ酸配列をコードす
るヒスタミンデヒドロゲナーゼ遺伝子は、全て本発明に
含まれる。そして、配列番号1に示されるアミノ酸配列
において、1もしくは複数のアミノ酸が欠失、置換もし
くは付加されており、かつヒスタミンデヒドロゲナーゼ
活性をもたらすアミノ酸配列をコードするヒスタミンデ
ヒドロゲナーゼ遺伝子を得るには、如何なる方法でもよ
く、例えば、遺伝子に点変異または欠失変異を生じさせ
るための周知技術である部位特定変異誘導法;遺伝子を
選択的に開裂し、次いで、選択されたヌクレオチドを除
去または付加し、遺伝子を連結する方法;オリゴヌクレ
オチド変異誘導法等が挙げられる。
Then, the chromosomal DNA is completely digested with various restriction enzymes and then subjected to a usual agarose gel electrophoresis method, and Southern blot analysis using the above-mentioned partial gene as a probe is carried out. As a result, the chain length of the DNA fragment containing the histamine dehydrogenase gene can be determined. Then, the chromosomal DNA is enzymatically treated with the restriction enzyme used for Southern blot analysis, and then self-ligated. Inverse PCR is performed using this as a template and the above-mentioned primers. When a plurality of DNA fragments are amplified, the amplified DNA fragment having the size estimated from the chain length obtained by the Southern blot analysis is the DNA fragment containing the histamine dehydrogenase gene. These D
By determining the base sequence of the NA fragment and ligating it,
The entire base sequence of the histamine dehydrogenase gene can be determined. Then, the amino acid sequence of the polypeptide translated by the gene having the base sequence is determined. This amino acid sequence is as shown in SEQ ID NO: 1.
The gene encoding the amino acid sequence thus determined is the histamine dehydrogenase gene of the present invention. In the amino acid sequence shown in SEQ ID NO: 1, one or more, preferably several amino acids have been deleted, substituted or added, and the histamine dehydrogenase gene encoding an amino acid sequence that brings about histamine dehydrogenase activity is , All are included in the present invention. Then, in order to obtain a histamine dehydrogenase gene encoding an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 and which brings about histamine dehydrogenase activity, any method can be used. Often, for example, a site-directed mutagenesis method, which is a well-known technique for producing a point mutation or a deletion mutation in a gene; a gene is selectively cleaved, and then a selected nucleotide is removed or added, and the gene is ligated. The method of doing so includes an oligonucleotide mutation induction method and the like.

【0011】これらのDNAは、ヒスタミンデヒドロゲ
ナーゼ活性をもたらすポリペプチドをコードしている蓋
然性が高く、形質転換体を作製し、活性を持つものを選
択することができる。本発明のヒスタミンデヒドロゲナ
ーゼ遺伝子と実質的に同一な遺伝子を取得するために
は、配列番号2の塩基配列を有するDNA又はその相補
鎖、又はそれらの一部を含むプローブによりストリンジ
ェントな条件でハイブリダイゼーションし、ヒスタミン
デヒドロゲナーゼ活性を有するポリペプチドをコードす
るものを選択することができる。ここでいうストリンジ
ェントな条件とは、特異的なハイブリッドのみが選択的
に形成され、シグナルが検出されるが、非特異的なハイ
ブリッドは形成されない条件である。このような条件
は、個々の生物種により若干異なるが、常法によりハイ
ブリダイゼーションと洗いの際の塩濃度又は温度をいく
つか検討するのみで容易に決定することができる。この
ような条件としては、例えば、後記実施例の項目(3)
及び(5)において特異的なシグナルが観察できること
から、ハイブリダイゼーションは、DIG Easy H
yb試薬(ロシュ・ダイアグノスティクス社製)を用い
て37〜42℃で一晩行う。洗いは、0.5×SSC、
0.1% SDSを用い、15分間、2回行う。洗いの
温度は、45℃以上、好ましくは52℃以上、更に好ま
しくは57℃以上である。このような条件でハイブリダ
イズするようなDNAは、ヒスタミンデヒドロゲナーゼ
活性を有するペプチドをコードしている蓋然性が高い
が、ヒスタミンデヒドロゲナーゼ活性を失うような変異
を有するものも含まれる。しかし、それらについては、
形質転換を行った後に、形質転換体のヒスタミンデヒド
ロゲナーゼ産生能を測定することにより容易に取り除く
ことが可能である。
It is highly probable that these DNAs encode a polypeptide which exerts histamine dehydrogenase activity, and it is possible to prepare transformants and select those having activity. In order to obtain a gene substantially identical to the histamine dehydrogenase gene of the present invention, hybridization is carried out under stringent conditions with a probe having the DNA having the nucleotide sequence of SEQ ID NO: 2 or its complementary strand, or a part thereof. However, those encoding a polypeptide having histamine dehydrogenase activity can be selected. The term "stringent conditions" as used herein refers to conditions under which only specific hybrids are selectively formed and a signal is detected, but nonspecific hybrids are not formed. Such conditions are slightly different depending on the individual species, but can be easily determined by only examining a few salt concentrations or temperatures during hybridization and washing by a conventional method. Such conditions include, for example, item (3) in the embodiment described below.
Since the specific signal can be observed in (5) and (5), hybridization was performed using DIG Easy H.
It is performed at 37 to 42 ° C. overnight using yb reagent (manufactured by Roche Diagnostics). Washing is 0.5 x SSC,
Perform twice for 15 minutes with 0.1% SDS. The washing temperature is 45 ° C or higher, preferably 52 ° C or higher, more preferably 57 ° C or higher. DNAs that hybridize under such conditions have a high probability of encoding a peptide having histamine dehydrogenase activity, but also include those having a mutation that loses histamine dehydrogenase activity. But for those,
After transformation, it can be easily removed by measuring the histamine dehydrogenase-producing ability of the transformant.

【0012】上記のようにして得られたヒスタミンデヒ
ドロゲナーゼ遺伝子を含む組み換え体DNAは、大腸菌
で高発現するためのプロモーターを有しないので、組み
換え体DNAを保有する形質転換株のヒスタミンデヒド
ロゲナーゼ生産性は低い。そこで、以下の操作によりヒ
スタミンデヒドロゲナーゼ高生産株を得る。先ず、上記
の操作で得られた塩基配列に基づき、ヒスタミンデヒド
ロゲナーゼ遺伝子の5'末端あるいは3'末端を含み、そ
の前後夫々約12塩基のオリゴヌクレオチド(計30塩
基のオリゴヌクレオチド、3'末端側は相補鎖)を合成
し、これをプライマーとする。この合成プライマー中に
NdeI部位を組み込んでおき、PCRで増幅した産物
を、NdeIを作用させて消化することにより、コーデ
ィング領域が得られるようにしておく。すなわち、染色
体DNAを鋳型とし、合成プライマーを用いてPCRを
行い、得られた産物をNdeIで消化すれば、ヒスタミ
ンデヒドロゲナーゼをコードする領域のDNAを得るこ
とができる。
Since the recombinant DNA containing the histamine dehydrogenase gene obtained as described above does not have a promoter for high expression in E. coli, the transformant having the recombinant DNA has low histamine dehydrogenase productivity. . Therefore, a high histamine dehydrogenase-producing strain is obtained by the following procedure. First, based on the nucleotide sequence obtained by the above operation, an oligonucleotide containing 5'terminal or 3'terminal of histamine dehydrogenase gene and having about 12 bases each before and after it (oligonucleotide of 30 bases in total, 3'terminal side is (Complementary strand) is synthesized and used as a primer. An NdeI site is incorporated in this synthetic primer, and the product amplified by PCR is digested with NdeI to allow the coding region to be obtained. That is, PCR is performed using chromosomal DNA as a template and synthetic primers, and the resulting product is digested with NdeI to obtain a DNA in the region encoding histamine dehydrogenase.

【0013】得られたDNAを、大腸菌ラクトースオペ
ロン等に由来するプロモーター、オペレーター及びリボ
ゾーム結合部位等の発現領域を含むDNA配列(The
Operon, p.227, Cold Spring
Harbor Laboratory, 1980を参
照)を保有するベクターDNAに挿入する。用いられる
ベクターDNAは、プラスミドDNAでもバクテリオフ
ァージDNAでもよい。例えば、実施例の項目(7)に
示されるベクターpUTE500K’(特開平08−2
05861号公報記載)を用いることができる。得られ
た組み換え体DNAを用いて、例えば、大腸菌K−1
2、好ましくは大腸菌JM109(東洋紡社製)、DH
5α(宝酒造社製)等を形質転換又はそれらに形質導入
して夫々の菌株を得る。上記のようにして得られたヒス
タミンデヒドロゲナーゼ生産能を有する形質転換体又は
形質導入体、例えば、エッシェリシア属に属する菌株を
用いてヒスタミンデヒドロゲナーゼを生産するには、下
記のようにして行うことができる。上記微生物を培養す
るには、通常の固体培養法で培養してもよいが、なるべ
く液体培養法を採用して培養するのが好ましい。
The obtained DNA is a DNA sequence containing the expression region such as promoter, operator and ribosome binding site derived from Escherichia coli lactose operon (The
Operon, p. 227, Cold Spring
(Harbor Laboratory, 1980). The vector DNA used may be plasmid DNA or bacteriophage DNA. For example, the vector pUTE500K 'shown in item (7) of the Example (Japanese Patent Laid-Open No. 08-2
No. 05861) can be used. Using the obtained recombinant DNA, for example, E. coli K-1
2, preferably E. coli JM109 (manufactured by Toyobo), DH
Each strain is obtained by transforming 5α (Takara Shuzo Co., Ltd.) or the like or transducing them. Production of histamine dehydrogenase using the transformant or transductant having the histamine dehydrogenase-producing ability obtained as described above, for example, a strain belonging to the genus Escherichia, can be performed as follows. In order to cultivate the above-mentioned microorganism, it may be cultivated by a usual solid culturing method, but it is preferable to employ a liquid culturing method as much as possible.

【0014】また、上記微生物を培養する培地として
は、例えば、酵母エキス、ペプトン、肉エキス、コーン
スティープリカーあるいは大豆もしくは小麦麹の浸出液
等、1種以上の窒素源に、リン酸2水素カリウム,リン
酸水素2カリウム、硫酸マグネシウム、塩化第2鉄、硫
酸第2鉄あるいは硫酸マンガン等の無機塩類の1種以上
を添加し、更に必要により糖質原料、ビタミン等を適宜
添加したものが用いられる。なお、培地の初発pHは、
7〜9に調整するのが適当である。また培養は、30〜
42℃、好ましくは37℃前後で6〜24時間、通気撹
拌深部培養、振とう培養、静置培養等により実施するの
が好ましい。培養終了後、該培養物よりヒスタミンデヒ
ドロゲナーゼを採取するには、通常の酵素採取手段を用
いることができる。培養物から、例えば、濾過、遠心分
離等の操作により菌体を分離し、洗菌する。この菌体か
らヒスタミンデヒドロゲナーゼを採取することが好まし
い。この場合、菌体をそのまま用いることもできるが、
超音波破砕機、フレンチプレス、ダイナミル等の種々の
破壊手段を用いて菌体を破壊する方法、リゾチームの如
き細胞壁溶解酵素を用いて菌体細胞壁を溶解する方法、
トリトンX−100等の界面活性剤を用いて菌体から酵
素を抽出する方法等により、菌体からヒスタミンデヒド
ロゲナーゼを採取するのが好ましい。
As the medium for culturing the above-mentioned microorganisms, for example, yeast extract, peptone, meat extract, corn steep liquor or soybean or wheat malt exudate, etc., one or more nitrogen sources, potassium dihydrogen phosphate, Used is one to which one or more inorganic salts such as dipotassium hydrogen phosphate, magnesium sulfate, ferric chloride, ferric sulfate or manganese sulfate are added, and if necessary, sugar raw materials, vitamins and the like are appropriately added. . The initial pH of the medium is
It is suitable to adjust to 7-9. In addition, the culture is 30 ~
It is preferably carried out at 42 ° C., preferably around 37 ° C. for 6 to 24 hours by aeration and agitation deep culture, shaking culture, static culture and the like. After the culture is completed, a usual enzyme collecting means can be used to collect histamine dehydrogenase from the culture. The cells are separated from the culture by an operation such as filtration or centrifugation and washed. It is preferable to collect histamine dehydrogenase from the cells. In this case, the bacterial cells can be used as they are,
Ultrasonic crusher, French press, a method of destroying bacterial cells using various disrupting means such as Dynamill, a method of lysing bacterial cell wall by using a cell wall lysing enzyme such as lysozyme,
It is preferable to collect histamine dehydrogenase from the cells by a method of extracting the enzyme from the cells using a surfactant such as Triton X-100.

【0015】このようにして得られた粗酵素液からヒス
タミンデヒドロゲナーゼを単離するには、通常の酵素精
製に用いられる方法が使用できる。例えば、硫安塩析
法、有機溶媒沈澱法、イオン交換クロマトグラフ法、ゲ
ル濾過クロマトグラフ法、吸着クロマトグラフ法、電気
泳動法等を適宜組み合わせて行うのが好ましい。
In order to isolate histamine dehydrogenase from the crude enzyme solution thus obtained, a method commonly used for enzyme purification can be used. For example, it is preferable to perform an appropriate combination of ammonium sulfate salting-out method, organic solvent precipitation method, ion exchange chromatography method, gel filtration chromatography method, adsorption chromatography method, electrophoresis method and the like.

【0016】得られたヒスタミンデヒドロゲナーゼの理
化学的性質は、以下に示す通りである。 (1)作用:1モルのヒスタミンを電子受容体の存在
下、酸化的脱アミノ反応により1モルの4−イミダゾリ
ルアセトアルデヒドと1モルのアンモニアを生成する。 (2)基質特異性:ヒスタミンに特異的に作用する。す
なわち、ヒスタミンに特異的に作用するが、他のアミン
に対しては全く作用しないか、又は弱く作用する。 (3)至適pH及び安定pH範囲:至適pHは、9.0
〜11.5である。本酵素の安定pH範囲は7.0〜1
1.5である。 (4)作用適温の範囲:50mMリン酸緩衝液(pH
8.0)で、作用適温の範囲は65〜75℃である。 (5)15分間処理(pH8.0)において、60℃近
辺まで安定。それ以上では、急激に失活する。 (6)分子量:約150,000(ゲルろ過法)。サブ
ユニットは約71,000(SDS−ポリアクリルアミ
ド電気泳動法)。 (7)力価の測定法:酵素の力価の測定は以下の方法で
行い、1分間に1μmolの4−イミダゾリルアセトア
ルデヒドを生成する酵素量を1単位(1U)とする。5
0mMリン酸緩衝液(pH8.0)2.4ml、0.3
mM 1−Methoxy PMS水溶液 0.1ml、
1mM WST−8水溶液 0.3ml、10mM ヒス
タミン溶液 0.1ml及び本酵素液0.1mlを加
え、30℃で30〜60分間反応を行う。なお、本酵素
の活性は本酵素反応において生成した還元型1−Met
hoxy PMSと反応して生じるWST−8の発色を
460nmの吸光度にて測定する。
The physicochemical properties of the obtained histamine dehydrogenase are as follows. (1) Action: 1 mol of histamine is produced by oxidative deamination reaction in the presence of an electron acceptor to produce 1 mol of 4-imidazolylacetaldehyde and 1 mol of ammonia. (2) Substrate specificity: It acts specifically on histamine. That is, it acts specifically on histamine but has no or weak action on other amines. (3) Optimum pH and stable pH range: The optimum pH is 9.0.
~ 11.5. The stable pH range of this enzyme is 7.0-1.
It is 1.5. (4) Suitable temperature range for action: 50 mM phosphate buffer (pH
8.0), the suitable temperature range for working is 65 to 75 ° C. (5) Stable up to around 60 ° C in 15-minute treatment (pH 8.0). Above that, it will be deactivated rapidly. (6) Molecular weight: about 150,000 (gel filtration method). The subunit is about 71,000 (SDS-polyacrylamide gel electrophoresis method). (7) Method for measuring titer: The enzyme titer is measured by the following method, and the amount of the enzyme that produces 1 μmol of 4-imidazolylacetaldehyde in 1 minute is 1 unit (1 U). 5
2.4 ml of 0 mM phosphate buffer (pH 8.0), 0.3
mM 1-Methoxy PMS aqueous solution 0.1 ml,
0.3 ml of 1 mM WST-8 aqueous solution, 0.1 ml of 10 mM histamine solution and 0.1 ml of this enzyme solution are added, and the reaction is performed at 30 ° C. for 30 to 60 minutes. The activity of this enzyme is the reduced form of 1-Met produced in this enzyme reaction.
The color development of WST-8 produced by the reaction with hoxy PMS is measured by the absorbance at 460 nm.

【0017】本酵素は、魚肉の鮮度測定等をする場合
に、該測定対象の魚肉中のヒスタミンの定量又は、人の
血清もしくは尿等の体液中に含まれる微量のヒスタミン
の定量に極めて有用である。そして本酵素を用いること
により、測定対象の魚肉あるいは体液中に含まれる種々
のアミンのうち、検出する必要のないカダベリンあるい
はプトレッシン等には作用せず、目的とするヒスタミン
のみによく作用して、これを精度よく定量することが可
能となる。また、カダベリンあるいはプトレッシンは、
魚肉が腐敗する際、ヒスタミンとほぼ同時に生成するア
ミンであり、従来のヒスタミンの酵素的定量法ではこれ
らを何らかの方法で分離除去する必要があったのに対
し、本酵素を用いるヒスタミンの定量法では、そのすぐ
れた特性を有するため、面倒で時間を要する分離操作は
全く不要となる利点を有する。
The present enzyme is extremely useful for quantifying histamine in fish meat to be measured or for quantifying a trace amount of histamine contained in body fluids such as human serum or urine when measuring freshness of fish meat. is there. And by using this enzyme, among various amines contained in fish meat or body fluid to be measured, it does not act on cadaverine or putrescine, etc., which do not need to be detected, and acts well only on histamine of interest, It becomes possible to quantify this accurately. Also, cadaverine or putrescine is
It is an amine that is produced at the same time as histamine when fish meat rots, and it was necessary to separate and remove these by some method in the conventional enzymatic assay of histamine, whereas in the assay of histamine using this enzyme, However, because of its excellent characteristics, there is an advantage that a troublesome and time-consuming separation operation is completely unnecessary.

【0018】[0018]

【実施例】以下、実施例により本発明を更に具体的に説
明する。 (実施例)ヒスタミンデヒドロゲナーゼ遺伝子のクロー
ニング (1)リゾビウム・エスピー 4−7染色体DNAの調
製 リゾビウム・エスピー 4−7(FERM BP−6861)を特開
2001−157579号公報記載の方法等により培養
し、遠心分離より集菌した。この菌体よりGNOME
DNA Isolation Kit(フナコシ社製)を
用いて、染色体DNAを0.75mg を得た。
The present invention will be described in more detail with reference to the following examples. (Example) Cloning of histamine dehydrogenase gene (1) Preparation of Rhizobium sp 4-7 chromosomal DNA Rhizobium sp 4-7 (FERM BP-6861) was cultured by the method described in JP 2001-157579 A, etc., The cells were collected by centrifugation. GNOME from this fungus body
Using the DNA Isolation Kit (Funakoshi), 0.75 mg of chromosomal DNA was obtained.

【0019】(2)部分遺伝子の取得 次いで、上記微生物を特開2001−157579号公
報記載の方法によりヒスタミンデヒドロゲナーゼを精製
し、得られたヒスタミンデヒドロゲナーゼを、0.1%
SDSを含む100mMトリス−塩酸緩衝液(pH9.
0)中で、37℃にて一晩、リジルエンドペプチダ−ゼ
(和光純薬工業社製)処理し、断片化した。上記断片
を、Capcell Pak C18 SG300(資生
堂社製)を用いた逆相高速液体クロマトグラフィーによ
り分取した。リジルエンドペプチダ−ゼ未処理のタンパ
ク及び数種の断片ペプチドについてアミノ酸配列を、P
rocise 492 プロテインシーケンサー(アプラ
イドバイオシステムズ社製)を用いて、エドマン法によ
り分析した。上記の方法で得られたN末端及び内部アミ
ノ酸配列をもとに、コドンが縮重している箇所を混合塩
基とした複数個のPCR用プライマーを作製した。実施
例項目(1)で調製した染色体DNAを鋳型とし、Ex
Taq DNA ポリメラーゼ(宝酒造社製)を用いて
PCRを行った。PCR反応は、PCRマスターサイク
ラーグラジエント(エッペンドルフ社製)にて、熱変性
94℃,2分、アニール50℃,30秒、伸長反応72
℃,1分30秒の条件下、30サイクル行った。結果と
してセンスプライマーが5’−ATGMGNGAYAA
YAARTAYGAYATHYTNTTYGARCC−
3’ (35 mer,Aはアデニン、Cはシトシン、G
はグアニン、Tはチミン、Hはアデニン又はシトシン又
はチミン、Mはアデニン又はシトシン、Nはアデニン又
はシトシン又はグアニン又はチミン、Rはアデニン又は
グアニン、Yはチミン又はシトシンを示す。対応するタ
ンパク質N末端のアミノ酸配列:Met Arg Asp
Asn Lys Tyr Asp Ile Leu Phe
Glu Pro)、アンチセンスプライマーが5’−Y
TTNGTRTARAARTTNGGNCCRTTDA
T−3’(27mer,対応するタンパク質内部のアミ
ノ酸配列:Ile Asn Gly Pro Asn Ph
e Tyr Thr Lys)であるとき、0.3kbp
程度に相当する遺伝子断片が増幅された。増幅したDN
A断片を1%アガロースゲル電気泳動後のゲルより回収
し、pT7Blue T Vector(宝酒造社製)に
組み込み、組み換え体プラスミドを得た。該プラスミド
中の挿入DNAの塩基配列を、マルチキャピラリーDN
A解析システムCEQ2000(ベックマン・コールタ
ー社製)を用いて決定した。その結果、DNA断片(3
51bp)が、PCRのプライマー設計に用いたペプチ
ドのアミノ酸配列を正しくコードする塩基配列を両端に
有していた。また、決定した塩基配列から推定されるア
ミノ酸配列中には、プロテインシークエンサーで決定し
た内部アミノ酸配列が存在した。従って、得られた増幅
DNA断片は、本発明のヒスタミンデヒドロゲナーゼ遺
伝子の一部分(部分遺伝子)であることが判明した。
(2) Acquisition of partial gene Next, histamine dehydrogenase was purified from the above microorganism by the method described in JP 2001-157579 A, and the obtained histamine dehydrogenase was added to 0.1%.
100 mM Tris-HCl buffer (pH 9.
In 0), it was treated with lysyl endopeptidase (manufactured by Wako Pure Chemical Industries, Ltd.) at 37 ° C. overnight for fragmentation. The above fragments were fractionated by reverse phase high performance liquid chromatography using Capcell Pak C18 SG300 (manufactured by Shiseido Co., Ltd.). The amino acid sequences of lysyl endopeptidase untreated protein and several fragment peptides were
The analysis was carried out by the Edman method using a locise 492 protein sequencer (manufactured by Applied Biosystems). Based on the N-terminal and internal amino acid sequences obtained by the above method, a plurality of PCR primers having mixed bases at degenerate codons were prepared. Using the chromosomal DNA prepared in Example item (1) as a template, Ex
PCR was performed using Taq DNA polymerase (Takara Shuzo). The PCR reaction was carried out with a PCR master cycler gradient (manufactured by Eppendorf) at thermal denaturation 94 ° C. for 2 minutes, annealing 50 ° C. for 30 seconds, extension reaction 72.
30 cycles were carried out under conditions of 1 ° C for 1 minute and 30 seconds. As a result, the sense primer is 5'-ATGMGNGAYAA
YAARTAYGAYATHYTNTTYGARCC-
3 '(35 mer, A is adenine, C is cytosine, G
Is guanine, T is thymine, H is adenine or cytosine or thymine, M is adenine or cytosine, N is adenine or cytosine or guanine or thymine, R is adenine or guanine, and Y is thymine or cytosine. N-terminal amino acid sequence of the corresponding protein: Met Arg Asp
Asn Lys Tyr Asp Ile Leu Phe
Glu Pro), antisense primer is 5'-Y
TTNGTRTAARAARTTNGGNCCRTTTDA
T-3 ′ (27mer, amino acid sequence of corresponding protein: Ile Asn Gly Pro Asn Ph
e Tyr Thr Lys), 0.3 kbp
A gene fragment corresponding to the degree was amplified. Amplified DN
The A fragment was recovered from the gel after 1% agarose gel electrophoresis and incorporated into pT7Blue T Vector (Takara Shuzo) to obtain a recombinant plasmid. The base sequence of the inserted DNA in the plasmid was calculated using the multicapillary DN.
A analysis system CEQ2000 (manufactured by Beckman Coulter, Inc.) was used. As a result, the DNA fragment (3
51 bp) had, at both ends, a nucleotide sequence that correctly encodes the amino acid sequence of the peptide used in the PCR primer design. In addition, the internal amino acid sequence determined by the protein sequencer was present in the amino acid sequence deduced from the determined nucleotide sequence. Therefore, it was revealed that the obtained amplified DNA fragment was a part (partial gene) of the histamine dehydrogenase gene of the present invention.

【0020】(3)リゾビウム・エスピー4−7染色体
DNAのサザンブロット解析1 次いで、実施例項目(1)で調製した染色体DNA2μ
gを、制限酵素BamHI、ClaI、EcoRI、E
coRV、HindIII、NdeI、PstI、Sa
lI、SmaIを用い、37℃で5時間消化した。得ら
れた制限酵素消化DNAを0.7%アガロースゲル電気
泳動に供した。泳動後、サザンブロット法により、ナイ
ロン膜(Hybond−N+、アマシャムファルマシア
バイオテック社製)にDNAを転写した。ハイブリダイ
ゼーションのプローブとしては、実施例項目(2)で得
られたプラスミド遺伝子を鋳型とし、M13プライマー
を用いて、PCR Dig ラベリングミックス(ロシュ
・ダイアグノスティックス社製)存在下でPCR増幅さ
せたものを使用した。PCRの反応条件等は、上記実施
例項目(2)と同様に行った。上記のナイロン膜を2×
SSC(0.3M NaCl、0.03Mクエン酸ナト
リウム;pH7.0)で洗浄後、DIGシステムを用
い、ユーザーガイド(ロシュ・ダイアグノスティックス
社製)に従い、ハイブリダイゼーションを行った。ハイ
ブリダイゼーションを行った後のナイロン膜の洗浄は、
0.1% SDS含有2×SSC(15mM NaCl、
1.5mMクエン酸ナトリウム;pH7.0)で室温に
て5分間、2回ののち、0.1% SDS含有0.1×
SSCで68℃にて15分間、2回行った。その結果、
BamHI、ClaI、EcoRI、EcoRV、Hi
ndIII、NdeI、PstI、SalI、SmaI
の各消化産物で夫々約8.0kbp、約2.5kbp、
約11kbp、約5.6kbp、約18kbp、約22
kbp、約11kbp、約6.3kbp、約12kbp
の位置にハイブリダイズしたプローブに由来するシグナ
ルが認められた。
(3) Southern blot analysis of Rhizobium sp. 4-7 chromosomal DNA 1 Next, 2 μ of the chromosomal DNA prepared in Example item (1)
g is the restriction enzyme BamHI, ClaI, EcoRI, E
coRV, HindIII, NdeI, PstI, Sa
It was digested with 1I and SmaI at 37 ° C for 5 hours. The obtained restriction enzyme digested DNA was subjected to 0.7% agarose gel electrophoresis. After the migration, the DNA was transferred to a nylon membrane (Hybond-N +, Amersham Pharmacia Biotech) by Southern blotting. As a hybridization probe, PCR amplification was performed in the presence of PCR Dig labeling mix (Roche Diagnostics) using the plasmid gene obtained in Example item (2) as a template and M13 primer. I used one. The reaction conditions and the like of PCR were the same as those in the above-mentioned item (2) of the example. 2x the above nylon membrane
After washing with SSC (0.3M NaCl, 0.03M sodium citrate; pH 7.0), hybridization was performed using a DIG system according to a user guide (Roche Diagnostics). Washing the nylon membrane after hybridization is
2 × SSC containing 0.1% SDS (15 mM NaCl,
1.5 mM sodium citrate; pH 7.0) at room temperature for 5 minutes, twice, and then 0.1 × SDS-containing 0.1 ×
Performed twice in SSC at 68 ° C. for 15 minutes. as a result,
BamHI, ClaI, EcoRI, EcoRV, Hi
ndIII, NdeI, PstI, SalI, SmaI
Of each digestion product of about 8.0 kbp, about 2.5 kbp,
About 11 kbp, about 5.6 kbp, about 18 kbp, about 22
kbp, about 11 kbp, about 6.3 kbp, about 12 kbp
A signal derived from the probe hybridized at the position was observed.

【0021】(4)インバースPCR法によるヒスタミ
ンデヒドロゲナーゼ遺伝子の部分断片の取得1 上記の結果に基づき、約8.0kbpのBamHI断
片、約2.5kbpのClaI断片、約5.6kbpの
EcoRV断片、約6.3kbpのSalI断片を用い
て、インバースPCRを行った。BamHI、Cla
I、EcoRV及びSalI消化した染色体DNA10
μgを1.0%アガロースゲル電気泳動で分離し、夫々
の大きさに相当する位置のアガロースゲルを切り出し
た。ゲルからGENE CLEAN II(フナコシ社
製)によりDNA断片を抽出精製し、該DNA断片をT
4 DNA Ligase(Roche社製)を用いてセ
ルフライゲーションさせた。上記のライゲーション産物
を鋳型とし、常法に従いインバースPCRを行った。実
施例項目(2)で決定した部分遺伝子配列をもとに、複
数個のPCR用プライマーを作製した。KOD Das
h ポリメラーゼ(東洋紡社製)を用い、熱変性94
℃,30秒、アニール67〜72℃,2秒、伸長反応7
2℃,4分の条件下、30サイクル行った。結果として
センスプライマーが5’−TCATCGAACTGCG
CCTGTGGGAAGAC−3’(配列番号2の21
5〜240bp、26 mer)、アンチセンスプライ
マーが5’−TTCTTCGCAATGTGTGGAC
CTATC−3’(配列番号2の65〜42bp、24
mer)であるとき、ClaI消化物由来の増幅DNA
(約2.5kbp)及びEcoRV消化物由来の増幅D
NA(5.6kbp)を得ることができた。夫々の増幅
DNA断片をCrystal Violetを添加した
アガロースゲルで電気泳動を行い、ゲルからS.N.
A.P. Gel Purification Kit
(Invitrogen社製)を用いて回収した。これ
をTOPOTA Cloning Kit(Invitr
ogen社製)を用いてpCR−XL−TOPOベクタ
ーに組み込んだ。該プラスミド中の挿入DNAの塩基配
列を、マルチキャピラリーDNA解析システムCEQ2
000(ベックマン・コールター社製)を用いて決定し
た。ClaI消化物由来のDNA断片2.5kbpにつ
いて解析した結果、ヒスタミンデヒドロゲナーゼをコー
ドする遺伝子のうちの5'末端からClaI切断部位ま
での971bp及び5'末端より上流側557bpの塩
基配列情報を得た。決定した塩基配列から推定されるア
ミノ酸配列中には、プロテインシークエンサーで決定し
た内部アミノ酸配列が存在した。従って、得られた増幅
DNA断片は、本発明のヒスタミンデヒドロゲナーゼ遺
伝子の一部分(部分遺伝子)であることが判明した。な
お、EcoRV消化物由来の増幅DNAについては、E
coRVの切断部位がヒスタミンデヒドロゲナーゼ遺伝
子の5'末端から433bpの位置に存在し、それより
5'上流側の遺伝子情報を有するものであったために、
このものからヒスタミンデヒドロゲナーゼをコードする
さらに下流の遺伝子情報を得ることはできなかった。
(4) Acquisition of partial fragment of histamine dehydrogenase gene by inverse PCR method 1 Based on the above results, about 8.0 kbp BamHI fragment, about 2.5 kbp ClaI fragment, about 5.6 kbp EcoRV fragment, about Inverse PCR was performed using the 6.3 kbp SalI fragment. BamHI, Cla
Chromosomal DNA 10 digested with I, EcoRV and SalI
μg was separated by 1.0% agarose gel electrophoresis, and the agarose gel at the position corresponding to each size was cut out. The DNA fragment was extracted and purified from the gel by GENE CLEAN II (manufactured by Funakoshi Co., Ltd.)
4 Self-ligation was performed using DNA Ligase (manufactured by Roche). Inverse PCR was performed according to a conventional method using the above ligation product as a template. A plurality of PCR primers were prepared based on the partial gene sequence determined in Example item (2). KOD Das
h heat denaturation 94 using h polymerase (manufactured by Toyobo Co., Ltd.)
℃, 30 seconds, annealing 67-72 ℃, 2 seconds, extension reaction 7
30 cycles were performed under conditions of 2 ° C. and 4 minutes. As a result, the sense primer is 5'-TCATCGAACTGCG
CCTGTGGGAAGAC-3 ′ (21 of SEQ ID NO: 2
5 to 240 bp, 26 mer), antisense primer is 5'-TTCTTCCGCAATGTGTGGAC
CTATC-3 ′ (65 to 42 bp of SEQ ID NO: 2, 24
Amplified DNA from ClaI digestion product
(About 2.5 kbp) and amplified D from EcoRV digests
It was possible to obtain NA (5.6 kbp). Each amplified DNA fragment was electrophoresed on an agarose gel to which Crystal Violet was added, and S. N.
A. P. Gel Purification Kit
(Manufactured by Invitrogen). This is the TOPOTA Cloning Kit (Invitr
(manufactured by Ogen) and incorporated into the pCR-XL-TOPO vector. The base sequence of the inserted DNA in the plasmid was determined by the multicapillary DNA analysis system CEQ2.
000 (manufactured by Beckman Coulter, Inc.). As a result of analysis of a DNA fragment of 2.5 kbp derived from a ClaI digest, 971 bp from the 5 ′ end to the ClaI cleavage site of the gene encoding histamine dehydrogenase and the nucleotide sequence information of 557 bp upstream from the 5 ′ end were obtained. The internal amino acid sequence determined by the protein sequencer was present in the amino acid sequence deduced from the determined nucleotide sequence. Therefore, it was revealed that the obtained amplified DNA fragment was a part (partial gene) of the histamine dehydrogenase gene of the present invention. For the amplified DNA derived from the EcoRV digest,
Since the cleavage site of coRV was present at a position 433 bp from the 5'end of the histamine dehydrogenase gene and had gene information 5'upstream from it,
From this, it was not possible to obtain further downstream gene information encoding histamine dehydrogenase.

【0022】(5)リゾビウム・エスピー4−7染色体
DNAのサザンブロット解析2 ヒスタミンデヒドロゲナーゼをコードする遺伝子でCl
aI切断部位よりも下流の情報を得るために、実施例項
目(3)と同様な方法で再度サザンブロット解析を行っ
た。すなわち、実施例項目(1)で調整した染色体DN
A2μgを、制限酵素BamHI、BanII、Eco
RV、EcoT14I、HincII、MluI、Sp
hI、XhoIを用い、37℃で5時間消化した。得ら
れた制限酵素消化DNAを0.7%アガロースゲル電気
泳動に供した。泳動後、サザンブロット法により、ナイ
ロン膜(Hybond−N+、アマシャムファルマシア
バイオテック社製)にDNAを転写した。ハイブリダイ
ゼーションのプローブとしては、実施例項目(4)で得
られたClaI消化物由来の増幅DNAが挿入されたプ
ラスミドを鋳型とし、センスプライマー5’−TTAA
GGAAGCGGTTGGCGACACGAC−3’
(配列番号2の635〜659bp、25 mer)、
アンチセンスプライマーが5’−TGAAGTCGAG
AACACCCTGGCGCAC−3’(配列番号2の
949〜925bp、25mer)を作製して、PCR
Dig ラベリングミックス(ロシュ・ダイアグノステ
ィックス社製)存在下でPCR増幅させたものを使用し
た。PCRの反応条件等は、上記実施例項目(2)の条
件でアニール温度を62℃として同様に行った。上記の
ナイロン膜を2×SSC(0.3M NaCl、0.0
3Mクエン酸ナトリウム;pH7.0)で洗浄後、DI
Gシステムを用い、ユーザーガイド(ロシュ・ダイアグ
ノスティックス社製)に従い、ハイブリダイゼーション
を行った。ハイブリダイゼーションを行った後のナイロ
ン膜の洗浄は、0.1% SDS含有2×SSC(15
mM NaCl、1.5mMクエン酸ナトリウム;pH
7.0)で室温にて5分間、2回ののち、0.1% S
DS含有0.1×SSCで68℃にて15分間、2回行
った。その結果、BamHI、BanII、EcoR
V、EcoT14I、HincII、MluI、Sph
I、XhoIの各消化産物で夫々、約3.9kbp、約
1.6kbp、約1.3kbp、約0.7kbp、約
0.9kbp、約8.1kbp、約2.5kbp、約
1.1kbpの位置にハイブリダイズしたプローブに由
来するシグナルが認められた。ヒスタミンデヒドロゲナ
ーゼの分子量から、コードする遺伝子の数が約2kbp
と推定されており、しかも実施例項目(4)からSph
I切断部位が遺伝子の5'末端より約130bp上流の
ところに存在することがわかっていたので、SphIの
断片がヒスタミンデヒドロゲナーゼをコードする遺伝子
の全長を含んでいることが予想された。
(5) Southern blot analysis of Rhizobium sp. 4-7 chromosomal DNA 2 Cl is a gene encoding histamine dehydrogenase
In order to obtain information downstream of the aI cleavage site, Southern blot analysis was performed again in the same manner as in Example item (3). That is, the chromosome DN adjusted in Example item (1)
A2 μg was added to the restriction enzymes BamHI, BanII, Eco
RV, EcoT14I, HincII, MluI, Sp
It was digested with hI and XhoI at 37 ° C. for 5 hours. The obtained restriction enzyme digested DNA was subjected to 0.7% agarose gel electrophoresis. After the migration, the DNA was transferred to a nylon membrane (Hybond-N +, Amersham Pharmacia Biotech) by Southern blotting. As a hybridization probe, the plasmid into which the amplified DNA derived from the ClaI digestion product obtained in Example (4) was inserted was used as a template, and the sense primer 5'-TTAA was used.
GGAAGCGGTTTGGCGACACGAC-3 '
(635 to 659 bp of SEQ ID NO: 2, 25 mer),
Antisense primer is 5'-TGAAGTCCGAG
AACACCCTGGGCCAC-3 ′ (949 to 925 bp of SEQ ID NO: 2, 25 mer) was prepared and PCR was performed.
PCR amplification was performed in the presence of Dig labeling mix (manufactured by Roche Diagnostics). Regarding the PCR reaction conditions and the like, the annealing temperature was 62 ° C. under the conditions of the above-mentioned item (2) of the example. The above nylon membrane was applied to 2 × SSC (0.3M NaCl, 0.0
After washing with 3M sodium citrate; pH 7.0), DI
Hybridization was performed using a G system according to a user guide (manufactured by Roche Diagnostics). After the hybridization, the nylon membrane was washed with 2 × SSC (15%) containing 0.1% SDS.
mM NaCl, 1.5 mM sodium citrate; pH
7.0) at room temperature for 5 minutes, twice, and then 0.1% S
It was performed twice at 0.1 ° SSC containing DS at 68 ° C for 15 minutes. As a result, BamHI, BanII, EcoR
V, EcoT14I, HincII, MluI, Sph
I, XhoI digestion products of about 3.9 kbp, about 1.6 kbp, about 1.3 kbp, about 0.7 kbp, about 0.9 kbp, about 8.1 kbp, about 2.5 kbp, about 1.1 kbp, respectively. A signal derived from the probe hybridized to the position was observed. Based on the molecular weight of histamine dehydrogenase, the number of coding genes is about 2 kbp.
It is presumed that Sph from Example item (4)
It was expected that the fragment of SphI contained the full length gene encoding histamine dehydrogenase, as it was known that the I cleavage site was located approximately 130 bp upstream of the 5'end of the gene.

【0023】(6)インバースPCR法によるヒスタミ
ンデヒドロゲナーゼ遺伝子の部分断片の取得2 上記の結果に基づき、約2.5kbpのSphI断片を
用いて、インバースPCRを行った。SphI消化した
染色体DNA10μgを1.0%アガロースゲル電気泳
動で分離し、夫々の大きさに相当する位置のアガロース
ゲルを切り出した。ゲルからGENE CLEAN II
(フナコシ社製)によりDNA断片を抽出精製し、該D
NA断片をT4 DNA Ligase(Roche社
製)を用いてセルフライゲーションさせた。上記のライ
ゲーション産物を鋳型とし、常法に従いインバースPC
Rを行った。実施例項目(4)で決定した部分遺伝子配
列をもとに、複数個のPCR用プライマーを作製した。
PCR用KOD Dash ポリメラーゼ(東洋紡社製)
を用い、熱変性94℃,30秒、アニール63〜70
℃,2秒、伸長反応72℃,4分の条件下、30サイク
ル行った。結果として、センスプライマーとして5’−
GTGCGCCAGGGTGTTCTCGACTTCA
−3’(配列番号2の925〜949bp、25 me
r)、アンチセンスプライマーとして5’−TGCAT
TGGATTTGTTGAGAGCCGGG−3’
(5’末端より上流25〜49bp、25mer)を用
いたとき、SphI消化物由来の増幅DNA(約1.5
kbp)を得ることができた。増幅DNA断片をCry
stal Violetを添加したアガロースゲルで電
気泳動を行い、ゲルからS.N.A.P. Gel Pu
rificationKit(Invitrogen社
製)を用いて回収した。これをpT7Blue T Ve
ctor(宝酒造社製)に組み込んだ。該プラスミド中
の挿入DNAの塩基配列を、マルチキャピラリーDNA
解析システムCEQ2000(ベックマン・コールター
社製)を用いて決定した。SphI消化物由来のDNA
断片1.5kbpについて解析した結果、ヒスタミンデ
ヒドロゲナーゼをコードする残りの遺伝子及び3'末端
より下流の229bpの塩基配列情報を得た。決定した
塩基配列から推定されるアミノ酸配列中には、プロテイ
ンシークエンサーで決定した内部アミノ酸配列が存在し
た。従って、得られた増幅DNA断片は、本発明のヒス
タミンデヒドロゲナーゼ遺伝子の一部分(部分遺伝子)
であることが判明した。
(6) Acquisition of partial fragment of histamine dehydrogenase gene by inverse PCR method 2 Based on the above results, inverse PCR was carried out using a SphI fragment of about 2.5 kbp. 10 μg of the SphI-digested chromosomal DNA was separated by 1.0% agarose gel electrophoresis, and the agarose gel at the position corresponding to each size was cut out. Gel from GENE CLEAN II
The DNA fragment was extracted and purified by (Funakoshi Co., Ltd.)
The NA fragment was self-ligated using T4 DNA Ligase (manufactured by Roche). Inverse PC using the above ligation product as a template according to a conventional method
R was done. A plurality of PCR primers were prepared based on the partial gene sequence determined in Example item (4).
KOD Dash polymerase for PCR (manufactured by Toyobo Co., Ltd.)
Using heat denaturation 94 ° C., 30 seconds, annealing 63-70
C., 2 seconds, extension reaction 72.degree. C., 4 minutes, 30 cycles were performed. As a result, 5'- as a sense primer
GTGCCGCCAGGGGTGTCTCGACTTCA
-3 '(925 to 949 bp of SEQ ID NO: 2, 25 me
r), 5'-TGCAT as an antisense primer
TGGATTTGTTGAGAGCCGGG-3 '
When (25-49 bp upstream from 5'end, 25 mer) was used, amplified DNA (about 1.5
kbp) could be obtained. Cry the amplified DNA fragment
Electrophoresis was carried out on an agarose gel containing stal violet, and the gel was subjected to S. N. A. P. Gel Pu
It was recovered using a Ricification Kit (manufactured by Invitrogen). This is pT7Blue T Ve
It was incorporated into ctor (Takara Shuzo). The base sequence of the inserted DNA in the plasmid was changed to multicapillary DNA.
It was determined using an analysis system CEQ2000 (manufactured by Beckman Coulter, Inc.). DNA from SphI digest
As a result of analyzing the fragment of 1.5 kbp, the remaining gene encoding histamine dehydrogenase and the nucleotide sequence information of 229 bp downstream from the 3'end were obtained. The internal amino acid sequence determined by the protein sequencer was present in the amino acid sequence deduced from the determined nucleotide sequence. Therefore, the obtained amplified DNA fragment is a part (partial gene) of the histamine dehydrogenase gene of the present invention.
It turned out to be

【0024】(7)全長ヒスタミンデヒドロゲナーゼ遺
伝子のクローニング及びヒスタミンデヒドロゲナーゼ生
産株の取得 先ず、上記の操作で得られた塩基配列に基づき、ヒスタ
ミンデヒドロゲナーゼ遺伝子の5'末端あるいは3'末端
を含むオリゴヌクレオチド(計30塩基のオリゴヌクレ
オチド、3'末端側は相補鎖)を設計した。このプライ
マー中にNdeI部位を組み込んでおき、PCRで増幅
した産物を、NdeIを作用させて消化することによ
り、コーディング領域が得られるようにしておいた。す
なわち、センスプライマーとして5’−AAGCAGT
GAGGAACCATATGCGCGATAACA−
3’(30 mer)、アンチセンスプライマーとして
5’−TCGATCAATCCTCATATGTCAC
GCTGGCTC−3’(30mer)を合成した。ま
たSphI消化した染色体DNAを1.0%アガロース
ゲル電気泳動で分離し、2.5kbpの大きさに相当す
る位置のアガロースゲルを切り出し、ゲルからS.N.
A.P. Gel PurificationKit(I
nvitrogen社製)を用いて遺伝子断片を回収し
た。これを鋳型とし、合成プライマー及びKOD Pl
us ポリメラーゼ(東洋紡社製)を用い、熱変性94
℃,15秒、アニール56℃,30秒、伸長反応68
℃,3分30秒の条件下、30サイクル行った。結果と
してSphI消化物由来の増幅DNA(約2.1kb
p)が得られ、これをNdeIで消化して、ヒスタミン
デヒドロゲナーゼをコードする領域のDNAを得ること
ができた。
(7) Cloning of full-length histamine dehydrogenase gene and acquisition of histamine dehydrogenase producing strain First, based on the nucleotide sequence obtained by the above-mentioned operation, an oligonucleotide containing a 5'end or a 3'end of the histamine dehydrogenase gene (total An oligonucleotide of 30 bases and a complementary strand on the 3'-terminal side were designed. The NdeI site was incorporated into this primer, and the product amplified by PCR was digested with NdeI to allow the coding region to be obtained. That is, 5'-AAGCAGT as a sense primer
GAGGAACCATATGCGCGATAACA-
3 '(30 mer), 5'-TCGATCAATCCCTCATATGTCAC as an antisense primer
GCTGGGCTC-3 ′ (30mer) was synthesized. The SphI-digested chromosomal DNA was separated by 1.0% agarose gel electrophoresis, the agarose gel at the position corresponding to the size of 2.5 kbp was cut out, and the S.I. N.
A. P. Gel Purification Kit (I
The gene fragment was recovered using nvitrogen). Using this as a template, synthetic primers and KOD Pl
heat denaturation 94 using us polymerase (manufactured by Toyobo Co., Ltd.)
℃, 15 seconds, annealing 56 ℃, 30 seconds, extension reaction 68
30 cycles were carried out under the conditions of 3 ° C for 30 minutes. As a result, amplified DNA (about 2.1 kb) derived from the SphI digest was obtained.
p) was obtained, which could be digested with NdeI to obtain the DNA for the region encoding histamine dehydrogenase.

【0025】得られたDNAを、大腸菌ラクトースオペ
ロン等に由来するプロモーター、オペレーター及びリボ
ゾーム結合部位等の発現領域を含むDNA配列(The
Operon, p.227, Cold Spring
Harbor Laboratory, 1980を参
照)を保有するベクター、pUTE500K’(特開平
08−205861公報記載)のNdeI部位に挿入
し、組み換え体プラスミドpHMDH1DNAを得た。
D.M.Morrisonの方法(Methods i
n Enzymology,68,p.326−33
1,1979)に従い、組み換え体プラスミドDNAp
HMDH1を用いて大腸菌(E.coli)JM109
(東洋紡社製)を形質転換し、形質転換株、大腸菌
(E.coli)JM109(pHMDH5001)を
得た。該プラスミド中の挿入DNAの塩基配列を、マル
チキャピラリーDNA解析システムCEQ2000(ベ
ックマン・コールター社製)を用いて決定した。以前に
インバースPCR法で取得したクローンの塩基配列と比
較した。どちらかにPCR errorが入っていると
思われた箇所は、その近傍を含む部分について、上記の
とおり染色体DNAをSphI処理して得られた断片を
鋳型とした複数ロットのPCRを行い、それらの塩基配
列を比較することにより決定した。その結果、pHMD
H5001にはPCR errorは入っていなかっ
た。決定したヒスタミンデヒドロゲナーゼ遺伝子の塩基
配列を配列番号2に、また、該DNA配列から翻訳され
るポリペプチドのアミノ酸配列を配列番号1に夫々示し
た。ヒスタミンデヒドロゲナーゼ遺伝子のORFは、2
079 bp、693アミノ酸からなっていることが判
明した。なお、pHMDH5001は、独立行政法人産
業技術総合研究所 特許生物寄託センターにFERM BP−
7981として寄託されている。得られた大腸菌(E.
coli)JM109(pHMDH5001)を、1m
Mイソプロピル−β−D−チオガラクトピラノシドを含
むTY培地(1%バクト・トリプトン、0.5%バクト
・イースト・エクストラクト、0.5%NaCl、pH
7.0)にて37℃で10時間振とう培養した後、ヒ
スタミンデヒドロゲナーゼ活性を測定したところ、0.
07U/mlであった。
The obtained DNA is used as a DNA sequence containing the expression regions such as promoter, operator and ribosome binding site derived from Escherichia coli lactose operon (The
Operon, p. 227, Cold Spring
The recombinant plasmid pHMDH1 DNA was obtained by inserting the vector carrying the Harbor Laboratory, 1980) into the NdeI site of pUTE500K '(described in JP-A-08-205861).
D. M. Morrison's Method (Methods i
n Enzymology, 68, p. 326-33
1, 1979), recombinant plasmid DNAp
E. coli JM109 using HMDH1
(Toyobo Co., Ltd.) was transformed to obtain a transformant, E. coli JM109 (pHMDH5001). The nucleotide sequence of the inserted DNA in the plasmid was determined using a multicapillary DNA analysis system CEQ2000 (manufactured by Beckman Coulter, Inc.). The nucleotide sequence was compared with that of a clone previously obtained by the inverse PCR method. For a portion where PCR error was considered to be contained in either side, PCR was carried out for multiple lots using the fragment obtained by treating the chromosomal DNA as described above with SphI as a template for the portion including the vicinity thereof. It was determined by comparing the nucleotide sequences. As a result, pHMD
No PCR error was included in H5001. The determined nucleotide sequence of the histamine dehydrogenase gene is shown in SEQ ID NO: 2, and the amino acid sequence of the polypeptide translated from the DNA sequence is shown in SEQ ID NO: 1. The ORF of the histamine dehydrogenase gene is 2
It was found to be composed of 079 bp and 693 amino acids. In addition, pHMDH5001 is FERM BP-
Deposited as 7981. The resulting E. coli (E.
coli) JM109 (pHMDH5001) 1m
TY medium containing M isopropyl-β-D-thiogalactopyranoside (1% Bacto tryptone, 0.5% Bacto yeast extract, 0.5% NaCl, pH)
After culturing with shaking at 37 ° C. for 10 hours at 7.0), the histamine dehydrogenase activity was measured.
It was 07 U / ml.

【0026】[0026]

【発明の効果】本発明によれば、ヒスタミンデヒドロゲ
ナーゼを効率よく生産することができるので、本発明
は、産業上極めて有用である。
INDUSTRIAL APPLICABILITY According to the present invention, histamine dehydrogenase can be efficiently produced, so that the present invention is industrially very useful.

【0027】[0027]

【配列表】 SEQUENCE LISING 〈110〉KIKKOMAN CORPORATION 〈120〉A HISTAMINE DEHYDROGENASE GENE,A NOVEL RECOMBINANT DNA, AN D A PROCESS FOR PRODUCING A HISTAMINE DEHYDROGENASE 〈130〉P2272 〈160〉2 〈210〉1 〈211〉693 〈212〉PRT 〈213〉Rhizobium sp.4−7 〈400〉1 Met Arg Asp Asn Lys Tyr Asp Ile Leu Phe Glu Pro Val Arg Ile Gly 1 5 10 15 Pro His Ile Ala Lys Asn Arg Phe Tyr Gln Val Pro His Cys Asn Gly 20 25 30 Gly Gly Tyr Arg Asp Pro Ser Ala Ala Ala Ala Met Arg Gly Ile Lys 35 40 45 Ser Glu Gly Gly Trp Gly Val Ile Phe Thr Glu Gln Thr Glu Met His 50 55 60 His Thr Ser Glu Ile Thr Pro Phe Ile Glu Leu Arg Leu Trp Glu Asp 65 70 75 80 Lys Asp Ile Pro Gly Leu Arg Arg Met Ser Asp Ala Met Lys Val His 85 90 95 Gly Ala Leu Ala Gly Ile Gln Leu Ala Tyr Ser Gly Ile Asn Gly Pro 100 105 110 Asn Phe Tyr Thr Lys Glu Val Pro Leu Ala Pro Ser Ala Leu Pro Ile 115 120 125 Arg Thr Phe Thr Asn Asp Pro Val Gln Ala Arg Ala Leu Asp Lys Gln 130 135 140 Asp Ile Lys Asn Leu Arg Arg Trp Phe Val Asn Ala Ala Lys Arg Ser 145 150 155 160 Lys Ile Ala Gly Phe Asp Leu Ile Cys Leu Tyr Gly Ala His Gly Phe 165 170 175 Gly Ile Phe Gln His Phe Leu Ser Arg Ala Thr Asn Gln Arg Thr Asp 180 185 190 Glu Tyr Gly Gly Ser Leu Glu Asn Arg Ser Arg Phe Ala Arg Glu Val 195 200 205 Val Glu Asp Ile Lys Glu Ala Val Gly Asp Thr Thr Ala Ile Thr Met 210 215 220 Arg Val Ser Leu Asp Glu Thr Ile Gly Glu Leu Gly Phe Ser Asn Ala 225 230 235 240 Glu Val Arg Glu Phe Val Glu Met Asn Ala Asn Leu Pro Asp Leu Trp 245 250 255 Asp Leu Ala Gln Gly Thr Trp Glu Asp Cys Ser Gly Pro Ser Arg Phe 260 265 270 Lys Glu Glu Gly Ala Gln Glu Ile Leu Val Lys Gly Ile Arg Glu Leu 275 280 285 Ser Ser Lys Pro Val Val Gly Val Gly Arg Phe Thr Ser Pro Asp Val 290 295 300 Met Ala Arg Met Val Arg Gln Gly Val Leu Asp Phe Ile Gly Cys Ala 305 310 315 320 Arg Pro Ser Ile Ala Asp Pro Phe Leu Pro Lys Lys Ile Glu Glu Gly 325 330 335 Arg Ile Glu Asp Ile Arg Glu Cys Ile Gly Cys Asn Ile Cys Ile Thr 340 345 350 Gly Asp Met Thr Met Ser Ile Ser Arg Cys Thr Gln Asn Pro Thr Phe 355 360 365 Met Glu Glu Trp Arg Lys Gly Trp His Pro Glu Arg Met Asn Ala Lys 370 375 380 Gly Asp Ser Asn Thr Val Leu Val Val Gly Ala Gly Pro Ala Gly Leu 385 390 395 400 Glu Ala Thr Arg Ala Leu Ser Leu Arg Gly Tyr Asp Val Thr Leu Ala 405 410 415 Glu Ala Thr Thr Thr Leu Gly Gly Arg Val Ala Arg Glu Arg Leu Leu 420 425 430 Pro Gly Leu Ser Ala Trp Gly Arg Val Val Asp Tyr Arg Gln Tyr Gln 435 440 445 Ile Ser Gln Arg Thr Asn Val Glu Thr Tyr Phe Asp Ser Arg Leu Thr 450 455 460 Ala Glu Asp Val Leu Gly Phe Gly Phe Glu His Val Ala Ile Ala Thr 465 470 475 480 Gly Ser His Trp Arg Arg Asp Gly Val Ala Arg Gln His Val Val Pro 485 490 495 Met Pro Ile Asp Pro Ser Met Thr Val Trp Thr Pro Asp Asp Ile Met 500 505 510 Ala Lys Val His Pro Glu Asn Leu Ser Gly Lys Thr Val Val Val Tyr 515 520 525 Asp Asp Asp His Tyr Tyr Met Gly Gly Val Met Ala Glu Val Met Ala 530 535 540 Lys Ala Gly Ala Lys Val Ile Leu Val Thr Ser Ser Ala Tyr Val Ser 545 550 555 560 Asp Trp Thr Arg Asn Thr Leu Glu Gln Gly Ala Ile His Val Arg Leu 565 570 575 Asp Asp Leu Gly Val Asp Ile Arg Leu Asn Arg Gly Val Thr Ala Ile 580 585 590 Arg Ala Gly Glu Val Glu Thr Asn Cys Val Tyr Thr Gly Lys Arg Ser 595 600 605 Ala Ile Gly Cys Asp Ala Val Leu Met Val Ala Ser Arg Thr Ser Glu 610 615 620 Asp Gln Leu Phe Asn Asp Leu Ile Ala Arg Gln Gly Asp Trp Pro Asp 625 630 635 640 Ala Gly Ile Lys Ser Val Lys Ile Ile Gly Asp Ala Ala Ala Pro Ala 645 650 655 Pro Ile Ala Trp Ala Thr Tyr Ala Gly His Arg Tyr Ala Arg Glu Leu 660 665 670 Asp Thr Pro Asp Ile Gly Asp Asp Leu Pro Phe Arg Arg Glu Val Thr 675 680 685 Gln Leu Glu Pro Ala 690 [Sequence list]                   SEQUENCE LISING <110> KIKKOMAN CORPORATION <120> A HISTAMINE DEHYDROGENASE GENE, A NOVEL RECOMBINANT DNA, AN D A PROCESS FOR PRODUCING A HISTAMINE DEHYDROGENASE <130> P2272 <160> 2 <210> 1 <211> 693 <212> PRT <213> Rhizobium sp. 4-7 <400> 1      Met Arg Asp Asn Lys Tyr Asp Ile Leu Phe Glu Pro Val Arg Ile Gly                 1 5 10 15                 Pro His Ile Ala Lys Asn Arg Phe Tyr Gln Val Pro His Cys Asn Gly                           20 25 30                Gly Gly Tyr Arg Asp Pro Ser Ala Ala Ala Ala Met Arg Gly Ile Lys                        35 40 45                Ser Glu Gly Gly Trp Gly Val Ile Phe Thr Glu Gln Thr Glu Met His                    50 55 60               His Thr Ser Glu Ile Thr Pro Phe Ile Glu Leu Arg Leu Trp Glu Asp                65 70 75 80                 Lys Asp Ile Pro Gly Leu Arg Arg Met Ser Asp Ala Met Lys Val His                                85 90 95                 Gly Ala Leu Ala Gly Ile Gln Leu Ala Tyr Ser Gly Ile Asn Gly Pro                           100 105 110               Asn Phe Tyr Thr Lys Glu Val Pro Leu Ala Pro Ser Ala Leu Pro Ile                        115 120 125                Arg Thr Phe Thr Asn Asp Pro Val Gln Ala Arg Ala Leu Asp Lys Gln                   130 135 140                 Asp Ile Lys Asn Leu Arg Arg Trp Phe Val Asn Ala Ala Lys Arg Ser               145 150 155 160               Lys Ile Ala Gly Phe Asp Leu Ile Cys Leu Tyr Gly Ala His Gly Phe                               165 170 175               Gly Ile Phe Gln His Phe Leu Ser Arg Ala Thr Asn Gln Arg Thr Asp                           180 185 190                 Glu Tyr Gly Gly Ser Leu Glu Asn Arg Ser Arg Phe Ala Arg Glu Val                       195 200 205                 Val Glu Asp Ile Lys Glu Ala Val Gly Asp Thr Thr Ala Ile Thr Met                   210 215 220                Arg Val Ser Leu Asp Glu Thr Ile Gly Glu Leu Gly Phe Ser Asn Ala               225 230 235 240                Glu Val Arg Glu Phe Val Glu Met Asn Ala Asn Leu Pro Asp Leu Trp                                245 250 255                  Asp Leu Ala Gln Gly Thr Trp Glu Asp Cys Ser Gly Pro Ser Arg Phe                            260 265 270                 Lys Glu Glu Gly Ala Gln Glu Ile Leu Val Lys Gly Ile Arg Glu Leu                       275 280 285               Ser Ser Lys Pro Val Val Gly Val Gly Arg Phe Thr Ser Pro Asp Val                   290 295 300               Met Ala Arg Met Val Arg Gln Gly Val Leu Asp Phe Ile Gly Cys Ala               305 310 315 320                Arg Pro Ser Ile Ala Asp Pro Phe Leu Pro Lys Lys Ile Glu Glu Gly                               325 330 335               Arg Ile Glu Asp Ile Arg Glu Cys Ile Gly Cys Asn Ile Cys Ile Thr                           340 345 350              Gly Asp Met Thr Met Ser Ile Ser Arg Cys Thr Gln Asn Pro Thr Phe                       355 360 365      Met Glu Glu Trp Arg Lys Gly Trp His Pro Glu Arg Met Asn Ala Lys                   370 375 380                Gly Asp Ser Asn Thr Val Leu Val Val Gly Ala Gly Pro Ala Gly Leu               385 390 395 400                Glu Ala Thr Arg Ala Leu Ser Leu Arg Gly Tyr Asp Val Thr Leu Ala                                405 410 415                 Glu Ala Thr Thr Thr Leu Gly Gly Arg Val Ala Arg Glu Arg Leu Leu                            420 425 430                 Pro Gly Leu Ser Ala Trp Gly Arg Val Val Asp Tyr Arg Gln Tyr Gln                       435 440 445               Ile Ser Gln Arg Thr Asn Val Glu Thr Tyr Phe Asp Ser Arg Leu Thr                   450 455 460                Ala Glu Asp Val Leu Gly Phe Gly Phe Glu His Val Ala Ile Ala Thr               465 470 475 480               Gly Ser His Trp Arg Arg Asp Gly Val Ala Arg Gln His Val Val Pro                               485 490 495                Met Pro Ile Asp Pro Ser Met Thr Val Trp Thr Pro Asp Asp Ile Met                           500 505 510                Ala Lys Val His Pro Glu Asn Leu Ser Gly Lys Thr Val Val Val Tyr                       515 520 525                Asp Asp Asp His Tyr Tyr Met Gly Gly Val Met Ala Glu Val Met Ala                   530 535 540                Lys Ala Gly Ala Lys Val Ile Leu Val Thr Ser Ser Ala Tyr Val Ser               545 550 555 560               Asp Trp Thr Arg Asn Thr Leu Glu Gln Gly Ala Ile His Val Arg Leu                                565 570 575                Asp Asp Leu Gly Val Asp Ile Arg Leu Asn Arg Gly Val Thr Ala Ile                            580 585 590                 Arg Ala Gly Glu Val Glu Thr Asn Cys Val Tyr Thr Gly Lys Arg Ser                       595 600 605                 Ala Ile Gly Cys Asp Ala Val Leu Met Val Ala Ser Arg Thr Ser Glu                   610 615 620               Asp Gln Leu Phe Asn Asp Leu Ile Ala Arg Gln Gly Asp Trp Pro Asp               625 630 635 640                Ala Gly Ile Lys Ser Val Lys Ile Ile Gly Asp Ala Ala Ala Pro Ala                               645 650 655             Pro Ile Ala Trp Ala Thr Tyr Ala Gly His Arg Tyr Ala Arg Glu Leu                          660 665 670               Asp Thr Pro Asp Ile Gly Asp Asp Leu Pro Phe Arg Arg Glu Val Thr                       675 680 685                Gln Leu Glu Pro Ala          690

【0028】 〈210〉2 〈211〉2079 〈212〉DNA 〈213〉Rhizobium sp.4−7 〈400〉2 atg cgc gat aac aag tac gac att ctc ttc gaa ccc gtc cgg ata ggt 48 cca cac att gcg aag aac cgc ttc tac cag gtc ccc cat tgc aac ggc 96 ggc ggc tat cgc gac ccg tcc gcg gcc gcg gcc atg cgc gga atc aag 144 tcg gaa ggc ggg tgg ggt gtc atc ttc acc gag cag acc gag atg cac 192 cac acc tcg gag atc aca ccc ttc atc gaa ctg cgc ctg tgg gaa gac 240 aag gac atc cct ggt ctt cgc cgc atg tcc gac gcc atg aag gtc cat 288 ggt gcg ctt gcc ggc atc cag ctc gcc tac tcc ggc atc aat ggt ccg 336 aac ttc tac acc aag gag gtt ccg ctg gca cct tcc gcc ctg ccg atc 384 cgc acc ttc acc aac gat ccg gtg cag gcg cgt gcc ttg gac aag cag 432 gat atc aaa aat ctt aga cgc tgg ttc gtc aac gcc gcc aag cgg tcg 480 aag atc gcc ggt ttc gat ctg atc tgt ctc tac ggc gca cac ggc ttc 528 ggc atc ttc cag cac ttc ctg tca cgc gcg acc aac cag cgc acc gac 576 gag tac ggc gga agt ctc gag aac cgt tcg cgc ttt gcc cgc gaa gtc 624 gtc gag gac att aag gaa gcg gtt ggc gac acg acc gcg atc acc atg 672 cgc gtc agc ctc gac gag acg atc ggc gag ctc ggt ttc tcc aat gcc 720 gag gtc cgg gag ttc gtc gag atg aac gcg aac ctg ccg gat ctg tgg 768 gat ctt gcg cag gga acc tgg gaa gac tgt tcc ggg cct tcc cgc ttc 816 aag gaa gaa ggc gcg cag gag atc ctg gtc aag ggg atc cgc gag ctg 864 tcc tcg aag ccg gtt gtc ggc gtc ggc cgc ttc acg tcc ccc gat gtg 912 atg gca cgc atg gtg cgc cag ggt gtt ctc gac ttc atc ggc tgc gct 960 cgc cca tcg atc gct gat ccg ttc ttg ccg aag aag atc gag gaa ggg 1008 cgc atc gaa gac atc cgc gaa tgc atc gga tgc aac atc tgc atc acc 1056 ggc gac atg acg atg tcg atc agc cgc tgc acg cag aac ccg acc ttc 1104 atg gaa gaa tgg cgc aag ggt tgg cac ccc gag cgg atg aac gcc aag 1152 ggt gac agc aac acc gtg ctc gtt gtg ggc gcc ggt ccg gcc ggc ctc 1200 gaa gcg aca cgc gcc ctg tcc ctc cgg ggc tac gac gtg acg ctg gcg 1248 gaa gcc acg acc acg ctt ggc ggg cgc gtt gcg cgt gag cgc ttg ttg 1296 ccc ggt ctc tca gcc tgg ggc cgc gtc gtc gac tat cgt cag tat cag 1344 atc agc cag cgc acc aat gtc gag acc tac ttc gac agt cgg ctg acc 1392 gca gag gat gtg ctc ggc ttc ggg ttc gaa cat gtc gcg atc gca acc 1440 ggt tct cac tgg cgc cgt gac ggc gtt gca cga cag cac gtc gtg ccg 1488 atg ccg atc gat cct tcc atg acg gtg tgg acg ccc gac gac atc atg 1536 gcc aag gtg cat ccc gaa aac ctg tcc ggc aag aca gtc gtc gtc tat 1584 gac gac gac cac tat tac atg ggc ggc gtc atg gcc gag gtc atg gcc 1632 aag gcc ggc gcc aag gtc atc ctc gtg acg tcg tcg gcc tat gtg tcc 1680 gac tgg acg cga aac acg ctc gag cag ggt gca atc cat gtg cgc ctt 1728 gac gat ctc ggg gtc gat atc cgc ctc aac cgc ggc gta acg gcc att 1776 cgc gcc gga gaa gtc gag acc aac tgc gtc tat acc ggc aag cga agc 1824 gcg atc ggc tgc gac gcg gtt ctc atg gtt gcg tca cgg acg tcc gag 1872 gat cag ctc ttc aac gac ctg att gcc cgg cag ggt gat tgg ccc gat 1920 gcc ggc atc aag agc gtg aag atc atc ggc gat gcc gca gca ccc gcc 1968 ccg atc gca tgg gcg acc tat gcc ggt cat cgc tat gcc cgt gaa ctc 2016 gac aca ccc gat atc ggc gat gac ctc ccg ttc cgc cgc gaa gtc acg 2064 cag ctg gag cca gcg
2079
<210> 2 <211> 2079 <212> DNA <213> Rhizobium sp. 4-7 <400> 2 atg cgc gat aac aag tac gac att ctc ttc gaa ccc gtc cgg ata ggt 48 cca cac att gcg aag aac cgc ttc tac cag gtc ccc cat tgc aac ggc 96 ggc ggc tat cgc gcgcc gcg gcc atg cgc gga atc aag 144 tcg gaa ggc ggg tgg ggt gtc atc ttc acc gag cag acc gag atg cac 192 cac acc tcg gag atc aca ccc ttc atc gaa ctg cgc ctg tgg gaa gac 240 cct ggt atc ag atg tcc gac gcc atg aag gtc cat 288 ggt gcg ctt gcc ggc atc cag ctc gcc tac tcc ggc atc aat ggt ccg 336 aac ttc tac acc aag gag gtt ccg ctg gca ctt ccg atacc 384c gtg cag gcg cgt gcc ttg gac aag cag 432 gat atc aaa aat ctt aga cgc tgg ttc gtc aac gcc gcc aag cgg tcg 480 aag atc gcc ggt ttc gat ctg atc tgt ctc tac ggc gca cac ggc tt ctg tca cgc gcg acc aac cag cgc acc gac 576 gag tac ggc gga agt ctc gag aac cgt tcg cgc ttt gcc cgc gaa gtc 624 gtc gag gac att aag gaa gcg gtt ggc gac gc cg acg acc gcg atg gag acg a tc ggc gag ctc ggt ttc tcc aat gcc 720 gag gtc cgg gag ttc gtc gag atg aac gcg aac ctg ccg gat ctg tgg 768 gat ctt gcg cag gga acc tgg gaag actgt tcc ggg cct tga cagag gag atc ctg gtc aag ggg atc cgc gag ctg 864 tcc tcg aag ccg gtt gtc ggc gtc ggc cgc ttc acg tcc ccc gat gtg 912 atg gca cgc atg gtc ctc atc gct cct cat cg cg tg gat ccg ttc ttg ccg aag aag atc gag gaa ggg 1008 cgc atc gaa gac atc cgc gaa tgc atc gga tgc aac atc tgc atc acc 1056 ggc gac atg acg atg tcg atc tgc acgg acacc gag acg cag cag cag cag cag cag cgc aag ggt tgg cac ccc gag cgg atg aac gcc aag 1152 ggt gac agc aac acc gtg ctc gtt gtg ggc gcc ggt ccg gcc ggc ctc 1200 gaa gcg aca cgc gcc acg48 gc gcc gg gg acg48 acc acg ctt ggc ggg cgc gtt gcg cgt gag cgc ttg ttg 1296 ccc ggt ctc tca gcc tgg ggc cgc gtc gtc gac tat cgt cag tat cag 1344 atc agc cag cgc acc aat gtc gag gct acgt tt gca gag gat gtg ctc ggc ttc ggg ttc gaa cat gtc gcg atc gca acc 1440 ggt tct cac tgg cgc cgt gac ggc gtt gca cga cag cac gtc gtg ccg 1488 atg ccg atc gat cct tcc atg acg atg acg atg acg 1536 gcc aag gtg cat ccc gaa aac ctg tcc ggc aag aca gtc gtc gtc tat 1584 gac gac gac cac tat tac atg ggc ggc gtc atg gcc gag gtc atg gcc 1632 aag gcc ggc gcc ag gtcgtg acc gtcgtg acg gtc tcc 1680 gac tgg acg cga aac acg ctc gag cag ggt gca atc cat gtg cgc ctt 1728 gac gat ctc ggg gtc gat atc cgc ctc aac cgc ggc gta acg gcc att 1776 cgc gcc gga gaa gtc tgcgag acc cga agc 1824 gcg atc ggc tgc gac gcg gtt ctc atg gtt gcg tca cgg acg tcc gag 1872 gat cag ctc ttc aac gac ctg att gcc cgg cag ggt gat tgg ccc gat 1920 gcc ggc atc aag aag atg gca ccc gcc 1968 ccg atc gca tgg gcg acc tat gcc ggt cat cgc tat gcc cgt gaa ctc 2016 gac aca ccc gat atc ggc gat gac ctc ccg ttc cgc cgc gaa gtc acg 2064 cag ctc gag acg a gcg
2079

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 9/06 C12N 5/00 A Fターム(参考) 4B024 AA03 AA11 BA08 CA03 DA06 EA04 GA11 HA01 4B050 CC04 DD02 EE10 LL03 4B065 AA01Y AA26X AB01 AC14 BA02 CA28 CA46 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C12N 9/06 C12N 5/00 AF term (reference) 4B024 AA03 AA11 BA08 CA03 DA06 EA04 GA11 HA01 4B050 CC04 DD02 EE10 LL03 4B065 AA01Y AA26X AB01 AC14 BA02 CA28 CA46

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 以下の(a)又は(b)のタンパク質
をコードするヒスタミンデヒドロゲナーゼ遺伝子。 (a)配列番号1に示されるアミノ酸配列からなるタン
パク質 (b)アミノ酸配列(a)において、1もしくは複数の
アミノ酸が欠失、置換もしくは付加されたアミノ酸配列
からなり、かつヒスタミンデヒドロゲナーゼ活性を有す
るタンパク質
1. A histamine dehydrogenase gene encoding the following protein (a) or (b). (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 (b) a protein consisting of the amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence (a), and having histamine dehydrogenase activity
【請求項2】 以下の(a)又は(b)のDNAか
らなるヒスタミンデヒドロゲナーゼ遺伝子。 (a)配列番号2に示される塩基配列からなるDNA (b)(a)の塩基配列からなるDNAと相補的な塩基
配列からなるDNAとストリンジェントな条件下でハイ
ブリダイズし、かつヒスタミンデヒドロゲナーゼ活性を
有するタンパク質をコードするDNA
2. A histamine dehydrogenase gene consisting of the following DNA (a) or (b): (A) DNA consisting of the nucleotide sequence shown in SEQ ID NO: 2 (b) Hybridizing with DNA consisting of the nucleotide sequence complementary to the DNA consisting of the nucleotide sequence of (a) under stringent conditions, and histamine dehydrogenase activity Encoding a protein having
【請求項3】 請求項1又は2記載のヒスタミンデヒ
ドロゲナーゼ遺伝子をベクターDNAに挿入したことを
特徴とする新規な組み換え体DNA。
3. A novel recombinant DNA, wherein the histamine dehydrogenase gene according to claim 1 or 2 is inserted into vector DNA.
【請求項4】 請求項3記載の組み換え体DNAを含
む形質転換体又は形質導入体。
4. A transformant or transductant containing the recombinant DNA according to claim 3.
【請求項5】 請求項4記載の形質転換体又は形質導
入体を培地に培養し、培養物からヒスタミンデヒドロゲ
ナーゼを採取することを特徴とするヒスタミンデヒドロ
ゲナーゼの製造法。
5. A method for producing histamine dehydrogenase, which comprises culturing the transformant or transductant according to claim 4 in a medium, and collecting histamine dehydrogenase from the culture.
JP2002098118A 2002-04-01 2002-04-01 Histamine dehydrogenase gene, new recombinant dna and method for producing histamine dehydrogenase Pending JP2003289864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098118A JP2003289864A (en) 2002-04-01 2002-04-01 Histamine dehydrogenase gene, new recombinant dna and method for producing histamine dehydrogenase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098118A JP2003289864A (en) 2002-04-01 2002-04-01 Histamine dehydrogenase gene, new recombinant dna and method for producing histamine dehydrogenase

Publications (1)

Publication Number Publication Date
JP2003289864A true JP2003289864A (en) 2003-10-14

Family

ID=29240263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098118A Pending JP2003289864A (en) 2002-04-01 2002-04-01 Histamine dehydrogenase gene, new recombinant dna and method for producing histamine dehydrogenase

Country Status (1)

Country Link
JP (1) JP2003289864A (en)

Similar Documents

Publication Publication Date Title
Saeed et al. Purification and characterization of extracellular Pseudomonas aeruginosa urate oxidase enzyme
JP3205331B2 (en) Achromobacter protease class I gene and its gene product
FR2764303A1 (en) PROTEIN WITH ASPARTASE ACTIVITY, DNA ENCODING IT, DNA-CONTAINING PLASMID, AND PROCESS FOR PRODUCING PROTEIN AND L-ASPARTIC ACID
EP0579907A1 (en) Novel nitrile hydratase, the gene encoding it and its use for producing amides from nitriles
JP2003289864A (en) Histamine dehydrogenase gene, new recombinant dna and method for producing histamine dehydrogenase
JPH08196281A (en) Dna coding water-formation type nadh oxidase
US20030022336A1 (en) Sorbitol dehydrogenase gene, a novel recombinant DNA, and a process for producing sorbitol dehydrogenase
JPH11137254A (en) Production of transglutaminase derived from microorganism belonging to genus bacillus
JP3132618B2 (en) Stabilized modified protein
JPH11253162A (en) DNA encoding monoamine oxidase
JP2003274964A (en) New glucose dehydrogenase and gene encoding the same
JPH10248572A (en) Modified sarcosine oxidase and its use
JPH10248574A (en) New lactic acid-oxidizing enzyme
JP3829950B2 (en) Novel creatinine amide hydrolase
JP2000245471A (en) Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant
JPH06303981A (en) Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JPH07107981A (en) Novel DNA fragment
JP3335287B2 (en) Hexokinase gene
JPH099973A (en) Nitrile hydratase gene and amidase gene derived from rhodococcus bacterium
JP4161232B2 (en) Novel protein having sarcosine oxidase activity and method for producing the same
JP2001120273A (en) Method for modifying protein and modified protein
JP2001275669A (en) New catalase gene and method for producing new catalase using the gene
JPH05317055A (en) Novel uricase gene, novel recombinant dna and production of uricase
JP2001161375A (en) Cholesterol esterase gene, recombinant dna, and method for producing cholesterol esterase
JP3003785B2 (en) DNA having genetic information of isocitrate dehydrogenase and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080821