[go: up one dir, main page]

JP2003289669A - Power supply unit for constant-power output - Google Patents

Power supply unit for constant-power output

Info

Publication number
JP2003289669A
JP2003289669A JP2002087714A JP2002087714A JP2003289669A JP 2003289669 A JP2003289669 A JP 2003289669A JP 2002087714 A JP2002087714 A JP 2002087714A JP 2002087714 A JP2002087714 A JP 2002087714A JP 2003289669 A JP2003289669 A JP 2003289669A
Authority
JP
Japan
Prior art keywords
connection point
voltage
secondary windings
power supply
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002087714A
Other languages
Japanese (ja)
Other versions
JP4109476B2 (en
Inventor
Yoshiaki Matsuda
善秋 松田
Shinya Ofuji
晋也 大藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2002087714A priority Critical patent/JP4109476B2/en
Publication of JP2003289669A publication Critical patent/JP2003289669A/en
Application granted granted Critical
Publication of JP4109476B2 publication Critical patent/JP4109476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply unit suitable for constant-power control, and a method to control the unit. <P>SOLUTION: During an output current is smaller, a phase of a voltage induced to first to fourth secondary coils 23<SB>1</SB>to 23<SB>4</SB>is arranged to be controlled, and the first and the third coils 23<SB>1</SB>to 23<SB>4</SB>are arranged to be equivalently 4-in series connection. When the output current becomes larger, the phase is controlled, and a period of the 4-in series connection is added by a period of 2-in series/2-in parallel connections, and an output voltage is decreased in the ratio of the period. When the output current becomes larger than when the period of the 4-in series connection becomes zero, the period of the 2-in series/2- in parallel connections is added by a period of 4-in parallel connection, and the ratio is controlled to reduce the output voltage. If power is controlled to be constant when the output voltage is decreased, constant-power control is performed by the phase control. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電源装置の技術分野
にかかり、特に、定電力出力に適した電源装置の技術分
野に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the technical field of power supply devices, and more particularly to the technical field of power supply devices suitable for constant power output.

【0002】[0002]

【従来の技術】成膜装置等、一定の装置においては定電
力出力が可能な電源装置が求められている。
2. Description of the Related Art In certain devices such as a film forming device, a power supply device capable of constant power output is required.

【0003】図15の符号102は、その電源装置の例
であり、一次側の副変換部107と、トランスTと、二
次側整流回路124と、平滑回路127とを有してい
る。
Reference numeral 102 in FIG. 15 is an example of the power supply device, which has a primary side sub-conversion unit 107, a transformer T, a secondary side rectifier circuit 124, and a smoothing circuit 127.

【0004】トランスTは、一次巻線W1と二次巻線W2
とを有しており、副変換部107は、4個のトランジス
タQ1〜Q4を有している。4個のトランジスタQ1〜Q4
と一次巻線W1とは、Hブリッジ回路を構成しており、
該Hブリッジ回路には、直流電圧源110が出力する直
流電圧が印加されている。
The transformer T comprises a primary winding W 1 and a secondary winding W 2
The sub-converter 107 has four transistors Q 1 to Q 4 . 4 transistors Q 1 to Q 4
And the primary winding W 1 constitute an H bridge circuit,
The DC voltage output from the DC voltage source 110 is applied to the H-bridge circuit.

【0005】Hブリッジ回路は、一次巻線W1を介して
接続された、2個のトランジスタ(Q1、Q2)、(Q3、Q
4)が一組となり、一方の組みのトランジスタQ1、Q2
導通したときと、他方の組みのトランジスタ(Q3、Q4)
が導通したときとでは、一次巻線W1には、逆方向の電
流が流れるようになっている。即ち、一方の組と他方の
組みが交互に導通することで、一次巻線W1には交流電
流が流れる。
The H-bridge circuit is composed of two transistors (Q 1 , Q 2 ) and (Q 3 , Q 2 ) connected via a primary winding W 1.
4 ) becomes one set, and when the transistors Q 1 and Q 2 of one set become conductive, and the transistors (Q 3 and Q 4 ) of the other set
The current flows in the opposite direction to the primary winding W 1 when the current is conducted. That is, alternating current flows through the primary winding W 1 by alternately conducting one set and the other set.

【0006】一次巻線W1と二次巻線W2とは磁気結合さ
れており、一次巻線W1に交流電流が流れると、二次巻
線W2に交流電圧が誘起される。
[0006] are magnetically coupled to the primary winding W 1 and the secondary winding W 2, when an alternating current flows through the primary winding W 1, an alternating voltage is induced in the secondary winding W 2.

【0007】整流回路124は、ブリッジ接続された4
個のダイオードD1〜D4によって構成されている。二次
巻線W2に誘起された交流電圧は、整流回路124で全
波整流され、平滑回路127に出力される。ここでは、
第一組目のトランジスタ(Q1、Q2)が導通している間、
一組のダイオード(D1、D2)が順バイアスされ、第二組
目のトランジスタ(Q3、Q4)が導通している間、他の一
組のダイオード(D3、D4)が順バイアスされ、平滑回路
127に電流が供給される。
The rectifier circuit 124 is a bridge-connected four
It is composed of individual diodes D 1 to D 4 . The AC voltage induced in the secondary winding W 2 is full-wave rectified by the rectifier circuit 124 and output to the smoothing circuit 127. here,
While the first set of transistors (Q 1 , Q 2 ) are conducting,
While one set of diodes (D 1 , D 2 ) is forward biased and the second set of transistors (Q 3 , Q 4 ) is conducting, another set of diodes (D 3 , D 4 ) is It is forward biased and a current is supplied to the smoothing circuit 127.

【0008】平滑回路127は、インダクタンス素子1
25とコンデンサ126とを有しており、整流回路12
4から供給された電流を平滑し、出力端子38と接地端
子39の間に出力する。
The smoothing circuit 127 includes the inductance element 1
25 and a capacitor 126, the rectifier circuit 12
The current supplied from 4 is smoothed and output between the output terminal 38 and the ground terminal 39.

【0009】符号128は負荷であり、出力端子38と
接地端子39の間に接続され、電源装置102から直流
の出力電圧V0と出力電流I0が供給される。
Reference numeral 128 is a load, which is connected between the output terminal 38 and the ground terminal 39, and is supplied with a DC output voltage V 0 and an output current I 0 from the power supply device 102.

【0010】定電力制御されるときには、トランスの利
用効率が悪くなり、また一次側実効値電流の増大による
効率の低下等の問題がある。
When the constant power control is performed, there are problems that the utilization efficiency of the transformer is deteriorated and that the efficiency is lowered due to the increase of the primary side effective value current.

【0011】また、負荷128に供給される出力電圧V
0と出力電流I0の最大値の積でトランスが設計されるた
め、定電力制御されるときには、一次巻線W1や二次巻
線W2の利用効率が悪いという問題がある。
Further, the output voltage V supplied to the load 128
Since the transformer is designed by the product of 0 and the maximum value of the output current I 0 , there is a problem that the utilization efficiency of the primary winding W 1 and the secondary winding W 2 is low when constant power control is performed.

【0012】[0012]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたものであり、その
目的は、定電力制御に適した電源装置と、その電源装置
を制御する制御方法を提供することにある。
SUMMARY OF THE INVENTION The present invention was created in order to solve the disadvantages of the prior art described above, and its object is to provide a power supply device suitable for constant power control and a control for controlling the power supply device. To provide a method.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、直流電圧源から交流電流を
生成する主変換部と、前記主変換部からそれぞれ交流電
流が供給される第1〜第4の一次巻線と、前記第1〜第
4の一次巻線にそれぞれ磁気結合された第1〜第4の二
次巻線と、前記第1〜第4の二次巻線に誘起される交流
電圧を整流し、カソード接続点とアノード接続点に出力
する整流回路と、前記カソード接続点と前記アノード接
続点に出力された電圧を平滑する平滑回路とを有する電
源回路であって、前記整流回路は、整流素子が第1〜第
5の接続点でそれぞれ直列接続された第1〜第5の整流
素子直列回路を有し、前記第1〜第4の二次巻線はこの
順序で直列接続され、前記第1〜第4の二次巻線が直列
接続された回路の両端と、前記第1〜第4の二次巻線が
互いに接続された部分は、それぞれ前記第1〜第5の接
続点に接続され、前記第1〜第5の整流素子直列回路の
カソード側とアノード側は、カソード接続点とアノード
接続点でそれぞれ互いに接続され、前記カソード接続点
とアノード接続点に生じる電圧が、前記平滑回路で平滑
され、負荷に供給されるように構成された電源回路であ
る。請求項2記載の発明は、前記主変換部は、前記第1
〜第4の二次巻線に誘起される交流電圧の位相を制御
し、前記電源回路の動作期間に、前記第1〜第4の二次
巻線に誘起された電圧が加算されて前記カソード接続点
と前記アノード接続点の間に印加される4直列接続期間
を含ませるように構成された請求項1記載の電源回路で
ある。請求項3記載の発明は、前記主変換部は、前記第
1〜第4の二次巻線に誘起される交流電圧の位相を制御
し、前記電源回路の動作期間に、前記第1〜第4の二次
巻線に誘起された電圧が、並列に前記カソード接続点と
前記アノード接続点の間に印加される4並列接続期間を
含ませるように構成された請求項1又は請求項2のいず
れか1項記載の電源回路である。請求項4記載の発明
は、前記主変換部は、前記第1〜第4の二次巻線に誘起
される交流電圧の位相を制御し、前記電源回路の動作期
間に、前記第1〜第4の二次巻線のうちの2個の巻線の
電圧が加算され、加算された電圧が前記カソード接続点
と前記アノード接続点に並列に印加される2直列2並列
接続期間を含ませるように構成された請求項1乃至請求
項3のいずれか1項記載の電源回路である。請求項5記
載の発明は、交流電流がそれぞれ供給される第1〜第4
の一次巻線と、前記第1〜第4の一次巻線にそれぞれ磁
気結合された第1〜第4の二次巻線と、前記第1〜第4
の二次巻線に誘起される交流電圧を整流し、カソード接
続点とアノード接続点に出力する整流回路とを有し、前
記カソード接続点と前記アノード接続点に出力された電
圧を平滑して負荷に供給する電源装置の出力電圧を制御
する制御方法であって、前記第1〜第4の二次巻線に誘
起される電圧を加算して前記カソード接続点と前記アノ
ード接続点に出力する4直列接続期間と、前記第1〜第
4の二次巻線に誘起される電圧のうち、2個が加算され
た電圧が並列に前記カソード接続点と前記アノード接続
点に印加する2直列2並列期間とを前記電源装置の動作
期間中に設け、前記4直列接続期間と前記2直列2並列
接続期間の比率を変え、前記出力電圧の大きさを制御す
る電源装置の制御方法である。請求項6記載の発明は、
交流電流がそれぞれ供給される第1〜第4の一次巻線
と、前記第1〜第4の一次巻線にそれぞれ磁気結合され
た第1〜第4の二次巻線と、前記第1〜第4の二次巻線
に誘起される交流電圧を整流し、カソード接続点とアノ
ード接続点に出力する整流回路とを有し、前記カソード
接続点と前記アノード接続点に出力された電圧を平滑し
て負荷に供給する電源装置の出力電圧を制御する制御方
法であって、前記第1〜第4の二次巻線に誘起される電
圧のうち、2個が加算された電圧が並列に前記カソード
接続点と前記アノード接続点に印加する2直列2並列期
間と、前記第1〜第4の二次巻線に誘起される電圧を並
列に前記カソード接続点と前記アノード接続点の間に印
加する4並列接続期間とを前記電源装置の動作期間中に
設け、前記2直列2並列接続期間と4並列接続期間の比
率を変え、前記出力電圧の大きさを制御する電源装置の
制御方法である。請求項7記載の発明は、交流電流がそ
れぞれ供給される第1〜第Nの一次巻線と、前記第1〜
第Nの一次巻線にそれぞれ磁気結合された第1〜第Nの
二次巻線と、前記第1〜第Nの二次巻線に誘起される交
流電圧を整流し、カソード接続点とアノード接続点に出
力する整流回路とを有し、前記カソード接続点と前記ア
ノード接続点に出力された電圧を平滑して負荷に供給す
る電源装置の出力電圧を制御する制御方法であって、出
力電流の大きさにより、前記第1〜第Nの二次巻線に誘
起される電圧を加算して前記カソード接続点と前記アノ
ード接続点に出力させるN直列接続動作と、前記第1〜
第Nの二次巻線に誘起される電圧を並列に前記カソード
接続点と前記アノード接続点に出力するN並列動作とを
切換える電源装置の制御方法である。Nは4以上の整数
である。請求項8記載の発明は、前記N直列接続動作か
ら前記N並列接続動作に移行させる間に、出力電流の大
きさに応じ、2個以上の二次巻線を並列接続させる直列
並列接続動作を設けた請求項7記載の電源装置の運転方
法である。
In order to solve the above-mentioned problems, the invention according to claim 1 is such that an AC current is supplied from a main conversion unit for generating an AC current from a DC voltage source and an AC current is supplied from the main conversion unit. First to fourth primary windings, first to fourth secondary windings magnetically coupled to the first to fourth primary windings, and the first to fourth secondary windings A power supply circuit having a rectifier circuit that rectifies an AC voltage induced in a line and outputs the rectified voltage to a cathode connection point and an anode connection point, and a smoothing circuit that smoothes the voltage output to the cathode connection point and the anode connection point. The rectifier circuit has first to fifth rectifier element series circuits in which rectifier elements are connected in series at first to fifth connection points, respectively, and the first to fourth secondary windings are provided. Are connected in series in this order, and the first to fourth secondary windings are connected in series in the circuit. The ends and the portions where the first to fourth secondary windings are connected to each other are respectively connected to the first to fifth connection points, and are connected to the cathode side of the first to fifth rectifying element series circuits. And the anode side are connected to each other at a cathode connection point and an anode connection point, respectively, and a voltage generated at the cathode connection point and the anode connection point is smoothed by the smoothing circuit and supplied to a load. Is. According to a second aspect of the present invention, the main conversion unit is the first
~ The phase of the AC voltage induced in the fourth secondary winding is controlled, and the voltage induced in the first to fourth secondary windings is added to the cathode during the operation period of the power supply circuit. The power supply circuit according to claim 1, wherein the power supply circuit is configured to include four series connection periods applied between a connection point and the anode connection point. According to a third aspect of the present invention, the main conversion unit controls the phase of the AC voltage induced in the first to fourth secondary windings, and the first to the first during the operation period of the power supply circuit. 4. The voltage induced in four secondary windings is configured to include four parallel connection periods applied in parallel between the cathode connection point and the anode connection point. It is the power supply circuit according to any one of claims. In the invention according to claim 4, the main converter controls the phase of the AC voltage induced in the first to fourth secondary windings, and during the operation period of the power supply circuit, the first to first So that the voltages of two windings of the four secondary windings are added, and the added voltage includes two series and two parallel connection periods in which the voltages are applied in parallel to the cathode connection point and the anode connection point. The power supply circuit according to any one of claims 1 to 3, which is configured as described above. The invention according to claim 5 is the first to fourth parts to which alternating currents are respectively supplied.
Primary windings, first to fourth secondary windings magnetically coupled to the first to fourth primary windings, respectively, and the first to fourth
Rectifying the AC voltage induced in the secondary winding of the, and having a rectifier circuit for outputting to the cathode connection point and the anode connection point, and smoothing the voltage output to the cathode connection point and the anode connection point A control method for controlling an output voltage of a power supply device supplied to a load, wherein the voltages induced in the first to fourth secondary windings are added and output to the cathode connection point and the anode connection point. 4 series connection periods and 2 series 2 in which a voltage obtained by adding two of the voltages induced in the first to fourth secondary windings is applied in parallel to the cathode connection point and the anode connection point. A parallel period is provided during the operation period of the power supply device, and the ratio of the 4 series connection period and the 2 series 2 parallel connection period is changed to control the magnitude of the output voltage. The invention according to claim 6 is
First to fourth primary windings to which alternating currents are respectively supplied, first to fourth secondary windings magnetically coupled to the first to fourth primary windings, and the first to fourth windings A rectifying circuit that rectifies the AC voltage induced in the fourth secondary winding and outputs the rectified AC voltage to the cathode connection point and the anode connection point, and smoothes the voltage output to the cathode connection point and the anode connection point. A control method for controlling an output voltage of a power supply device that is supplied to a load by adding two of the voltages induced in the first to fourth secondary windings in parallel to each other. Two series and two parallel periods applied to the cathode connection point and the anode connection point, and voltages induced in the first to fourth secondary windings are applied in parallel between the cathode connection point and the anode connection point. 4 parallel connection periods are provided during the operation period of the power supply device, and the 2 series 2 Changing the ratio of the column connection period and 4 parallel connection period, a control method of the power supply for controlling the magnitude of the output voltage. According to a seventh aspect of the present invention, first to Nth primary windings to which alternating currents are respectively supplied and the first to Nth primary windings are provided.
First to Nth secondary windings, which are magnetically coupled to the Nth primary winding, and an AC voltage induced in the first to Nth secondary windings are rectified to form a cathode connection point and an anode. A control method for controlling an output voltage of a power supply device which has a rectifying circuit for outputting to a connection point, smoothes the voltage output to the cathode connection point and the anode connection point, and supplies the load to a load. N series connection operation in which the voltages induced in the first to Nth secondary windings are added and output to the cathode connection point and the anode connection point according to the magnitude of
It is a method of controlling a power supply device that switches a voltage induced in an Nth secondary winding in parallel between N parallel operation of outputting the voltage to the cathode connection point and the anode connection point. N is an integer of 4 or more. According to an eighth aspect of the present invention, during the transition from the N series connection operation to the N parallel connection operation, a series parallel connection operation in which two or more secondary windings are connected in parallel according to the magnitude of the output current is performed. The operating method of the power supply device according to claim 7, which is provided.

【0014】本発明は上記のように構成されており、第
2〜第4の接続点には、2個の二次巻線の端子が接続さ
れており、第1〜第4の二次巻線に誘起される電圧の極
性を制御することで、4個の二次巻線のうちの2個以上
の二次巻線を直列接続できるようになっている。
The present invention is configured as described above, and the terminals of two secondary windings are connected to the second to fourth connection points, and the first to fourth secondary windings are connected. By controlling the polarity of the voltage induced in the line, two or more secondary windings of the four secondary windings can be connected in series.

【0015】また、整流回路は、第1〜第4の二次巻線
に誘起された電圧を個別に整流可能であるから、4個の
二次巻線のうちの2個以上の二次巻線を並列接続させる
ことができる。
Further, since the rectifier circuit can individually rectify the voltages induced in the first to fourth secondary windings, two or more secondary windings of the four secondary windings are provided. The wires can be connected in parallel.

【0016】従って、出力電圧が大きく、出力電流が小
さい場合は、第1〜第4の二次巻線を直列接続し、出力
電流が大きくなると、各二次巻線に誘起される電圧の位
相を制御し、電源装置の動作期間中に含まれる並列接続
期間の長さや、並列接続される二次巻線の個数を増加さ
せ、出力電流を増加させながら出力電圧を低下させるこ
とができる。
Therefore, when the output voltage is large and the output current is small, the first to fourth secondary windings are connected in series, and when the output current is large, the phase of the voltage induced in each secondary winding is increased. The output voltage can be reduced while increasing the output current by increasing the length of the parallel connection period included in the operation period of the power supply device and the number of secondary windings connected in parallel by controlling the power supply device.

【0017】出力電流と出力電圧の積を一定値に維持し
ながら出力電圧を低下させれば、定電力制御になる。
If the output voltage is lowered while maintaining the product of the output current and the output voltage at a constant value, constant power control is performed.

【0018】[0018]

【発明の実施の形態】図1の符号2は、本発明の一例の
電源装置を示している。この電源装置2は、主変換部7
と、第1〜第4のトランス81〜84と、整流回路24
と、平滑回路27とを有している。
BEST MODE FOR CARRYING OUT THE INVENTION Reference numeral 2 in FIG. 1 indicates a power supply device as an example of the present invention. The power supply device 2 includes a main conversion unit 7
And the first to fourth transformers 8 1 to 8 4 and the rectifier circuit 24.
And a smoothing circuit 27.

【0019】第1〜第4のトランス81〜84内には、第
1〜第4の一次巻線131〜134と、該第1〜第4の一
次巻線131〜134とそれぞれ磁気結合された第1〜第
4の二次巻線231〜234とが設けられている。
In the first to fourth transformers 8 1 to 8 4 , first to fourth primary windings 13 1 to 13 4 and the first to fourth primary windings 13 1 to 13 4 are provided. And 1st to 4th secondary windings 23 1 to 23 4 which are magnetically coupled with each other.

【0020】第1〜第4の一次巻線131〜134の巻数
は互いに等しく、且つ、第1〜第4の二次巻線231
234の巻数も互いに等しくされており、第1〜第4の
一次巻線131〜134の巻数をn1、第1〜第4の二次
巻線231〜234の巻数をn2とすると、第1〜第4の
トランス81〜84の巻線比n2/n1=Nは互いに等しく
なっている。
The first to fourth primary windings 13 1 to 13 4 have the same number of turns and the first to fourth secondary windings 23 1 to 23 1 to
The numbers of turns of 23 4 are also equal to each other, the number of turns of the first to fourth primary windings 13 1 to 13 4 is n 1 , and the number of turns of the first to fourth secondary windings 23 1 to 23 4 is n. 2 , the winding ratios n 2 / n 1 = N of the first to fourth transformers 8 1 to 8 4 are equal to each other.

【0021】主変換部7内には、第1〜第4の副変換部
1〜74が設けられている。各副変換部71〜74は直流
電圧源10に接続されており、直流電圧源10が出力す
る直流電圧Vinが印加されている。各副変換部71〜74
は、直流電圧Vinから交流電流を生成し、第1〜第4の
一次巻線131〜134にそれぞれ供給する。第1〜第4
の副変換部71〜74には、上記図15の電源回路102
の副変換部107と同様に、4個のトランジスタを設
け、第1〜第4の一次巻線131〜134と、それぞれH
ブリッジ回路を形成することで、第1〜第4の一次巻線
131〜134に交流電流を流すことができる。
Inside the main converter 7, first to fourth sub converters 7 1 to 7 4 are provided. Each of the sub-conversion units 7 1 to 7 4 is connected to the DC voltage source 10, and the DC voltage V in output from the DC voltage source 10 is applied. Each sub conversion unit 7 1 to 7 4
Generates an alternating current from the direct current voltage V in and supplies it to the first to fourth primary windings 13 1 to 13 4 , respectively. 1st to 4th
The sub-converters 7 1 to 7 4 of the power supply circuit 102 of FIG.
Similarly to the sub conversion unit 107, the four transistors are provided, and the first to fourth primary windings 13 1 to 13 4 and H
By forming the bridge circuit, an alternating current can be passed through the first to fourth primary windings 13 1 to 13 4 .

【0022】第1〜第4の副変換部71〜74により、第
1〜第4の一次巻線131〜134に交流電流が流れる
と、第1〜第4の二次巻線231〜234に交流電圧が誘
起される。
When an alternating current flows through the first to fourth primary windings 13 1 to 13 4 by the first to fourth sub-converting sections 7 1 to 7 4 , the first to fourth secondary windings An alternating voltage is induced in 23 1 to 23 4 .

【0023】第1〜第4の二次巻線231〜234は、こ
の順序で直列接続されている。即ち、第1の二次巻線2
1の一端は、第2の二次巻線232の一端に接続され、
該第2の二次巻線232の他端は第3の二次巻線233
一端に接続され、該第3の二次巻線233の他端は第4
の二次巻線234の一端に接続されており、第1、第4
の二次巻線231、234の他端を除き、第1〜第4の二
次巻線231〜234は互いに接続されている。
The first to fourth secondary windings 23 1 to 23 4 are connected in series in this order. That is, the first secondary winding 2
One end of 3 1 is connected to one end of the second secondary winding 23 2 ,
The other end of the secondary winding 23 2 of the second is connected to the third secondary winding 23 3 one end, the secondary winding 23 3 at the other end of the third and the fourth
Connected to one end of the secondary winding 23 4 of the
Except for the secondary winding 23 1, 23 4 of the other end, the first to fourth secondary winding 23 1-23 4 are connected to each other.

【0024】整流回路24内には、第1〜第5の整流素
子直列回路311〜315を有している。この第1〜第5
の整流素子直列回路311〜315は、PN接合ダイオー
ドやショットキー接合ダイオード等の整流素子51a〜
55a、51b〜55bが直列接続されて構成されてい
る。
[0024] The rectifier circuit 24 has a rectifying element series circuit 31 1 to 31 5 of the first to fifth. This 1st-5th
Rectifying element series circuit 31 1 to 31 5, the rectifying element such as a PN junction diode or Schottky junction diodes 51a~
55a and 51b to 55b are connected in series.

【0025】図1の符号a1は、第1の整流素子直列回
路311内の整流素子51a、51bが互いに直列接続
された第1の接続点を示しており、同様に、符号a2
5は、第2〜第5の接続点を示している。この第2〜
第5の接続点は、a2〜a5は、第2〜第5の整流素子直
列回路312〜315内の整流素子52a〜55a、52
b〜55bが互いに直列接続された部分である。
Reference numeral a 1 in FIG. 1 indicates a first connection point where the rectifying elements 51a and 51b in the first rectifying element series circuit 31 1 are connected to each other in series, and similarly, reference numeral a 2 to.
a 5 illustrates the second to fifth connection point. This second
The fifth connection point is that a 2 to a 5 are the rectifying elements 52a to 55a, 52 in the second to fifth rectifying element series circuits 31 2 to 315.
b to 55b are portions connected in series with each other.

【0026】第1の二次巻線231の両端のうち、第2
の二次巻線232に接続されていない方の端子は第1の
接続点a1に接続されている。第1の二次巻線231と第
2の二次巻線232が接続された部分は、第2の接続点
2に接続されており、同様に、第2の二次巻線232
第2の二次巻線233とが接続された部分と、第3の二
次巻線233と第4の二次巻線234とが接続された部分
は、それぞれ第3、第4の接続点a3、a4に接続されて
おり、第4の二次巻線234の端子のうち、第3の二次
巻線233に接続されていない方の端子は第5の接続点
5に接続されている。
Of the two ends of the first secondary winding 23 1 , the second
The other terminal not connected to the secondary winding 23 2 is connected to the first connection point a 1 . The portion where the first secondary winding 23 1 and the second secondary winding 23 2 are connected is connected to the second connection point a 2 , and similarly, the second secondary winding 23 2 The portion where 2 and the second secondary winding 23 3 are connected, and the portion where the third secondary winding 23 3 and the fourth secondary winding 23 4 are connected are respectively the third, Of the terminals of the fourth secondary winding 23 4 , which is connected to the fourth connection points a 3 and a 4 and which is not connected to the third secondary winding 23 3 , the terminal which is the fifth is Is connected to the connection point a 5 .

【0027】第1〜第5の整流素子直列回路311〜3
5のカソード側の端子は、カソード接続点36に全て
接続されており、アノード側の端子は、アノード接続点
37に全て接続されている。従って、第1〜第4の二次
巻線231〜234に交流電圧が誘起されると、その交流
電圧は、第1〜第5の整流素子直列回路311〜315
よって整流され、カソード側接続点36に正電圧、アノ
ード側接続点37に負電圧が印加されるようになってい
る。
First to fifth rectifying element series circuits 31 1 to 3
The cathode side terminals of 15 are all connected to the cathode connection point 36, and the anode side terminals are all connected to the anode connection point 37. Therefore, when an AC voltage is induced in the first to fourth secondary windings 23 1 to 23 4 , the AC voltage is rectified by the first to fifth rectifying element series circuits 31 1 to 31 5 , A positive voltage is applied to the cathode side connection point 36, and a negative voltage is applied to the anode side connection point 37.

【0028】カソード側接続点36は、インダクタンス
素子25を介して、出力端子38に接続されている。ア
ノード側接続点37は、接地端子39に接続されてい
る。
The cathode side connection point 36 is connected to the output terminal 38 via the inductance element 25. The anode side connection point 37 is connected to the ground terminal 39.

【0029】出力端子38と接地端子39の間にはコン
デンサ26が接続されており、負荷28は、コンデンサ
26に対して並列に、出力端子38と接地端子39の間
に接続されるようになっている。
The capacitor 26 is connected between the output terminal 38 and the ground terminal 39, and the load 28 is connected in parallel with the capacitor 26 between the output terminal 38 and the ground terminal 39. ing.

【0030】このコンデンサ26とインダクタンス素子
25とで平滑回路27が構成されており、整流回路24
によって整流された電圧は、平滑回路27によって平滑
され、負荷28に供給される。
The capacitor 26 and the inductance element 25 constitute a smoothing circuit 27, and the rectifying circuit 24
The voltage rectified by is smoothed by the smoothing circuit 27 and supplied to the load 28.

【0031】この電源回路2は、制御回路9を有してお
り、制御回路9は、出力端子38から負荷28に出力さ
れる出力電圧V0(即ち、出力端子38と接地端子39の
間の電圧)と、負荷28に供給される出力電流I0を検出
し、第1〜第4の二次巻線231〜234に生じる交流電
圧の位相を変化させ、図13のグラフに示すように、出
力電圧V0と出力電流I0を制御する。制御回路9は、出
力端子38の電圧は直接検出するが、接地端子39に電
流センサ46を設け、出力電流I0を接地端子39に流
れる電流として検出している。
The power supply circuit 2 has a control circuit 9, which controls the output voltage V 0 (that is, between the output terminal 38 and the ground terminal 39) to be output from the output terminal 38 to the load 28. Voltage) and the output current I 0 supplied to the load 28, the phase of the AC voltage generated in the first to fourth secondary windings 23 1 to 23 4 is changed, and as shown in the graph of FIG. Then, the output voltage V 0 and the output current I 0 are controlled. Although the control circuit 9 directly detects the voltage of the output terminal 38, the ground terminal 39 is provided with a current sensor 46 to detect the output current I 0 as a current flowing through the ground terminal 39.

【0032】第1〜第4の副変換部71〜74は、第1〜
第4の一次巻線131〜134に流す交流電流の導通期間
及び位相を制御することで、第1〜第2の二次巻線23
1〜234に誘起される交流電圧の周波数、位相、及び正
電圧と負電圧の発生期間を制御している。
The first to fourth sub-converters 7 1 to 7 4 have
The first and second secondary windings 23 are controlled by controlling the conduction period and the phase of the alternating current flowing through the fourth primary windings 13 1 to 13 4.
The frequency of the AC voltage induced in 1-23 4 controls the generation period of the phase, and positive and negative voltages.

【0033】主変換部7により、第1〜第4の二次巻線
231〜234に誘起される交流電圧の周波数は等しく、
且つ、その交流電圧のうち、正電圧の期間と負電圧の期
間が等しくなるように制御されている。
The frequencies of the AC voltages induced in the first to fourth secondary windings 23 1 to 23 4 by the main converter 7 are equal,
Moreover, of the AC voltage, the positive voltage period and the negative voltage period are controlled to be equal.

【0034】また、正電圧が誘起される期間と負電圧が
誘起される期間の比をデューティとすると、第1〜第4
の二次巻線231〜234のデューティは全て“1”にな
っている。
When the ratio of the period in which the positive voltage is induced and the period in which the negative voltage is induced is the duty, the first to fourth
The duty of each of the secondary windings 23 1 to 23 4 is “1”.

【0035】出力電流I0が増加する場合を例にとって
電源回路2の動作を説明すると、予め第1の規定電流値
1が設定されており、電源装置2は、出力電流I0が第
1の規定電流値I1よりも小さいうちは、第1〜第4の
二次巻線231〜234の位相を一致させ、各二次巻線2
2〜234に同極性の電圧を誘起させ、接続点a2〜a4
に同極性の電圧を印加する。
The operation of the power supply circuit 2 will be described by taking the case where the output current I 0 increases as an example. The first specified current value I 1 is set in advance, and the power supply device 2 outputs the first output current I 0 at the first. While the current is smaller than the specified current value I 1 of the above, the phases of the first to fourth secondary windings 23 1 to 23 4 are made equal to each other, and each secondary winding 2
A voltage of the same polarity is induced in 3 2 to 23 4 to connect points a 2 to a 4
The voltage of the same polarity is applied to.

【0036】例えば、第1の二次巻線231に正極性の
電圧が誘起され、第1の接続点a1に正電圧を印加され
る場合は、第2〜第4の二次巻線232〜234にも正極
性の電圧が誘起され、第2〜第4の接続点a2〜a4に正
電圧が印加される。逆に、第1の二次巻線231に負極
性の電圧が誘起され、第1の接続点a1に負電圧が印加
される場合は、第2〜第4の二次巻線232〜234にも
負極性の電圧が誘起され、第2〜第2の接続点a2〜a4
にも負電圧が印加される。
For example, when a positive voltage is induced in the first secondary winding 23 1 and a positive voltage is applied to the first connection point a 1 , the second to fourth secondary windings A positive voltage is also induced in 23 2 to 23 4 , and a positive voltage is applied to the second to fourth connection points a 2 to a 4 . On the contrary, when a negative voltage is induced in the first secondary winding 23 1 and a negative voltage is applied to the first connection point a 1 , the second to fourth secondary windings 23 2 The negative voltage is also induced in ~ 23 4 and the second to second connection points a 2 to a 4
Is also applied with a negative voltage.

【0037】このときの第1〜第4の二次巻線231
234の誘起電圧V231〜V234の模式的な波形を図
8に示す。この図8及び後述する図9〜図12におい
て、第1の二次巻線231では、その第1の二次巻線2
1の第1の接続点a1側の端子に正極性の電圧が誘起さ
れる場合を正電圧とし、同様に、第2〜第4の二次巻線
232〜234では、それぞれ接続点a2〜a4側の端子に
正極性の電圧が誘起される場合を正電圧としてある。
At this time, the first to fourth secondary windings 23 1 to
23 4 schematic waveform of the induced voltage V23 1 ~V23 4 shown in FIG. In FIG. 8 and FIGS. 9 to 12 to be described later, in the first secondary winding 23 1 , the first secondary winding 2
3 If 1 of the first voltage of positive polarity to the connection point a 1-side terminal is induced by a positive voltage, likewise, the second to fourth secondary winding 23 2-23 4, respectively connected The case where a positive voltage is induced at the terminals on the points a 2 to a 4 side is defined as a positive voltage.

【0038】第1〜第4の二次巻線231〜234の誘起
電圧V231〜V234の位相は一致しているため、第1
〜第4の二次巻線231〜234には、時刻t11におい
て、一斉に正極性の電圧が誘起され、時刻t12において
誘起電圧がゼロになり、次いで、時刻t13において、一
斉に負極性の電圧が誘起される。
[0038] Since the first through fourth secondary winding 23 1-23 4 induced voltage V23 1 ~V23 4 phases are matched, the first
A positive voltage is simultaneously induced in the fourth secondary windings 23 1 to 23 4 at time t 11 , the induced voltage becomes zero at time t 12 , and then all at once at time t 13 . A negative voltage is induced at.

【0039】図8の符号4Sは、第1〜第4の二次巻線
231〜234の全てに同極性の電圧が誘起されている期
間(4直列接続期間)を示している。
Reference numeral 4S in FIG. 8 indicates a period (4 series connection period) in which voltages of the same polarity are induced in all of the first to fourth secondary windings 23 1 to 23 4 .

【0040】そして、各二次巻線231〜234に誘起さ
れる電圧の極性が反転するとき、即ち期間4Sの間に
は、副変換部71〜74が構成するHブリッジ回路のトラ
ンジスタに貫通電流が流れないように、一旦Hブリッジ
内の全トランジスタが遮断し、第1〜第4の二次巻線2
1〜234に誘起される電圧がゼロVになる。その期間
は符号Dで示してあり、期間D中の二次巻線には電流は
流れない。
Then, when the polarities of the voltages induced in the respective secondary windings 23 1 to 23 4 are inverted, that is, during the period 4S, the H-bridge circuit of the sub converters 7 1 to 7 4 is constructed. All the transistors in the H-bridge are temporarily cut off so that a through current does not flow in the transistors, and the first to fourth secondary windings 2
The voltage induced in 3 1 to 23 4 becomes zero V. The period is indicated by the symbol D, and no current flows in the secondary winding during the period D.

【0041】但し、その期間Dは、各二次巻線231
234に誘起される交流電圧の1周期Tと比較するとご
く短い期間であるから、電源装置2の運転上、無視する
ことができる。
However, during the period D, each secondary winding 23 1 ...
23 because it is very short period when compared to a single period T of the alternating voltage induced in 4, the power supply device 2 on the operation, can be ignored.

【0042】第1〜第5の接続点a1〜a5の電圧を符号
1〜E5で表すと、第1〜第4の二次巻線231〜234
に正極性の電圧が誘起され、接続点a1〜a4に正電圧が
印加されると、電圧E1〜E5は、E5<E4<E3<E2
1 の関係となり、その結果、整流回路24内の整流
素子51a〜55a、51b〜55bのうち、最高電圧
となる第1の接続点a1をアノード端子とする整流素子
51aと、最低電圧となる第5の接続点a5をカソード
端子とする整流素子55bだけが順バイアスされ、図2
の破線に示すように電流が流れる。
When the voltages at the first to fifth connection points a 1 to a 5 are represented by symbols E 1 to E 5 , the first to fourth secondary windings 23 1 to 23 4 are shown.
When a positive voltage is induced at the connection points and a positive voltage is applied to the connection points a 1 to a 4 , the voltages E 1 to E 5 are E 5 <E 4 <E 3 <E 2 <
Becomes a relationship of E 1, as a result, the rectifying element 51a~55a in the rectifier circuit 24, among the 51B~55b, and rectifying elements 51a to the first connection point a 1 as the highest voltage and the anode terminal, and the lowest voltage Only the rectifying element 55b whose cathode terminal is the fifth connection point a 5 is forward-biased.
A current flows as shown by the broken line.

【0043】この状態では、第1〜第4の二次巻線23
1〜234は、第1の二次巻線231を最高電圧として第
1〜第4の二次巻線231〜234が直列接続された状態
になっている。
In this state, the first to fourth secondary windings 23
1-23 4 is in a state where the first secondary winding 23 1 first to fourth as the highest voltage of the secondary winding 23 1-23 4 are connected in series.

【0044】逆に、第1〜第4の二次巻線231〜234
に負極性の電圧が誘起されると、E 1<E2<E3<E4
5 となり、第1の接続点a1の電圧E1が最低電圧、第
5の接続点a5の電圧E5が最高電圧となるから、第1の
接続点a1をカソード端子とする整流素子51bと、第
5の接続点a5をアノード端子とする整流素子55aだ
けが順バイアスされ、図3の破線に示すように電流が流
れる。この状態では、第4の二次巻線234を最高電圧
として、第1〜第4の二次巻線231〜234が直列接続
されている。
On the contrary, the first to fourth secondary windings 231~ 23Four
When a negative voltage is induced in 1<E2<E3<EFour<
EFive And the first connection point a1Voltage E1Is the lowest voltage, first
Connection point 5FiveVoltage EFiveIs the highest voltage, the first
Connection point a1A rectifying element 51b whose cathode terminal is
Connection point 5FiveIs a rectifying element 55a whose anode terminal is
The injury is forward biased and current flows as shown by the broken line in Fig. 3.
Be done. In this state, the fourth secondary winding 23FourThe highest voltage
As the first to fourth secondary windings 231~ 23FourConnected in series
Has been done.

【0045】上述したように、各トランス81〜84の巻
数比Nは互いに等しい値であり、各一次巻線131〜1
4には、同じ直流電圧Vinが印加されているから、第
1〜第4の副変換部71〜74の動作に伴う電圧降下や、
各トランス81〜84内での損失が無く、理想状態にある
ものとすると、各二次巻線231〜234に誘起される電
圧は、±N・Vinの大きさである。
As described above, the winding ratios N of the transformers 8 1 to 8 4 are equal to each other, and the primary windings 13 1 to 1 1
3 4, because the same DC voltage V in is applied, a voltage drop or due to the operation of the first to fourth sub-converter 7 1-7 4,
Assuming that there is no loss in each of the transformers 8 1 to 8 4 and the transformer is in an ideal state, the voltage induced in each of the secondary windings 23 1 to 23 4 has a magnitude of ± N · V in .

【0046】従って、整流回路24の動作に伴う電圧降
下や配線のロスが無く、二次側の回路も理想状態にある
ものとすると、第1〜第4の二次巻線231〜234が直
列接続された場合には、整流回路24には4N・Vin
電圧が発生し、平滑回路27で平滑されて負荷28に供
給される。
Therefore, assuming that there is no voltage drop or wiring loss due to the operation of the rectifier circuit 24 and the secondary side circuit is in an ideal state, the first to fourth secondary windings 23 1 to 23 4 Is connected in series, a voltage of 4N · V in is generated in the rectifier circuit 24, smoothed by the smoothing circuit 27, and supplied to the load 28.

【0047】従って、出力電流I0が第1の規定電流値
1よりも小さく、第1〜第4の二次巻線231〜234
が直列接続されている場合、理想状態では出力電流I0
の大きさによらずに、4N・Vinの大きさの出力電圧V
0が維持される。即ち、第1〜第4の二次巻線231〜2
4が直列接続されている間は、電源装置2は定電圧モ
ードで運転される。
Therefore, the output current I 0 is smaller than the first specified current value I 1 , and the first to fourth secondary windings 23 1 to 23 4
Are connected in series, in the ideal state, the output current I 0
Output voltage V of 4N · V in regardless of the size of
0 is maintained. That is, the first to fourth secondary windings 23 1 to 2
While 3 4 is connected in series, the power supply device 2 is operated in the constant voltage mode.

【0048】図13は、電源装置2の出力電圧V0と出
力電流I0の間の関係を示すグラフであり、符号Aで示
す動作点から符号Bで示す動作点の間の動作が定電圧モ
ードである。電圧V1は、4N・Vinの大きさの電圧を
示している。
FIG. 13 is a graph showing the relationship between the output voltage V 0 and the output current I 0 of the power supply device 2. The operation from the operating point indicated by the symbol A to the operating point indicated by the symbol B is a constant voltage. Mode. The voltage V 1 indicates a voltage of 4N · V in .

【0049】出力電流I0が第1の規定電流値I1を超え
ると、第1、第2の二次巻線231、232の位相に対
し、第3、第4の二次巻線233、234の位相がずれ始
める。図9はΔT1だけ位相がずれた状態を示すグラフ
であり、位相がずれる結果、第1〜第4の二次巻線23
1〜234に誘起される電圧の極性が全て等しい期間と、
第1、第2の二次巻線231、232に誘起される電圧
と、第3、第4の二次巻線23に誘起される電圧の極性
が互いに逆極性になる期間が発生する。
When the output current I 0 exceeds the first specified current value I 1 , the phases of the first and second secondary windings 23 1 and 23 2 are different from those of the third and fourth secondary windings. The phases of 23 3 and 23 4 start to shift. FIG. 9 is a graph showing a state in which the phase is shifted by ΔT 1. As a result of the phase shift, the first to fourth secondary windings 23
A period in which the polarities of the voltages induced in 1 to 23 4 are all equal,
There is a period in which the polarities of the voltages induced in the first and second secondary windings 23 1 and 23 2 and the voltages induced in the third and fourth secondary windings 23 are opposite to each other. .

【0050】図9の符号4Sは、第1〜第4の二次巻線
231〜234に誘起される電圧の極性が全て等しい期間
を示しており、この期間4Sの間は、第1〜第4の二次
巻線231〜234は4直列接続回路になり、整流回路2
4から4N・Vinの電圧が出力される。
Reference numeral 4S in FIG. 9 indicates a period in which the polarities of the voltages induced in the first to fourth secondary windings 23 1 to 23 4 are all equal, and during the period 4S, the first ~ The fourth secondary windings 23 1 to 23 4 become a 4-series connection circuit, and the rectifier circuit 2
A voltage of 4 to 4 N · V in is output.

【0051】符号2S2Pは、第1、第2の二次巻線2
1、232に誘起される電圧の極性と、第3、第4の二
次巻線233、234に誘起される電圧の極性が異なる期
間(2直列2並列接続期間)である。
Reference numeral 2S2P is the first and second secondary windings 2
This is a period (2 series 2 parallel connection period) in which the polarities of the voltages induced in 3 1 and 23 2 are different from the polarities of the voltages induced in the third and fourth secondary windings 23 3 and 23 4 .

【0052】期間2S2Pの間の第1〜第5の接続点a
1〜a5の電圧E1〜E5は、第1、第2の二次巻線2
1、232に正極性の電圧が誘起され、第3、第4の二
次巻線233、234に負極性の電圧が誘起される場合
は、E3<E2<E1 且つ E3<E4<E5 であり、巻数
比が等しいことから、E2=E4、E1=E5であるから、
アノード端子が最高電圧の接続点a1、a5に接続された
整流素子51a、55aと、カソード端子が最低電圧の
接続点a3に接続された整流素子53bが順バイアスさ
れ、図4の点線に示すように電流が流れる。この状態で
は、第1〜第4の二次巻線231〜234は、第1、第2
の二次巻線231、232が一個の2直列回路となり、第
3、第4の二次巻線233、234が他の2直列回路とな
り、それら二個の直列回路が並列接続されている。
The first to fifth connection points a during the period 2S2P
1 voltage E 1 to E 5 in ~a 5, the first, second secondary winding 2
When a positive voltage is induced in 3 1 , 23 2 and a negative voltage is induced in the third and fourth secondary windings 23 3 , 23 4 , E 3 <E 2 <E 1 and Since E 3 <E 4 <E 5 , and the turns ratios are equal, E 2 = E 4 and E 1 = E 5 ,
Rectifying element 51a whose anode terminal is connected to the connection point a 1, a 5 highest voltage, and 55a, rectifying element 53b having a cathode terminal connected to the connection point a 3 lowest voltage is forward biased, the dotted line in FIG. 4 Current flows as shown in. In this state, the first to fourth secondary windings 23 1 to 23 4 are connected to the first and second secondary windings 23 1 to 23 4 .
Secondary windings 23 1 and 23 2 form one 2 series circuit, and the third and fourth secondary windings 23 3 and 23 4 form another 2 series circuit, and the two series circuits are connected in parallel. Has been done.

【0053】逆に、第1、第2の二次巻線231、232
に負極性の電圧が誘起され、第3、第4の二次巻線23
3、234に正極性の電圧が誘起される場合は、E2
4、且つE1=E5である点は正極性の電圧が誘起され
る場合と同じであるが、E1<E2<E3 、E5<E4<E
3 である。この状態では、アノード端子が最高電圧の接
続点a3に接続された整流素子53aと、カソード端子
が最低電圧の接続点a1、a 5に接続された整流素子51
b、55bが順バイアスされ、図5の点線に示すように
電流が流れる。この場合も、同じ二個の直列回路が並列
接続されたことになる。
On the contrary, the first and second secondary windings 231, 232
A negative voltage is induced in the third and fourth secondary windings 23
3, 23FourIf a positive voltage is induced in2=
EFour, And E1= EFiveIs a positive voltage is induced
Same as when1<E2<E3 , EFive<EFour<E
3 Is. In this state, the anode terminal
Continuation point a3Rectifier element 53a connected to the cathode terminal
Is the connection point a with the lowest voltage1, A FiveRectifying element 51 connected to
b and 55b are forward biased, as shown by the dotted line in FIG.
An electric current flows. In this case also, the same two series circuits are connected in parallel.
You are connected.

【0054】期間2S2Pの間は、2直列回路の並列接
続回路になるから、整流回路24から出力される電圧
は、期間4Sのときの半分の2N・Vinになる。
During the period 2S2P, two parallel circuits are connected in parallel, so the voltage output from the rectifier circuit 24 is 2N · V in , which is half that in the period 4S.

【0055】従って、1周期T中に占める期間2S2P
の比率が大きくなると出力電圧V0が低下する。
Therefore, the period 2S2P occupied in one cycle T
The output voltage V 0 decreases as the ratio of V increases.

【0056】この電源装置2では、制御回路9が、電流
センサ46によって出力電流I0の大きさを測定してお
り、1周期中の期間4Sに対する期間2S2Pの長さ、
即ち、期間4Sに対する期間2S2Pの比率は、出力電
流I0が第1の規定電流値I1を超えた量に応じて増加す
るようになっている。
In the power supply device 2, the control circuit 9 measures the magnitude of the output current I 0 by the current sensor 46, and the length of the period 2S2P with respect to the period 4S in one cycle,
That is, the ratio of the period 2S2P to the period 4S increases according to the amount by which the output current I 0 exceeds the first specified current value I 1 .

【0057】特に、この電源装置2では、出力電流I0
の増加量に比例して2S2Pの比率が増加し、出力電圧
0×出力電流I0の値が、動作点Bにおける値と等しく
なるように動作する。従って、この状態では、電源装置
2が定電力モードで運転されることになる。
Particularly, in the power supply device 2, the output current I 0
The ratio of 2S2P increases in proportion to the increase amount of the output voltage V0 and the value of output voltage V 0 × output current I 0 is equal to the value at operating point B. Therefore, in this state, the power supply device 2 is operated in the constant power mode.

【0058】第1〜第4の二次巻線231〜234に誘起
される電圧がゼロの期間Dは1周期Tと比較するとごく
短い期間であるから無視することができる。
The period D in which the voltage induced in the first to fourth secondary windings 23 1 to 23 4 is zero is a very short period as compared with 1 cycle T and can be ignored.

【0059】そして、出力電流I0が増加し、4直列接
続の期間4Sが図10に示すようにゼロになると、1周
期Tの全期間が期間2S2Pで占められる。この状態で
は、出力電圧V0は定電圧モードのときの半分の大きさ
になり、定電力モードでは、出力電流I0は、第1の規
定電流値I1の二倍の大きさになる。
When the output current I 0 increases and the 4-series connection period 4S becomes zero as shown in FIG. 10, the entire period of one cycle T is occupied by the period 2S2P. In this state, the output voltage V 0 is half the magnitude in the constant voltage mode, and in the constant power mode, the output current I 0 is twice the magnitude of the first specified current value I 1 .

【0060】図13の符号Cはその動作点を示してお
り、V2=V1/2、I2=I1×2である。該図13にお
いて、動作点Bから動作点Cの間が定電力モードであ
る。
[0060] code C of Figure 13 shows the operating point is V 2 = V 1/2, I 2 = I 1 × 2. In FIG. 13, the area between the operating point B and the operating point C is the constant power mode.

【0061】図10から分かるように、1周期Tが期間
2S2Pで占められた状態では、第1、第2の二次巻線
231、232に誘起される電圧に対し、第3、第4の二
次巻線233、234に誘起される電圧が逆相となり、位
相差が180°の状態になる。
As can be seen from FIG. 10, in the state where one cycle T is occupied by the period 2S2P, the third and third voltages are induced with respect to the voltages induced in the first and second secondary windings 23 1 and 23 2 . The voltages induced in the secondary windings 23 3 and 23 4 of No. 4 have opposite phases, and the phase difference is 180 °.

【0062】1周期Tが期間2S2Pで占められた状態
から、出力電流I0が更に増加し、第1の規定電流値I1
の2倍よりも大きくなると、第2、第3の二次巻線23
2、233の位相に対し、第1、第4の二次巻線231
234の位相がずれる。図11の符号ΔT2は、このとき
の位相のズレ量を示している。
From the state in which one cycle T is occupied by the period 2S2P, the output current I 0 further increases and the first specified current value I 1
Second time, the second and third secondary windings 23
With respect to the phases of 2 and 23 3 , the first and fourth secondary windings 23 1 and
23 4 is out of phase. Reference numeral ΔT 2 in FIG. 11 indicates the amount of phase shift at this time.

【0063】第1、第4の二次巻線231、234の位相
が第2、第3の二次巻線232、233の位相に対してず
れると、第2、第3の二次巻線232、233に誘起され
る電圧の極性が互いに逆の状態を維持しながら、第1の
二次巻線231の誘起電圧の極性が第2の二次巻線232
の誘起電圧の極性と異なり、且つ、第4の二次巻線23
4の誘起電圧の極性が、第3の二次巻線233の誘起電圧
の極性と異なる期間が発生する。
When the phases of the first and fourth secondary windings 23 1 and 23 4 deviate from the phases of the second and third secondary windings 23 2 and 23 3 , the second and third secondary windings 23 1 and 23 4 are displaced from each other. While the polarities of the voltages induced in the secondary windings 23 2 and 23 3 are opposite to each other, the polarity of the induced voltage in the first secondary winding 23 1 is the second secondary winding 23 2
Of the induced voltage of the second secondary winding 23
Polarity of 4 of the induced voltage, polarity and different periods of the third secondary winding 23 3 of the induced voltage is generated.

【0064】符号4Pは、その期間(4並列接続期間)を
示しており、期間4Pの間は、第1、第3の二次巻線2
1、233の誘起電圧の極性が等しく、第2、第4の二
次巻線232、234の誘起電圧がそれとは逆極性にな
る。
Reference numeral 4P indicates the period (four parallel connection periods), and during the period 4P, the first and third secondary windings 2 are provided.
The induced voltages of 3 1 and 23 3 have the same polarity, and the induced voltages of the second and fourth secondary windings 23 2 and 23 4 have opposite polarities.

【0065】期間4Pにおいて、第1、第3の二次巻線
231、233に正極性の電圧が誘起され、第2、第4の
二次巻線232、234に負極性の電圧が誘起される場合
は、第1〜第5の接続点a1〜a5の電圧E1〜E5は、E
1>E2,E2<E3,E3>E4,E4<E5である。更に、
各トランス81〜84のの巻数比が等しいから、E2
4,且つ E1=E3=E5になる。
In the period 4P, a positive voltage is induced in the first and third secondary windings 23 1 and 23 3, and a negative voltage is induced in the second and fourth secondary windings 23 2 and 23 4 . When a voltage is induced, the voltages E 1 to E 5 at the first to fifth connection points a 1 to a 5 are E
1 > E 2 , E 2 <E 3 , E 3 > E 4 , E 4 <E 5 . Furthermore,
Since the turns ratios of the transformers 8 1 to 8 4 are equal, E 2 =
E 4 , and E 1 = E 3 = E 5 .

【0066】その結果、正電圧が印加される接続点
1、a3、a5にアノード端子が接続された整流素子5
1a、53a、55aと、負電圧が印加される接続点a
2、a4にカソード端子が接続された整流素子52b、5
4bが順バイアスされ、図6の点線に示すように電流が
流れる。この状態では、第1〜第4の二次巻線231
234の全部が並列接続された状態になる。
As a result, the rectifying element 5 having the anode terminals connected to the connection points a 1 , a 3 and a 5 to which the positive voltage is applied.
1a, 53a, 55a and a connection point a to which a negative voltage is applied
2 , rectifying elements 52b, 5 having cathode terminals connected to a 4
4b is forward biased and a current flows as shown by the dotted line in FIG. In this state, the first to fourth secondary windings 23 1 to
All of 23 4 are connected in parallel.

【0067】それとは逆に、第1、第3の二次巻線23
1、233に負極性の電圧が誘起され、第2、第4の二次
巻線232、234に正極性の電圧が誘起される場合は、
1<E2,E2>E3,E3<E4,E4>E5,E2=E4
且つ E1=E3=E5になり、正電圧が印加される接続点
2、a4にアノード端子が接続された整流素子52a、
54aと、負電圧が印加される接続点a1、a3、a5
カソード端子が接続された整流素子51b、53b、5
5bが順バイアスされ、図7の点線に示すように電流が
流れる。この状態でも、第1〜第4の二次巻線231
234の全部が並列接続されている。
On the contrary, the first and third secondary windings 23
When a negative voltage is induced in 1 and 23 3 and a positive voltage is induced in the second and fourth secondary windings 23 2 and 23 4 ,
E 1 <E 2 , E 2 > E 3 , E 3 <E 4 , E 4 > E 5 , E 2 = E 4 ,
Further, E 1 = E 3 = E 5 , and a rectifying element 52a having an anode terminal connected to the connection points a 2 and a 4 to which a positive voltage is applied,
54a and the rectifying elements 51b, 53b, 5 whose cathode terminals are connected to the connection points a 1 , a 3 , a 5 to which a negative voltage is applied.
5b is forward biased and a current flows as shown by the dotted line in FIG. Even in this state, the first to fourth secondary windings 23 1 to
All of 23 4 are connected in parallel.

【0068】第1の規定電流値I1の二倍の電流値I2
第2の規定電流値とすると、1周期T中の期間2S2P
に対する期間4Pの長さ、即ち、期間4Pの期間2S2
Pに対する比率は、出力電圧V0×出力電流I0が動作点
Bや動作点Cにおける値を維持しながら、出力電流I0
が第2の規定電流値I2を超えた量に応じて増加するよ
うになっている。即ち、電源装置2は定電力モードで運
転される。
Assuming that a current value I 2 which is twice the first specified current value I 1 is the second specified current value, the period 2S2P in one cycle T is 2S2P.
The length of the period 4P, that is, the period 2S2 of the period 4P
The ratio of P to P is such that the output voltage V 0 × output current I 0 maintains the value at the operating point B or operating point C while the output current I 0 is maintained.
Is increased according to the amount exceeding the second specified current value I 2 . That is, the power supply device 2 is operated in the constant power mode.

【0069】第1の規定電流値I1の4倍の電流値を第
3の規定電流値I3とすると、期間2S2Pと期間4P
が混在する状態から出力電流I0が更に増加し、第3の
規定電流値I3に達すると、図12に示すように、期間
2S2Pがゼロになり、1周期Tが期間4Pで占められ
る。この状態は図13の動作点Dである。
Assuming that the current value four times the first specified current value I 1 is the third specified current value I 3 , the period 2S2P and the period 4P are set.
When the output current I 0 further increases from the state in which is mixed and reaches the third specified current value I 3 , as shown in FIG. 12, the period 2S2P becomes zero and one period T is occupied by the period 4P. This state is the operating point D in FIG.

【0070】動作点Dにある状態から更に出力電流I0
が増加しようとすると、定電力モードでの運転は解除さ
れ、第1〜4の副変換部71〜74内のHブリッジ回路を
構成するトランジスタの動作期間が短くなる。即ち、第
1〜第4の二次巻線231〜234の電圧がゼロVの期間
が増加し、出力電流I0が減少する結果、出力電圧V 0
低下する。出力電圧V0は、ほとんどゼロVである動作
点Eまで移行する。
From the state at the operating point D, the output current I0
If you try to increase the
The first to fourth sub-converters 71~ 7FourH bridge circuit inside
The operating period of the constituent transistors is shortened. That is,
1st-4th secondary winding 231~ 23FourThe period when the voltage is zero V
And the output current I increases0As a result, the output voltage V 0Is
descend. Output voltage V0Is almost zero V
Move to point E.

【0071】以上説明したように、本電源装置2では、
第1〜第4の二次巻線231〜234の接続状態を4直列
から4並列まで段階的に変化させ、出力電流I0を増加
させながら出力電圧V0を低下させるようになってい
る。
As described above, in this power supply device 2,
The connection state of the first to fourth secondary windings 23 1 to 23 4 is gradually changed from 4 series to 4 parallel, and the output voltage V 0 is decreased while increasing the output current I 0. There is.

【0072】この場合、各二次巻線231〜234に誘起
される電圧の大きさと流れる電流の大きさには変化がな
く、定電力が維持されるので、負荷28に供給される電
流の最大値と電圧の最大値でトランスを設計しないで済
む。
In this case, since the magnitude of the voltage induced in each of the secondary windings 23 1 to 23 4 and the magnitude of the flowing current do not change and constant power is maintained, the current supplied to the load 28 is not changed. It is not necessary to design a transformer with the maximum value of and the maximum value of voltage.

【0073】なお、上記実施例では、整流回路24を構
成する第1〜第5の整流素子直列回路311〜315は、
2個の整流素子51a〜55a、51b〜55bを直列
接続して構成したが、例えば、図14の第2の整流素子
直列回路312が、並列接続した2個の整流素子52
1、52a2、52b1、52b2を直列接続して整流素
子直列回路を構成しているように、どの整流素子直列回
路を構成する整流素子であっても、2個以上の整流素子
を並列接続することができる。
[0073] In the above embodiment, the first to fifth rectifying element series circuits 31 1 to 31 5 which constitute the rectifier circuit 24,
Two rectifying elements 51A~55a, was constructed the 51b~55b connected in series, for example, a second rectifying element series circuit 31 2 in FIG. 14, two rectifying elements connected in parallel 52
As in a rectifier element series circuit in which a 1 , 52a 2 , 52b 1 and 52b 2 are connected in series, any rectifier element that constitutes a rectifier element series circuit has two or more rectifier elements. Can be connected in parallel.

【0074】また、各整流素子直列回路を構成する整流
素子は、PN接合ダイオードやショットキー接合ダイオ
ードの他、MOSFETをダイオードとして用いること
もできる。
Further, as the rectifying element forming each rectifying element series circuit, a MOSFET can be used as a diode in addition to the PN junction diode and the Schottky junction diode.

【0075】更にまた、本発明は第1〜第4のトランス
1に加え、第5番目以上の第5〜第M(Mは6以上の整
数)のトランスを追加することもできる。この場合は、
整流素子直列回路はM+1個必要になる。
[0075] Furthermore, in addition to the present invention the transformer 81 of the first to fourth, (the M 6 or more integer) fifth or more fifth to M may be added transformer. in this case,
M + 1 rectifying element series circuits are required.

【0076】そして、第1〜第Mのトランス81〜8M
の第1〜第Mの二次巻線131〜13Mに誘起される交流
電圧の位相を制御し、第1〜第Mの二次巻線131〜1
Mを直列接続したときに、1個の二次巻線から出力さ
れる電圧のM倍の電圧が出力され、第1〜第Mの二次巻
線131〜13Mを並列接続したときに、1個の二次巻線
に流れる電流のM倍の電流が出力される。
Then, the phase of the AC voltage induced in the first to Mth secondary windings 13 1 to 13 M in the first to Mth transformers 8 1 to 8 M is controlled to control the first to the first Mth secondary windings 13 1 to 13 M. M secondary winding 13 1 to 1
When 3 M are connected in series, M times the voltage output from one secondary winding is output, and when the first to M-th secondary windings 13 1 to 13 M are connected in parallel. Then, a current M times the current flowing through one secondary winding is output.

【0077】[0077]

【発明の効果】制御が容易な位相を変化させることで出
力電力を一定に維持したまま出力電流を減少させること
ができる。
By changing the phase that is easy to control, it is possible to reduce the output current while keeping the output power constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電源装置の一例FIG. 1 is an example of a power supply device of the present invention

【図2】その電源装置が4直列接続期間であって正極性
の電圧が誘起されるときの電流の流れ方を説明するため
の図
FIG. 2 is a diagram for explaining how the current flows when the power supply device is in a 4-series connection period and a positive voltage is induced.

【図3】4直列接続期間であって負極性の電圧が誘起さ
れるときの電流の流れ方を説明するための図
FIG. 3 is a diagram for explaining how a current flows when a negative voltage is induced during a 4-series connection period.

【図4】2直列2並列接続期間であって正極性の電圧が
誘起されるときの電流の流れ方を説明するための図
FIG. 4 is a diagram for explaining how a current flows when a positive voltage is induced during a two-series and two-parallel connection period.

【図5】2直列2並列接続期間であって負極性の電圧が
誘起されるときの電流の流れ方を説明するための図
FIG. 5 is a diagram for explaining how a current flows when a negative voltage is induced during a two-series and two-parallel connection period.

【図6】4並列接続期間であって正極性の電圧が誘起さ
れるときの電流の流れ方を説明するための図
FIG. 6 is a diagram for explaining how a current flows when a positive polarity voltage is induced during a 4-parallel connection period.

【図7】4並列接続期間であって負極性の電圧が誘起さ
れるときの電流の流れ方を説明するための図
FIG. 7 is a diagram for explaining how a current flows when a negative voltage is induced during a 4-parallel connection period.

【図8】1周期全部が4直列接続期間である場合のタイ
ミングチャート
FIG. 8 is a timing chart in the case where one cycle is a total of four series connection periods.

【図9】4直列接続期間と2直列2並列接続期間が混在
する場合のタイミングチャート
FIG. 9 is a timing chart when four series connection periods and two series and two parallel connection periods coexist.

【図10】1周期全部が2直列2並列接続期間である場
合のタイミングチャート
FIG. 10 is a timing chart in the case where one cycle is a total of two series and two parallel connection periods.

【図11】2直列2並列接続期間と4並列接続期間が混
在する場合のタイミングチャート
FIG. 11 is a timing chart in the case where two series two parallel connection periods and four parallel connection periods coexist.

【図12】1周期全部が4並列接続期間である場合のタ
イミングチャート
FIG. 12 is a timing chart in the case where one cycle is a total of four parallel connection periods.

【図13】本発明の電源装置の出力電流と出力電圧の関
係を説明するためのグラフ
FIG. 13 is a graph for explaining the relationship between the output current and the output voltage of the power supply device of the present invention.

【図14】整流素子直列回路を構成する整流素子を並列
接続させた電源装置の例
FIG. 14 is an example of a power supply device in which rectifying elements forming a rectifying element series circuit are connected in parallel.

【図15】従来技術の電源装置の例FIG. 15 shows an example of a conventional power supply device.

【符号の説明】[Explanation of symbols]

2……電源装置 7……主変換部 10……直流電圧源 131〜134……第1〜第4の一次巻線 231〜234……第1〜第4の二次巻線 24……整流回路 27……平滑回路 311〜315……第1〜第5の整流素子直列回路 36……カソード接続点 37……アノード接続点 51a〜55a、51b〜55b……整流素子 a1〜a5……第1〜第5の接続点 4S……4直列接続期間 2S2P……2直列2並列接続期間 4P……4並列接続期間2 ... Power supply device 7 ... Main converter 10 ... DC voltage source 13 1 to 13 4 ...... First to fourth primary windings 23 1 to 23 4 ...... First to fourth secondary windings 24 ... Rectifying circuit 27 ... Smoothing circuit 31 1 to 31 5 ...... First to fifth rectifying element series circuit 36 ...... Cathode connection point 37 ...... Anode connection points 51a to 55a, 51b to 55b ...... Rectification element a 1 to a 5 ... 1st to 5th connection points 4S ... 4 series connection period 2S 2P ... 2 series 2 parallel connection period 4P ... 4 parallel connection period

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H730 AA14 AS00 AS03 BB27 BB57 BB85 BB88 BB91 DD04 EE08 EE10 EE59 FD01 FG05 FG22   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H730 AA14 AS00 AS03 BB27 BB57                       BB85 BB88 BB91 DD04 EE08                       EE10 EE59 FD01 FG05 FG22

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】直流電圧源から交流電流を生成する主変換
部と、 前記主変換部からそれぞれ交流電流が供給される第1〜
第4の一次巻線と、 前記第1〜第4の一次巻線にそれぞれ磁気結合された第
1〜第4の二次巻線と、 前記第1〜第4の二次巻線に誘起される交流電圧を整流
し、カソード接続点とアノード接続点に出力する整流回
路と、 前記カソード接続点と前記アノード接続点に出力された
電圧を平滑する平滑回路とを有する電源回路であって、 前記整流回路は、整流素子が第1〜第5の接続点でそれ
ぞれ直列接続された第1〜第5の整流素子直列回路を有
し、 前記第1〜第4の二次巻線はこの順序で直列接続され、 前記第1〜第4の二次巻線が直列接続された回路の両端
と、前記第1〜第4の二次巻線が互いに接続された部分
は、それぞれ前記第1〜第5の接続点に接続され、 前記第1〜第5の整流素子直列回路のカソード側とアノ
ード側は、カソード接続点とアノード接続点でそれぞれ
互いに接続され、 前記カソード接続点とアノード接続点に生じる電圧が、
前記平滑回路で平滑され、負荷に供給されるように構成
された電源回路。
1. A main converter that generates an alternating current from a direct-current voltage source, and first to first alternating currents that are supplied from the main converter, respectively.
A fourth primary winding, first to fourth secondary windings magnetically coupled to the first to fourth primary windings, respectively, and induced in the first to fourth secondary windings. A rectifying circuit that rectifies an alternating voltage to output to a cathode connection point and an anode connection point, and a smoothing circuit that smoothes a voltage output to the cathode connection point and the anode connection point, wherein The rectifier circuit has first to fifth rectifier element series circuits in which rectifier elements are connected in series at first to fifth connection points, respectively, and the first to fourth secondary windings are arranged in this order. Both ends of a circuit that is connected in series and in which the first to fourth secondary windings are connected in series and a portion in which the first to fourth secondary windings are connected to each other are respectively the first to the first The cathode side and the anode side of the first to fifth rectifying element series circuits are connected to Are connected to each other at the anode connection point and the anode connection point, respectively, and the voltage generated at the cathode connection point and the anode connection point is
A power supply circuit configured to be smoothed by the smoothing circuit and supplied to a load.
【請求項2】前記主変換部は、前記第1〜第4の二次巻
線に誘起される交流電圧の位相を制御し、前記電源回路
の動作期間に、前記第1〜第4の二次巻線に誘起された
電圧が加算されて前記カソード接続点と前記アノード接
続点の間に印加される4直列接続期間を含ませるように
構成された請求項1記載の電源回路。
2. The main converter controls the phase of an AC voltage induced in the first to fourth secondary windings, and during the operation period of the power supply circuit, the first to fourth secondary windings are controlled. The power supply circuit according to claim 1, wherein the power supply circuit is configured to include four series connection periods in which the voltages induced in the next winding are added and applied between the cathode connection point and the anode connection point.
【請求項3】前記主変換部は、前記第1〜第4の二次巻
線に誘起される交流電圧の位相を制御し、前記電源回路
の動作期間に、前記第1〜第4の二次巻線に誘起された
電圧が、並列に前記カソード接続点と前記アノード接続
点の間に印加される4並列接続期間を含ませるように構
成された請求項1又は請求項2のいずれか1項記載の電
源回路。
3. The main converter controls the phase of an AC voltage induced in the first to fourth secondary windings, and the main converter converts the phases of the first to fourth secondary windings during an operation period of the power supply circuit. The voltage induced in the next winding is configured to include four parallel connection periods applied in parallel between the cathode connection point and the anode connection point. The power supply circuit described in the item.
【請求項4】前記主変換部は、前記第1〜第4の二次巻
線に誘起される交流電圧の位相を制御し、前記電源回路
の動作期間に、前記第1〜第4の二次巻線のうちの2個
の巻線の電圧が加算され、加算された電圧が前記カソー
ド接続点と前記アノード接続点に並列に印加される2直
列2並列接続期間を含ませるように構成された請求項1
乃至請求項3のいずれか1項記載の電源回路。
4. The main converter controls the phase of an AC voltage induced in the first to fourth secondary windings, and during the operation period of the power supply circuit, the first to fourth secondary windings are controlled. The voltage of two windings of the next winding is added, and the added voltage includes two series and two parallel connection periods in which the added voltage is applied in parallel to the cathode connection point and the anode connection point. Claim 1
The power supply circuit according to claim 3.
【請求項5】交流電流がそれぞれ供給される第1〜第4
の一次巻線と、 前記第1〜第4の一次巻線にそれぞれ磁気結合された第
1〜第4の二次巻線と、 前記第1〜第4の二次巻線に誘起される交流電圧を整流
し、カソード接続点とアノード接続点に出力する整流回
路とを有し、 前記カソード接続点と前記アノード接続点に出力された
電圧を平滑して負荷に供給する電源装置の出力電圧を制
御する制御方法であって、 前記第1〜第4の二次巻線に誘起される電圧を加算して
前記カソード接続点と前記アノード接続点に出力する4
直列接続期間と、 前記第1〜第4の二次巻線に誘起される電圧のうち、2
個が加算された電圧が並列に前記カソード接続点と前記
アノード接続点に印加する2直列2並列期間とを前記電
源装置の動作期間中に設け、前記4直列接続期間と前記
2直列2並列接続期間の比率を変え、前記出力電圧の大
きさを制御する電源装置の制御方法。
5. First to fourth parts to which alternating currents are respectively supplied
Primary winding, first to fourth secondary windings magnetically coupled to the first to fourth primary windings, and alternating current induced in the first to fourth secondary windings It has a rectifier circuit that rectifies the voltage and outputs it to the cathode connection point and the anode connection point, and smoothes the voltage output to the cathode connection point and the anode connection point to supply the output voltage of the power supply device to the load. A control method for controlling, wherein the voltages induced in the first to fourth secondary windings are added and output to the cathode connection point and the anode connection point.
2 in the series connection period and the voltage induced in the first to fourth secondary windings
Two series and two parallel periods in which the voltage obtained by adding the pieces is applied in parallel to the cathode connection point and the anode connection point are provided during the operation period of the power supply device, and the four series connection period and the two series two parallel connection A method of controlling a power supply device, wherein the ratio of periods is changed to control the magnitude of the output voltage.
【請求項6】交流電流がそれぞれ供給される第1〜第4
の一次巻線と、 前記第1〜第4の一次巻線にそれぞれ磁気結合された第
1〜第4の二次巻線と、 前記第1〜第4の二次巻線に誘起される交流電圧を整流
し、カソード接続点とアノード接続点に出力する整流回
路とを有し、 前記カソード接続点と前記アノード接続点に出力された
電圧を平滑して負荷に供給する電源装置の出力電圧を制
御する制御方法であって、 前記第1〜第4の二次巻線に誘起される電圧のうち、2
個が加算された電圧が並列に前記カソード接続点と前記
アノード接続点に印加する2直列2並列期間と、 前記第1〜第4の二次巻線に誘起される電圧を並列に前
記カソード接続点と前記アノード接続点の間に印加する
4並列接続期間とを前記電源装置の動作期間中に設け、
前記2直列2並列接続期間と4並列接続期間の比率を変
え、前記出力電圧の大きさを制御する電源装置の制御方
法。
6. First to fourth portions to which alternating currents are respectively supplied
Primary winding, first to fourth secondary windings magnetically coupled to the first to fourth primary windings, and alternating current induced in the first to fourth secondary windings It has a rectifier circuit that rectifies the voltage and outputs it to the cathode connection point and the anode connection point, and smoothes the voltage output to the cathode connection point and the anode connection point to supply the output voltage of the power supply device to the load. A control method for controlling, wherein, of the voltages induced in the first to fourth secondary windings, 2
The two series and two parallel periods in which the added voltage is applied in parallel to the cathode connection point and the anode connection point, and the voltages induced in the first to fourth secondary windings are connected in parallel to the cathode connection. Points and four parallel connection periods applied between the anode connection points during the operation period of the power supply device,
A method of controlling a power supply device, which controls the magnitude of the output voltage by changing the ratio of the 2-series 2-parallel connection period and the 4-parallel connection period.
【請求項7】交流電流がそれぞれ供給される第1〜第N
(Nは4以上の整数)の一次巻線と、 前記第1〜第Nの一次巻線にそれぞれ磁気結合された第
1〜第Nの二次巻線と、 前記第1〜第Nの二次巻線に誘起される交流電圧を整流
し、カソード接続点とアノード接続点に出力する整流回
路とを有し、 前記カソード接続点と前記アノード接続点に出力された
電圧を平滑して負荷に供給する電源装置の出力電圧を制
御する制御方法であって、 出力電流の大きさにより、前記第1〜第Nの二次巻線に
誘起される電圧を加算して前記カソード接続点と前記ア
ノード接続点に出力させるN直列接続動作と、 前記第1〜第Nの二次巻線に誘起される電圧を並列に前
記カソード接続点と前記アノード接続点に出力するN並
列動作とを切換える電源装置の制御方法。
7. A first to N-th supply of alternating current, respectively.
A primary winding (N is an integer of 4 or more), first to Nth secondary windings magnetically coupled to the first to Nth primary windings, respectively, and the first to Nth secondary windings. It has a rectifier circuit that rectifies the AC voltage induced in the next winding and outputs it to the cathode connection point and the anode connection point, and smoothes the voltage output to the cathode connection point and the anode connection point to the load. A control method for controlling an output voltage of a power supply device to be supplied, wherein the voltages induced in the first to Nth secondary windings are added according to the magnitude of an output current to add the cathode connection point and the anode. Power supply device for switching between N series connection operation for outputting to the connection point and N parallel operation for outputting the voltage induced in the first to Nth secondary windings in parallel to the cathode connection point and the anode connection point Control method.
【請求項8】前記N直列接続動作から前記N並列接続動
作に移行させる間に、出力電流の大きさに応じ、2個以
上の二次巻線を並列接続させる直列並列接続動作を設け
た請求項7記載の電源装置の運転方法。
8. A series-parallel connection operation for connecting two or more secondary windings in parallel according to the magnitude of the output current during the transition from the N series connection operation to the N parallel connection operation. Item 7. A method of operating a power supply device according to item 7.
JP2002087714A 2002-03-27 2002-03-27 Constant power output power supply Expired - Fee Related JP4109476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087714A JP4109476B2 (en) 2002-03-27 2002-03-27 Constant power output power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087714A JP4109476B2 (en) 2002-03-27 2002-03-27 Constant power output power supply

Publications (2)

Publication Number Publication Date
JP2003289669A true JP2003289669A (en) 2003-10-10
JP4109476B2 JP4109476B2 (en) 2008-07-02

Family

ID=29233808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087714A Expired - Fee Related JP4109476B2 (en) 2002-03-27 2002-03-27 Constant power output power supply

Country Status (1)

Country Link
JP (1) JP4109476B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005908A (en) * 2015-06-12 2017-01-05 Tdk株式会社 Switching power supply
JP2017077078A (en) * 2015-10-14 2017-04-20 新電元工業株式会社 Switching power supply device
JP2017085808A (en) * 2015-10-29 2017-05-18 Tdk株式会社 Switching power supply device
JP2017139856A (en) * 2016-02-02 2017-08-10 Tdk株式会社 Switching power supply
JP2019075948A (en) * 2017-10-19 2019-05-16 株式会社三社電機製作所 DC power supply
EP3706301A1 (en) * 2019-03-05 2020-09-09 TDK Corporation Switching power supply device
JP2021182798A (en) * 2020-05-18 2021-11-25 新電元工業株式会社 Power supply device
JP7602368B2 (en) 2020-12-23 2024-12-18 新電元工業株式会社 Power supply device and method for controlling the power supply device
JP7621883B2 (en) 2021-05-25 2025-01-27 新電元工業株式会社 Power Supplies

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005908A (en) * 2015-06-12 2017-01-05 Tdk株式会社 Switching power supply
JP2017077078A (en) * 2015-10-14 2017-04-20 新電元工業株式会社 Switching power supply device
JP2017085808A (en) * 2015-10-29 2017-05-18 Tdk株式会社 Switching power supply device
JP2017139856A (en) * 2016-02-02 2017-08-10 Tdk株式会社 Switching power supply
JP2019075948A (en) * 2017-10-19 2019-05-16 株式会社三社電機製作所 DC power supply
JP2020145810A (en) * 2019-03-05 2020-09-10 Tdk株式会社 Switching power supply
EP3706301A1 (en) * 2019-03-05 2020-09-09 TDK Corporation Switching power supply device
US11165356B2 (en) 2019-03-05 2021-11-02 Tdk Corporation Switching power supply device
JP7275667B2 (en) 2019-03-05 2023-05-18 Tdk株式会社 switching power supply
JP2021182798A (en) * 2020-05-18 2021-11-25 新電元工業株式会社 Power supply device
JP7372203B2 (en) 2020-05-18 2023-10-31 新電元工業株式会社 power supply
JP7602368B2 (en) 2020-12-23 2024-12-18 新電元工業株式会社 Power supply device and method for controlling the power supply device
JP7621883B2 (en) 2021-05-25 2025-01-27 新電元工業株式会社 Power Supplies

Also Published As

Publication number Publication date
JP4109476B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US7463498B1 (en) Apparatus for isolated switching power supply with coupled output inductors
US8068355B1 (en) Apparatus for isolated switching power supply with coupled output inductors
US8737097B1 (en) Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives
US20120120697A1 (en) Three-phase isolated rectifer with power factor correction
EP2884646A2 (en) Multiple-output DC/DC converter and power supply having the same
CN113949271A (en) Switching power supply device and power supply system
US7149096B2 (en) Power converter with interleaved topology
CN112713790B (en) Power switcher and power rectifier
Jeong et al. An interleaved active-clamp forward converter modified for reduced primary conduction loss without additional components
JP2003289669A (en) Power supply unit for constant-power output
Yoon et al. Zero-voltage switching two-transformer full-bridge PWM converter with lossless diode-clamp rectifier for PDP sustain power module
US7079403B2 (en) Isolated DC-DC converters
JPH10323034A (en) Synchronous double-current power supply
Watanabe et al. A novel high-efficient DC-DC converter with 1V/20A dc output
KR102472262B1 (en) Isolated switching power supply for three-phase AC
JPS63268470A (en) Power convertor
JP2003111412A (en) Dc-dc converter
US7157887B2 (en) Direct amplitude modulation for switch mode power supplies
CN115441755B (en) Low cost multiphase rectifier circuit with reduced number of diodes
JP4798572B2 (en) Switching power supply
JP7160719B2 (en) Single-converter isolated switching power supply
KR101023576B1 (en) Soft Switching Half-Bridge DC-DC Converter and Switching Power Supply Using the Same
JP6968127B2 (en) Power factor improvement converter
JP3092792B2 (en) Power converter
KR102472258B1 (en) Isolated switching power supply for three-phase AC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080222

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees