JP2003282886A - Electronic device and its manufacturing method - Google Patents
Electronic device and its manufacturing methodInfo
- Publication number
- JP2003282886A JP2003282886A JP2003107359A JP2003107359A JP2003282886A JP 2003282886 A JP2003282886 A JP 2003282886A JP 2003107359 A JP2003107359 A JP 2003107359A JP 2003107359 A JP2003107359 A JP 2003107359A JP 2003282886 A JP2003282886 A JP 2003282886A
- Authority
- JP
- Japan
- Prior art keywords
- film
- aluminum
- concentration
- electrode
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title description 23
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 60
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 239000004065 semiconductor Substances 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract 6
- 239000010703 silicon Substances 0.000 claims abstract 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 24
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 24
- 239000003610 charcoal Substances 0.000 claims 1
- 239000004615 ingredient Substances 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 157
- 239000000758 substrate Substances 0.000 description 26
- 239000010409 thin film Substances 0.000 description 25
- 239000010407 anodic oxide Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 20
- 239000010410 layer Substances 0.000 description 14
- 239000012535 impurity Substances 0.000 description 13
- 239000011229 interlayer Substances 0.000 description 12
- 238000004544 sputter deposition Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910021419 crystalline silicon Inorganic materials 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 238000000059 patterning Methods 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052706 scandium Inorganic materials 0.000 description 4
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910018404 Al2 O3 Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101000576569 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) 50S ribosomal protein L18 Proteins 0.000 description 1
- 101000592773 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) 50S ribosomal protein L22 Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本明細書で開示する発明は、
アルミニウムまたはアルミニウムを主成分とする材料で
もって電極や配線を構成した半導体装置に関する。また
さらにその作製方法に関する。TECHNICAL FIELD The invention disclosed in this specification includes:
The present invention relates to a semiconductor device in which electrodes and wirings are made of aluminum or a material containing aluminum as a main component. Furthermore, the present invention relates to a manufacturing method thereof.
【0002】[0002]
【従来の技術】近年、大面積の画面を有したアクティブ
マトリクス型の液晶表示装置が注目されている。このア
クティブマトリクス型の液晶表示装置は、大面積化とと
もに微細化も要求されている。2. Description of the Related Art In recent years, an active matrix type liquid crystal display device having a large-area screen has attracted attention. This active matrix type liquid crystal display device is required to have a large area and a fine structure.
【0003】このような要求事項を満足するためには、
低抵抗の配線材料を利用することが必要とされる。これ
は、10インチ角以上というような大きさとなると、配
線を伝播する信号の遅延が問題となるからである。In order to satisfy such requirements,
It is necessary to utilize low resistance wiring materials. This is because when the size is 10 inches square or more, the delay of the signal propagating through the wiring becomes a problem.
【0004】低抵抗の配線材料としては、アルミニウム
が最も好ましい材料である。しかし、アルミニウムを用
いた場合、作製工程における耐熱性に問題がある。(こ
の点に関しては、ディスプレイ・アンド・イメージング
1996 Vol.4,pp 199-206(サイエンス・コミュニケーシ
ョンズ・インターナショナル発行)に記載の解説論文参
照)Aluminum is the most preferable material for the low-resistance wiring material. However, when aluminum is used, there is a problem in heat resistance in the manufacturing process. (In this regard, Display and Imaging
1996 Vol.4, pp 199-206 (published by Science Communications International), refer to the commentary paper)
【0005】具体的には、薄膜トランジスタの作製工程
における各種薄膜の成膜やアニール、さらにレーザー光
の照射や不純物イオンの注入工程において、アルミニウ
ムの異常成長が起こり、ヒロックやウィスカーと呼ばれ
る突起物が形成される問題がある。このヒロックやウィ
スカーは、アルミニウムの耐熱性に低さに起因すると考
えられている。Specifically, in the process of forming a thin film transistor, the formation and annealing of various thin films, the irradiation of laser light and the process of implanting impurity ions, abnormal growth of aluminum occurs, and protrusions called hillocks and whiskers are formed. There is a problem. The hillocks and whiskers are considered to be due to the low heat resistance of aluminum.
【0006】このヒロックやウィスカーと呼ばれる突起
物は、その成長距離が1μm以上まで達する場合があ
る。このような現象は、配線間のショートの原因とな
る。The growth distance of the projections called hillocks or whiskers may reach 1 μm or more. Such a phenomenon causes a short circuit between wirings.
【0007】この問題を防止するために、アルミニウム
でなる配線の表面に陽極酸化膜を形成する技術がある。
(前述の解説記事参照)In order to prevent this problem, there is a technique of forming an anodic oxide film on the surface of the wiring made of aluminum.
(See the commentary article above)
【0008】[0008]
【発明が解決しようとする課題】本出願人らによる研究
によれば、陽極酸化膜(Al2 O3 を主成分とすると考
えられる)の膜質は強固であり、ヒロックやウィスカー
の発生を防止するためには有効であるが、他方でその強
固さ故にアルミニウムでなる配線に対するコンタクトホ
ールの形成が困難であることが判明している。According to the study by the present applicants, the film quality of the anodic oxide film (which is considered to contain Al2 O3 as a main component) is strong, and it is necessary to prevent the formation of hillocks and whiskers. Is effective, but on the other hand, it has been found that it is difficult to form a contact hole for a wiring made of aluminum because of its rigidity.
【0009】本明細書で開示する発明は、上記アルミニ
ウムである配線の耐熱性の問題を解決するととともに、
かつ陽極酸化膜を形成した場合に問題となるコンタクト
の形成が困難である問題を解決することができる技術を
提供することを課題とする。The invention disclosed in this specification solves the problem of heat resistance of the wiring made of aluminum, and
Another object of the present invention is to provide a technique capable of solving the problem that it is difficult to form a contact which is a problem when an anodic oxide film is formed.
【0010】[0010]
【課題を解決するための手段】本明細書で開示する発明
の一つは、アルミニウムまたはアルミニウムを主成分と
するパターンを有し、前記アルミニウムまたはアルミニ
ウムを主成分とする膜中における酸素原子の濃度が8×
1018個cm-3以下であり、かつ炭素原子の濃度が5×1
018個cm-3以下であり、かつ窒素原子の濃度が7×10
17個cm-3以下であることを特徴とする。One of the inventions disclosed in this specification is to have a concentration of oxygen atoms in aluminum or a film containing aluminum as a main component, which has a pattern containing aluminum as a main component. Is 8 ×
10 18 cm -3 or less and the concentration of carbon atoms is 5 × 1
0 18 cm -3 or less and the concentration of nitrogen atoms is 7 × 10
It is characterized by being 17 cm -3 or less.
【0011】上記構成を採用した場合、発生するヒロッ
クやウィスカー等の突起物の最大の高さを500Å以下
とすることができる。When the above-mentioned structure is adopted, the maximum height of the generated protrusions such as hillocks and whiskers can be set to 500 Å or less.
【0012】他の発明の構成は、アルミニウムまたはア
ルミニウムを主成分とするパターンを有する電子装置の
作製方法であって、前記アルミニウムまたはアルミニウ
ムを主成分とする膜中における酸素原子の濃度が8×1
018個cm-3以下であり、かつ炭素原子の濃度が5×10
18個cm-3以下であり、かつ窒素原子の濃度が7×1017
個cm-3以下であり、作製工程中において前記パターンに
加えられるプロセス温度は400℃以下であることを特
徴とする。Another structure of the present invention is a method of manufacturing an electronic device having aluminum or a pattern containing aluminum as a main component, wherein the concentration of oxygen atoms in the film containing aluminum or aluminum as a main component is 8 × 1.
0 18 cm -3 or less and the concentration of carbon atoms is 5 × 10
18 cm -3 or less and the concentration of nitrogen atoms is 7 × 10 17
It is characterized in that the number of pieces is cm −3 or less, and the process temperature applied to the pattern during the manufacturing process is 400 ° C. or less.
【0013】プロセウ温度を400℃以下とすることに
よって、酸素、炭素、窒素の各元素の濃度限定の効果を
最大限得ることができる。By setting the process temperature to 400 ° C. or lower, it is possible to maximize the effect of limiting the concentration of each element of oxygen, carbon and nitrogen.
【0014】[0014]
【発明の実施の形態】図1(B)に示すように、酸素原
子の濃度が8×1018個cm-3以下であり、かつ炭素原子
の濃度が5×1018個cm-3以下であり、かつ窒素原子の
濃度が7×1017個cm-3以下であるアルミニウム膜でな
るパターン106の上面には窒化珪素膜107を設け、
その側面には陽極酸化膜(酸化物被膜)108と109
を設けた構成とする。BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1B, when the concentration of oxygen atoms is 8 × 10 18 cm −3 or less and the concentration of carbon atoms is 5 × 10 18 cm −3 or less. A silicon nitride film 107 is provided on the upper surface of the pattern 106 made of an aluminum film having a nitrogen atom concentration of 7 × 10 17 cm −3 or less.
Anodic oxide films (oxide films) 108 and 109 are formed on the side surfaces.
Is provided.
【0015】このような構成とすることで、ヒッロクや
ウィスカーといった突起物の形成を抑制することがで
き、かつコンタクトの形成しやすいものとすることがで
きる。With such a structure, formation of protrusions such as hillocks and whiskers can be suppressed, and contacts can be easily formed.
【0016】[0016]
【実施例】〔実施例1〕図1以下に本実施例の作製工程
の概略(断面図)を示す。本実施例では、アクティブマ
トリクス型の液晶表示における画素マトリクス部に配置
される薄膜トランジスタ(画素トランジスタと総称され
る)の作製工程を示す。Embodiments [Embodiment 1] FIG. 1 and thereafter show the outline (cross-sectional views) of the manufacturing process of this embodiment. This embodiment shows a manufacturing process of a thin film transistor (generally referred to as a pixel transistor) arranged in a pixel matrix portion in an active matrix liquid crystal display.
【0017】まず、図1(A)に示されるようにガラス
基板101を用意し、その表面に図示しない下地膜を形
成する。ここでは、図示しない下地膜として3000Å
厚の酸化珪素膜をスパッタ法によって成膜する。First, a glass substrate 101 is prepared as shown in FIG. 1A, and a base film (not shown) is formed on the surface thereof. Here, as a base film not shown, 3000 Å
A thick silicon oxide film is formed by a sputtering method.
【0018】この下地膜は、ガラス基板からの不純物の
拡散やガラス基板表面の微小な凹凸の影響を緩和する機
能を有している。ここではガラス基板を利用する例を示
すが、他に石英基板を利用することもできる。This base film has a function of alleviating the effects of diffusion of impurities from the glass substrate and minute irregularities on the surface of the glass substrate. Although an example using a glass substrate is shown here, a quartz substrate can be used instead.
【0019】ガラス基板101上に下地膜を成膜した
ら、次に薄膜トランジスタの活性層102を構成する半
導体膜(活性層を構成する)の出発膜となる非晶質珪素
膜(図示せず)をプラズマCVD法により、500Åの
厚さに成膜する。After forming a base film on the glass substrate 101, an amorphous silicon film (not shown) to be a starting film of a semiconductor film (constituting the active layer) forming the active layer 102 of the thin film transistor is next formed. A film is formed to a thickness of 500 Å by the plasma CVD method.
【0020】非晶質珪素膜を成膜したら、レーザー光の
照射を行い図示しない結晶性珪素膜を得る。次にこの結
晶性珪素膜をパターニングすることにより、102で示
される活性層パターンを形成する。After forming the amorphous silicon film, laser light is irradiated to obtain a crystalline silicon film (not shown). Next, by patterning this crystalline silicon film, an active layer pattern indicated by 102 is formed.
【0021】さらにゲイト絶縁膜として機能する酸化珪
素膜103をプラズマCVD法でもって1000Åの厚
さに成膜する。Further, a silicon oxide film 103 functioning as a gate insulating film is formed in a thickness of 1000Å by the plasma CVD method.
【0022】酸化珪素膜103を成膜したら、アルミニ
ウム膜104を4000Åの厚さにスパッタ法によって
成膜する。こうして図1(A)に示す状態を得る。After the silicon oxide film 103 is formed, an aluminum film 104 is formed to a thickness of 4000Å by a sputtering method. In this way, the state shown in FIG.
【0023】ここでは、このアルミニウム膜中にスカン
ジウムを0.18重量%含有させる。Here, 0.18% by weight of scandium is contained in this aluminum film.
【0024】アルミニウム膜中にスカンジウムを含有さ
せるのは、後の工程においてヒロックやウィスカーが発
生することを抑制するためである。スカンジウムがヒロ
ックやウィスカーの発生の抑制に効果があるのは、アル
ミニウムの異常成長を抑制する効果があるからである。The reason why scandium is contained in the aluminum film is to suppress the generation of hillocks and whiskers in the subsequent steps. Scandium is effective in suppressing the generation of hillocks and whiskers because it has the effect of suppressing abnormal growth of aluminum.
【0025】次にアルミニウム膜104と窒化珪素膜1
05との積層膜をパターニングすることにより、106
で示されるアルミニウムパターンを得る。 また、10
7で示されるのがゲイト電極106上に残存する窒化珪
素膜である。Next, the aluminum film 104 and the silicon nitride film 1
By patterning the laminated film with 05, 106
The aluminum pattern shown by is obtained. Also, 10
7 is a silicon nitride film remaining on the gate electrode 106.
【0026】このアルミニウムパターン106がゲイト
電極となる。またこのゲイト電極106から延在してゲ
イト線が配置される。This aluminum pattern 106 serves as a gate electrode. A gate line is arranged so as to extend from the gate electrode 106.
【0027】画素マトリクス部においては、ゲイト電極
106から延在したゲイト線がソース線とともに格子状
に配置される。In the pixel matrix portion, the gate lines extending from the gate electrode 106 are arranged in a grid pattern together with the source lines.
【0028】次にゲイト電極106を陽極とした陽極酸
化を行うことにより、アルミニウム材料が露呈した側面
に陽極酸化膜108と109を形成する。これらの陽極
酸化膜の膜厚は500Åとする。Next, anodic oxidation is performed using the gate electrode 106 as an anode to form anodic oxide films 108 and 109 on the side surface where the aluminum material is exposed. The film thickness of these anodic oxide films is 500 Å.
【0029】この陽極酸化工程においては、電解溶液と
して、3%の酒石酸を含んだエチレングリコール溶液を
アンモニア水で中和したものを用いる。この電解溶液中
において、白金を陰極、アルミニウム膜を陽極として、
両電極間に電流を流すことによって陽極酸化膜が形成さ
れる。In this anodizing step, an electrolytic solution obtained by neutralizing an ethylene glycol solution containing 3% tartaric acid with aqueous ammonia is used. In this electrolytic solution, platinum as the cathode, aluminum film as the anode,
An anodic oxide film is formed by passing a current between both electrodes.
【0030】この工程で形成される陽極酸化膜105
は、緻密で強固な膜質を有している。この陽極酸化工程
における膜厚の制御は、印加電圧のより行うことができ
る。Anodized film 105 formed in this step
Has a dense and strong film quality. The control of the film thickness in this anodizing step can be performed by the applied voltage.
【0031】上記工程においては、電解溶液がゲイト電
極106の側面のみに接触するので、その上面には陽極
酸化膜は形成されない。こうして図1(B)に示す状態
を得る。In the above process, since the electrolytic solution contacts only the side surface of the gate electrode 106, the anodic oxide film is not formed on the upper surface thereof. Thus, the state shown in FIG. 1B is obtained.
【0032】次にP(リン)のドーピングを行うことに
より、ソース領域110、チャネル領域111、ドレイ
ン領域112の形成を行う。ここでは、ドーピング手段
としてプラズマドーピング法を用いる。こうして図1
(C)に示す状態を得る。Next, the source region 110, the channel region 111, and the drain region 112 are formed by performing P (phosphorus) doping. Here, a plasma doping method is used as the doping means. Thus, FIG.
The state shown in (C) is obtained.
【0033】なお、Nチャネル型の薄膜トランジスタを
作製するためにPのドーピングを行う例を示すが、Pチ
ャネル型の薄膜トランジスタを作製するのであれば、B
(ボロン)のドーピングを行う。An example in which P is doped in order to manufacture an N-channel type thin film transistor will be described. However, if a P-channel type thin film transistor is manufactured, B is used.
Doping of (boron).
【0034】なお、ドーピング工程において、試料を加
熱または不可避に加熱されてしまう状況が生じるが、ア
ルミニウムの耐熱性の観点から、試料温度を400℃以
下とするように努めることが重要である。試料温度が4
00℃を超えた場合、ヒロック(及びウィイスカー(両
者区別は厳密なものではない))の発生が顕在化するの
で注意が必要である。In the doping process, the sample may be heated or inevitably heated. From the viewpoint of the heat resistance of aluminum, it is important to try to keep the sample temperature at 400 ° C. or lower. Sample temperature is 4
If the temperature exceeds 00 ° C, the generation of hillocks (and whiskers (the distinction between the two is not strict)) becomes apparent, so care must be taken.
【0035】ドーピング工程の終了後、レーザー光の照
射を行い、ドーパントの活性化とドーピングが行われた
領域の活性化とを同時に行う。After the completion of the doping step, laser light irradiation is performed to activate the dopant and the doped region at the same time.
【0036】次に第1の層間絶縁膜として、窒化珪素膜
113をプラズマCVD法により2000Åの厚さに成
膜する。(図2(A)参照)Next, a silicon nitride film 113 is formed as a first interlayer insulating film by plasma CVD to a thickness of 2000 Å. (See Figure 2 (A))
【0037】さらに第2の層間絶縁膜としてポリイミド
でなる膜114をスピンコート法によって成膜する。層
間絶縁膜としてポリイミドを利用した場合、その表面を
平坦なものとすることができる。Further, a film 114 made of polyimide is formed as a second interlayer insulating film by spin coating. When polyimide is used as the interlayer insulating film, its surface can be made flat.
【0038】そしてソース及びドレイン領域に対しての
コンタクトホール115、116の形成を行う。こうし
て図2(A)に示す状態を得る。Then, contact holes 115 and 116 are formed in the source and drain regions. Thus, the state shown in FIG. 2A is obtained.
【0039】さたにチタン膜とアルミニウム膜とチタン
膜との積層膜をスパッタ法で成膜し、これをパターニン
グすることにより、ソース電極117とドレイン電極1
18を形成する。こうして図2(B)に示す状態を得
る。Further, a source electrode 117 and a drain electrode 1 are formed by forming a laminated film of a titanium film, an aluminum film and a titanium film by a sputtering method and patterning the film.
18 is formed. Thus, the state shown in FIG. 2B is obtained.
【0040】さらに第3の層間絶縁膜119をポリイミ
ドでもって形成する。そしてドレイン電極118に対す
るコンタクトホールの形成を行い、ITOでなる画素電
極120を形成する。こうして図2(C)に示す状態を
得る。Further, a third interlayer insulating film 119 is formed by using polyimide. Then, a contact hole is formed for the drain electrode 118, and a pixel electrode 120 made of ITO is formed. Thus, the state shown in FIG. 2C is obtained.
【0041】最後に水素雰囲気中での加熱処理を施すこ
とにより、活性層中の欠陥の補償を行い、薄膜トランジ
スタを完成させる。Finally, heat treatment in a hydrogen atmosphere is performed to compensate for defects in the active layer, thus completing the thin film transistor.
【0042】〔実施例2〕本実施例は実施例1に示す作
製工程と同時に行われるもので、画素マトリクス部の周
辺に形成される周辺駆動回路に配置される薄膜トランジ
スタの作製工程を示す。本実施例においてもNチャネル
型の薄膜トランジスタを作製する工程を示す。[Embodiment 2] This embodiment is carried out at the same time as the manufacturing process shown in Embodiment 1, and shows a manufacturing process of a thin film transistor arranged in a peripheral drive circuit formed around the pixel matrix portion. This embodiment also shows a process of manufacturing an N-channel thin film transistor.
【0043】本実施例で示す薄膜トランジスタの作製工
程は、図1に示す工程まで実施例1に示すものと同じで
ある。(勿論、配線パターンの違いや活性層パターンの
寸法の違いは存在する)The manufacturing process of the thin film transistor shown in this embodiment is the same as that of the first embodiment up to the process shown in FIG. (Of course, there are differences in wiring patterns and active layer patterns.)
【0044】まず、実施例1に示す工程に従って、図1
(C)に示す状態を得る。次に図3(A)に示すよう
に、第1の層間絶縁膜として窒化珪素膜113を成膜す
る。First, according to the steps shown in Example 1, FIG.
The state shown in (C) is obtained. Next, as shown in FIG. 3A, a silicon nitride film 113 is formed as a first interlayer insulating film.
【0045】さらに第2の層間絶縁膜としてポリイミド
でなる層114を形成する。次にコンタクトホール30
1、302、303の形成を行う。Further, a layer 114 made of polyimide is formed as a second interlayer insulating film. Next, contact hole 30
1, 302 and 303 are formed.
【0046】この際、ゲイト電極106の上面には陽極
酸化膜が形成されていない(窒化珪素膜が成膜されてい
る)ので、302で示されるコンタクトホールの形成を
容易に行うことができる。At this time, since the anodic oxide film is not formed (the silicon nitride film is formed) on the upper surface of the gate electrode 106, the contact hole indicated by 302 can be easily formed.
【0047】本実施例に示す構成においては、ドライエ
ッチング法を用いて、301、302、303で示され
るコンタクトホールを同時に形成する。こうして図3
(A)に示す状態を得る。In the structure shown in this embodiment, the contact holes 301, 302 and 303 are simultaneously formed by using the dry etching method. Thus, FIG.
The state shown in (A) is obtained.
【0048】次にチタン膜とアルミニウム膜とチタン膜
とでなる3層膜をスパッタ法で成膜する。さらに、これ
をパターニングすることにより、ソース電極304、ゲ
イト引出し電極305、ドレイン電極306を形成す
る。こうして図3(B)に示す状態を得る。Next, a three-layer film consisting of a titanium film, an aluminum film and a titanium film is formed by the sputtering method. Further, by patterning this, a source electrode 304, a gate extraction electrode 305, and a drain electrode 306 are formed. Thus, the state shown in FIG. 3B is obtained.
【0049】この後、実施例1の場合と同様に水素化工
程が施され、薄膜トランジスタを完成させる。After this, a hydrogenation process is performed as in the case of Example 1 to complete the thin film transistor.
【0050】ここでは、Nチャネル型の薄膜トランジス
タを作製する工程を示した。一般に周辺駆動回路には、
Nチャネル型の薄膜トランジスタとPチャネル型の薄膜
トラランジスタとが相補型に構成されたものが配置され
る。Here, a process of manufacturing an N-channel type thin film transistor is shown. Generally, the peripheral drive circuit
An N-channel thin film transistor and a P-channel thin film transistor are arranged in a complementary manner.
【0051】〔実施例3〕本実施例は、チャネル領域と
ドレイン領域との間に抵濃度不純物領域を配置した薄膜
トランジスタの作製工程を示す。[Embodiment 3] This embodiment shows a manufacturing process of a thin film transistor in which a low concentration impurity region is arranged between a channel region and a drain region.
【0052】図4及び図5に本実施例の薄膜トランジス
タの作製工程を示す。まず、ガラス基板401上に図示
しない下地膜を成膜する。さらに非晶質珪素膜を成膜
し、レーザー光の照射により結晶化させる。こうして結
晶性珪素膜を得る。4 and 5 show the manufacturing process of the thin film transistor of this embodiment. First, a base film (not shown) is formed on the glass substrate 401. Further, an amorphous silicon film is formed and crystallized by irradiation with laser light. Thus, a crystalline silicon film is obtained.
【0053】次に得られた結晶性珪素膜をパターニング
して、402で示される薄膜トランジスタの活性層を形
成する。Next, the obtained crystalline silicon film is patterned to form an active layer of a thin film transistor indicated by 402.
【0054】さらにゲイト絶縁膜として機能する酸化珪
素膜403を成膜する。酸化珪素膜403を成膜した
後、アルミニウム膜404を成膜する。Further, a silicon oxide film 403 which functions as a gate insulating film is formed. After forming the silicon oxide film 403, an aluminum film 404 is formed.
【0055】次にアルミニウム膜上に窒化珪素膜405
を成膜する。こうして図4(A)に示す状態を得る。Next, a silicon nitride film 405 is formed on the aluminum film.
To form a film. Thus, the state shown in FIG. 4A is obtained.
【0056】図4(A)に示す状態を得たら、パターニ
ングを施すことにより、406で示されるアルミニウム
パターンを得る。このアルミニウムパターンが後に形成
されるゲイト電極の基のパターンとなる。After obtaining the state shown in FIG. 4A, patterning is performed to obtain an aluminum pattern 406. This aluminum pattern becomes the base pattern of the gate electrode to be formed later.
【0057】ここで、407が残存した窒化珪素膜パタ
ーンである。こうして図4(B)に示す状態を得る。Here, 407 is the remaining silicon nitride film pattern. Thus, the state shown in FIG. 4B is obtained.
【0058】この状態において、アルミニウムパターン
406を陽極とした陽極酸化を行い、陽極酸化膜40
9、410を形成する。In this state, anodization is performed by using the aluminum pattern 406 as an anode to form the anodized film 40.
9 and 410 are formed.
【0059】ここでは、電解溶液として、3%のシュウ
酸水溶液を用いる。この工程で形成される陽極酸化膜
は、多孔質状(ポーラス状)を有している。この陽極酸
化膜は、その成長距離を数μmとすることができる。こ
の成長距離は陽極酸化時間によって制御することができ
る。こうして図4(C)に示す状態を得る。Here, a 3% oxalic acid aqueous solution is used as the electrolytic solution. The anodic oxide film formed in this step has a porous (porous) shape. This anodic oxide film can have a growth distance of several μm. This growth distance can be controlled by the anodic oxidation time. Thus, the state shown in FIG. 4C is obtained.
【0060】この状態において、残存した408で示さ
れるパターンがゲイト電極となる。In this state, the remaining pattern indicated by 408 becomes a gate electrode.
【0061】次に再度の陽極酸化を行う。ここでは、実
施例1で示した緻密な膜質を有する陽極酸化膜の形成条
件でもって陽極酸化を行う。こうして、図5(A)の4
11および412で示される緻密な膜質を有する陽極酸
化膜の形成が行われる。Next, anodic oxidation is performed again. Here, the anodic oxidation is performed under the conditions for forming the anodic oxide film having the dense film quality shown in the first embodiment. Thus, 4 in FIG.
The anodic oxide film having a dense film quality shown by 11 and 412 is formed.
【0062】ここでは、この緻密な膜質を有する陽極酸
化膜411と412の膜厚を500Åとする。この緻密
な膜質を有する陽極酸化膜は、ゲイト電極408の側面
において選択的に形成される。これは、ゲイト電極40
8の上面には窒化珪素膜407が存在しているからであ
る。また、多孔質の陽極酸化膜409と410の内部に
電解溶液が侵入するので、411、412で示されるよ
うな状態に緻密な膜質を有する陽極酸化膜が形成され
る。こうして図5(A)に示す状態を得る。Here, the film thickness of the anodic oxide films 411 and 412 having this dense film quality is set to 500 Å. The dense anodic oxide film is selectively formed on the side surface of the gate electrode 408. This is the gate electrode 40
This is because the silicon nitride film 407 is present on the upper surface of No. 8. Further, since the electrolytic solution enters the inside of the porous anodic oxide films 409 and 410, the anodic oxide film having a dense film quality is formed in the states shown by 411 and 412. Thus, the state shown in FIG. 5A is obtained.
【0063】次にPのドーピングを行う。ここでは、プ
ラズマドーピング法により、Pのドーピングを行う。こ
のドーピングを行うことにより、図5(B)に示すよう
に、ソース領域413、I型領域414、ドレイン領域
415が自己整合的に形成される。Next, P doping is performed. Here, P doping is performed by the plasma doping method. By performing this doping, the source region 413, the I-type region 414, and the drain region 415 are formed in a self-aligned manner as shown in FIG.
【0064】次に多孔質状の陽極酸化膜409、410
を選択的に除去する。この工程におては、図5(C)に
示すように除去される陽極酸化膜409、410の上部
に存在した窒化珪素膜407の一部も同時に除去され
る。Next, the porous anodic oxide films 409 and 410 are used.
Are selectively removed. In this step, part of the silicon nitride film 407 existing on the anodic oxide films 409 and 410 to be removed as shown in FIG. 5C is also removed at the same time.
【0065】そして、再度のPのドーピングを行う。こ
の工程では、前回のドーピング工程における条件より低
ドーズ量でもってPのドーピングを行う。この工程にお
いて、低濃度不純物領域416と418が自己整合的に
形成される。またチャネル形成領域417が自己整合的
に形成される。Then, P doping is performed again. In this step, P doping is performed with a lower dose amount than the conditions in the previous doping step. In this step, the low concentration impurity regions 416 and 418 are formed in a self-aligned manner. In addition, the channel formation region 417 is formed in a self-aligned manner.
【0066】低濃度不純物領域416、418は、ソー
ス領域413やドレイン領域415に比較して、そこに
含まれるP(リン)元素の濃度は小さい。The low-concentration impurity regions 416 and 418 have a lower concentration of P (phosphorus) element contained therein as compared with the source region 413 and the drain region 415.
【0067】一般に418で示されるドレイン領域側の
低濃度不純物領域が、LDD(ライトドープドレイン)
領域と称されている。The low-concentration impurity region on the drain region side, which is generally indicated by 418, is an LDD (lightly doped drain).
It is called an area.
【0068】図5(C)に示す状態を得たら、レーザー
光の照射を行うことにより、ドーピングがなされた領域
のアニールを行う。When the state shown in FIG. 5C is obtained, laser light is irradiated to anneal the doped region.
【0069】本実施例に示す構成においては、ゲイト電
極(およびそこから延在するゲイト線)の上面は窒化珪
素膜により覆われ、またその側面は緻密な膜質を有する
陽極酸化膜でもって覆われている。In the structure shown in this embodiment, the upper surface of the gate electrode (and the gate line extending therefrom) is covered with the silicon nitride film, and the side surface thereof is covered with the anodic oxide film having a dense film quality. ing.
【0070】このような構成とすることにより、不純物
のドーピング工程やレーザー光の照射工程において、ゲ
イト電極の表面にヒロックやウィスカーが発生してしま
うことを抑制することができる。With such a structure, it is possible to prevent hillocks and whiskers from being generated on the surface of the gate electrode in the impurity doping step and the laser beam irradiation step.
【0071】また、ゲイト電極(またはゲイト線)に対
するコンタクトの形成が行いやすい構造とすることがで
きる。Further, it is possible to adopt a structure in which it is easy to form a contact with the gate electrode (or gate line).
【0072】〔実施例4〕本実施例は、ゲイト電極が活
性層と基板との間にあるボトムゲイト型と呼ばれる構成
の薄膜トランジスタに関する。[Embodiment 4] This embodiment relates to a thin film transistor having a structure called a bottom gate type in which a gate electrode is between an active layer and a substrate.
【0073】図6、図7に本実施例の作製工程を示す。
まず601で示されるガラス基板上にアルミニウム膜6
02を3000Åの厚さにスパッタ法で成膜する。この
アルミニウム膜が後にゲイト電極を構成することにな
る。6 and 7 show the manufacturing process of this embodiment.
First, an aluminum film 6 is formed on a glass substrate indicated by 601.
02 is deposited to a thickness of 3000 Å by a sputtering method. This aluminum film will later form a gate electrode.
【0074】アルミニウム膜602を成膜したら、その
上に窒化珪素膜603を500Åの厚さにプラズマCV
D法でもって成膜する。こうして図6(A)に示す状態
を得る。After the aluminum film 602 is formed, a silicon nitride film 603 is formed on the aluminum film 602 by plasma CV to a thickness of 500Å.
The film is formed by the D method. Thus, the state shown in FIG. 6A is obtained.
【0075】次にパターニングを施すことにより、ゲイ
ト電極604を得る。605で示されるのは、ゲイト電
極604上に残存した窒化珪素膜である。こうして図6
(B)に示す状態を得る。Then, patterning is performed to obtain the gate electrode 604. Reference numeral 605 denotes the silicon nitride film remaining on the gate electrode 604. Thus, FIG.
The state shown in (B) is obtained.
【0076】次にゲイト電極604を陽極とした陽極酸
化を行うことにより、606と607で示される緻密な
膜質を有する陽極酸化膜を500Åの厚さに形成する。Next, by performing anodic oxidation using the gate electrode 604 as an anode, an anodic oxide film 606 and 607 having a dense film quality is formed to a thickness of 500 Å.
【0077】この工程においては、窒化珪素膜605が
存在する関係で、ゲイト電極604の側面においてのみ
陽極酸化膜が形成される。こうして図6(C)に示す状
態を得る。In this step, the anodic oxide film is formed only on the side surface of the gate electrode 604 due to the existence of the silicon nitride film 605. Thus, the state shown in FIG. 6C is obtained.
【0078】次にゲイト絶縁膜として機能する酸化珪素
膜608を1000Åの厚さにプラズマCVD法でもっ
て成膜する。さらに活性層を構成するための図示しない
非晶質珪素膜をプラズマCVD法でもって500Åの厚
さに成膜する。そしてこの非晶質珪素膜にレーザー光の
照射を行うことにより、図示しない結晶性珪素膜を得
る。Next, a silicon oxide film 608 functioning as a gate insulating film is formed to a thickness of 1000Å by the plasma CVD method. Further, an amorphous silicon film (not shown) for forming the active layer is formed to a thickness of 500 Å by the plasma CVD method. Then, the amorphous silicon film is irradiated with laser light to obtain a crystalline silicon film (not shown).
【0079】図示しない結晶性珪素膜を得たら、それを
パターニングすることにより、609、610、611
で示される領域でなる活性層パターンを形成する。After obtaining a crystalline silicon film (not shown), patterning is performed to form a crystalline silicon film 609, 610, 611.
An active layer pattern consisting of the area shown by is formed.
【0080】そしてゲイト電極604をマスクとして基
板601の裏面側から露光を行うことにより、612で
示されるレジストマスクを形成する。(図6(D)参
照)Then, exposure is performed from the back surface side of the substrate 601 using the gate electrode 604 as a mask to form a resist mask 612. (See FIG. 6D)
【0081】この状態において、Pのドーピングをプラ
ズマドーピング法でもって行う。このドーピング工程に
おい、ソース領域609、ドレイン領域611、チャネ
ル領域610が自己整合的に形成される。こうして図6
(D)に示す状態を得る。In this state, P doping is performed by the plasma doping method. In this doping process, the source region 609, the drain region 611, and the channel region 610 are formed in a self-aligned manner. Thus, FIG.
The state shown in (D) is obtained.
【0082】上記ドーピング工程の終了後、レーザー光
の照射を行うことにより、ドーピングされた元素の活性
化と被ドーピング領域のアニールとを行う。After the doping process is completed, laser light irradiation is performed to activate the doped element and anneal the doped region.
【0083】次に第1の層間絶縁膜612として窒化珪
素膜をプラズマCVD法でもって2000Åの厚さに成
膜し、さらに第2の層間絶縁膜613をポリイミドでも
って形成する。こうして図7(A)に示す状態を得る。Next, a silicon nitride film is formed as the first interlayer insulating film 612 by the plasma CVD method to a thickness of 2000 Å, and the second interlayer insulating film 613 is further formed by polyimide. Thus, the state shown in FIG. 7A is obtained.
【0084】次にコンタクトホールの形成を行い、ソー
ス電極614、ドレイン電極615を形成する。そして
最後に水素化を行う。Next, contact holes are formed to form a source electrode 614 and a drain electrode 615. And finally hydrogenation is performed.
【0085】また図示されていないが、他部において、
ゲイト電極604から延在した配線の上部にコンタクト
ホールを形成し、ゲイト電極604へのコンタクトが形
成される。こうして図7(B)に示す状態を得る。Although not shown, in other parts,
A contact hole is formed above the wiring extending from the gate electrode 604, and a contact to the gate electrode 604 is formed. Thus, the state shown in FIG. 7B is obtained.
【0086】本実施例に示す構成においても、ゲイト電
極604の側面には陽極酸化膜が形成されていることに
より、ヒロックやウィスカーの発生が防止され、その上
面は窒化珪素膜が形成されていることにより、ヒロック
やウィスカーの発生が防止される。そしてゲイト電極の
上面に窒化珪素膜が形成されていることにより、コンタ
クトホールの形成が容易なものとなっている。Also in the structure shown in this embodiment, since the anodic oxide film is formed on the side surface of the gate electrode 604, generation of hillocks and whiskers is prevented, and the silicon nitride film is formed on the upper surface thereof. This prevents the formation of hillocks and whiskers. Since the silicon nitride film is formed on the upper surface of the gate electrode, the contact hole can be easily formed.
【0087】〔実施例5〕本実施例では、スカンジウム
を0.18重量%含有したアルミニム膜中における不純物の
濃度と発生するヒロックとの関係を示す。表1に示すの
は、スパッタ法によって成膜された3000Å厚のアル
ミニウム膜に対して、水素雰囲気中において350℃、
1時間の加熱処理を施し、その表面を観察した場合のヒ
ロックの高さと、膜中の不純物濃度との関係である。[Embodiment 5] In this embodiment, the relationship between the concentration of impurities and the hillocks generated in the aluminum film containing scandium at 0.18% by weight is shown. Table 1 shows that a 3000 Å thick aluminum film formed by a sputtering method was used in a hydrogen atmosphere at 350 ° C.
This is the relationship between the hillock height and the impurity concentration in the film when the surface of the film is observed after heat treatment for 1 hour.
【0088】[0088]
【表1】 [Table 1]
【0089】表1において、各サンプル間において、膜
における不純物濃度が異なるのは、スパッタリング時に
おける真空引きの時間、スパッタリング装置のチャンバ
ーのクリーニングの有無、排気ポンプのメンテナンス等
による違いを反映したものである。In Table 1, the difference in the impurity concentration in the film between the samples reflects the differences due to the evacuation time during sputtering, the presence or absence of cleaning of the chamber of the sputtering apparatus, the maintenance of the exhaust pump, and the like. is there.
【0090】ここで、ヒロックの高さは、断面SEM
(走査型電子顕微鏡)観察、AFM(原子間力顕微鏡)
観察によって調べたものである。また、不純物濃度はS
IMS(2次イオン分析方法)によって調べた最大値で
ある。Here, the height of the hillock is the cross-section SEM.
(Scanning electron microscope) observation, AFM (atomic force microscope)
It was examined by observation. The impurity concentration is S
It is the maximum value examined by IMS (secondary ion analysis method).
【0091】表1を見れば明らかなように、膜中の酸素
(O)、炭素(C)、窒素(N)の濃度を下げることに
よって、ヒロックの発生を抑制することができる。As is clear from Table 1, the generation of hillocks can be suppressed by reducing the concentrations of oxygen (O), carbon (C) and nitrogen (N) in the film.
【0092】層間絶縁膜の膜厚等を考慮すると、ヒロッ
クの高さが500Å以下であれば、その存在を実用上許
容することができる。Considering the film thickness of the interlayer insulating film and the like, if the hillock height is 500 Å or less, the existence thereof can be practically allowed.
【0093】表1からはこの値を満足する条件として、
酸素濃度が7×1018cm-3以下であり、かつ炭素濃度が5
×1018cm-3以下であり、かつ窒素濃度が7×1017cm-3以
下であればよいことが結論される。From Table 1, as a condition for satisfying this value,
Oxygen concentration is 7 × 10 18 cm -3 or less and carbon concentration is 5
It is concluded that it is sufficient that the nitrogen concentration is not more than × 10 18 cm -3 and the nitrogen concentration is not more than 7 × 10 17 cm -3 .
【0094】なお、SIMS(2次イオン分析方法)
は、膜の界面付近で実際と異なる値が計測されることが
あるので注意が必要である。SIMS (secondary ion analysis method)
It is necessary to be careful because a value different from the actual value may be measured near the interface of the film.
【0095】〔装置の説明〕本明細書で開示する発明を
実施する場合に利用される装置について説明する。図8
に装置の概要を示す。図8に示す装置は、連続的に複数
の処理を試料を大気にさらさずに行うことができるマル
チチャンバー形式を有している。各チャンバーには、必
要とする排気装置が備えられており、気密性を保持でき
る構造となっている。[Explanation of Apparatus] An apparatus used for carrying out the invention disclosed in this specification will be described. Figure 8
Shows the outline of the equipment. The apparatus shown in FIG. 8 has a multi-chamber type capable of continuously performing a plurality of treatments without exposing the sample to the atmosphere. Each chamber is equipped with a required exhaust device, and has a structure capable of maintaining airtightness.
【0096】図8に示す装置において、804が基板搬
入室、805が基板搬出室である。基板搬入室804に
は、カセット815の収納された複数の基板(試料)が
カセット毎外部から搬入される。処理の終了した基板は
カセット816に収納され、所定の枚数の処理が終了し
た時点でカセット816毎外部に取り出される。In the apparatus shown in FIG. 8, 804 is a substrate loading chamber, and 805 is a substrate unloading chamber. A plurality of substrates (samples) housed in the cassette 815 are loaded into the substrate loading chamber 804 from the outside of the cassette. The processed substrates are stored in the cassette 816, and when a predetermined number of substrates are processed, the substrates are taken out of the cassette 816.
【0097】801は基板搬送室であり、ロボットアー
ム814によって基板800を必要とするチャンバーに
搬送する機能を有している。A substrate transfer chamber 801 has a function of transferring the substrate 800 to a required chamber by the robot arm 814.
【0098】803はアルミニウムを成膜するためのス
パッタリング機能を有するチャンバーである。このチャ
ンバーには、クライオポンプを配置し、成膜されるアル
ミニウム膜中の不純物濃度を所定の値以下にする構成と
する。Reference numeral 803 is a chamber having a sputtering function for forming an aluminum film. A cryopump is arranged in this chamber so that the impurity concentration in the aluminum film to be formed is set to a predetermined value or less.
【0099】802は、コンタクトを形成する際に良好
な電気的な接触を実現するために利用されるゲルマニウ
ム膜(または錫膜)を成膜するためのスパッタリング装
置である。このチャンバーにもクライオポンプを配置
し、不純物の混入を極力防ぐ構成とする。Reference numeral 802 denotes a sputtering apparatus for forming a germanium film (or tin film) used for realizing good electrical contact when forming a contact. A cryopump is also arranged in this chamber to prevent impurities from entering as much as possible.
【0100】807は加熱処理を行うためのチャンバー
である。ここでは、ランプ照射によって、加熱行う機能
を有している。Reference numeral 807 is a chamber for performing heat treatment. Here, it has a function of heating by irradiation of a lamp.
【0101】806は、窒化珪素膜を成膜するためのプ
ラズマCVDを行うための機能を有するチャンバーであ
る。Reference numeral 806 is a chamber having a function of performing plasma CVD for forming a silicon nitride film.
【0102】搬送室801と、各処理を行うための周辺
部のチャンバーとの間には、810、809、808、
813、812、811で示されるゲイトバルブ(開閉
式の隔壁または仕切り)が配置されている。810, 809, 808 are provided between the transfer chamber 801 and the peripheral chambers for carrying out each process.
Gate valves (opening / closing partition walls or partitions) denoted by 813, 812, and 811 are arranged.
【0103】図8に示す装置を動作させる動作例を以下
に示す。ここでは、アルミニウム膜の成膜、ゲルマニウ
ム膜の成膜、加熱処理、窒化珪素膜の成膜を連続的に行
う工程を示す。An operation example for operating the apparatus shown in FIG. 8 is shown below. Here, a step of continuously forming an aluminum film, a germanium film, a heat treatment, and a silicon nitride film is shown.
【0104】以下において、試料が通過するゲイトバル
ブ以外は全て閉鎖するものとする。まず、アルミニウム
膜を成膜せんとする基板(試料)を複数枚カセット81
5に収納して、基板搬入室804に搬入する。次にロボ
ットアーム814によって1枚の基板をチャンバー80
3に搬送する。In the following, all but the gate valve through which the sample passes will be closed. First, a plurality of substrates (samples) on which an aluminum film is to be formed are cassette 81
5 and then loaded into the substrate loading chamber 804. Next, the robot arm 814 is used to transfer one substrate to the chamber 80.
Transport to 3.
【0105】チャンバー803においてアルミニウム膜
の成膜が終了したら、基板をチャンバー806に搬送
し、窒化珪素膜の成膜を行う。そして、基板搬出室80
5のカセット816に基板を収納して一連の工程が終了
する。After forming the aluminum film in the chamber 803, the substrate is transferred to the chamber 806 and the silicon nitride film is formed. Then, the substrate unloading chamber 80
The substrate is stored in the cassette 816 of No. 5 and the series of steps is completed.
【0106】また、コンタクトホールの形成後にコンタ
クト用のアルミニウム膜を成膜する際には、チャンバー
803におけるアルミニウム膜の形成後にチャンバー8
02においてゲルマニウム膜を成膜し、さらに加熱室8
07において加熱処理を施すことにより、リフローと呼
ばれるコンタクトを形成するためのアニールを行う。When the aluminum film for contact is formed after the contact hole is formed, the chamber 8 is formed after the aluminum film is formed.
02, a germanium film is formed, and the heating chamber 8
By performing heat treatment at 07, annealing for forming a contact called reflow is performed.
【0107】リフローは、アルミニウムとゲルマニウム
とが接触した部分で、融点が低下し、加熱処理によって
アルミニウム膜中にゲルマニウムが拡散し、アルミニウ
ムとコンタクトする電極(コンタクトホール底部に露呈
している)との電気的接触を良好なものとする作用を有
している。In the reflow, the melting point is lowered at a portion where aluminum and germanium are in contact with each other, and the germanium is diffused in the aluminum film by the heat treatment, so that the electrode is exposed to the aluminum (exposed to the bottom of the contact hole). It has the effect of improving electrical contact.
【0108】〔実施例6〕本実施例は、アルミニウムの
表面に酸化金属被膜を形成する方法として、陽極酸化で
はなく、プラズマ酸化を利用する場合の例を示す。プラ
ズマ酸化は、酸化性の減圧雰囲気中において、高周波放
電を行うことによって形成することができる。[Embodiment 6] In this embodiment, as a method for forming a metal oxide film on the surface of aluminum, plasma oxidation is used instead of anodic oxidation. The plasma oxidation can be formed by performing high frequency discharge in an oxidizing reduced pressure atmosphere.
【0109】〔実施例7〕本明細書で開示する発明は、
アクティブマトリクス型の構成を有した電気光学装置に
応用することが可能である。電気光学装置としては、液
晶表示装置、EL(エレクトロルミネッセンス)表示装
置、EC(エレクトロクロミックス)表示装置などが挙
げられる。Example 7 The invention disclosed in this specification is
It can be applied to an electro-optical device having an active matrix type structure. Examples of the electro-optical device include a liquid crystal display device, an EL (electroluminescence) display device, and an EC (electrochromic) display device.
【0110】また、応用商品としてはTVカメラ、パー
ソナルコンピュータ、カーナビゲーション、TVプロジ
ェクション、ビデオカメラ等が挙げられる。それら応用
用途の簡単な説明を図9を用いて行う。Further, the applied products include TV cameras, personal computers, car navigations, TV projections, video cameras and the like. A brief description of those applications will be given with reference to FIG.
【0111】図9(A)はTVカメラであり、本体20
01、カメラ部2002、表示装置2003、操作スイ
ッチ2004で構成される。表示装置2003はビュー
ファインダーとして利用される。FIG. 9A shows a TV camera, which is a main body 20.
01, a camera unit 2002, a display device 2003, and operation switches 2004. The display device 2003 is used as a viewfinder.
【0112】図9(B)はパーソナルコンピュータであ
り、本体2101、カバー部2102、キーボード21
03、表示装置2104で構成される。表示装置210
4はモニターとして利用され、対角十数インチもサイズ
が要求される。FIG. 9B shows a personal computer, which includes a main body 2101, a cover portion 2102, and a keyboard 21.
03 and a display device 2104. Display device 210
4 is used as a monitor and requires a size of 10 inches diagonally.
【0113】図9(C)はカーナビゲーションであり、
本体2201、表示装置2202、操作スイッチ220
3、アンテナ2204で構成される。表示装置2202
はモニターとして利用されるが、地図の表示が主な目的
なので解像度の許容範囲は比較的広いと言える。FIG. 9C shows a car navigation system,
Main body 2201, display device 2202, operation switch 220
3 and an antenna 2204. Display device 2202
Is used as a monitor, but its main purpose is to display a map, so it can be said that the allowable range of resolution is relatively wide.
【0114】図9(D)はTVプロジェクションであ
り、本体2301、光源2302、表示装置2303、
ミラー2304、2305、スクリーン2306で構成
される。表示装置2303に映し出された画像がスクリ
ーン2306に投影されるので、表示装置2303は高
い解像度が要求される。FIG. 9D shows a TV projection, which includes a main body 2301, a light source 2302, a display device 2303, and
It is composed of mirrors 2304 and 2305 and a screen 2306. Since the image displayed on the display device 2303 is projected on the screen 2306, the display device 2303 is required to have high resolution.
【0115】図9(E)はビデオカメラであり、本体2
401、表示装置2402、接眼部2403、操作スイ
ッチ2404、テープホルダー2405で構成される。
表示装置2402に映し出された撮影画像は接眼部24
03を通してリアルタイムに見ることができるので、使
用者は画像を見ながらの撮影が可能となる。FIG. 9E shows a video camera, which is a main body 2
401, a display device 2402, an eyepiece 2403, operation switches 2404, and a tape holder 2405.
The captured image displayed on the display device 2402 is the eyepiece 24.
Since it can be viewed in real time through 03, the user can shoot while viewing the image.
【0116】[0116]
【発明の効果】本明細書で開示する発明を利用すること
により、アルミニウムである配線の耐熱性の問題を解決
するととともに、かつ陽極酸化膜を形成した場合に問題
となるコンタクトの形成を容易なものとすることができ
る。By utilizing the invention disclosed in the present specification, the problem of heat resistance of the wiring made of aluminum can be solved, and the formation of a contact which is a problem when an anodic oxide film is formed can be facilitated. Can be one.
【図1】 薄膜トランジスタの作製工程を示す図。1A to 1C are diagrams illustrating a manufacturing process of a thin film transistor.
【図2】 薄膜トランジスタの作製工程を示す図。2A to 2D are diagrams illustrating a manufacturing process of a thin film transistor.
【図3】 薄膜トランジスタの作製工程を示す図。3A to 3D are diagrams illustrating a manufacturing process of a thin film transistor.
【図4】 薄膜トランジスタの作製工程を示す図。4A to 4C are diagrams illustrating a manufacturing process of a thin film transistor.
【図5】 薄膜トランジスタの作製工程を示す図。5A to 5C are diagrams illustrating a manufacturing process of a thin film transistor.
【図6】 薄膜トランジスタの作製工程を示す図。6A to 6C are diagrams illustrating a manufacturing process of a thin film transistor.
【図7】 薄膜トランジスタの作製工程を示す図。7A to 7C are diagrams illustrating a manufacturing process of a thin film transistor.
【図8】 成膜装置の概要を示す図。FIG. 8 is a diagram showing an outline of a film forming apparatus.
【図9】 液晶パネルを利用した装置の概要を示す図。FIG. 9 is a diagram showing an outline of an apparatus using a liquid crystal panel.
101 ガラス基板
102 活性層(結晶性珪素膜)
103 ゲイト絶縁膜(酸化珪素膜)
104 アルミニウム膜
105 窒化珪素膜
106 ゲイト電極
107 残存した窒化珪素膜
108 陽極酸化膜
109 陽極酸化膜
110 ソース領域
111 チャネル領域
112 ドレイン領域
113 第1の層間絶縁膜(窒化珪素膜)
114 第2の層間絶縁膜(ポリイミドでなる
層)
115 ソース領域へのコンタクトホール
116 ドレイン領域へのコンタクトホール
117 ソース電極
118 ドレイン電極
119 第3の層間絶縁膜(ポリイミドでなる
層)
120 画素電極(ITO電極)101 glass substrate 102 active layer (crystalline silicon film) 103 gate insulating film (silicon oxide film) 104 aluminum film 105 silicon nitride film 106 gate electrode 107 remaining silicon nitride film 108 anodized film 109 anodized film 110 source region 111 channel Region 112 Drain region 113 First interlayer insulating film (silicon nitride film) 114 Second interlayer insulating film (layer made of polyimide) 115 Contact hole to source region 116 Contact hole to drain region 117 Source electrode 118 Drain electrode 119 Third interlayer insulating film (layer made of polyimide) 120 Pixel electrode (ITO electrode)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/49 H01L 29/58 G 29/50 M Fターム(参考) 4M104 AA09 BB02 BB14 DD37 DD39 DD41 DD88 EE05 EE09 EE16 EE17 FF13 GG09 GG10 GG14 HH03 HH15 5F110 AA17 AA26 AA28 BB02 BB04 CC02 CC08 DD02 DD03 DD13 EE03 EE06 EE33 EE34 EE36 EE38 EE44 EE48 FF02 FF30 GG02 GG13 GG25 GG45 HJ01 HJ18 HJ23 HL03 HL04 HL12 HL23 HM15 NN03 NN24 NN27 NN35 NN36 PP03 QQ11 QQ12 QQ24 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 29/49 H01L 29/58 G 29/50 MF term (reference) 4M104 AA09 BB02 BB14 DD37 DD39 DD41 DD88 EE05 EE09 EE16 EE17 FF13 GG09 GG10 GG14 HH03 HH15 5F110 AA17 AA26 AA28 BB02 BB04 CC02 CC08 DD02 DD03 DD13 EE03 NN36 NN36 NN23 NN23 HL23 HL24 HL24 HL15 HL13 HIL03 HL15 QQ24
Claims (2)
を有する半導体装置であって、 前記ゲイト電極はアルミニウム膜又はアルミニウムを主
成分とする膜からなり、 前記ゲイト電極中における酸素濃度が8×1018個c
m−3以下であり、炭素濃度が5×1018個cm−3
以下であり、窒素濃度が7×1017個cm− 3以下で
あり、 前記ソース電極及びドレイン電極それぞれは、チタン
膜、酸素濃度が8×10 18個cm−3以下であり、炭
素濃度が5×1018個cm−3以下であり、窒素濃度
が7×1017個cm−3以下であるアルミニウム膜、
チタン膜の順に積層された積層膜からなることを特徴と
する半導体装置。1. A silicon film, A gate insulating film in contact with the silicon film, A gate electrode in contact with the gate insulating film, A source electrode and a drain electrode connected to the silicon film,
A semiconductor device having: The gate electrode is mainly an aluminum film or aluminum.
Consists of a film as an ingredient, The oxygen concentration in the gate electrode is 8 × 1018C
m-3Below, the carbon concentration is 5 × 1018Cm-3
Below, the nitrogen concentration is 7 × 1017Cm− ThreeBelow
Yes, The source electrode and the drain electrode are made of titanium.
Membrane, oxygen concentration is 8 × 10 18Cm-3Is and charcoal
Elementary concentration is 5 × 1018Cm-3Below, the nitrogen concentration
Is 7 × 1017Cm-3An aluminum film that is,
It is characterized by comprising a laminated film in which a titanium film is laminated in this order.
Semiconductor device.
には窒化珪素膜が設けられていることを特徴とする半導
体装置。2. The semiconductor device according to claim 1, wherein a silicon nitride film is provided on the upper surface of the gate electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107359A JP2003282886A (en) | 2003-04-11 | 2003-04-11 | Electronic device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107359A JP2003282886A (en) | 2003-04-11 | 2003-04-11 | Electronic device and its manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20541796A Division JP3759999B2 (en) | 1996-07-16 | 1996-07-16 | Semiconductor device, liquid crystal display device, EL device, TV camera display device, personal computer, car navigation system, TV projection device, and video camera |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007211766A Division JP2007300145A (en) | 2007-08-15 | 2007-08-15 | Active matrix electro-optic device, liquid crystal display device, video camera, and method of manufacturing these |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003282886A true JP2003282886A (en) | 2003-10-03 |
JP2003282886A5 JP2003282886A5 (en) | 2004-08-26 |
Family
ID=29244549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003107359A Withdrawn JP2003282886A (en) | 2003-04-11 | 2003-04-11 | Electronic device and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003282886A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008520833A (en) * | 2004-11-19 | 2008-06-19 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Doped metal oxide film and system for producing the same |
-
2003
- 2003-04-11 JP JP2003107359A patent/JP2003282886A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008520833A (en) * | 2004-11-19 | 2008-06-19 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Doped metal oxide film and system for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3759999B2 (en) | Semiconductor device, liquid crystal display device, EL device, TV camera display device, personal computer, car navigation system, TV projection device, and video camera | |
US7446392B2 (en) | Electronic device and method for manufacturing the same | |
KR100820248B1 (en) | Thin film transistor and semiconductor device | |
US7452794B2 (en) | Manufacturing method of a thin film semiconductor device | |
US5766977A (en) | Method for producing semiconductor device | |
US7115453B2 (en) | Semiconductor device and manufacturing method of the same | |
US20020197785A1 (en) | Process for manufacturing a semiconductor device | |
JPH05166837A (en) | Film transistor and its manufacture | |
JP3781787B2 (en) | Multipurpose substrate processing apparatus, operation method thereof, and manufacturing method of thin film integrated circuit | |
US6756608B2 (en) | Semiconductor device and method of manufacturing the same | |
JP2003282886A (en) | Electronic device and its manufacturing method | |
JP2007300145A (en) | Active matrix electro-optic device, liquid crystal display device, video camera, and method of manufacturing these | |
JPH1051003A (en) | Formation of thin film transistor | |
JP3972991B2 (en) | Method for manufacturing thin film integrated circuit | |
KR100483311B1 (en) | An el display device | |
JP3141541B2 (en) | Method for activating impurities and method for manufacturing thin film transistor | |
US6306697B1 (en) | Low temperature polysilicon manufacturing process | |
JP3691505B2 (en) | Thin film integrated circuit manufacturing method and active matrix type liquid crystal display device manufacturing method | |
JPH09232317A (en) | Forming method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20070313 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070320 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20070518 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070619 |
|
A761 | Written withdrawal of application |
Effective date: 20070816 Free format text: JAPANESE INTERMEDIATE CODE: A761 |