JP2003282450A - Boron phosphide based semiconductor layer and method of manufacturing the same, and semiconductor device - Google Patents
Boron phosphide based semiconductor layer and method of manufacturing the same, and semiconductor deviceInfo
- Publication number
- JP2003282450A JP2003282450A JP2002079865A JP2002079865A JP2003282450A JP 2003282450 A JP2003282450 A JP 2003282450A JP 2002079865 A JP2002079865 A JP 2002079865A JP 2002079865 A JP2002079865 A JP 2002079865A JP 2003282450 A JP2003282450 A JP 2003282450A
- Authority
- JP
- Japan
- Prior art keywords
- boron
- semiconductor layer
- based semiconductor
- boron phosphide
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- FFBGYFUYJVKRNV-UHFFFAOYSA-N boranylidynephosphane Chemical compound P#B FFBGYFUYJVKRNV-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 239000004065 semiconductor Substances 0.000 title claims abstract description 123
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 116
- 239000000758 substrate Substances 0.000 claims abstract description 113
- 229910052796 boron Inorganic materials 0.000 claims abstract description 84
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 82
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 79
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000011574 phosphorus Substances 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000001947 vapour-phase growth Methods 0.000 claims abstract description 24
- 239000000470 constituent Substances 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims description 119
- 239000002994 raw material Substances 0.000 claims description 39
- 239000012808 vapor phase Substances 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 229910052736 halogen Inorganic materials 0.000 description 12
- 150000002367 halogens Chemical class 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 239000012159 carrier gas Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000178 monomer Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000005187 foaming Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 241000700560 Molluscum contagiosum virus Species 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000000089 atomic force micrograph Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- -1 B 6 P or B 1 3 P 2 Chemical compound 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- BYDQGSVXQDOSJJ-UHFFFAOYSA-N [Ge].[Au] Chemical compound [Ge].[Au] BYDQGSVXQDOSJJ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Recrystallisation Techniques (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リン化硼素系半導
体層とそれを用いた半導体素子に係り、特に結晶基板表
面上に、表面の平坦性に優れ、且つ連続性のあるリン化
硼素系半導体層を気相成長させるための技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boron phosphide-based semiconductor layer and a semiconductor element using the same, and particularly to a boron phosphide-based semiconductor layer having excellent surface flatness and continuity on the surface of a crystal substrate. The present invention relates to a technique for vapor-phase growing a semiconductor layer.
【0002】[0002]
【従来の技術】従来より、硼素(B)とリン(P)とを
構成元素とするリン化硼素系半導体層は、種々の半導体
素子を構成するために利用されている。例えば、リン化
硼素系半導体として代表的な単量体のリン化硼素(B
P)からなる半導体層は、npn型ヘテロバイポーラト
ランジスタ(HBT)のn形ベース(base)層を構
成するに利用されている(J.Electroche
m.Soc.,125(4)(1978)、633〜6
37頁参照)。また、青色のレーザダイオード(LD)
にあって、接触抵抗の低いオーミック(Ohmic)電
極を形成するためのコンタクト(contact)層と
して利用されている(特開平10−242567号公報
参照)。また、近紫外或いは青色等の短波長の発光をも
たらす発光ダイオード(LED)を構成するための緩衝
層として用いられている(米国特許6,069,021
号参照)。2. Description of the Related Art Conventionally, a boron phosphide-based semiconductor layer containing boron (B) and phosphorus (P) as constituent elements has been used to form various semiconductor elements. For example, boron phosphide (B) which is a typical monomer as a boron phosphide-based semiconductor is used.
The semiconductor layer made of P) is used to form an n-type base layer of an npn-type hetero bipolar transistor (HBT) (J. Electroche).
m. Soc. , 125 (4) (1978), 633-6.
(See page 37). Also, a blue laser diode (LD)
However, it is used as a contact layer for forming an ohmic electrode having a low contact resistance (see Japanese Patent Laid-Open No. 10-242567). It is also used as a buffer layer for forming a light emitting diode (LED) that emits light of a short wavelength such as near ultraviolet or blue (US Pat. No. 6,069,021).
No.).
【0003】上記の如くの半導体素子を構成するための
リン化硼素系半導体層は従来より、気相成長手段により
形成されている。従来からの気相成長手段には例えば、
三塩化硼素(BCl3)や三塩化リン(PCl3)を出発
原料とするハロゲン(halogen)気相成長法
(「日本結晶成長学会誌」、Vol.24,No.2
(1997)、150頁参照)、ボラン(BH3)また
はジボラン(B2H6)とホスフィン(PH3)等を原料
とするハイドライド(hydride)気相成長法
(J.Crystal Growth,25/25(1
974)、193〜196頁参照)、分子線エピタキシ
ャル法(J.Solid State Chem.,1
33(1997)、269〜272頁参照)、及び有機
金属化学的気相堆積(MOCVD)法(Inst.Ph
ys.Conf.Ser.,No.129(IOP P
ublishing Ltd.(UK、1993)、1
57〜162頁参照)を例示できる。The boron phosphide-based semiconductor layer for forming the semiconductor element as described above has been conventionally formed by vapor phase growth means. Conventional vapor phase growth means include, for example:
Halogen vapor phase growth method using boron trichloride (BCl 3 ) or phosphorus trichloride (PCl 3 ) as a starting material (“Journal of Japanese Society for Crystal Growth”, Vol. 24, No. 2).
(1997, p. 150), borohydride (BH 3 ) or diborane (B 2 H 6 ) and phosphine (PH 3 ) as raw materials, and hydride vapor phase growth method (J. Crystal Growth, 25/25). (1
974), pp. 193-196), molecular beam epitaxy (J. Solid State Chem., 1).
33 (1997), 269-272), and metalorganic chemical vapor deposition (MOCVD) (Inst. Ph.
ys. Conf. Ser. , No. 129 (IOP P
publishing Ltd. (UK, 1993), 1
57 to 162)).
【0004】リン化硼素系半導体層を気相成長させるに
際し、基板には半導体材料の単結晶を用いるのがもっぱ
らである。従来より、実用的な基板として、珪素(S
i)単結晶(シリコン)(上記のJ.Electro
chem.Soc.,125(1978)、及び米国
特許6,069,021号参照)、炭化珪素(SiC)
(特開平10−242569号公報参照)、リン化ガリ
ウム(GaP)(特開平10−242568号公報参
照)や窒化ガリウム(GaN)(特開平10−2477
45号公報参照)等の単結晶が用いられている。When vapor-depositing a boron phosphide-based semiconductor layer, a single crystal of a semiconductor material is mainly used for a substrate. Conventionally, silicon (S
i) Single crystal (silicon) (above J. Electro
chem. Soc. , 125 (1978), and US Pat. No. 6,069,021), silicon carbide (SiC).
(See JP-A-10-242569), gallium phosphide (GaP) (see JP-A-10-242568) and gallium nitride (GaN) (JP-A-10-2477).
For example, a single crystal such as Japanese Patent No. 45) is used.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
基板をなす単結晶材料と、例えば、リン化硼素(BP)
との格子定数は顕著に異なる。珪素単結晶の格子定数は
5.431Åであるのに対し、立方晶閃亜鉛鉱型のBP
のそれは4.538Åである(寺本 巌著、「半導体デ
バイス概論」(1995年3月30日、(株)培風館発
行初版)、28頁参照)。従って、格子ミスマッチ度は
約16.5%と大である(庄野 克房著、「半導体技術
(上)」(1992年6月25日、(財)東京大学出版
会発行9刷)、97〜98頁参照)。However, the single crystal material forming the above substrate and, for example, boron phosphide (BP) are used.
The lattice constants of and are significantly different. The lattice constant of silicon single crystal is 5.431 Å, while cubic zinc blende type BP
It is 4.538Å (see Iwao Teramoto, "Introduction to Semiconductor Devices" (March 30, 1995, first edition published by Baifukan Co., Ltd.), p. 28). Therefore, the degree of lattice mismatch is as large as about 16.5% (Katsufusa Shono, “Semiconductor Technology (1)” (June 25, 1992, 9th edition, published by The University of Tokyo Press), 97-). (See page 98).
【0006】この様に格子ミスマッチ度を大とする結晶
基板上では、リン化硼素系半導体層は、Volmer−
Weber様の成長様式をもって島状の成長を起こす
((社)応用物理学会薄膜・表面物理分科会編、「薄膜
作製ハンドブック」(1991年3月25日、共立出版
(株)発行初版第1刷)、59頁参照)。このため、連
続性のあるリン化硼素系半導体層を得るに困難となって
いた。As described above, on a crystal substrate having a large degree of lattice mismatch, the boron phosphide-based semiconductor layer is formed by the Volmer-
Initiate island-like growth with Weber-like growth (edited by Japan Society of Applied Physics, Thin Film and Surface Physics Subcommittee, "Handbook for Thin Film Fabrication" (March 25, 1991, Kyoritsu Shuppan Co., Ltd., first edition, first edition) ), P. 59). Therefore, it is difficult to obtain a continuous boron phosphide-based semiconductor layer.
【0007】亀裂(crack)等の無い連続性に優れ
るリン化硼素系半導体層を気相成長させる手段が有れ
ば、例えば、正常なpn接合特性の発現に依り、順方向
電圧(所謂、Vf)の低いLED、また、閾値電圧(所
謂、Vth)の低いLDを簡便に提供するに貢献できる。
本発明では、格子ミスマッチ度が大きな結晶基板上にも
連続性に優れるリン化硼素系半導体層を得るための気相
成長方法を提供する。また、そのリン化硼素系半導体層
を利用して構成した半導体素子を提供する。If there is a means for vapor phase growing a boron phosphide-based semiconductor layer having excellent continuity without cracks, for example, a forward voltage (so-called Vf ) Low LED and LD low threshold voltage (so-called V th ) can be easily provided.
The present invention provides a vapor phase growth method for obtaining a boron phosphide-based semiconductor layer having excellent continuity even on a crystal substrate having a large degree of lattice mismatch. Further, a semiconductor element constituted by using the boron phosphide-based semiconductor layer is provided.
【0008】[0008]
【課題を解決するための手段】即ち、本発明は
(1)結晶基板の表面上に、硼素(B)とリン(P)と
を構成元素として含むリン化硼素系半導体層を気相成長
させるリン化硼素系半導体層の製造方法に於いて、結晶
基板の表面に、硼素またはリンの何れかを含む粒子を予
め形成し、その後結晶基板の表面上に、リン化硼素系半
導体層を気相成長させることを特徴とするリン化硼素系
半導体層の製造方法。
(2)硼素またはリンの何れかを含む粒子の直径が、1
nm以上30nm以下であることを特徴とする上記
(1)に記載のリン化硼素系半導体層の製造方法。
(3)結晶基板が、n形またはp形の導電性の単結晶か
らなることを特徴とする上記(1)または(2)に記載
のリン化硼素系半導体層の製造方法。
(4)硼素またはリンの何れかを含む粒子が、多結晶か
ら形成されていることを特徴とする上記(1)ないし
(3)のいずれか1項に記載のリン化硼素系半導体層の
製造方法。
(5)硼素またはリンの何れかを含む粒子が、結晶基板
の表面との接合界面の領域に非晶質体を含む多結晶体か
ら形成されていることを特徴とする上記(1)ないし
(4)のいずれか1項に記載のリン化硼素系半導体層の
製造方法。
(6)硼素またはリンの何れかを含む粒子を形成する温
度を超え、且つ、1200℃以下の温度で、結晶基板の
表面上にリン化硼素系半導体層を気相成長させることを
特徴とする上記(1)ないし(5)のいずれか1項に記
載のリン化硼素系半導体層の製造方法。
(7)硼素またはリンの何れかを含む粒子を形成するの
に用いる硼素原料またはリン原料と同一の原料を用い
て、硼素またはリンの何れかを含む粒子を形成するのと
同一の気相成長手段により、リン化硼素系半導体層を気
相成長させることを特徴とする上記(1)ないし(6)
のいずれか1項に記載のリン化硼素系半導体層の製造方
法。
(8)気相成長手段が有機金属化学的気相堆積(MOC
VD)法であることを特徴とする上記(7)に記載のリ
ン化硼素系半導体層の製造方法。
(9)上記(1)ないし(8)のいずれか1項に記載の
リン化硼素系半導体層の製造方法を用いて作製したリン
化硼素系半導体層。
(10)上記(9)に記載のリン化硼素系半導体層を用
いた半導体素子。である。Means for Solving the Problems That is, according to the present invention, (1) a boron phosphide-based semiconductor layer containing boron (B) and phosphorus (P) as constituent elements is vapor-phase grown on the surface of a crystal substrate. In the method for producing a boron phosphide-based semiconductor layer, particles containing either boron or phosphorus are formed in advance on the surface of a crystal substrate, and then a boron phosphide-based semiconductor layer is vapor-phased on the surface of the crystal substrate. A method for manufacturing a boron phosphide-based semiconductor layer, which comprises growing the semiconductor layer. (2) The diameter of the particles containing either boron or phosphorus is 1
nm or more and 30 nm or less, The manufacturing method of the boron phosphide system semiconductor layer as described in said (1) characterized by the above-mentioned. (3) The method for producing a boron phosphide-based semiconductor layer according to (1) or (2) above, wherein the crystal substrate is made of an n-type or p-type conductive single crystal. (4) The production of a boron phosphide-based semiconductor layer according to any one of (1) to (3) above, wherein the particles containing either boron or phosphorus are formed of polycrystal. Method. (5) The particles containing either boron or phosphorus are formed from a polycrystalline body containing an amorphous body in the region of the bonding interface with the surface of the crystal substrate, which is characterized in (1) to (). 4. The method for producing a boron phosphide-based semiconductor layer according to any one of 4). (6) A boron phosphide-based semiconductor layer is vapor-grown on the surface of a crystal substrate at a temperature higher than the temperature at which particles containing boron or phosphorus are formed and at 1200 ° C. or lower. The method for producing a boron phosphide-based semiconductor layer according to any one of (1) to (5) above. (7) The same vapor phase growth as that for forming particles containing either boron or phosphorus by using the same raw material as the boron raw material or phosphorus raw material used for forming particles containing either boron or phosphorus. (1) to (6), wherein the boron phosphide-based semiconductor layer is vapor-phase-grown by means.
10. The method for producing a boron phosphide-based semiconductor layer according to any one of 1. (8) Metal vapor chemical vapor deposition (MOC)
VD) method, The method for producing a boron phosphide-based semiconductor layer according to (7) above. (9) A boron phosphide-based semiconductor layer produced by using the method for producing a boron phosphide-based semiconductor layer according to any one of (1) to (8) above. (10) A semiconductor device using the boron phosphide-based semiconductor layer according to (9) above. Is.
【0009】[0009]
【発明の実施の形態】本発明においてリン化硼素系半導
体とは、硼素とリンとを構成元素として含む、例えばB
αAlβGaγIn1- α - β - γP1- δAsδ(0<α≦
1、0≦β<1、0≦γ<1、0<α+β+γ≦1、0
≦δ<1)、また例えば、BαAlβGaγIn1- α -
β - γP1- δNδ(0<α≦1、0≦β<1、0≦γ<
1、0<α+β+γ≦1、0≦δ<1)である。本発明
の第1の実施形態の一例を記すに、先ず、例えばトリエ
チル硼素((C2H5)3B)を結晶基板の表面に均一に
吸着させる。特に、常温で液体である硼素含有化合物、
例えば硼素メタオキシド(B(OCH3)3;融点=−2
9℃、沸点=+68〜+69℃)等であれば、これを結
晶基板の表面に均一に噴霧する。然る後、結晶基板の温
度を上昇させて、付加基(additional gr
uop)を脱離させ、硼素を含む粒子として固化させ
る。結晶基板の温度は、この硼素を含む粒子の固化に適
する温度に設定する。この様にしてリン化硼素系半導体
層の連続膜を気相成長させる以前に、基板の表面に予
め、硼素またはリンを含む粒子を被着させておける。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a boron phosphide-based semiconductor means, for example, B containing phosphorus and phosphorus as constituent elements.
α Al β Ga γ In 1- α - β - γ P 1- δ As δ (0 <α ≦
1,0 ≦ β <1, 0 ≦ γ <1, 0 <α + β + γ ≦ 1,0
≦ δ <1), for example, B α Al β Ga γ In 1- α −
β - γ P 1- δ N δ (0 <α ≦ 1, 0 ≦ β <1, 0 ≦ γ <
1, 0 <α + β + γ ≦ 1, 0 ≦ δ <1). To describe an example of the first embodiment of the present invention, first, for example, triethylboron ((C 2 H 5 ) 3 B) is uniformly adsorbed on the surface of the crystal substrate. In particular, a boron-containing compound that is liquid at room temperature,
For example, boron oxide (B (OCH 3 ) 3 ; melting point = -2
9 ° C., boiling point = + 68 to + 69 ° C.) or the like, this is uniformly sprayed on the surface of the crystal substrate. After that, the temperature of the crystal substrate is raised to increase the addition group (additional gr).
uop) is desorbed and solidified as particles containing boron. The temperature of the crystal substrate is set to a temperature suitable for solidifying the particles containing boron. In this way, before the vapor phase growth of the continuous film of the boron phosphide-based semiconductor layer, particles containing boron or phosphorus can be deposited on the surface of the substrate in advance.
【0010】リンを含む粒子も同様にして形成できる。
例えば、MOCVD成長炉の内部に載置された結晶基板
の表面に、ホスフィン(PH3)を供給して吸着させ
る。然る後、400℃以上で結晶基板の実用的な耐熱温
度以下の温度に結晶基板の温度を上昇させれば、結晶基
板表面に吸着したPH3分子を熱分解させて、リンを含
む粒子を形成できる。また例えば、(C2H5)3BとP
H3とを同時に流通させて気相反応させて形成した硼素
とリンとの双方を含む粒子を、結晶基板の表面に向けて
飛来させて、その表面に被着させる手段もある。Particles containing phosphorus can be similarly formed.
For example, phosphine (PH 3 ) is supplied and adsorbed on the surface of the crystal substrate placed inside the MOCVD growth furnace. After that, if the temperature of the crystal substrate is raised to a temperature not higher than the practical heat resistance temperature of the crystal substrate at 400 ° C. or higher, PH 3 molecules adsorbed on the surface of the crystal substrate are thermally decomposed to remove particles containing phosphorus. Can be formed. Also, for example, (C 2 H 5 ) 3 B and P
There is also a means of causing particles containing both boron and phosphorus formed by causing H 3 to flow at the same time to cause a gas phase reaction to fly toward the surface of the crystal substrate and deposit the particles on the surface.
【0011】結晶基板に設ける硼素またはリンを含む粒
子の大きさは、粒子の直径(粒子径)にして1nm以上
30nm以下であるのが望ましい。粒子径を30nmを
超えて極端に大とする粒子は、一般に結晶基板の表面か
らの標高も高い。粒子を「核」としてその上に成長する
リン化硼素系半導体層にあっては、大きな粒子の存在は
リン化硼素系半導体層の表面の平坦性を損なう不都合を
帰結する。また、粒子径を1nm未満とする微粒子で
は、当該微粒子の周囲のみにリン化硼素系半導体層が限
定して成長するため、連続膜を得るに支障を来し不都合
となる。The size of particles containing boron or phosphorus provided on the crystal substrate is preferably 1 nm or more and 30 nm or less in terms of particle diameter (particle diameter). Particles having an extremely large particle diameter exceeding 30 nm generally have a high altitude from the surface of the crystal substrate. In the boron phosphide-based semiconductor layer grown on the grains as "nuclei", the presence of large grains results in the disadvantage that the surface flatness of the boron phosphide-based semiconductor layer is impaired. Further, in the case of fine particles having a particle diameter of less than 1 nm, the boron phosphide-based semiconductor layer is limitedly grown only around the fine particles, which causes a problem in obtaining a continuous film.
【0012】更に、結晶基板の表面に存在する粒子の密
度が低いと、連続性のあるリン化硼素系半導体層を安定
して得るに至らない。連続性のあるリン化硼素系半導体
層を安定して得るには、例えば平均粒子径を10nmと
する粒子では、約1×108/cm2以上の密度で結晶基
板の表面に存在させるのが望ましい。より望ましいの
は、結晶基板の表面をほぼ完全に被覆する様に高密度で
粒子を存在させている状況である。更に好ましいのは、
結晶基板の表面が、天板を平坦とする粒子でほぼ完全に
被覆されている状況である。結晶基板の表面に略平行で
あり、平坦な天板を有する粒子は、表面を平坦とするリ
ン化硼素系半導体層を得るに特に貢献する。結晶基板の
表面へ供給する硼素原料またはリン原料等の合計の濃度
を増加させる程、粒子径の大きな粒子を高密度で発生さ
せられる。結晶基板の表面に存在する粒子の組成は例え
ば、オージェ(Auger)電子分析法、電子顕微鏡分
析法等の組成分析法に依り調査できる。また、粒子径や
粒子の密度は例えば、原子間力顕微鏡(AFM)を利用
して計測できる。Further, if the density of particles existing on the surface of the crystal substrate is low, it is not possible to stably obtain a continuous boron phosphide-based semiconductor layer. In order to stably obtain a continuous boron phosphide-based semiconductor layer, for example, in the case of particles having an average particle size of 10 nm, the particles should be present on the surface of the crystal substrate at a density of about 1 × 10 8 / cm 2 or more. desirable. More desirable is the situation in which the particles are present at a high density so as to cover the surface of the crystal substrate almost completely. More preferred is
This is a situation in which the surface of the crystal substrate is almost completely covered with particles that make the top plate flat. The particles, which are substantially parallel to the surface of the crystal substrate and have a flat top plate, particularly contribute to obtaining a boron phosphide-based semiconductor layer having a flat surface. As the total concentration of the boron raw material, the phosphorus raw material, or the like supplied to the surface of the crystal substrate is increased, particles having a large particle diameter can be generated at high density. The composition of particles existing on the surface of the crystal substrate can be investigated by a composition analysis method such as Auger electron analysis method or electron microscope analysis method. Further, the particle diameter and the particle density can be measured using, for example, an atomic force microscope (AFM).
【0013】本発明に係わる硼素またはリンの何れかを
含む粒子を、結晶基板の表面に形成しておけば、格子ミ
スマッチ度の大きな単結晶基板上にも連続性のあるリン
化硼素系半導体層を形成できる。例えば、砒化ガリウム
(GaAs)等のIII−V族化合物半導体単結晶や窒
化アルミニウム(AlN)等のIII族窒化物半導体単
結晶、あるいは珪素(Si)単結晶を基板として利用で
きる。また、絶縁性のα−アルミナ(α−Al2O3)単
結晶やペロブスカイト結晶型酸化物単結晶を基板として
利用できる。n形またはp形の導電性の単結晶を基板と
して用いると、基板の裏面に正負、何れかの極性のオー
ミック性電極を裏面電極として敷設でき、簡便にLED
等の発光素子を構成するに寄与できる。1mΩ・cm以
下の低抵抗率の単結晶基板は、順方向電圧の低いLED
をもたらすに貢献する。By forming particles containing either boron or phosphorus according to the present invention on the surface of a crystal substrate, a boron phosphide-based semiconductor layer having continuity even on a single crystal substrate having a large degree of lattice mismatch. Can be formed. For example, a group III-V compound semiconductor single crystal such as gallium arsenide (GaAs), a group III nitride semiconductor single crystal such as aluminum nitride (AlN), or silicon (Si) single crystal can be used as the substrate. Further, an insulating α-alumina (α-Al 2 O 3 ) single crystal or a perovskite crystal type oxide single crystal can be used as a substrate. When an n-type or p-type conductive single crystal is used as a substrate, an ohmic electrode of positive or negative polarity of either polarity can be laid on the back surface of the substrate as a back surface electrode, and an LED can be easily used.
Can contribute to the construction of a light emitting device such as. A single crystal substrate with a low resistivity of 1 mΩ · cm or less is an LED with a low forward voltage.
Contribute to bring.
【0014】本発明に係わる硼素またはリンの何れかを
含む粒子は、多結晶の粒子から構成されていても差し支
えない。多結晶の粒子とは、例えば配向性を異にする単
結晶が結晶粒界を介して互いに合着してなる結晶粒を指
す。また、多結晶の粒子は、結晶型を相違する単結晶の
集合からなる場合もある。例えば、基板をなす結晶と同
一結晶型の単結晶と、それとは異なる結晶型の単結晶の
集合からなる多結晶の粒子もある。多結晶の粒子は、単
結晶の粒子が形成する際の基板温度よりも、基板温度を
低温とすることにより形成できる。本発明の第2の実施
形態の一例として、(C2H5)3Bを硼素原料として、
MOCVD成長炉内で(C2H5)3Bの沸点(=+95
℃)未満の低温に保持された珪素単結晶基板の表面に、
(C2H5)3Bを随伴する水素(H2)を供給する。そし
て暫時待機した後、珪素単結晶基板の温度を望ましくは
約450℃〜約650℃に上昇させる。そして再び暫時
待機して、硼素を含む多結晶粒を結晶基板の表面に形成
する。この場合、高温に於ける待機時間を延長する程、
粒子径の大きな多結晶粒を得ることができる。多結晶か
らなる粒子では、それに内包される結晶粒界、或いは積
層欠陥等により結晶基板とリン化硼素系半導体層との格
子ミスマッチが吸収され、結晶欠陥の少ない良質のリン
化硼素系半導体層を得るに効果を挙げられる。結晶粒の
構成要素は例えば、透過型電子顕微鏡(TEM)を利用
した電子線回折技法に依り解析できる。The particles containing either boron or phosphorus according to the present invention may be composed of polycrystalline particles. Polycrystalline particles refer to, for example, crystal grains formed by coalescing single crystals having different orientations via grain boundaries. Further, the polycrystalline particles may be composed of a set of single crystals having different crystal types. For example, there are also polycrystalline particles that are composed of a single crystal of the same crystal type as the crystal forming the substrate and a single crystal of a different crystal type. The polycrystalline particles can be formed by making the substrate temperature lower than the substrate temperature at which the single crystal particles are formed. As an example of the second embodiment of the present invention, (C 2 H 5 ) 3 B is used as a boron raw material,
Boiling point of (C 2 H 5 ) 3 B (= + 95 in MOCVD growth furnace)
On the surface of the silicon single crystal substrate kept at a low temperature of
Hydrogen (H 2 ) accompanied with (C 2 H 5 ) 3 B is supplied. After waiting for a while, the temperature of the silicon single crystal substrate is desirably raised to about 450 ° C to about 650 ° C. Then, after waiting for a while again, polycrystalline particles containing boron are formed on the surface of the crystal substrate. In this case, the longer the standby time at high temperature,
It is possible to obtain polycrystalline grains having a large grain size. In the case of particles made of polycrystal, a lattice mismatch between the crystal substrate and the boron phosphide-based semiconductor layer is absorbed due to the crystal grain boundaries included therein, stacking faults, etc., and a high-quality boron phosphide-based semiconductor layer with few crystal defects is obtained. It is effective to obtain. The constituent elements of the crystal grains can be analyzed by, for example, an electron diffraction technique using a transmission electron microscope (TEM).
【0015】本発明の第3の実施形態では、特に、結晶
基板の表面に硼素またはリンを含む粒子を被着させた
後、急激に結晶基板の温度を上昇させて、結晶基板との
接合境界領域を非晶質とする結晶粒を形成する。例え
ば、(C2H5)3Bを硼素原料として、MOCVD成長
炉内で350℃で硼素を含む粒子を形成した後、毎分1
00℃の速度で650℃に急激に上昇させて結晶基板と
の接合境界領域を非晶質とする結晶粒を形成する。結晶
基板との接合界面近傍の領域に存在させた非晶質層は、
結晶基板との格子ミスマッチを緩和し、歪等の少ない結
晶性に優れるリン化硼素系半導体層をもたらせる。透過
型電子顕微鏡(TEM)を利用した電子線回折技法に依
れば、結晶基板との接合界面近傍の領域に於ける非晶質
の存在の有無を識別できる。In the third embodiment of the present invention, in particular, after the particles of boron or phosphorus are deposited on the surface of the crystal substrate, the temperature of the crystal substrate is rapidly raised so that the bonding boundary with the crystal substrate is increased. Crystal grains that make the region amorphous are formed. For example, using (C 2 H 5 ) 3 B as a boron raw material, particles containing boron are formed at 350 ° C. in a MOCVD growth furnace, and then 1
The temperature is rapidly raised to 650 ° C. at a rate of 00 ° C. to form crystal grains that make the junction boundary region with the crystal substrate amorphous. The amorphous layer existing in the region near the bonding interface with the crystal substrate is
It is possible to provide a boron phosphide-based semiconductor layer with less crystallinity and less lattice distortion and excellent crystallinity. According to an electron diffraction technique using a transmission electron microscope (TEM), it is possible to identify the presence or absence of an amorphous material in a region near a bonding interface with a crystal substrate.
【0016】結晶基板の表面上に予め形成した硼素また
はリンを含む粒子は、成長核として作用し、連続性のあ
るリン化硼素系半導体層をもたらすに効果を奏する。こ
の粒子を核としてリン化硼素系半導体層を成長させるに
は、リン化硼素系半導体層を成長する際の結晶基板の温
度を、硼素またはリンの何れかを含む粒子を形成した温
度を超え、1200℃以下とするのが適する。粒子を形
成したのと同様の温度でリン化硼素系半導体層を成長す
るのでは、配向も不揃いな多結晶のリン化硼素系半導体
層が帰結される場合が多く不都合である。好ましい温度
は、750℃以上で1200℃以下の温度である。12
00℃を超える高温は、例えばB6PやB1 3P2等のリン
化硼素の多量体が発生し、組成的に均質なリン化硼素系
半導体層を得るに不都合となる。本発明の第4の実施形
態の一例として、p形珪素単結晶の表面上に450℃
で、硼素とリンとを含む粒子を予め、形成した後、毎分
75℃の速度で1050℃に昇温して、MOCVD法に
依り単量体のリン化硼素(BP)の連続膜を形成する方
法を挙げられる。The particles containing boron or phosphorus which are formed in advance on the surface of the crystal substrate act as growth nuclei, and are effective in providing a continuous boron phosphide-based semiconductor layer. In order to grow the boron phosphide-based semiconductor layer with these particles as nuclei, the temperature of the crystal substrate at the time of growing the boron phosphide-based semiconductor layer exceeds the temperature at which particles containing either boron or phosphorus are formed, It is suitable that the temperature is 1200 ° C or lower. Growing the boron phosphide-based semiconductor layer at the same temperature as that used for forming the particles is disadvantageous in that a polycrystalline boron phosphide-based semiconductor layer having a non-uniform orientation is often obtained. A preferable temperature is a temperature of 750 ° C. or higher and 1200 ° C. or lower. 12
A high temperature of more than 00 ° C. produces a multimer of boron phosphide such as B 6 P or B 1 3 P 2, which is inconvenient for obtaining a compositionally homogeneous boron phosphide-based semiconductor layer. As an example of the fourth embodiment of the present invention, 450 ° C. is formed on the surface of a p-type silicon single crystal.
After forming particles containing boron and phosphorus in advance, the temperature is raised to 1050 ° C. at a rate of 75 ° C./min to form a continuous film of monomeric boron phosphide (BP) by the MOCVD method. How to do.
【0017】硼素またはリンを含む粒子を成長核として
リン化硼素系半導体層を形成する手段には、前褐のハロ
ゲン(halogen)気相成長法、ハイドライド(h
ydride)気相成長法、分子線エピタキシャル法、
及び有機金属化学的気相堆積(MOCVD)法等の気相
成長手段がある。結晶基板表面に設ける粒子と、その粒
子の上のリン化硼素系半導体層とを、同一の硼素原料或
いはリン原料を使用して同一の気相成長手段により形成
すれば、簡易に構成するに優位となる。特に、MOCV
D手段では、塩化物或いは臭化物を原料としたハロゲン
気相成長手段(J.Appl.Phys.,42(1)
(1971)、420〜424頁参照)に於けるハロゲ
ン種に因る粒子の食刻(エッチング)を回避できる利点
がある。このため、結晶基板表面に形成した粒子の密度
を減少させることなく、リン化硼素系半導体層を形成す
るに便法となる。本発明の第5の実施形態の一例とし
て、硼素またはリンを含む粒子及びリン化硼素系半導体
層を、(C2H5)3Bを同一の硼素原料としてMOCV
D法に依り形成する手段を挙げられる。また、PH3を
同一のリン原料として、常圧(略大気圧)或いは減圧M
OCVD法で粒子及びリン化硼素系半導体層を形成する
手段を挙げられる。As a means for forming a boron phosphide-based semiconductor layer using particles containing boron or phosphorus as growth nuclei, a pre-brown halogen (halogen) vapor phase epitaxy method, hydride (h) is used.
vapor deposition method, molecular beam epitaxy method,
And vapor phase growth means such as metalorganic chemical vapor deposition (MOCVD). If the particles provided on the surface of the crystal substrate and the boron phosphide-based semiconductor layer on the particles are formed by the same vapor phase growth means using the same boron raw material or the same phosphorus raw material, it is easy to configure. Becomes Especially, MOCV
The D means is a halogen vapor phase growth means (J. Appl. Phys., 42 (1), which uses chloride or bromide as a raw material.
(1971), pp. 420-424), there is an advantage that grain etching (etching) due to halogen species can be avoided. Therefore, this is a convenient method for forming the boron phosphide-based semiconductor layer without reducing the density of particles formed on the surface of the crystal substrate. As an example of the fifth embodiment of the present invention, the particles containing boron or phosphorus and the boron phosphide-based semiconductor layer are MOCV using (C 2 H 5 ) 3 B as the same boron raw material.
Means for forming by the D method can be mentioned. Further, using PH 3 as the same phosphorus material, atmospheric pressure (approximately atmospheric pressure) or reduced pressure M
Means for forming the particles and the boron phosphide-based semiconductor layer by the OCVD method can be given.
【0018】硼素またはリンを含む粒子を成長核として
設けたリン化硼素系半導体層を一構成層すれば、種々の
半導体素子を構成できる。例えば、n形炭化珪素(Si
C)単結晶基板に形成した硼素とリンとを含む粒子を介
して形成したn形リン化硼素系半導体層は、LEDにあ
って障壁(クラッド)層として利用できる。また、絶縁
性のサファイア(α−Al2O3単結晶)基板表面に形成
した硼素とリンとを含む粒子を介して形成した酸素ドー
プの高抵抗リン化硼素系半導体層は、電界効果型トラン
ジスタ(FET)用途の高抵抗緩衝層として利用でき
る。硼素またはリンを含む粒子を介して設けるリン化硼
素系半導体層の層厚、抵抗等の諸仕様はその層が果たす
べき機能に鑑み決定する。例えば、室温での禁止帯幅を
約3eVとする単量体のリン化硼素層からは、その層厚
を調整すれば特定の波長の発光を高反射率で反射できる
発光反射層を兼ねるクラッド層を構成できる(特願20
02−18188号参照)。Various semiconductor devices can be formed by forming one layer of a boron phosphide-based semiconductor layer provided with particles containing boron or phosphorus as growth nuclei. For example, n-type silicon carbide (Si
C) The n-type boron phosphide-based semiconductor layer formed through the particles containing boron and phosphorus formed on the single crystal substrate can be used as a barrier (clad) layer in an LED. Further, an oxygen-doped high-resistance boron phosphide-based semiconductor layer formed through particles containing boron and phosphorus formed on the surface of an insulating sapphire (α-Al 2 O 3 single crystal) substrate is a field effect transistor. It can be used as a high resistance buffer layer for (FET) applications. Specifications such as the layer thickness and the resistance of the boron phosphide-based semiconductor layer provided through the particles containing boron or phosphorus are determined in consideration of the function to be performed by the layer. For example, from a boron phosphide layer of a monomer having a bandgap of about 3 eV at room temperature, if the layer thickness is adjusted, a clad layer also serving as a light emitting reflection layer capable of reflecting light emission of a specific wavelength with high reflectance. Can be configured (Japanese Patent Application 20
02-18188).
【0019】[0019]
【作用】結晶基板の表面上に、リン化硼素系半導体層を
気相成長させるに際し、結晶基板の表面に予め形成した
硼素またはリンの何れかを含む粒子は、その後のリン化
硼素系半導体層の成長を促進する成長核として作用す
る。When the boron phosphide-based semiconductor layer is vapor-deposited on the surface of the crystal substrate, particles formed beforehand on the surface of the crystal substrate and containing either boron or phosphorus are not formed in the subsequent boron phosphide-based semiconductor layer. Acts as a growth nucleus that promotes the growth of.
【0020】特に多結晶からなる、硼素またはリンを含
む粒子は、結晶基板とリン化硼素系半導体層との格子ミ
スマッチの存在に拘わらず、結晶欠陥の少ない結晶性に
優れるリン化硼素系半導体層をもたらす作用を有する。In particular, the particles containing boron or phosphorus, which are made of polycrystal, are excellent in crystallinity with few crystal defects regardless of the lattice mismatch between the crystal substrate and the boron phosphide-based semiconductor layer. Has the effect of
【0021】特に硼素またはリンを含む粒子が、結晶基
板の表面との接合界面の領域に非晶質を含む多結晶体か
ら形成されていると、その非晶質は、結晶基板とリン化
硼素系半導体層との格子ミスマッチを緩和して、結晶性
に優れるリン化硼素系半導体層をもたらす作用を発揮す
る。In particular, when the particles containing boron or phosphorus are formed of a polycrystal containing amorphous in the region of the bonding interface with the surface of the crystal substrate, the amorphous forms the crystal substrate and boron phosphide. The effect of alleviating the lattice mismatch with the system-based semiconductor layer and providing a boron phosphide-based semiconductor layer having excellent crystallinity.
【0022】[0022]
【実施例】(第1実施例)結晶基板上に硼素またはリン
の何れかを含む粒子を予め形成した後、リン化硼素半導
体層を気相成長させる場合を例にして、本発明を具体的
に説明する。EXAMPLES (First Example) The present invention will be described in detail by taking as an example the case where a boron phosphide semiconductor layer is vapor-deposited after particles containing either boron or phosphorus are previously formed on a crystal substrate. Explained.
【0023】本第1実施例では、一般的なハロゲン気相
成長装置(例えば、(社)電子通信学会「半導体・トラ
ンジスタ研究会資料/資料番号SSD74−89(19
75−03)(1975年3月25日)参照)を利用し
て、p形で{111}面を有するSi単結晶基板の表面
上に、硼素とリンとを含む粒子を形成した。硼素とリン
とを含む粒子102の形成には、硼素原料として三塩化
硼素(BCl3)、またリン原料として三塩化リン(P
Cl3)を使用した。BCl3は水素ガスで発泡させた後
に気相成長装置の反応炉に供給した。BCl3の温度は
0℃に維持し、その蒸気を随伴する発泡用水素ガスの流
量は毎分15ミリリットル(ml)に調整した。PCl
3を発泡するための水素ガスの流量は毎分30mlに設
定した。これらの原料は水素(H2)搬送ガスと併せ
て、気相成長装置の反応炉内に流通させた。水素搬送ガ
スの流量は毎分2リットル(l)とした。BCl3、P
Cl3の蒸気を随伴する水素ガス及び搬送ガスを1分間
に亘り継続して流通させて基板101表面上に硼素とリ
ンとを含む粒子102を形成した。In the first embodiment, a general halogen vapor phase growth apparatus (for example, "Semiconductor / Transistor Research Group Material / Material No. SSD74-89 (19) of the Institute of Electronics and Communication Engineers")
75-03) (March 25, 1975)) was used to form particles containing boron and phosphorus on the surface of a Si single crystal substrate having a p-type {111} plane. To form the particles 102 containing boron and phosphorus, boron trichloride (BCl 3 ) is used as a boron raw material, and phosphorus trichloride (P) is used as a phosphorus raw material.
Cl 3 ) was used. BCl 3 was bubbled with hydrogen gas and then supplied to the reaction furnace of the vapor phase growth apparatus. The temperature of BCl 3 was maintained at 0 ° C., and the flow rate of the hydrogen gas for foaming accompanied with the vapor was adjusted to 15 ml (ml) per minute. PCl
The flow rate of hydrogen gas for foaming 3 was set to 30 ml / min. These raw materials were circulated in the reaction furnace of the vapor phase growth apparatus together with the hydrogen (H 2 ) carrier gas. The flow rate of the hydrogen carrier gas was 2 liters (l) per minute. BCl 3 , P
Hydrogen gas accompanied by Cl 3 vapor and carrier gas were continuously circulated for 1 minute to form particles 102 containing boron and phosphorus on the surface of the substrate 101.
【0024】450℃に保持されたSi単結晶からなる
基板101の表面に、上記の条件下で形成された粒子1
02の原子間力顕微鏡像の模写図が図1である。一般的
な断面TEM技法及び原子間力顕微鏡に依る観察から
は、基板101の表面上に形成された粒子102は、硼
素を富裕とする非化学量論的なリン化硼素からなると解
析された。またその高さは平均して約25nmであっ
た。最高は約28nmであり、最低の高さは約20nm
であった。また、粒子102の水平断面形状は略円形で
あり、その直径(粒子径)は大凡、20nmであった。
直径2インチの基板101の表面に於ける粒子102の
存在密度は、原子間力顕微鏡に依る表面観察から約10
7個/cm2と求められた。Particles 1 formed under the above conditions on the surface of a substrate 101 made of Si single crystal held at 450 ° C.
A copy of the atomic force microscope image of No. 02 is shown in FIG. The particles 102 formed on the surface of the substrate 101 were analyzed to be composed of boron-enriched non-stoichiometric boron phosphide based on observation by a general cross-sectional TEM technique and an atomic force microscope. The height was about 25 nm on average. The maximum height is about 28 nm, and the minimum height is about 20 nm.
Met. Further, the horizontal cross-sectional shape of the particles 102 was substantially circular, and the diameter (particle diameter) was about 20 nm.
The existence density of the particles 102 on the surface of the substrate 101 having a diameter of 2 inches is about 10 from the surface observation by an atomic force microscope.
It was determined to be 7 pieces / cm 2 .
【0025】粒子102を形成した後、Si単結晶基板
101をハロゲン気相成長炉より取り出した。次に、ハ
ロゲン気相成長法とは異なるMOCVD手段により、粒
子102を成長核としてリン化硼素層を気相成長させ
た。図2に本第1実施例で使用したMOCVD装置の概
略を模式的に示す。MOCVD装置のMOCVD反応炉
11の一方の端には、粒子を構成するための硼素原料ま
たはリン原料を供給するための導入孔12が設けられて
いる。また、MOCVD反応炉11の対向する他端には
硼素原料またはリン原料を炉外へ排出するための排出孔
13を設けてある。また、MOCVD反応炉11の内部
には、炉内外へ可搬できる基板支持台14が据えられて
いる。After forming the particles 102, the Si single crystal substrate 101 was taken out from the halogen vapor phase growth furnace. Next, a boron phosphide layer was vapor-grown using the particles 102 as growth nuclei by MOCVD means different from the halogen vapor deposition method. FIG. 2 schematically shows the outline of the MOCVD apparatus used in the first embodiment. An introduction hole 12 for supplying a boron raw material or a phosphorus raw material for forming particles is provided at one end of the MOCVD reactor 11 of the MOCVD apparatus. A discharge hole 13 for discharging the boron raw material or the phosphorus raw material to the outside of the furnace is provided at the other end of the MOCVD reaction furnace 11 which faces the MOCVD reaction furnace 11. Further, inside the MOCVD reaction furnace 11, a substrate support 14 that can be carried in and out of the furnace is installed.
【0026】先ず、基板支持台14に、表面に粒子10
2を形成したSi単結晶基板101を載置した後、基板
支持台14をMOCVD反応炉11に挿入した。次に、
MOCVD反応炉11の外周囲に配置した高周波誘導コ
イル15を利用した高周波誘導加熱法により、基板支持
台14の温度を室温より毎分20℃の緩慢な昇温速度で
1050℃に上昇させた。然る後、導入孔12から硼素
原料としてトリエチル硼素((C2H5)3B)及びリン
原料としてのホスフィン(PH3)を、水素(H2)搬送
ガスと併せて、MOCVD反応炉11内に流通させた。
(C2H5)3Bは水素ガスで発泡させた後に供給した。
(C2H5)3Bの温度は25℃に維持し、その蒸気を随
伴する発泡用水素ガスの流量は毎分45ミリリットル
(ml)に調整した。PH3(濃度100%)の流量は
毎分400mlに設定した。水素搬送ガスの流量は毎分
8リットル(l)とした。MOCVD反応炉11の内部
の圧力を略大気圧に保ちつつ、(C2H5)3Bの蒸気を
随伴する水素ガス、PH3、及び水素搬送ガスを8分間
に亘り継続して流通させて、粒子102を成長核とし
て、アンドープでp形の単量体リン化硼素層をSi単結
晶基板101上に気相成長させた。リン化硼素層の層厚
は約240nmとした。リン化硼素層は、突起もなく表
面の平坦性に優れる連続膜となった。また、キャリア
(正孔)濃度は、約2×1019cm-3となり、低抵抗の
p形リン化硼素半導体層がもたらされた。First, the substrate support 14 is provided with particles 10 on the surface.
After placing the Si single crystal substrate 101 on which No. 2 was formed, the substrate support 14 was inserted into the MOCVD reaction furnace 11. next,
The temperature of the substrate support 14 was raised from room temperature to 1050 ° C. at a slow temperature rising rate of 20 ° C. per minute by a high frequency induction heating method using a high frequency induction coil 15 arranged on the outer periphery of the MOCVD reactor 11. Then, triethylboron ((C 2 H 5 ) 3 B) as a boron raw material and phosphine (PH 3 ) as a phosphorus raw material are introduced through the introduction hole 12 together with the hydrogen (H 2 ) carrier gas, and the MOCVD reactor 11 Distributed inside.
(C 2 H 5 ) 3 B was supplied after foaming with hydrogen gas.
The temperature of (C 2 H 5 ) 3 B was maintained at 25 ° C., and the flow rate of the hydrogen gas for foaming accompanied with the vapor was adjusted to 45 ml (ml) per minute. The flow rate of PH 3 (concentration 100%) was set to 400 ml / min. The flow rate of the hydrogen carrier gas was 8 liters (l) per minute. While maintaining the internal pressure of the MOCVD reactor 11 at substantially atmospheric pressure, hydrogen gas accompanied by (C 2 H 5 ) 3 B vapor, PH 3 , and hydrogen carrier gas were continuously circulated for 8 minutes. Using the particles 102 as a growth nucleus, an undoped p-type monomer boron phosphide layer was vapor-phase grown on the Si single crystal substrate 101. The thickness of the boron phosphide layer was about 240 nm. The boron phosphide layer was a continuous film having no projection and excellent surface flatness. In addition, the carrier (hole) concentration was about 2 × 10 19 cm −3 , resulting in a low-resistance p-type boron phosphide semiconductor layer.
【0027】(第2実施例)本第2実施例では、結晶基
板上に多結晶の粒子を予め、ハロゲン気相成長法に依り
形成した後、リン化硼素半導体層をMOCVD法で気相
成長させる場合を例にして、本発明の内容を具体的に説
明する。(Second Embodiment) In the second embodiment, polycrystalline particles are previously formed on a crystal substrate by a halogen vapor deposition method, and then a boron phosphide semiconductor layer is vapor-deposited by a MOCVD method. The content of the present invention will be described in detail by taking the case of performing it as an example.
【0028】上記の第1実施例とは、温度に係わる条件
を異にして、Si単結晶基板にハロゲン気相成長法に依
り硼素またはリンを含む粒子を形成した。本第2実施例
では、室温の約23℃に保持されたSi単結晶基板の表
面に向けて、第1実施例と同じ条件で水素搬送ガスと共
に、BCl3及びPCl3を流通し、基板の表面に硼素原
料及びリン原料の液滴を被着させた。その後、原料のハ
ロゲン気相成長装置内への供給を停止し、基板の温度を
毎分20℃の昇温速度で650℃に上昇させて、上記の
液滴を固化させた。一般的な断面TEM技法に依る分析
では、この条件下で固化させた粒子は、直径を大凡、5
nmとする扁平な略球状の硼素またはリン、或いはその
双方を含む多結晶であるのが判明した。また、原子間力
顕微鏡を用いた計測では、粒子は相互の距離を平均して
約10nmとして、直径2インチの基板表面に略一様に
分布していた。Particles containing boron or phosphorus were formed on a Si single crystal substrate by a halogen vapor phase growth method under the condition that the temperature was different from that of the first embodiment. In the second embodiment, BCl 3 and PCl 3 are circulated together with the hydrogen carrier gas under the same conditions as in the first embodiment toward the surface of the Si single crystal substrate kept at room temperature of about 23 ° C. Droplets of boron raw material and phosphorus raw material were deposited on the surface. Then, the supply of the raw material into the halogen vapor phase growth apparatus was stopped, and the temperature of the substrate was raised to 650 ° C. at a temperature rising rate of 20 ° C./min to solidify the droplets. Particles solidified under these conditions have a diameter of approximately 5 as determined by common cross-sectional TEM techniques.
It was found to be a polycrystal containing boron or phosphorus having a flat and substantially spherical shape with a thickness of nm, or both. Moreover, in the measurement using an atomic force microscope, the particles were distributed approximately uniformly on the surface of the substrate having a diameter of 2 inches, with the average distance between them being about 10 nm.
【0029】しかし、オージェ電子分析では、表面にリ
ンの酸化物から主になる直径十数nmの微小な析出物が
確認された。また、この析出物の面内密度は約100個
/cm 2程度であった。本第2実施例に依る気相成長で
は、第1実施例の場合と同じく、硼素またはリンを含む
粒子とリン化硼素層とを異なる気相成長手段により形成
するため、ハロゲン気相成長手段に依り粒子を形成した
後、珪素単結晶基板を装置の外部へ一旦、取出して改め
てリン化硼素層を気相成長させるMOCVD反応炉へ載
置する必要があった。従って、粒子を形成した珪素単結
晶基板は大気に曝されることとなり、この際に、硼素ま
たはリンを含む粒子が酸化されることにより析出物が形
成されるものと想到された。However, in Auger electron analysis, the
Fine precipitates with a diameter of tens of nanometers
confirmed. The in-plane density of this precipitate is about 100
/ Cm 2It was about. In vapor phase growth according to the second embodiment
Contains boron or phosphorus as in the first embodiment.
Forming particles and boron phosphide layer by different vapor deposition methods
Particles were formed by means of halogen vapor phase growth means.
After that, take out the silicon single crystal substrate once from the outside of the device and modify it.
MOCVD reactor for vapor phase growth of boron phosphide layer
I had to put it. Therefore, the silicon single crystals that formed the particles
The crystalline substrate will be exposed to the atmosphere, at which time boron or
The precipitate is formed by the oxidation of particles containing phosphorus or phosphorus.
It was thought to be done.
【0030】次に上記の第1実施例と同様の手段に則
り、この多結晶の粒子を成長核として、常圧MOCVD
法に依りリン化硼素半導体層を形成した。得られたリン
化硼素半導体層は、亀裂の視認されない連続膜であっ
た。Then, according to the same means as in the first embodiment, atmospheric pressure MOCVD is performed using the polycrystalline particles as growth nuclei.
A boron phosphide semiconductor layer was formed by the method. The obtained boron phosphide semiconductor layer was a continuous film with no visible cracks.
【0031】(第3実施例)本第3実施例では、結晶基
板との接合界面の領域に非晶質を含む粒子を、結晶基板
上に予め形成した後、リン化硼素半導体層を気相成長さ
せる場合を例にして、本発明の内容を具体的に説明す
る。(Third Embodiment) In the third embodiment, particles containing amorphous are preliminarily formed on the crystal substrate in the region of the bonding interface with the crystal substrate, and then the boron phosphide semiconductor layer is vapor-phased. The content of the present invention will be described in detail by taking the case of growing it as an example.
【0032】第1実施例と同様の手段により、450℃
で硼素原料及びリン原料を珪素単結晶基板の表面に被着
させた。その後、基板温度を、毎分150℃の昇温速度
で急激に1050℃に上昇させた。この昇温操作によ
り、珪素単結晶基板との接合界面の領域を非晶質とす
る、硼素またはリンを含む粒子を形成した。その後、第
1実施例と同様の手段に依り、単量体のリン化硼素半導
体層を気相成長させた。By the same means as in the first embodiment, 450 ° C.
Then, a boron raw material and a phosphorus raw material were deposited on the surface of the silicon single crystal substrate. After that, the substrate temperature was rapidly raised to 1050 ° C. at a heating rate of 150 ° C. per minute. By this temperature raising operation, particles containing boron or phosphorus were formed, which made the region of the bonding interface with the silicon single crystal substrate amorphous. Then, the monomer boron phosphide semiconductor layer was vapor-grown by the same means as in the first embodiment.
【0033】本第3実施例の珪素単結晶基板上に気相成
長させたリン化硼素半導体層の反射率の光の波長に対す
る依存性を図6に示す。波長を約450nmとする青色
帯光の反射率は、上記の第1及び第2実施例で作製した
リン化硼素半導体層の場合が各々約30%及び約33%
であるのに対し、本第3実施例では最も高く約43%に
達した。これより、非晶質を含む粒子は、表面の平坦性
に特に優れるリン化硼素層をもたらすに有効であるのが
示された。FIG. 6 shows the dependence of the reflectance of the boron phosphide semiconductor layer vapor-deposited on the silicon single crystal substrate of the third embodiment on the wavelength of light. The reflectance of blue band light having a wavelength of about 450 nm is about 30% and about 33% for the boron phosphide semiconductor layers produced in the first and second embodiments, respectively.
On the other hand, in the third embodiment, the highest value reaches about 43%. From this, it was shown that the particles containing an amorphous material are effective in providing a boron phosphide layer having excellent surface flatness.
【0034】(第4実施例)本第4実施例では、結晶基
板上に非晶質を含む粒子を予め形成した後、リン化硼素
半導体層を気相成長させる場合を例にして、本発明の内
容を更に具体的に説明する。(Fourth Embodiment) In the fourth embodiment of the present invention, the case where the boron phosphide semiconductor layer is vapor-phase-grown after the particles containing amorphous are previously formed on the crystal substrate will be described. The contents of will be described more specifically.
【0035】図3に本第4実施例に係わるエピタキシャ
ル(epitaxial)積層構造体1Aの断面構造を
模式的に示す。なお図1及び図2に示したのと同一の構
成要素については、同一の符号を付して、その説明を省
略する。FIG. 3 schematically shows a sectional structure of an epitaxial multilayer structure 1A according to the fourth embodiment. The same components as those shown in FIGS. 1 and 2 are designated by the same reference numerals, and the description thereof will be omitted.
【0036】本第4実施例では、上記の第3実施例と同
じ方法で作製した、層厚を約240nmとし、キャリア
(正孔)濃度を約2×1019cm-3とするp形リン化硼
素層103上に、800℃で、トリメチルガリウム
((CH3)3Ga)/アンモニア(NH3)/水素
(H2)系常圧MOCVDを利用してn形Ga0.90In
0.10N層を発光層104として積層した。発光層104
の層厚は約65nmに設定し、キャリア(電子)濃度は
約4×1018cm-3に設定した。発光層104をなすウ
ルツ鉱結晶型のGa0.90In0.10N層のa軸の格子定数
は約3.216Åであり、下地層である閃亜鉛鉱結晶型
の単量体のリン化硼素(格子定数≒4.538Å)の
{110}結晶面の格子面間隔(≒3.209Å)に一
致することととなった。In the fourth embodiment, a p-type phosphorus having a layer thickness of about 240 nm and a carrier (hole) concentration of about 2 × 10 19 cm −3 , which is manufactured by the same method as the above-mentioned third embodiment. N-type Ga 0.90 In was formed on the boron bromide layer 103 at 800 ° C. using atmospheric pressure MOCVD of trimethylgallium ((CH 3 ) 3 Ga) / ammonia (NH 3 ) / hydrogen (H 2 ).
A 0.10 N layer was laminated as the light emitting layer 104. Light emitting layer 104
The layer thickness was set to about 65 nm, and the carrier (electron) concentration was set to about 4 × 10 18 cm −3 . The w-zurtzite crystal type Ga 0.90 In 0.10 N layer forming the light-emitting layer 104 has an a-axis lattice constant of about 3.216Å, and the underlayer zinc blende crystal type monomer boron phosphide (lattice constant). It was decided to match the lattice plane spacing (≈3.209Å) of the {110} crystal plane of ≈4.538Å).
【0037】発光層104上には、(C2H5)3B/P
H3/H2系常圧MOCVDを利用して850℃でアンド
ープでn形の単量体リン化硼素(BP)層105を積層
した。n形BP層105の層厚は、p形BP層の層厚1
03と略同厚の約240nmとした。キャリア(電子)
濃度は約8×1018cm-3とした。On the light emitting layer 104, (C 2 H 5 ) 3 B / P
An undoped n-type monomer boron phosphide (BP) layer 105 was laminated at 850 ° C. using H 3 / H 2 system atmospheric pressure MOCVD. The layer thickness of the n-type BP layer 105 is the layer thickness 1 of the p-type BP layer.
The thickness is about 240 nm, which is almost the same as 03. Carrier (electronic)
The concentration was about 8 × 10 18 cm -3 .
【0038】本第4実施例では、特に、非晶質を含む粒
子を成長核としてp形リン化硼素層103を気相成長さ
せたため、連続膜となり、且つ表面の平坦性に優れるも
のとなった。このため、同層103を下地層として気相
成長させた発光層104及びn形リン化硼素層105の
何れも、表面を平坦な鏡面とする連続膜となった。In the fourth embodiment, in particular, the p-type boron phosphide layer 103 is vapor-grown by using particles containing amorphous as a growth nucleus, so that it becomes a continuous film and has excellent surface flatness. It was Therefore, both the light emitting layer 104 and the n-type boron phosphide layer 105, which were vapor-deposited using the same layer 103 as a base layer, were continuous films having flat mirror surfaces.
【0039】(第5実施例)本第5実施例では、同一の
硼素原料とリン原料を使用して、結晶基板表面上の粒子
とリン化硼素半導体層の双方をMOCVD法により形成
する場合を例にして、本発明の内容を具体的に説明す
る。(Fifth Embodiment) In the fifth embodiment, the same boron source material and phosphorus source material are used to form both the particles on the surface of the crystal substrate and the boron phosphide semiconductor layer by MOCVD. The contents of the present invention will be specifically described by way of example.
【0040】本第5実施例では、図2に示したMOCV
D装置を使用して、p形で(111)面を有する珪素単
晶基板上に非晶質を含む硼素またはリンを含む粒子を形
成した。硼素原料には、(C2H5)3Bを使用した。ま
た、リン原料はPH3とした。(C2H5)3Bは、25℃
の恒温に保たれた硼素原料を発泡させる(バブリング)
ための水素ガスに随伴させて、導入孔12からMOCV
D反応炉11の内部へ供給した。発泡用途の水素ガスの
流量は毎分5mlとした。PH3(濃度100%)の流
量は毎分400mlとした。また、これらの原料をMO
CVD反応炉11内へ搬送するための水素ガスの流量は
毎分16リットル(l)とした。Si単結晶基板101
の温度を450℃として、上記の硼素原料及びリン原料
とを上記の流量で1.5分間に亘り、水素搬送ガスと共
に、基板101の表面に向けて流通した。これより、硼
素とリンとを含む粒子102を形成した。一般的な原子
間力顕微鏡に依る表面観察では、粒子102の平均粒径
は約10nmと計測された。また、基板101の表面に
存在する粒子102の面密度は約108/cm2と求めら
れた。In the fifth embodiment, the MOCV shown in FIG. 2 is used.
Using a D apparatus, particles containing boron or phosphorus containing amorphous were formed on a silicon single crystal substrate having a p-type and a (111) plane. (C 2 H 5 ) 3 B was used as the boron raw material. The phosphorus raw material was PH 3 . (C 2 H 5 ) 3 B is 25 ° C
Foam the boron raw material kept at a constant temperature (Bubbling)
Through the introduction hole 12 along with the hydrogen gas for
It was supplied into the D reactor 11. The flow rate of hydrogen gas for foaming was 5 ml / min. The flow rate of PH 3 (concentration 100%) was 400 ml / min. In addition, these raw materials are MO
The flow rate of hydrogen gas for transporting into the CVD reaction furnace 11 was 16 liters (l) per minute. Si single crystal substrate 101
At a temperature of 450 ° C., the boron raw material and the phosphorus raw material were circulated toward the surface of the substrate 101 together with the hydrogen carrier gas at the above flow rates for 1.5 minutes. From this, particles 102 containing boron and phosphorus were formed. In the surface observation by a general atomic force microscope, the average particle size of the particles 102 was measured to be about 10 nm. The surface density of the particles 102 existing on the surface of the substrate 101 was determined to be about 10 8 / cm 2 .
【0041】MOCVD反応炉11内への硼素原料の供
給を停止した後、PH3と水素搬送ガスとを上記の流量
のままでMOCVD反応炉11内に流通しつつ、基板1
01の温度を450℃から、毎分150℃の昇温速度で
1050℃に急激に上昇させた。次に、第4実施例と同
じ手順に従い、粒子102を成長核として、第4実施例
と同様のp形リン化硼素層、発光層、及びn形リン化硼
素層の各層を、粒子102を形成するために利用したの
と同じMOCVD装置を用い、MOCVD法により積層
した。After the supply of the boron raw material into the MOCVD reaction furnace 11 is stopped, PH 3 and the hydrogen carrier gas are circulated in the MOCVD reaction furnace 11 at the above flow rates while the substrate 1 is being supplied.
The temperature of 01 was rapidly increased from 450 ° C. to 1050 ° C. at a heating rate of 150 ° C./min. Next, in accordance with the same procedure as in the fourth embodiment, each of the p-type boron phosphide layer, the light emitting layer, and the n-type boron phosphide layer, which are the same as those in the fourth embodiment, is treated with the particles 102 as growth nuclei. Using the same MOCVD apparatus used for forming, the layers were laminated by the MOCVD method.
【0042】粒子102を介して気相成長させたp形リ
ン化硼素層、発光層及びn形リン化硼素層の表面は何れ
も平坦であった。粒子とリン化硼素系半導体層とを同一
の原料を使用する同一の気相成長手段により形成すれ
ば、粒子とそれを介して設けるリン化硼素系半導体層と
を相違する気相成長手段で設ける煩雑さを回避して、表
面平坦性と連続性に優れるリン化硼素層を簡便に形成で
きるのを教示する結果となった。また、上記第1ないし
第4実施例に於いて、表面に散見された主にリン酸化物
からなる析出物は、本第5実施例オージェ分析及び走査
電子顕微鏡観察からは殆どその存在を確認出来なかっ
た。The surfaces of the p-type boron phosphide layer, the light emitting layer and the n-type boron phosphide layer which were vapor-phase grown through the particles 102 were all flat. If the particles and the boron phosphide-based semiconductor layer are formed by the same vapor phase growth means using the same raw material, the particles and the boron phosphide-based semiconductor layer provided therethrough are provided by different vapor phase growth means. The results teach that the boron phosphide layer having excellent surface flatness and continuity can be simply formed while avoiding complexity. In addition, in the above-mentioned first to fourth examples, the presence of the precipitates mainly composed of phosphorus oxide scattered on the surface can be almost confirmed by Auger analysis and scanning electron microscope observation of the fifth example. There wasn't.
【0043】(第6実施例)本第6実施例では、結晶基
板上に非晶質を含む粒子を成長核として気相成長させた
リン化硼素系半導体層を利用してLEDを構成する場合
を例にして、本発明の内容を具体的に説明する。(Sixth Embodiment) In the sixth embodiment, an LED is constructed by using a boron phosphide-based semiconductor layer vapor-phase-grown on a crystal substrate with grains containing amorphous as growth nuclei. The content of the present invention will be specifically described by taking as an example.
【0044】図4に本第6実施例に係るLED1Bの平
面模式図を示す。また図5には、図4の破線X−X’に
沿ったLED1Bの断面の構造を模式的に示す。図4及
び図5において、上記の図1〜図3に示したのと同一の
構成要素には、同一の符号を付して、その説明を省略す
る。FIG. 4 shows a schematic plan view of an LED 1B according to the sixth embodiment. Further, FIG. 5 schematically shows the structure of the cross section of the LED 1B taken along the broken line XX ′ in FIG. In FIGS. 4 and 5, the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals and the description thereof will be omitted.
【0045】本第6実施例に記載のLED1Bは、上記
の第5実施例に記載の積層構造体1Aにオーミック電極
を設けて構成した。n形のリン化硼素層105の表面の
中央部には、同層105に接触する側に金・ゲルマニウ
ム(Au・Ge)合金からなるオーミック電極を配置し
たAu・Ge/ニッケル(Ni)/Auの3層重層構造
からなる表面電極106を設けた。結線用の台座(pa
d)電極を兼ねる表面電極106は、直径を約120μ
mとする円形の電極とした。また、p形Si単結晶基板
101の裏面の略全面には、裏面電極107としてアル
ミニウム(Al)からなるオーミック電極を配置した。
Al蒸着膜の膜厚は約2μmとした。これより、n形発
光層104をp形及びn形リン化硼素層103、105
で挟持したpn接合型DH構造のLED1Bを構成し
た。p形及びn形の双方のリン化硼素層103、104
は何れも、室温での禁止帯幅として約3eVを有するた
め、発光層104に対するクラッド(clad)層とし
て有効に利用できた。The LED 1B described in the sixth embodiment is constructed by providing an ohmic electrode on the laminated structure 1A described in the fifth embodiment. In the central portion of the surface of the n-type boron phosphide layer 105, Au.Ge/nickel (Ni) / Au in which an ohmic electrode made of a gold-germanium (Au.Ge) alloy is arranged on the side in contact with the same layer 105. The surface electrode 106 having a three-layered structure is provided. Connection pedestal (pa
d) The surface electrode 106 that also serves as an electrode has a diameter of about 120 μm.
It was a circular electrode with m. Further, an ohmic electrode made of aluminum (Al) was arranged as the back surface electrode 107 on substantially the entire back surface of the p-type Si single crystal substrate 101.
The film thickness of the Al vapor deposition film was about 2 μm. As a result, the n-type light emitting layer 104 is replaced with the p-type and n-type boron phosphide layers 103, 105.
An LED 1B having a pn junction type DH structure sandwiched between was constructed. Both p-type and n-type boron phosphide layers 103, 104
Since each of them has a bandgap of about 3 eV at room temperature, they can be effectively used as a clad layer for the light emitting layer 104.
【0046】表面電極106と裏面電極107との間に
順方向に20ミリアンペア(mA)の動作電流を通流し
たところ、LED1Bから波長を約440nmとする青
紫帯光が発せられた。一般的な積分球を利用して測定さ
れるチップ(chip)状態での輝度は9ミリカンデラ
(mcd)となり、高発光強度のLED1Bが提供され
た。また、n形発光層104とp形リン化硼素層103
との何れも表面の平坦性に優れる連続膜からpn接合が
構成されているため、良好な整流特性が顕現され、順方
向電圧(Vf、ただし順方向電流=20mA)は約3V
であり、逆方向電圧(VR、逆方向電流=10μA)は
5V以上となった。When an operating current of 20 milliamperes (mA) was passed in the forward direction between the front surface electrode 106 and the rear surface electrode 107, the LED 1B emitted blue-violet band light having a wavelength of about 440 nm. The brightness in a chip state measured using a general integrating sphere was 9 millicandelas (mcd), and the LED 1B having high emission intensity was provided. In addition, the n-type light emitting layer 104 and the p-type boron phosphide layer 103
In both cases, since the pn junction is composed of a continuous film having excellent surface flatness, good rectification characteristics are revealed, and the forward voltage (Vf, but forward current = 20 mA) is about 3V.
The reverse voltage (VR, reverse current = 10 μA) was 5 V or more.
【0047】[0047]
【発明の効果】結晶基板の表面上に、硼素とリンとを構
成元素として含むリン化硼素系半導体層を気相成長させ
るリン化硼素系半導体層の製造方法に於いて、本発明に
依れば、結晶基板の表面に硼素またはリンの何れかを含
む粒子を予め、形成した後、次にリン化硼素系半導体層
を気相成長させることとしたので、上記の粒子の「成長
核」としての作用を利用して表面の平坦性に優れ、且つ
連続性のあるリン化硼素系半導体層を気相成長させるに
効果を挙げられる。According to the present invention, a method for producing a boron phosphide-based semiconductor layer in which a boron phosphide-based semiconductor layer containing boron and phosphorus as constituent elements is vapor-phase grown on a surface of a crystal substrate. For example, after previously forming particles containing either boron or phosphorus on the surface of the crystal substrate, it was decided to vapor-deposit the boron phosphide-based semiconductor layer next. This effect is effective in vapor-depositing a boron phosphide-based semiconductor layer having excellent surface flatness and continuity.
【0048】また本発明に依れば、硼素またはリンの何
れかを含む粒子を、特に多結晶から構成することとした
ので、表面の平坦性に優れるリン化硼素系半導体層の連
続膜を気相成長させるに効果を挙げられる。Further, according to the present invention, since the particles containing either boron or phosphorus are made of particularly polycrystal, a continuous film of a boron phosphide-based semiconductor layer excellent in surface flatness is formed. It is effective in growing the phase.
【0049】また本発明に依れば、硼素またはリンの何
れかを含む粒子を結晶基板の表面との接合界面の領域に
非晶質体を含む多結晶体から構成することとしたので、
基板をなす結晶との格子ミスマッチを緩和する非晶質の
作用に依り、表面の平坦性に優れ、且つ連続性のあるリ
ン化硼素系半導体層を気相成長させるに特に効果が奏さ
れる。Further, according to the present invention, the particles containing either boron or phosphorus are made of a polycrystalline material containing an amorphous material in the region of the bonding interface with the surface of the crystal substrate.
Due to the action of the amorphous material which relaxes the lattice mismatch with the crystal forming the substrate, it is particularly effective in vapor-phase growing a boron phosphide-based semiconductor layer having excellent surface flatness and continuity.
【0050】また本発明に依れば、リン化硼素系半導体
層を、硼素またはリンの何れかを含む粒子を形成した温
度を超えて、1200℃以下の基板温度で形成すること
としたので、結晶性に優れるリン化硼素系半導体層を気
相成長させるに効果を挙げられる。Further, according to the present invention, since the boron phosphide-based semiconductor layer is formed at a substrate temperature of 1200 ° C. or lower, which is higher than the temperature at which particles containing either boron or phosphorus are formed, It is effective in vapor-phase growing a boron phosphide-based semiconductor layer having excellent crystallinity.
【0051】また本発明に依れば、リン化硼素系半導体
層を、硼素またはリンの何れかを含む粒子を形成するに
用いたと同一の硼素原料またはリン原料と同一の手段で
気相成長させることとしたので、表面が平坦で連続性の
優れるリン化硼素系半導体層を簡易に形成するに効果を
挙げられる。Further, according to the present invention, the boron phosphide-based semiconductor layer is vapor-phase grown by the same means as the same boron source material or phosphorus source material used for forming particles containing either boron or phosphorus. Therefore, it is effective in easily forming a boron phosphide-based semiconductor layer having a flat surface and excellent continuity.
【0052】また本発明に依れば、本発明の粒子の及ぼ
す作用に依りもたらされる表面の平坦性と連続性に優れ
るリン化硼素系半導体層を利用して半導体素子を構成す
ることとしたので、例えば、良好な整流性を発揮するp
n接合を構成でき、順方向及び逆方向電圧特性に優れる
高発光強度のLEDを提供できる。Further, according to the present invention, a semiconductor element is constituted by using a boron phosphide-based semiconductor layer having excellent surface flatness and continuity brought about by the action of the particles of the present invention. , For example, p that exhibits good rectification
An n-junction can be formed, and an LED with high emission intensity that is excellent in forward and reverse voltage characteristics can be provided.
【図1】本発明の第1実施例に係る、基板表面に形成さ
れた硼素またはリンを含む粒子を示す原子間力顕微鏡像
の模写図である。FIG. 1 is a reproduction of an atomic force microscope image showing particles containing boron or phosphorus formed on the surface of a substrate according to the first embodiment of the present invention.
【図2】MOCVD装置の構成を示す概略図である。FIG. 2 is a schematic diagram showing a configuration of a MOCVD apparatus.
【図3】本発明の第4実施例に係る積層構造体の断面模
式図である。FIG. 3 is a schematic sectional view of a laminated structure according to a fourth example of the present invention.
【図4】本発明の第6実施例に記載のLEDの平面模式
図である。FIG. 4 is a schematic plan view of an LED according to a sixth embodiment of the present invention.
【図5】図4に示すLEDの破線X−X’に沿った断面
模式図である。5 is a schematic cross-sectional view taken along the broken line XX ′ of the LED shown in FIG.
【図6】本発明の第3実施例に係るリン化硼素層の反射
率の光の波長に対する依存性を示す図である。FIG. 6 is a diagram showing the dependence of the reflectance of the boron phosphide layer according to the third embodiment of the present invention on the wavelength of light.
1A 積層構造体 1B LED 11 MOCVD反応炉 12 導入孔 13 排出孔 14 基板支持台 15 高周波誘導コイル 16 硼素原料容器 17 リン原料容器 101 結晶基板 102 硼素またはリンを含む粒子 103 p形リン化硼素層 104 発光層 105 n形リン化硼素層 106 表面電極 107 裏面電極 1A laminated structure 1B LED 11 MOCVD reactor 12 Introduction hole 13 Discharge hole 14 Substrate support 15 High frequency induction coil 16 Boron raw material container 17 Phosphorus raw material container 101 crystal substrate 102 Particles containing boron or phosphorus 103 p-type boron phosphide layer 104 light emitting layer 105 n-type boron phosphide layer 106 surface electrode 107 Back electrode
フロントページの続き Fターム(参考) 4K030 AA03 AA11 AA17 BA49 BA51 CA04 DA01 FA10 JA01 JA10 LA14 5F045 AA04 AB15 AC05 AC08 AC09 AD08 AD14 AF03 BB12 CA10 CB02 DA53 DP04 EK02 5F052 JA07 KA01 Continued front page F-term (reference) 4K030 AA03 AA11 AA17 BA49 BA51 CA04 DA01 FA10 JA01 JA10 LA14 5F045 AA04 AB15 AC05 AC08 AC09 AD08 AD14 AF03 BB12 CA10 CB02 DA53 DP04 EK02 5F052 JA07 KA01
Claims (10)
(P)とを構成元素として含むリン化硼素系半導体層を
気相成長させるリン化硼素系半導体層の製造方法に於い
て、結晶基板の表面に、硼素またはリンの何れかを含む
粒子を予め形成し、その後結晶基板の表面上に、リン化
硼素系半導体層を気相成長させることを特徴とするリン
化硼素系半導体層の製造方法。1. A method for producing a boron phosphide-based semiconductor layer, which comprises vapor-depositing a boron phosphide-based semiconductor layer containing boron (B) and phosphorus (P) as constituent elements on a surface of a crystal substrate. A boron phosphide-based semiconductor characterized in that particles containing either boron or phosphorus are previously formed on the surface of the crystal substrate, and then a boron phosphide-based semiconductor layer is vapor-deposited on the surface of the crystal substrate. Layer manufacturing method.
が、1nm以上30nm以下であることを特徴とする請
求項1に記載のリン化硼素系半導体層の製造方法。2. The method for producing a boron phosphide-based semiconductor layer according to claim 1, wherein the particles containing either boron or phosphorus have a diameter of 1 nm or more and 30 nm or less.
結晶からなることを特徴とする請求項1または2に記載
のリン化硼素系半導体層の製造方法。3. The method for producing a boron phosphide-based semiconductor layer according to claim 1, wherein the crystal substrate is made of an n-type or p-type conductive single crystal.
結晶から形成されていることを特徴とする請求項1ない
し3のいずれか1項に記載のリン化硼素系半導体層の製
造方法。4. The method for producing a boron phosphide-based semiconductor layer according to claim 1, wherein the particles containing either boron or phosphorus are formed of polycrystal. .
晶基板の表面との接合界面の領域に非晶質体を含む多結
晶体から形成されていることを特徴とする請求項1ない
し4のいずれか1項に記載のリン化硼素系半導体層の製
造方法。5. A particle containing either boron or phosphorus is formed from a polycrystalline body containing an amorphous body in a region of a bonding interface with the surface of a crystal substrate. 4. The method for producing a boron phosphide-based semiconductor layer according to any one of 4 above.
する温度を超え、且つ、1200℃以下の温度で、結晶
基板の表面上にリン化硼素系半導体層を気相成長させる
ことを特徴とする請求項1ないし5のいずれか1項に記
載のリン化硼素系半導体層の製造方法。6. A boron phosphide-based semiconductor layer is vapor-deposited on the surface of a crystal substrate at a temperature of 1200 ° C. or lower and above a temperature at which particles containing either boron or phosphorus are formed. The method for producing a boron phosphide-based semiconductor layer according to claim 1, wherein
するのに用いる硼素原料またはリン原料と同一の原料を
用いて、硼素またはリンの何れかを含む粒子を形成する
のと同一の気相成長手段により、リン化硼素系半導体層
を気相成長させることを特徴とする請求項1ないし6の
いずれか1項に記載のリン化硼素系半導体層の製造方
法。7. The same vapor as used to form particles containing either boron or phosphorus using the same raw material as the boron raw material or phosphorus raw material used to form particles containing either boron or phosphorus. 7. The method for producing a boron phosphide-based semiconductor layer according to claim 1, wherein the boron phosphide-based semiconductor layer is vapor-phase grown by a phase growth means.
(MOCVD)法であることを特徴とする請求項7に記
載のリン化硼素系半導体層の製造方法。8. The method for producing a boron phosphide-based semiconductor layer according to claim 7, wherein the vapor phase growth means is a metal organic chemical vapor deposition (MOCVD) method.
リン化硼素系半導体層の製造方法を用いて作製したリン
化硼素系半導体層。9. A boron phosphide-based semiconductor layer produced by the method for producing a boron phosphide-based semiconductor layer according to claim 1.
を用いた半導体素子。10. A semiconductor device using the boron phosphide-based semiconductor layer according to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002079865A JP3700664B2 (en) | 2002-03-22 | 2002-03-22 | Boron phosphide-based semiconductor layer, manufacturing method thereof, and semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002079865A JP3700664B2 (en) | 2002-03-22 | 2002-03-22 | Boron phosphide-based semiconductor layer, manufacturing method thereof, and semiconductor element |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003282450A true JP2003282450A (en) | 2003-10-03 |
JP2003282450A5 JP2003282450A5 (en) | 2005-05-19 |
JP3700664B2 JP3700664B2 (en) | 2005-09-28 |
Family
ID=29229130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002079865A Expired - Fee Related JP3700664B2 (en) | 2002-03-22 | 2002-03-22 | Boron phosphide-based semiconductor layer, manufacturing method thereof, and semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3700664B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006101225A1 (en) * | 2005-03-22 | 2006-09-28 | Sumitomo Chemical Company, Limited | Free-standing substrate, manufacturing method thereof and semiconductor light-emitting device |
JP2006352079A (en) * | 2005-03-22 | 2006-12-28 | Sumitomo Chemical Co Ltd | Self-standing substrate, manufacturing method thereof, and semiconductor light emitting device |
CN102651433A (en) * | 2011-02-28 | 2012-08-29 | 半材料株式会社 | Nitride based light emitting device using silicon substrate and method of manufacturing the same |
JP2014049461A (en) * | 2012-08-29 | 2014-03-17 | Nitto Koki Kk | METHOD OF MANUFACTURING GaN-BASED CRYSTAL AND SEMICONDUCTOR ELEMENT |
-
2002
- 2002-03-22 JP JP2002079865A patent/JP3700664B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006101225A1 (en) * | 2005-03-22 | 2006-09-28 | Sumitomo Chemical Company, Limited | Free-standing substrate, manufacturing method thereof and semiconductor light-emitting device |
JP2006352079A (en) * | 2005-03-22 | 2006-12-28 | Sumitomo Chemical Co Ltd | Self-standing substrate, manufacturing method thereof, and semiconductor light emitting device |
GB2438567A (en) * | 2005-03-22 | 2007-11-28 | Sumitomo Chemical Co | Free-standing substrate, manufacturing method thereof and semiconductor light-emitting device |
GB2438567B (en) * | 2005-03-22 | 2010-06-23 | Sumitomo Chemical Co | Free-standing substrate, method for producing the same and semiconductor light-emitting device |
CN102651433A (en) * | 2011-02-28 | 2012-08-29 | 半材料株式会社 | Nitride based light emitting device using silicon substrate and method of manufacturing the same |
JP2014049461A (en) * | 2012-08-29 | 2014-03-17 | Nitto Koki Kk | METHOD OF MANUFACTURING GaN-BASED CRYSTAL AND SEMICONDUCTOR ELEMENT |
US9595632B2 (en) | 2012-08-29 | 2017-03-14 | Nitto Optical Co., Ltd. | Method for producing GaN-based crystal and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP3700664B2 (en) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6787814B2 (en) | Group-III nitride semiconductor light-emitting device and production method thereof | |
TW200814369A (en) | III nitride compound semiconductor laminated structure | |
US7674644B2 (en) | Method for fabrication of group III nitride semiconductor | |
JP4652888B2 (en) | Method for manufacturing gallium nitride based semiconductor multilayer structure | |
JP2002084001A (en) | Group iii nitride semiconductor light emitting diode, light emitting diode lamp, light source, electrode for group iii nitride semiconductor light emitting diode and its manufacturing method | |
JP3772816B2 (en) | Gallium nitride crystal substrate, method for manufacturing the same, gallium nitride semiconductor device, and light emitting diode | |
JP2004146424A (en) | Group iii nitride semiconductor element, its manufacturing method and light emitting diode | |
JP4282976B2 (en) | BORON PHOSPHIDE COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DIODE | |
JP2004115305A (en) | Gallium nitride single crystal substrate, method of manufacturing the same, gallium nitride-based semiconductor device and light emitting diode | |
CN102687292B (en) | Nitride-based semiconductor device and manufacturing method thereof | |
JP3700664B2 (en) | Boron phosphide-based semiconductor layer, manufacturing method thereof, and semiconductor element | |
JP2006173590A (en) | Gallium nitride semiconductor laminated structure, manufacturing method thereof, gallium nitride semiconductor element and lamp | |
JP2001119065A (en) | P-type nitride semiconductor and method of manufacturing the same | |
JP3257976B2 (en) | Nitride semiconductor light emitting device | |
JP3592616B2 (en) | Group III nitride semiconductor light emitting device | |
JPWO2004047188A1 (en) | Boron phosphide-based semiconductor light-emitting device, manufacturing method thereof, and light-emitting diode | |
JP2001015803A (en) | AlGaInP LIGHT EMITTING DIODE | |
JP3711966B2 (en) | Vapor phase growth method of group III nitride semiconductor layer and group III nitride semiconductor device | |
JP3931740B2 (en) | Boron phosphide-based semiconductor device, manufacturing method thereof, and LED | |
JP3895266B2 (en) | BORON PHOSPHIDE COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DIODE | |
JP2002289973A (en) | Iii nitride semiconductor light emitting element | |
JP4158437B2 (en) | Method for producing p-type boron phosphide semiconductor layer, boron phosphide-based semiconductor element, and LED | |
US7759149B2 (en) | Gallium nitride-based semiconductor stacked structure | |
JP3928536B2 (en) | Method for manufacturing boron phosphide single crystal substrate | |
JP2006024903A (en) | Gallium nitride based semiconductor multilayer structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040708 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040708 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050704 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |