JP2003282078A - Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device - Google Patents
Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical deviceInfo
- Publication number
- JP2003282078A JP2003282078A JP2002087783A JP2002087783A JP2003282078A JP 2003282078 A JP2003282078 A JP 2003282078A JP 2002087783 A JP2002087783 A JP 2002087783A JP 2002087783 A JP2002087783 A JP 2002087783A JP 2003282078 A JP2003282078 A JP 2003282078A
- Authority
- JP
- Japan
- Prior art keywords
- substance
- catalyst particles
- conductive polymer
- catalyst
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 127
- 239000002245 particle Substances 0.000 title claims abstract description 110
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 238000009792 diffusion process Methods 0.000 title abstract description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 167
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 67
- 229920000767 polyaniline Polymers 0.000 claims abstract description 37
- 239000011241 protective layer Substances 0.000 claims abstract description 30
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 26
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 26
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims description 110
- 239000000463 material Substances 0.000 claims description 35
- 239000006185 dispersion Substances 0.000 claims description 32
- 239000000446 fuel Substances 0.000 claims description 28
- 229920000642 polymer Polymers 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 18
- -1 HCl and H 2 SO 4 Chemical class 0.000 claims description 15
- 239000010416 ion conductor Substances 0.000 claims description 14
- 230000003197 catalytic effect Effects 0.000 claims description 10
- 239000000470 constituent Substances 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 8
- 239000002861 polymer material Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 5
- 239000008187 granular material Substances 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 abstract description 81
- 239000002105 nanoparticle Substances 0.000 abstract description 45
- 239000010410 layer Substances 0.000 abstract description 24
- 229920003169 water-soluble polymer Polymers 0.000 abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 54
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 33
- 229910052739 hydrogen Inorganic materials 0.000 description 24
- 239000001257 hydrogen Substances 0.000 description 23
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 13
- 239000004020 conductor Substances 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 229910003472 fullerene Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920000557 Nafion® Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000003014 ion exchange membrane Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000005518 polymer electrolyte Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000003411 electrode reaction Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010414 supernatant solution Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000009702 powder compression Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、例えば、燃料電池
の製造に好適な触媒粒子及びその製造方法、ガス拡散性
電極体、並びに電気化学デバイスに関するものである。TECHNICAL FIELD The present invention relates to, for example, catalyst particles suitable for manufacturing a fuel cell, a method for manufacturing the same, a gas diffusing electrode body, and an electrochemical device.
【0002】[0002]
【従来の技術】近年、石油等の化石燃料に代り得る、代
替クリーンエネルギー源の必要性が叫ばれており、例え
ば、水素(ガス)燃料が注目されている。2. Description of the Related Art In recent years, the need for an alternative clean energy source that can replace fossil fuels such as petroleum has been emphasized, and, for example, hydrogen (gas) fuel is drawing attention.
【0003】水素は、単位質量当りに含まれる化学エネ
ルギー量が大きく、又、使用に際して、有害物質や地球
温暖化ガス等を放出しないといった理由から、クリーン
で、かつほとんど無尽蔵に存在する理想的なエネルギー
源であると言える。Hydrogen has a large amount of chemical energy contained per unit mass, and because it does not emit harmful substances or global warming gas when used, it is ideal for being clean and almost inexhaustible. It can be said to be an energy source.
【0004】そして、特に、最近では、水素エネルギー
から電気エネルギーを取り出すことができる燃料電池の
開発が盛んに行われており、大規模発電からオンサイト
な自家発電、更には、電気自動車用の電源等としての応
用等が期待されている。In recent years, in particular, fuel cells capable of extracting electric energy from hydrogen energy have been actively developed, and large-scale power generation to on-site private power generation, and further, a power source for electric vehicles. It is expected that it will be applied as such.
【0005】なお、この燃料電池は、プロトン伝導体膜
を挟んで、燃料電極(例えば、水素電極)と酸素電極と
を配置し、これらの電極に、それぞれ燃料(水素)や酸
素を供給することで電池反応を起こし、起電力を得るも
のであり、その製造に際しては、通常、プロトン伝導体
膜、燃料電極(例えば、水素電極)、酸素電極等を別々
に成形し、これらを貼り合わせて製作している。In this fuel cell, a fuel electrode (for example, a hydrogen electrode) and an oxygen electrode are arranged with a proton conductor membrane interposed, and fuel (hydrogen) and oxygen are supplied to these electrodes, respectively. In this process, a proton conductor membrane, a fuel electrode (for example, hydrogen electrode), an oxygen electrode, etc. are molded separately, and they are bonded together. is doing.
【0006】さて、従来、固体高分子電解質と触媒との
複合電極を含む水素電極や酸素電極が水電解槽及び燃料
電池において良好な特性を得るには、広い電極及び電解
質界面を持つこと、電極及び電解質界面への活物質の供
給及び生成物の排出がスムーズであること、電極及び電
解質界面へのイオン伝導性、特にプロトン伝導性が良好
であること、電極及び電解質界面への電子伝導性が良好
であること等が要求される。Conventionally, in order to obtain good characteristics of a hydrogen electrode or an oxygen electrode including a composite electrode of a solid polymer electrolyte and a catalyst in a water electrolysis cell and a fuel cell, it is necessary to have a wide electrode and an electrolyte interface. And that the supply of the active material to the electrolyte interface and the discharge of the product are smooth, the ionic conductivity to the electrode and the electrolyte interface, especially the proton conductivity is good, and the electron conductivity to the electrode and the electrolyte interface is It is required to be good.
【0007】とりわけ、電極及び電解質界面へのイオン
伝導性特にプロトン伝導性が良好であること、及び電極
及び電解質界面への電子伝導性が良好であること等は、
電解槽内及び燃料電池内の内部抵抗の増減に大きく寄与
する非常に重要な項目である。つまり、プロトン伝導性
及び電子伝導性等が悪いと、例えば燃料電池において
は、出力が低下する等のエネルギー変換効率の低下を招
くことになる。In particular, good ionic conductivity to the electrode / electrolyte interface, particularly good proton conductivity, and good electron conductivity to the electrode / electrolyte interface are
This is a very important item that greatly contributes to increase and decrease in internal resistance in the electrolytic cell and the fuel cell. That is, if the proton conductivity, the electron conductivity, and the like are poor, for example, in a fuel cell, the energy conversion efficiency is lowered, such as the output is lowered.
【0008】[0008]
【発明が解決しようとする課題】良好なプロトン伝導性
には、電極内の連続した固体電解質通路(電解質チャン
ネル)の形成が必須であり、良好な電子伝導性には、電
極内の連続した触媒粒子通路(電子伝導チャンネル)の
形成が必須条件となる。The formation of continuous solid electrolyte channels (electrolyte channels) in the electrode is essential for good proton conductivity, and the continuous catalyst in the electrode is necessary for good electron conductivity. The formation of particle passages (electron conduction channels) is an essential condition.
【0009】これに対し、図11に示すように、固体高
分子電解質61と触媒粒子52とのみからなる電極タイ
プの場合、実際には高いプロトン伝導性は得られるが、
電子伝導性は低い。これは、連続した触媒粒子通路(電
子伝導チャンネル)の形成が阻害されるためである。On the other hand, as shown in FIG. 11, in the case of the electrode type consisting only of the solid polymer electrolyte 61 and the catalyst particles 52, high proton conductivity is actually obtained,
Electronic conductivity is low. This is because formation of continuous catalyst particle passages (electron conduction channels) is hindered.
【0010】一方、図12に示すように、固体高分子電
解質61及び触媒粒子53にテフロン(登録商標)(デ
ュポン社製のPTFE)粒子63が加えられてなる電極
タイプの場合、結着剤として機能するテフロン(登録商
標)(PTFE)粒子63の径が、触媒粒子53の径に
比ベ大きくなることが多く、電極内で大きな体積を占め
るようになり、電極内に十分な触媒粒子53が充填され
なくなって電子伝導チャンネルの絶対数が不足する。On the other hand, as shown in FIG. 12, in the case of an electrode type in which Teflon (registered trademark) (PTFE manufactured by DuPont) particles 63 are added to a solid polymer electrolyte 61 and catalyst particles 53, a binder is used. The diameter of the functional Teflon (registered trademark) (PTFE) particles 63 is often larger than the diameter of the catalyst particles 53, and the Teflon particles 63 occupy a large volume in the electrode. It becomes unfilled and the absolute number of electron conduction channels is insufficient.
【0011】そこで、図13、及び図13の部分詳細断
面図である図14に示すように、一般に固体高分子電解
質61及び触媒粒子53からなる複合電極をイオン交換
膜(プロトン伝導体)55及び触媒電極接合体とし、水
電解槽又は燃料電池にこれを用いる際には、給電体(集
電体)として緻密で多孔質な焼結チタン又は焼成カーボ
ン等の導電性繊維62を用いる。Therefore, as shown in FIG. 13 and FIG. 14 which is a partial detailed sectional view of FIG. 13, a composite electrode generally composed of a solid polymer electrolyte 61 and catalyst particles 53 is provided with an ion exchange membrane (proton conductor) 55 and When it is used as a catalyst electrode assembly and used in a water electrolysis tank or a fuel cell, a dense and porous conductive fiber 62 such as sintered titanium or baked carbon is used as a power supply (current collector).
【0012】さて、この触媒電極接合体においては、高
プロトン伝導性を示すと共に、導電性繊維62の電極内
部への進入によってマクロ的電子伝導チャンネルが形成
できる。Now, in this catalyst electrode assembly, a high electron-conductivity is exhibited, and a macroscopic electron conduction channel can be formed by the penetration of the conductive fiber 62 into the electrode.
【0013】しかしながら、イオン交換膜(プロトン伝
導体)55及び触媒電極接合体を構成するイオン交換膜
(プロトン伝導体)55は、できるだけ薄くするのが好
ましいが、上記の導電性繊維62からなる給電体(集電
体)を使用すると、導電性繊維62が電極、さらにはイ
オン交換膜(プロトン伝導体膜)55をも突きぬけて対
極まで貫通してしまい、ピンホールを生じさせることが
多かった。又、電極内の抵抗値を計測すると、比抵抗が
4.5×104Ω・cmになり、電子伝導性も不十分で
あった。However, it is preferable that the ion exchange membrane (proton conductor) 55 and the ion exchange membrane (proton conductor) 55 constituting the catalyst electrode assembly are as thin as possible. When the body (current collector) is used, the conductive fiber 62 penetrates the electrode and further the ion exchange membrane (proton conductor membrane) 55 and penetrates to the counter electrode, often causing pinholes. When the resistance value in the electrode was measured, the specific resistance was 4.5 × 10 4 Ω · cm, and the electron conductivity was insufficient.
【0014】次に、これらに変わって図15に示すよう
に、イオン伝導部(プロトン伝導体膜)55の上に、水
素吸蔵能があり、若干の電子伝導性も有する白金系のP
d(パラジウム)ネットワーク65と触媒粒子53と固
体高分子電解質61とを含有してなる電極母体(細孔6
0含む)に無電解メッキ処理を施すことによって、電子
伝導性物質である白金を電極母体に担持させて白金層6
4を設ける方法があるが、複雑な構造の電極内部まで白
金を十分に析出させて導電性を確保すること(電子伝導
チャンネルの形成)が非常に困難であった。Next, as shown in FIG. 15, instead of these, a platinum-based P having hydrogen storage capacity and a slight electron conductivity is formed on the ion conduction part (proton conductor film) 55.
An electrode matrix (pores 6) containing a d (palladium) network 65, catalyst particles 53, and a solid polymer electrolyte 61.
(Including 0) is subjected to electroless plating to support platinum, which is an electron conductive substance, on the electrode base material to form the platinum layer 6
Although there is a method of providing No. 4, it was very difficult to sufficiently deposit platinum even inside the electrode having a complicated structure to secure conductivity (formation of electron conduction channel).
【0015】本発明は、上記のような従来の実情に鑑み
てなされたものであって、その目的は、電極内反応を確
実にして向上させることのできる触媒粒子、及びその製
造方法、その触媒粒子を用いたガス拡散電極、電気化学
デバイスを提供することにある。The present invention has been made in view of the above-mentioned conventional circumstances, and its object is to provide catalyst particles capable of surely improving the reaction in the electrode, a method for producing the same, and a catalyst therefor. The object is to provide a gas diffusion electrode using particles and an electrochemical device.
【0016】[0016]
【課題を解決するための手段】即ち、本発明は、粒状触
媒物質と、この粒状触媒物質の表面上に形成された導電
性高分子物質とからなる触媒粒子に係るものである。That is, the present invention relates to catalyst particles composed of a granular catalyst material and a conductive polymer material formed on the surface of the granular catalyst material.
【0017】本発明は又、粒状触媒物質となる化合物の
第1の分散液を調製する工程と、前記化合物を分解させ
る反応を行う工程と、これによって生成した粒状触媒物
質と、導電性高分子物質の構成単量体とを含む第2の分
散液を調製する工程と、この分散液中での重合反応によ
って、前記粒状触媒物質を被覆する前記導電性高分子物
質を生成する工程とを有する、触媒粒子の製造方法に係
るものである。The present invention also provides a step of preparing a first dispersion liquid of a compound which becomes a granular catalyst material, a step of carrying out a reaction for decomposing the compound, a granular catalyst material produced thereby, and a conductive polymer. It has a step of preparing a second dispersion liquid containing a constituent monomer of the substance, and a step of producing the conductive polymer substance covering the granular catalyst substance by a polymerization reaction in the dispersion liquid. The present invention relates to a method for producing catalyst particles.
【0018】本発明は又、粒状触媒物質と、この粒状触
媒物質の表面上に形成された導電性高分子物質とからな
る触媒粒子を具備するガス拡散性電極体に係るものであ
る。The present invention also relates to a gas diffusible electrode body comprising catalyst particles comprising a granular catalyst substance and a conductive polymer substance formed on the surface of the granular catalyst substance.
【0019】本発明は又、第一極と、第二極と、これら
の両極間に挟持されたイオン伝導体とからなり、粒状触
媒物質と、この粒状物質の表面上に形成された導電性高
分子物質とからなる触媒粒子が、前記第一極及び第ニ極
のうち少なくとも前記第一極を構成している電気化学デ
バイスに係るものである。The present invention also comprises a first electrode, a second electrode, and an ionic conductor sandwiched between the two electrodes, and a granular catalyst material and a conductive material formed on the surface of the granular material. A catalyst particle composed of a polymer substance relates to an electrochemical device constituting at least the first pole of the first pole and the second pole.
【0020】本発明によれば、粒状触媒物質が導電性高
分子物質で被覆された触媒粒子としているので、触媒物
質と反応ガスとの接触する有効表面積が増えて触媒反応
が良好になると共に、触媒粒子自体の電子伝導性が良好
になって電極反応を向上させることができる。又、粒状
触媒物質の表面上に導電性高分子物質が形成されている
ことにより、この高分子物質により触媒粒子の形状保持
性が向上し、かつ触媒粒子同士が凝集してチェーン構造
を形成し易くなり、電極内において触媒層の保持性と触
媒反応及び電子伝導性が十分なものとなる。According to the present invention, since the granular catalyst substance is the catalyst particles coated with the conductive polymer substance, the effective surface area of contact between the catalyst substance and the reaction gas is increased to improve the catalytic reaction, and The electron conductivity of the catalyst particles themselves becomes good, and the electrode reaction can be improved. In addition, since the conductive polymer substance is formed on the surface of the granular catalyst substance, the polymer substance improves the shape retention of the catalyst particles, and the catalyst particles aggregate to form a chain structure. This facilitates the maintenance of the catalyst layer, the catalytic reaction and the electron conductivity within the electrode.
【0021】[0021]
【発明の実施の形態】本発明においては、前記導電性高
分子物質にプロトン伝導性も付与されているのが好まし
い。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, it is preferable that the conductive polymer substance is also provided with proton conductivity.
【0022】このプロトン伝導性のために、プロトン解
離性の基又は物質の導入によって、前記導電性高分子物
質にプロトン伝導性が付与されているのが好ましい。こ
の場合、前記プロトン解離性の基又は物質が−OH、−
OSO3H、−SO3H、−COOH、−OPO(OH)
2、HCl及びH2SO4等のブレンステズ酸からなる群
より選ばれるのが好ましい。For this proton conductivity, it is preferable that the conductive polymer substance is provided with proton conductivity by introducing a proton dissociative group or substance. In this case, the proton dissociative group or substance is -OH,-.
OSO 3 H, -SO 3 H, -COOH, -OPO (OH)
It is preferably selected from the group consisting of Brensted acids such as 2 , HCl and H 2 SO 4 .
【0023】前記導電性高分子物質、例えばポリアニリ
ンが更に高分子保護層、例えばポリビニルピロリドンに
よって被覆されているのが好ましい。It is preferred that the conductive polymeric material, eg polyaniline, is further coated with a polymeric protective layer, eg polyvinylpyrrolidone.
【0024】作用ガスとの接触面積を大きくするため
に、前記触媒粒子の大きさが0.1〜1000nmであ
るのが好ましく、又、前記粒状触媒物質が白金粉体又は
粒体からなるのが望ましい。In order to increase the contact area with the working gas, the size of the catalyst particles is preferably 0.1 to 1000 nm, and the granular catalyst material is platinum powder or granules. desirable.
【0025】前記高分子保護層がポリビニルピロリドン
からなると、前記粒状触媒物質に対する前記導電性高分
子物質の被覆性が良くなると同時に、触媒粒子同士が凝
集してチェーン構造を構成するので好ましい。It is preferable that the polymer protective layer is made of polyvinylpyrrolidone because the coating property of the conductive polymer substance on the granular catalyst substance is improved and at the same time the catalyst particles are aggregated to form a chain structure.
【0026】本発明の製造方法においては、前記第1及
び第2の分散液として水分散液を使用するのが好まし
い。In the production method of the present invention, it is preferable to use an aqueous dispersion as the first and second dispersions.
【0027】前記導電性高分子物質の前記構成単量体を
含む前記第2の分散液に、プロトン伝導性を付与するた
めの物質を添加するのが好ましい。It is preferable to add a substance for imparting proton conductivity to the second dispersion liquid containing the constituent monomer of the conductive polymer substance.
【0028】前記導電性高分子物質の前記構成単量体
に、プロトン解離性の基をプロトン伝導性付与のために
導入しておくのが好ましい。It is preferable to introduce a proton dissociative group into the constituent monomer of the conductive polymer substance in order to impart proton conductivity.
【0029】前記触媒物質の前記第1の分散液に、前記
導電性高分子物質の保護層となるための高分子物質を添
加するのが好ましい。It is preferable to add a polymer substance for forming a protective layer of the conductive polymer substance to the first dispersion liquid of the catalyst substance.
【0030】触媒粒子の形成を確実に又容易にするため
に、前記高分子物質の保護層で覆われた前記粒状触媒物
質を生成した後、この触媒物質を含む前記第2の分散液
中で前記重合反応を行い、前記粒状触媒物質が前記導電
性高分子物質で覆われかつこの導電性高分子物質が前記
高分子物質の保護層で覆われてなる前記触媒粒子を生成
するのが好ましい。In order to ensure and facilitate the formation of catalyst particles, in the second dispersion containing the catalyst material, after forming the particulate catalyst material covered with a protective layer of the polymer material. It is preferable to carry out the polymerization reaction to produce the catalyst particles in which the particulate catalytic material is covered with the conductive polymeric material and the conductive polymeric material is covered with a protective layer of the polymeric material.
【0031】本発明の電気化学デバイスにおいては、前
記第一極及び第二極の少なくとも一方がガス電極である
のが好ましく、また燃料電池として構成されているのが
好ましい。In the electrochemical device of the present invention, at least one of the first electrode and the second electrode is preferably a gas electrode, and is preferably constructed as a fuel cell.
【0032】以下に、本発明の好ましい実施の形態を図
面の参照下に詳しく説明する。Preferred embodiments of the present invention will be described below in detail with reference to the drawings.
【0033】本実施の形態による白金ナノパーティクル
1は、図1に示すように、核となる白金粒子(触媒)2
と、この白金粒子(触媒)2を被覆する導電性高分子層
18と、さらにこの導電性高分子層18を被覆する水溶
性高分子保護層19とによって構成されている。The platinum nanoparticles 1 according to the present embodiment are, as shown in FIG. 1, platinum particles (catalyst) 2 serving as cores.
And a conductive polymer layer 18 that covers the platinum particles (catalyst) 2, and a water-soluble polymer protective layer 19 that covers the conductive polymer layer 18.
【0034】導電性高分子層18には、ポリアニリン
(PANI)を用い、又、高分子保護層19には、ポリ
ビニルピロリドン(PVP)を用いてよい。Polyaniline (PANI) may be used for the conductive polymer layer 18, and polyvinylpyrrolidone (PVP) may be used for the polymer protective layer 19.
【0035】又、白金ナノパーティクル1のサイズは
0.1〜1000nm、例えば平均4nmとする。これ
より小さいと、作成困難であって分散し難くなり、また
大きすぎると、触媒の表面積がトータルとして小さくな
ってしまう。The size of the platinum nanoparticles 1 is 0.1 to 1000 nm, for example 4 nm on average. If it is smaller than this, it is difficult to prepare it and it becomes difficult to disperse it. If it is too large, the total surface area of the catalyst becomes small.
【0036】なお、上記の白金粒子(触媒)2は、粒
状、球状、繊維状等の様々な形状のものを含むものと
し、以下同様とする。The platinum particles (catalyst) 2 include particles of various shapes such as granular, spherical and fibrous shapes, and the same applies hereinafter.
【0037】次に、プロトン解離性の基又は物質の導入
によって、導電性高分子層(PANI)18にプロトン
伝導性を付与してプロトン伝導性を促進させるが、この
プロトン解離性の基又は物質は、−OH、−OSO
3H、−SO3H、−COOH、−OPO(OH)2、H
Cl及びH2SO4等のブレンステズ酸からなる群より選
ぶ。Next, by introducing a proton dissociative group or substance, the conductive polymer layer (PANI) 18 is provided with proton conductivity to promote proton conductivity. Is -OH, -OSO
3 H, -SO 3 H, -COOH , -OPO (OH) 2, H
It is selected from the group consisting of Bronsted's acid such as Cl and H 2 SO 4 .
【0038】そして、プロトン解離性の基又は物質とし
て、−SO3Hを用いる際のポニアリニン(PANI)
の分子構造は図4の(1)に示し、HClを用いる際の
ポリアニリン(PANI)の分子構造は図4の(2)に
示し、又、ポリビニルピロリドン(PVP)の分子構造
は図4の(3)に示す。Ponialinin (PANI) when -SO 3 H is used as the proton-dissociative group or substance
The molecular structure of is shown in (1) of FIG. 4, the molecular structure of polyaniline (PANI) when using HCl is shown in (2) of FIG. 4, and the molecular structure of polyvinylpyrrolidone (PVP) is shown in FIG. 3).
【0039】なお、「プロトン解離性の基」とは、−O
H、−OSO3H、−SO3H、−COOH、−OPO
(OH)2等のように、電離によりプロトンを離し得る
官能基を意味し、又「プロトン(H+)の解離」とは、
電離によりプロトンが官能基から離れることを意味す
る。そして、このプロトン伝導体においては、プロトン
解離性の基を介してプロトン(H+)が移動し、これに
よってイオン伝導性が発現される。The term "proton dissociative group" means --O.
H, -OSO 3 H, -SO 3 H, -COOH, -OPO
(OH) 2 etc. means a functional group capable of releasing a proton by ionization, and “proton (H + ) dissociation” means
This means that a proton is separated from a functional group by ionization. Then, in this proton conductor, protons (H + ) move through the proton dissociative group, and thereby ion conductivity is exhibited.
【0040】ところで、図2に示すように、白金ナノパ
ーティクル1はガス拡散性電極10において凝集してチ
ェーン構造を構成する。ここで、ガス拡散性電極とは、
作用ガスを拡散可能な連続気孔20を有する電極のこと
を指し、更にこれは、電子伝導性を有するものである
(以下、同様)。By the way, as shown in FIG. 2, the platinum nanoparticles 1 aggregate in the gas diffusible electrode 10 to form a chain structure. Here, the gas diffusible electrode is
This refers to an electrode having continuous pores 20 capable of diffusing a working gas, which further has electronic conductivity (hereinafter the same).
【0041】又、上記のガス拡散性電極10には、白金
ナノパーティクル1が、1〜80重量%、好ましくは2
0〜70重量%含有されるのが、活発な電池反応のため
には良いと考えられる。The gas diffusible electrode 10 contains platinum nanoparticles 1 in an amount of 1 to 80% by weight, preferably 2%.
It is considered that the content of 0 to 70% by weight is good for active cell reaction.
【0042】次に、図3について、触媒粒子としての白
金ナノパーティクルの製造方法を説明する。Next, with reference to FIG. 3, a method for producing platinum nanoparticles as catalyst particles will be described.
【0043】この製造方法は、白金粒子となる化合物
(前駆体)と水溶性高分子物質(ポリビニルピロリド
ン)とを含む第1の分散液を調製する工程と、この化合
物を分解させる反応を行う工程と、これによって作られ
た白金粒子と導電性高分子物質(ポリアニリン)の構成
単量体であるアニリンとを含む第2の分散液を調製する
工程と、この分散液中での重合反応によって、非水溶性
の導電性高分子物質(ポリアニリン)が白金粒子と水溶
性高分子保護層(ポリビニルピロリドン)との間に入り
込んで、白金粒子を被覆する導電性高分子物質(ポリア
ニリン)を生成する工程とからなる。This production method comprises the steps of preparing a first dispersion liquid containing a compound (precursor) which becomes platinum particles and a water-soluble polymer substance (polyvinylpyrrolidone), and a step of carrying out a reaction for decomposing this compound. And a step of preparing a second dispersion liquid containing platinum particles produced thereby and aniline which is a constituent monomer of the conductive polymer substance (polyaniline), and a polymerization reaction in the dispersion liquid. A process in which a water-insoluble conductive polymer substance (polyaniline) enters between the platinum particles and the water-soluble polymer protective layer (polyvinylpyrrolidone) to form a conductive polymer substance (polyaniline) that coats the platinum particles. Consists of.
【0044】なお、白金粒子となる化合物の第1の分散
液としては水分散液を使用し、これに導電性高分子物質
(ポリアニリン)の保護層となる水溶性高分子物質(ポ
リビニルピロリドン)を添加する。An aqueous dispersion is used as the first dispersion liquid of the compound which becomes the platinum particles, and a water-soluble polymer substance (polyvinylpyrrolidone) which becomes a protective layer of the conductive polymer substance (polyaniline) is added thereto. Added.
【0045】又、導電性高分子物質(ポリアニリン)の
構成単量体(アニリン)を含む第2の分散液には、プロ
トン伝導性を付与する物質(例えばHCl又はH2S
O4)を添加するか、又はプロトン解離性の基をプロト
ン伝導性付与のために予めポリアニリンに導入してお
く。In the second dispersion liquid containing the constituent monomer (aniline) of the conductive polymer substance (polyaniline), a substance imparting proton conductivity (eg HCl or H 2 S) is added.
O 4 ) is added, or a proton-dissociative group is introduced into polyaniline in advance for imparting proton conductivity.
【0046】上記の工程を要約すると、第1の分散液か
ら水溶性高分子物質(ポリビニルピロリドン)の保護層
で覆われた白金粒子(触媒)を生成した後、この白金粒
子(触媒)を含む第2の分散液中で重合反応を行い、白
金粒子(触媒)が導電性高分子物質(ポリアニリン)で
覆われかつこの導電性高分子物質(ポリアニリン)が水
溶性高分子物質(ポリビニルピロリドン)の保護層で覆
われてなる触媒粒子(白金ナノパーティクル)を生成す
る。In summary of the above steps, platinum particles (catalyst) covered with a protective layer of a water-soluble polymeric material (polyvinylpyrrolidone) are produced from the first dispersion and then the platinum particles (catalyst) are contained. Polymerization reaction is performed in the second dispersion liquid, the platinum particles (catalyst) are covered with the conductive polymer substance (polyaniline), and the conductive polymer substance (polyaniline) is converted into the water-soluble polymer substance (polyvinylpyrrolidone). Generates catalyst particles (platinum nanoparticles) covered with a protective layer.
【0047】次に、上記の白金ナノパーティクルを含む
ガス拡散性電極によって形成される負極(燃料電池)や
正極(酸素電極)等においては、ガス拡散性電極を、ス
ピンコート法等によりガス拡散性集電体(カーボンシー
ト)上に直接形成するゆえに、作業中における破損等に
対して求められる機械的強度が要求されることはなく、
従って、その厚さは、10μm以下、例えば、2〜4μ
m程度と、極めて薄く設定することができる。Next, in the negative electrode (fuel cell), positive electrode (oxygen electrode), etc. formed by the gas diffusible electrode containing the platinum nanoparticles, the gas diffusible electrode is formed by spin coating or the like. Since it is formed directly on the current collector (carbon sheet), the mechanical strength required for damage during work is not required,
Therefore, the thickness is 10 μm or less, for example, 2 to 4 μm.
It can be set to be extremely thin, about m.
【0048】次に、本実施の形態における、燃料電池に
使用するプロトン伝導体の素材としては、例えば、パー
フルオロスルホン酸樹脂(例えば、デュポン社製、商品
名Nafion(R)等)のようなプロトン(水素イオン)伝導
性の高分子材料、又は、H3Mo12PO40・29H2Oや
Sb2O5・5.4H2O等、多くの水和性を持つポリモ
リブデン酸類や酸化物等、又は、フラーレンをはじめと
する各種炭素質材料に、プロトン解離性の基を導入した
もの、又は、酸化ケイ素及びブレーンステッド酸を主体
とする化合物と、スルホン基を側鎖に持つ重合体との混
合物等が好適に使用されるが、これらの材料に、特に限
定されるものではない。Next, as the material of the proton conductor used in the fuel cell in the present embodiment, for example, perfluorosulfonic acid resin (for example, manufactured by DuPont, trade name Nafion (R)) is used. Polymer materials with proton (hydrogen ion) conductivity, or polymolybdic acids and oxides with many hydration properties such as H 3 Mo 12 PO 40 / 29H 2 O and Sb 2 O 5 / 5.4H 2 O Etc., or various carbonaceous materials including fullerenes, in which a proton dissociative group is introduced, or a compound mainly containing silicon oxide and Bronsted acid, and a polymer having a sulfone group in the side chain. The mixture and the like are preferably used, but these materials are not particularly limited.
【0049】又、本実施の形態において、上記ガス拡散
性電極中に、或いは上記電気化学デバイスを構成する第
1極と、第2極との両極間に挟持されたイオン伝導部
に、使用可能な上記イオン伝導体としては、一般的なナ
フィオン(デュポン社製のパーフルオロスルホン酸樹
脂)のほかにも、フラレノール(ポリ水酸化フラーレ
ン)等のフラーレン誘導体が挙げられる。Further, in the present embodiment, it can be used in the gas-diffusible electrode or in the ion-conducting portion sandwiched between the first electrode and the second electrode constituting the electrochemical device. Examples of the ionic conductor include fullerene derivatives such as fullerenol (polyhydroxylated fullerene) in addition to general Nafion (perfluorosulfonic acid resin manufactured by DuPont).
【0050】特に、図9に示す如く、フラーレン分子に
複数の水酸基を付加した構造を持つフラレノール(Fulle
renol)は、1992年にChiangらによって最初に合成例
が報告された(Chiang,L.Y.;Swirczewski,J.W.;Hsu,C.
S.;Chowdhury,S.K.;Cameron,S.;Creegan,K.,J.Chem.So
c,Chem.Commun.1992,1791)。In particular, as shown in FIG. 9, fullerene (Fullelenol) having a structure in which a plurality of hydroxyl groups are added to a fullerene molecule is used.
renol) was first reported as a synthetic example by Chiang et al. in 1992 (Chiang, LY; Swirczewski, JW; Hsu, C.
S.; Chowdhury, SK; Cameron, S.; Creegan, K., J.Chem.So
c, Chem. Commun. 1992, 1791).
【0051】本出願人は、そうしたフラレノールを図1
0(A)に概略図示するように凝集体とし、近接し合っ
たフラレノール分子(図中、○はフラーレン分子を示
す。)の水酸基同士に相互作用が生じるようにしたとこ
ろ、この凝集体はマクロな集合体として高いプロトン伝
導特性(換言すれば、フラレノール分子のフェノール性
水酸基からのH+の解離性)を発揮することを初めて知
見することができた。Applicants have identified such a fullerenol in FIG.
As shown in 0 (A), the aggregates were macroscopically prepared by causing an interaction between the hydroxyl groups of the fullerenol molecules (in the figure, ○ represent fullerene molecules) in close proximity to each other. It was for the first time able to find out that such an aggregate exhibits high proton conductivity characteristics (in other words, dissociation of H + from the phenolic hydroxyl group of the fullerenol molecule).
【0052】本実施の形態においては、上記フラレノー
ル以外に、例えば、複数の−OSO 3H基をもつフラー
レンの凝集体をイオン伝導体として用いることもでき
る。OH基がOSO3H基と置き換わった図10(B)
に示すようなポリ水酸化フラーレン、即ち、硫酸水素エ
ステル化フラレノールは、やはりChiangらによって19
94年に報告されている(Chiang.L.Y.;Wang, L.Y.;Swir
czewski,J.W.; Soled,S.; Cameron,S.,J.Org.Chem.199
4,59,3960)。そして、硫酸水素エステル化されたフラー
レンには、ひとつの分子内にOSO3H基のみを含むも
のもあるし、或いは、この基と水酸基とをそれぞれ複
数、持たせることも可能である。In the present embodiment, the above-mentioned Frarenault is used.
Other than, for example, a plurality of -OSO 3Fuller with H group
Ren agglomerates can also be used as ion conductors.
It OH group is OSO3Fig. 10 (B) replacing the H group
Polyhydroxylated fullerene, that is, hydrogen sulfate
Sterilized fullerenol was also reported by Chiang et al.
Reported in 1994 (Chiang.L.Y.; Wang, L.Y.; Swir
czewski, J.W .; Soled, S .; Cameron, S., J.Org.Chem.199
4,59,3960). And fuller sulfated
Ren has OSO in one molecule3Also contains only H groups
There is also a
It is possible to have a number.
【0053】上述したフラレノール及び硫酸水素エステ
ル化フラレノールを、多数凝集させた時、それが、バル
クとして示すプロトン伝導性は、分子内に元々含まれる
大量の水酸基やOSO3H基に由来するプロトンが移動
に直接関わるため、雰囲気から水蒸気分子などを起源と
する水素、プロトンを取り込む必要はなく、又、外部か
らの水分の補給、とりわけ、外気より水分等を吸収する
必要もなく、雰囲気に対する制約はない。従って、乾燥
雰囲気下においても、継続的に使用することができる。When a large number of the above-mentioned fullerenol and hydrogen sulfate esterified fullerenol are aggregated, the proton conductivity exhibited as a bulk is that the protons derived from a large amount of hydroxyl groups or OSO 3 H groups originally contained in the molecule. Since it is directly involved in movement, it is not necessary to take in hydrogen and protons originating from water vapor molecules etc. from the atmosphere, and it is not necessary to replenish moisture from the outside, especially to absorb moisture from the outside air. Absent. Therefore, it can be continuously used even in a dry atmosphere.
【0054】又、これらの分子の基体となっているフラ
ーレンは、特に求電子性の性質を持ち、このことが酸性
度の高いOSO3H基のみならず、水酸基等においても
水素イオンの電離の促進に大きく寄与していると考えら
れ、優れたプロトン伝導性を示す。又、一つのフラーレ
ン分子中に、かなり多くの水酸基及びOSO3H基等を
導入することができるため、伝導に関与するプロトン
の、伝導体の単位体積あたりの数密度が非常に多くなる
ので、実効的な伝導率を発現する。The fullerene, which is the base material for these molecules, has a particularly electrophilic property, which means that not only the highly acidic OSO 3 H group but also the hydroxyl group and the like can dissociate hydrogen ions. It is considered that it contributes greatly to the promotion and shows excellent proton conductivity. In addition, since a large number of hydroxyl groups and OSO 3 H groups can be introduced into one fullerene molecule, the number density of protons involved in conduction per unit volume of the conductor becomes very large. It develops effective conductivity.
【0055】上記フラレノール及び硫酸水素エステル化
フラレノールは、その殆どが、フラーレンの炭素原子で
構成されているため、重量が軽く、変質もし難く、又、
汚染物質も含まれていない。さらに、フラーレンの製造
コストも急激に低下しつつある。それゆえに、資源的、
環境的、経済的にみて、フラーレンは他のどの材料にも
まして、理想に近い炭素質系材料であると考えられる。Most of the above fullerenol and hydrogen sulfate esterified fullerenol are composed of carbon atoms of fullerenes, so that they are light in weight and difficult to be deteriorated.
It also contains no pollutants. Furthermore, the manufacturing cost of fullerenes is also rapidly decreasing. Therefore,
Environmentally and economically, fullerene is considered to be a carbonaceous material closer to the ideal than any other material.
【0056】さらに、フラーレン分子に、例えば上記−
OH、−OSO3H以外に−COOH、−SO3H、−O
PO(OH)2のいずれかを有するものでも使用可能で
ある。Further, the fullerene molecule may be, for example, the above-mentioned
OH, -COOH in addition to -OSO 3 H, -SO 3 H, -O
Those having any of PO (OH) 2 can also be used.
【0057】又、本実施の形態に使用可能な上記フラレ
ノール等を合成するには、フラーレン分子の粉末に対
し、例えば、酸処理や加水分解等の公知の処理を適宜組
み合わせて施すことにより、フラーレン分子の構成炭素
原子に所望の基を導入することができる。In order to synthesize the above-mentioned fullerenol which can be used in the present embodiment, the fullerene molecule powder is subjected to appropriate combination with known treatments such as acid treatment and hydrolysis. The desired groups can be introduced at the constituent carbon atoms of the molecule.
【0058】ここで、上記イオン伝導部を構成するイオ
ン伝導体として、上記フラーレン誘導体を用いた場合、
このイオン伝導体が実質的にフラーレン誘導体のみから
なるか、或いは結合剤によって結着されていることが好
ましい。Here, when the above fullerene derivative is used as the ionic conductor forming the above ionic conduction part,
It is preferable that the ionic conductor substantially consists of the fullerene derivative or is bound by a binder.
【0059】又、本実施の形態のガス拡散性電極におい
ては、各種の電気化学デバイスに好適に使用できる。す
なわち、第1極と、第2極と、これらの両極間に挟持さ
れたイオン伝導体とからなる基本的構造体において、上
記第1極及び上記第2極のうち少なくとも上記第1極
に、上記した本実施の形態のガス拡散性電極を適用する
ことができる。The gas diffusive electrode of this embodiment can be suitably used for various electrochemical devices. That is, in a basic structure consisting of a first pole, a second pole, and an ionic conductor sandwiched between these two poles, at least the first pole of the first pole and the second pole, The gas diffusion electrode of the present embodiment described above can be applied.
【0060】具体的には、第1極及び第2極の少なくと
も一方が、ガス電極である電気化学デバイスなどに対
し、本実施の形態のガス拡散性電極を好ましく適用する
ことが可能である。Specifically, the gas diffusion electrode of the present embodiment can be preferably applied to an electrochemical device in which at least one of the first electrode and the second electrode is a gas electrode.
【0061】以下、本実施の形態のガス拡散性電極と、
実質的に上記フラーレン誘導体からなるイオン伝導体と
を燃料電池に適用した例を図8を参照しつつ説明する。Hereinafter, the gas diffusion electrode of the present embodiment,
An example in which an ion conductor substantially made of the above fullerene derivative is applied to a fuel cell will be described with reference to FIG.
【0062】ここで、図8中の触媒層10は、上記した
白金ナノパーティクル、場合によっては、イオン伝導体
としてのフラーレン誘導体、造孔剤(CaCO3)との
混合物からなる混合層であり、本実施の形態のガス拡散
性電極は、上記触媒層10と、多孔性のガス透過性集電
体としての例えばカーボンシート11とからなる多孔性
のガス拡散性電極体である。又、本実施の形態のガス拡
散性電極体を用いた第1極(例えば酸素極)と、第2極
(例えば水素極)との間には、フラーレン誘導体を加圧成
形してなる(或いはナフィオンからなる)膜状のイオン
伝導部5が挟着されている。Here, the catalyst layer 10 in FIG. 8 is a mixed layer made of a mixture of the above-mentioned platinum nanoparticles, a fullerene derivative as an ionic conductor, and a pore-forming agent (CaCO 3 ) in some cases, The gas diffusive electrode of the present embodiment is a porous gas diffusive electrode body including the catalyst layer 10 and a carbon sheet 11 as a porous gas permeable current collector. In addition, a first electrode (for example, an oxygen electrode) and a second electrode using the gas diffusion electrode body of the present embodiment
A film-like ion conduction part 5 formed by press-molding a fullerene derivative (or made of Nafion) is sandwiched between (for example, a hydrogen electrode).
【0063】そして、この燃料電池は、図8に示すよう
に、互いに対向する、端子14及び15付きの本実施の
形態のガス拡散性電極を用いた負極(燃料電極又は水素
電極)16及び正極(酸素電極)17を有し、これらの
両電極間に上記フラーレン誘導体等からなるイオン伝導
部(プロトン伝導体膜)5が挟着されている。但し、本実
施の形態のガス拡散性電極は必ずしも負極に用いる必要
はない。そして、使用時には、負極16側ではH2流路
12中に水素が通され、燃料(H2)が流路12を通過
する間に水素イオンを発生し、この水素イオンは負極1
6で発生した水素イオン及びイオン伝導部(イオン交換
膜)5で発生した水素イオンと共に正極17側へ移動
し、そこでO2流路を通る酸素(又は空気)と反応し、
これにより所望の起電力が取り出される。As shown in FIG. 8, this fuel cell has a negative electrode (fuel electrode or hydrogen electrode) 16 and a positive electrode, which are opposed to each other and which use the gas diffusion electrode of the present embodiment with terminals 14 and 15. An (oxygen electrode) 17 is provided, and an ion conducting part (proton conductor film) 5 made of the above fullerene derivative or the like is sandwiched between these two electrodes. However, the gas diffusion electrode of the present embodiment does not necessarily have to be used as the negative electrode. During use, hydrogen is passed through the H 2 flow passage 12 on the side of the negative electrode 16 and hydrogen ions are generated while the fuel (H 2 ) passes through the flow passage 12, and the hydrogen ions are generated by the negative electrode 1.
The hydrogen ions generated in 6 and the hydrogen ions generated in the ion conduction part (ion exchange membrane) 5 move to the positive electrode 17 side, where they react with oxygen (or air) passing through the O 2 channel,
As a result, the desired electromotive force is extracted.
【0064】なお、かかる燃料電池は、上記本実施の形
態のガス拡散性電極が上記第1極及び/又は第2極を構
成しているので、良好な触媒作用を有しており、また上
記触媒とガス(H2など)との接触面積が十分に確保さ
れるので、反応に寄与する上記触媒の比表面積が大きく
なり、触媒能も向上して、良好な出力特性が得られる。In this fuel cell, since the gas diffusion electrode of the present embodiment constitutes the first pole and / or the second pole, it has a good catalytic action, and Since the contact area between the catalyst and the gas (H 2 etc.) is sufficiently secured, the specific surface area of the catalyst contributing to the reaction is increased, the catalytic ability is improved, and good output characteristics are obtained.
【0065】また、負極16中で水素イオンが解離し、
またイオン伝導部5で水素イオンが解離しつつ、これら
の水素イオンが正極17側へ移動するので、乾燥状態で
も水素イオンの伝導率が高いという特徴がある。従っ
て、加湿装置等は不必要となるので、システムの簡略
化、軽量化を図ることができ、更に電流密度及び出力特
性等、電極としての機能の向上を図ることができる。Further, hydrogen ions are dissociated in the negative electrode 16,
Further, since the hydrogen ions dissociate in the ion conducting portion 5 and move to the positive electrode 17 side, the conductivity of the hydrogen ions is high even in a dry state. Therefore, since the humidifier is not necessary, the system can be simplified and the weight can be reduced, and the function as an electrode such as current density and output characteristics can be improved.
【0066】なお、上記フラーレン誘導体を加圧成形し
て得られる膜状の上記フラーレン誘導体のみからなる
(上記第1極と、第2極とに挟持された)イオン伝導部
に代わり、結合剤によって結着されているフラーレン誘
導体をイオン伝導部5に用いてもよい。この場合、結合
剤によって結着されることによって、強度の十分なイオ
ン伝導部を形成できる。A binder is used instead of the ion-conducting portion (sandwiched between the first pole and the second pole) consisting only of the film-form fullerene derivative obtained by pressure-molding the fullerene derivative. The bound fullerene derivative may be used for the ion conducting part 5. In this case, the ion conductive portion having sufficient strength can be formed by binding with the binder.
【0067】ここで、上記結合剤として使用可能な高分
子材料としては、公知の成膜性を有するポリマーの1種
又は2種以上が用いられ、そのイオン伝導部中の配合量
は、通常、40重量%以下に抑えるのがよい。40重量
%を超えると、水素イオンの伝導性を低下させる恐れが
あるからである。Here, as the polymer material usable as the above-mentioned binder, one or more known polymers having a film-forming property are used, and the compounding amount thereof in the ion conducting part is usually It is better to keep it to 40% by weight or less. This is because if it exceeds 40% by weight, the conductivity of hydrogen ions may be reduced.
【0068】このような構成のイオン伝導部も、上記フ
ラーレン誘導体をイオン伝導体として含有するので、上
記した実質的にフラーレン誘導体のみからなるイオン伝
導体と同様の水素イオン伝導性を発揮することができ
る。Since the ionic conductor having such a constitution also contains the above-mentioned fullerene derivative as an ionic conductor, it can exhibit hydrogen ion conductivity similar to that of the above-mentioned ionic conductor substantially consisting of a fullerene derivative. it can.
【0069】しかも、フラーレン誘導体単独の場合と違
って高分子材料に由来する成膜性が付与されており、フ
ラーレン誘導体の粉末圧縮成形品に比べ、強度が大き
く、かつガス透過防止能を有する柔軟なイオン伝導性薄
膜(厚みは通常300μm以下)として用いることがで
きる。Further, unlike the case of the fullerene derivative alone, the film-forming property derived from the polymer material is imparted, and the strength is high and the gas permeation preventive ability is higher than that of the powder compression molded product of the fullerene derivative. It can be used as a thin ion conductive thin film (thickness is usually 300 μm or less).
【0070】なお、上記高分子材料としては、水素イオ
ンの伝導性をできるだけ阻害(フラーレン誘導体との反
応による)せず、成膜性を有するものなら、特に限定は
しない。通常は電子伝導性をもたず、良好な安定性を有
するものが用いられ、その具体例を挙げると、ポリフル
オロエチレン、ポリビニルアルコール等があり、これら
は次に述べる理由からも、好ましい高分子材料である。The polymer material is not particularly limited as long as it does not hinder the conductivity of hydrogen ions as much as possible (due to the reaction with the fullerene derivative) and has film-forming properties. Usually, those having no electron conductivity and having good stability are used, and specific examples thereof include polyfluoroethylene, polyvinyl alcohol, and the like, and these are also preferable polymers for the reason described below. It is a material.
【0071】まず、ポリテトラフルオロエチレンが好ま
しいのは、他の高分子材料に比べ、少量の配合量で強度
のより大きな薄膜を容易に成膜できるからである。この
場合の配合量は、3重量%以下、好ましくは0.5〜1.
5重量%と少量ですみ、薄膜の厚みは通常、100μm
から1μmまでと薄くできる。First, polytetrafluoroethylene is preferable because a thin film having higher strength can be easily formed with a smaller amount than other polymer materials. In this case, the compounding amount is 3% by weight or less, preferably 0.5 to 1.
Only a small amount of 5% by weight is required, and the thickness of the thin film is usually 100 μm
Can be made as thin as 1 to 1 μm.
【0072】又、ポリビニルアルコールが好ましいの
は、より優れたガス透過防止能を有するイオン伝導性薄
膜が得られるからである。この場合の配合量は5〜40
重量%の範囲とするのがよい。Polyvinyl alcohol is preferable because an ion conductive thin film having a better gas permeation preventing ability can be obtained. The compounding amount in this case is 5 to 40
It is preferable to set it in the range of% by weight.
【0073】なお、ポリフルオロエチレンにせよ、ポリ
ビニルアルコールにせよ、それらの配合量が上述したそ
れぞれの範囲の下限値を下回ると、成膜に悪影響を及ぼ
すことがある。If the compounding amount of polyfluoroethylene or polyvinyl alcohol is less than the lower limit value of each range described above, the film formation may be adversely affected.
【0074】本実施の形態の各フラーレン誘導体が結合
剤によって結着されてなるイオン伝導部の薄膜を得るに
は、加圧成形や押出し成形を始め、公知の成膜法を用い
ればよい。In order to obtain a thin film of the ion conductive part formed by binding each fullerene derivative of this embodiment with a binder, a known film forming method such as pressure molding or extrusion molding may be used.
【0075】また、本実施の形態の電気化学デバイスに
おいて、本実施の形態のガス拡散性電極に挟着されるイ
オン伝導体は、特に限定されるべきものではなく、イオ
ン(水素イオン)伝導性を有するものならばいずれのも
のも使用可能であり、例示するならば、水酸化フラーレ
ン、硫酸水素エステル化フラレノール及びナフィオン等
が挙げられる。また、上記結合剤をガス拡散性電極の撥
水性樹脂として使用可能である。Further, in the electrochemical device of this embodiment, the ion conductor sandwiched between the gas diffusible electrodes of this embodiment is not particularly limited, and it is ion (hydrogen ion) conductive. Any of those having a can be used, and examples thereof include hydroxylated fullerenes, hydrogen sulfate esterified fullerenol, and Nafion. Further, the above binder can be used as a water-repellent resin for the gas diffusion electrode.
【0076】次に、本実施の形態においては、下記のこ
とを考慮に入れても良い。Next, in the present embodiment, the following may be taken into consideration.
【0077】例えば、白金粒子(触媒)においては、所
定の効果が有れば、粒径、作成方法等は自由でよいし、
使用する金属も白金に限らず、イリジウム(Ir)、ロ
ジウム(Rh)、Au(金)など他の金属を用いてもよ
い。For example, in the case of platinum particles (catalyst), the particle size, the preparation method, etc. may be arbitrary as long as they have a predetermined effect.
The metal used is not limited to platinum, and other metals such as iridium (Ir), rhodium (Rh), Au (gold) may be used.
【0078】又、導電性高分子層(ポリアニリン:PA
NI)においては、所定の効果が有れば、白金粒子(触
媒)を被覆する厚さ、被覆方法、被覆する物質の種類及
び量等は自由でよい。Further, a conductive polymer layer (polyaniline: PA
In NI), the thickness of the platinum particles (catalyst) to be coated, the coating method, the type and amount of the substance to be coated, etc. may be arbitrary as long as they have a predetermined effect.
【0079】又、プロトン解離性の基又は物質において
は、所定の効果が有れば、ドープする量、方法、種類、
作成工程におけるドープするタイミング等は自由でよ
い。Further, in the case of a proton dissociative group or substance, if there is a predetermined effect, the amount, method, kind, etc. of doping,
The timing of doping in the forming process may be arbitrary.
【0080】又、水溶性高分子保護層(ポリビニルピロ
リドン:PVP)においては、所定の効果が有れば、導
電性高分子層(ポリアニリン:PANI)を被覆する厚
さ、被覆方法、被覆する物質の種類及び量等は自由でよ
い。Further, in the water-soluble polymer protective layer (polyvinylpyrrolidone: PVP), the thickness, coating method, and substance to be coated on the conductive polymer layer (polyaniline: PANI) have a predetermined effect. The type, amount, etc. of the may be arbitrary.
【0081】又、白金ナノパーティクルの製作工程にお
いては、所定の効果が有れば、工程の順番、制作方法、
使用する溶剤の種類、量及び装置の種類等は自由に変え
てもよい。In addition, in the manufacturing process of platinum nanoparticles, if there is a predetermined effect, the order of the process, the manufacturing method,
The type and amount of solvent used and the type of device may be freely changed.
【0082】又、ガス拡散性電極を形成する際に、所定
の効果が有れば、混合する白金ナノパーティクルの重量
%、混合方法、混合条件等は自由に変えてもよい。When the gas diffusive electrode is formed, the weight% of the platinum nanoparticles to be mixed, the mixing method, the mixing conditions, etc. may be freely changed as long as there is a predetermined effect.
【0083】又、本実施の形態における上記ガス拡散性
電極(触媒層)は、上述したように、白金ナノパーティ
クルのみからなるか、或いは白金ナノパーティクルの他
に、この白金ナノパーティクルを結着するための樹脂等
の他成分を含有していてもよく、後者の場合、上記他成
分としては、造孔剤(例えばCaCO3)及びイオン伝
導体等が挙げられる。更に、上記白金ナノパーティクル
を多孔性のガス透過性集電体(例えばカーボンシート)
上に保持させることが好ましい。Further, the gas diffusion electrode (catalyst layer) in the present embodiment is composed of only platinum nanoparticles as described above, or binds the platinum nanoparticles in addition to the platinum nanoparticles. Other components such as a resin may be contained, and in the latter case, the above-mentioned other components include a pore-forming agent (for example, CaCO 3 ) and an ionic conductor. Furthermore, the platinum nanoparticles are used as a porous gas-permeable current collector (for example, a carbon sheet).
It is preferable to hold it on top.
【0084】粒状触媒物質が導電性高分子物質で被覆さ
れた触媒粒子としているので、触媒物質と反応ガスとの
接触する有効表面積が増えて触媒反応が良好になると共
に、拡散性電極内においては触媒粒子自体の電子伝導性
が良好になって電極反応を向上させることができる。Since the granular catalyst substance is the catalyst particles coated with the conductive polymer substance, the effective surface area of contact between the catalyst substance and the reaction gas is increased to improve the catalytic reaction, and in the diffusible electrode, The electron conductivity of the catalyst particles themselves becomes good, and the electrode reaction can be improved.
【0085】又、粒状触媒物質の表面上に導電性高分子
物質が形成されていることにより、この高分子物質によ
り触媒粒子の形状保持性が向上し、かつ触媒粒子同士が
凝集してチェーン構造を構成し易くなり、電極内におい
て触媒層の保持と触媒反応及び電子伝導性が十分なもの
となる。Further, since the conductive polymer substance is formed on the surface of the granular catalyst substance, the polymer substance improves the shape retention of the catalyst particles, and the catalyst particles aggregate to form a chain structure. Is easily formed, and the retention of the catalyst layer in the electrode, the catalytic reaction, and the electron conductivity are sufficient.
【0086】又、多孔質化(ポーラス化)がなされるこ
とによって、触媒粒子との界面への活物質(反応ガス
等)の供給及び生成物(水等)の排出がスムーズにな
る。Further, by making it porous, the supply of the active material (reaction gas etc.) to the interface with the catalyst particles and the discharge of the product (water etc.) become smooth.
【0087】又、固体高分子電解質等が白金ナノパーテ
ィクルと共にガス拡散性電極内に含まれると、プロトン
伝導性が良好になる。Further, when the solid polymer electrolyte and the like are contained in the gas diffusible electrode together with the platinum nanoparticles, the proton conductivity is improved.
【0088】又、白金ナノパーティクルが凝集してチェ
ーン構造を形成し、ガス拡散性電極内の隅々にまで電子
伝導チャンネルが形成されることにより、電極内での電
子伝導性が良好になる。Further, the platinum nanoparticles aggregate to form a chain structure, and electron conduction channels are formed in every corner of the gas diffusible electrode, so that the electron conductivity in the electrode becomes good.
【0089】次に、導電性高分子物質と白金粒子との複
合化するプロセスにおいては、例えば導電性高分子物質
(PANI:ポリアニリン)と水溶性高分子物質(高分
子安定剤:PVP:ポリビニルピロリドン)とを共にポ
リマーの状態で1:2或いは2:1の比率で混合したも
のを用い、これと、白金粒子とを複合化させると、白金
ナノ微粒子の合成段階で白金粒子が沈降してしまう。Next, in the process of compounding the conductive polymer substance and the platinum particles, for example, the conductive polymer substance (PANI: polyaniline) and the water-soluble polymer substance (polymer stabilizer: PVP: polyvinylpyrrolidone) are used. ) Is used as a polymer in a ratio of 1: 2 or 2: 1 and is mixed with platinum particles, the platinum particles will precipitate during the step of synthesizing the platinum nanoparticles. .
【0090】又、白金ナノ微粒子と、導電性高分子物質
(PANI:ポリアニリン)のジメチルホルムアミド
(DMF)有機溶液とを混合すると、混合後すぐに白金
ナノ微粒子が沈降すると共に、高沸点特性を有するジメ
チルホルムアミド(DMF)によって問題が生じ、更に
ジメチルホルムアミド(DMF)によって導電性高分子
物質(PANI:ポリアニリン)が強力に溶解させられ
るために、細孔を生じにくくしてしまう。When platinum nanoparticles and an organic solution of a conductive polymer (PANI: polyaniline) in dimethylformamide (DMF) are mixed, the platinum nanoparticles precipitate immediately after mixing and have a high boiling point. Since dimethylformamide (DMF) causes a problem, and the conductive polymer substance (PANI: polyaniline) is strongly dissolved by dimethylformamide (DMF), pores are hardly formed.
【0091】しかし、本実施の形態で示したように、予
めPVPで被覆した白金ナノ微粒子の水分散液中でアニ
リンの酸化重合を行い、これによってPANIで被覆し
た触媒粒子を作成するときは、白金粒子と導電性高分子
層との複合化を再現性良く実現でき、かつ有機溶媒を使
用しないために、作成上の問題が少なくなり、比較的安
定した分散液が得られる。However, as shown in the present embodiment, when aniline is subjected to oxidative polymerization in an aqueous dispersion of platinum nanoparticles coated with PVP in advance to thereby prepare catalyst particles coated with PANI, A composite of platinum particles and a conductive polymer layer can be realized with good reproducibility, and since no organic solvent is used, problems in preparation are reduced and a relatively stable dispersion liquid can be obtained.
【0092】即ち、本実施の形態においては、乾燥が容
易であり、かつポーラス(多孔質性)でガス透過性に優
れた構造を構築することが容易な水溶性の溶媒を使用す
ることによって、乾燥が難しく、かつポーラス(多孔質
性)でガス透過性に優れた構造を構築することが困難な
有機溶媒(例えばジメチルホルムアミド溶液等)を使用
することなく、工程実施容易性(Processability)の低
い導電性高分子物質を重合により比較的容易に白金粒子
上にコーティング可能にし、難溶性の導電性高分子物質
と白金粒子とを複合化できる。That is, in the present embodiment, by using a water-soluble solvent that is easy to dry, and is easy to construct a porous (porous) structure excellent in gas permeability, Low process easiness (Processability) without using an organic solvent (such as dimethylformamide solution) that is difficult to dry and difficult to build a structure that is porous and has excellent gas permeability The conductive polymer substance can be coated on the platinum particles relatively easily by polymerization, and the sparingly soluble conductive polymer substance and the platinum particles can be composited.
【0093】又、ガス拡散性電極の作製の際に、導電性
高分子層(PANI)を被覆する水溶性高分子保護層
(PVP)が、白金ナノパーティクルを相互に結着させ
るバインダー(結着材)としての働きをするために、バ
インダーを別途混合する必要がない。そのために、白金
ナノパーティクルを含む水分散液をカーボンシート上に
塗布乾燥した後にプレス加工することによって、比較的
容易に触媒層を形成できるだけでなく、ガス拡散性電極
内の構成材料及び混合工程数等を比較的簡略化すること
ができる。Further, in the production of the gas diffusible electrode, the water-soluble polymer protective layer (PVP) covering the conductive polymer layer (PANI) binds the platinum nanoparticles to each other. There is no need to separately mix a binder to serve as a material. Therefore, not only a catalyst layer can be formed relatively easily by applying an aqueous dispersion containing platinum nanoparticles onto a carbon sheet, drying and then pressing, but also the constituent materials in the gas diffusion electrode and the number of mixing steps. Etc. can be relatively simplified.
【0094】又、白金ナノパーティクルに結晶性の導電
性高分子物質が被覆されると、白金ナノパーティクルの
構造保持に役立つと共にポーラス(多孔質性)にも寄与
する。Further, when the platinum nanoparticles are coated with a crystalline conductive polymer substance, it helps maintain the structure of the platinum nanoparticles and contributes to the porosity.
【0095】又、導電性高分子物質の導電性がプロトン
解離性の基又は物質のドープによってコントロールされ
るゆえに、過剰な電子の供給が押さえられ、かつプロト
ンのバッファー(緩衝手段)として機能する可能性もあ
る。Further, since the conductivity of the conductive polymer substance is controlled by the proton dissociative group or the doping of the substance, it is possible to suppress the supply of excess electrons and to function as a proton buffer. There is also a nature.
【0096】又、ガス拡散性電極内及び導電性高分子物
質が、プロトン解離性の基又は物質のドープ又は混合に
よってプロトンドープ体になるために、プロトンプール
として機能し、プロトンの輸送を促進する。Further, the gas diffusion electrode and the conductive polymer substance function as a proton-doped body by doping or mixing with a proton dissociative group or substance, so that they function as a proton pool and promote the transport of protons. .
【0097】又、プロトンがなくなり、伝導性がなくな
ると、過剰な酸化反応が押さえられて電極の長寿命化を
図ることができる。When the protons are lost and the conductivity is lost, the excessive oxidation reaction is suppressed and the life of the electrode can be extended.
【0098】又、ガス拡散性電極内に電子伝導性を付与
するに際して、チタン焼結体使用法や無電界メッキ法に
比べて容易かつ安価に実施できる。Further, the electron conductivity can be imparted to the gas diffusible electrode more easily and cheaply than the method using a titanium sintered body or the electroless plating method.
【0099】[0099]
【実施例】以下、実施例に基づいて本発明を具体的に説
明する。実施例1
白金ナノパーティクルの合成方法を図3に基づいて説明
する。まずバルーン、三方コック及び還流塔からなる1
l二口フラスコに、窒素気流下において、水溶ポリマー
であるポリビニルピロリドン(PVP:重量平均分子量
40000)を666mgと、塩化白金酸(H2PtC
l6)(分子量310.7mg:0.60mmol、P
t濃度117.0mg)及びエタノール/水(7/3
(v/v))混合溶液1.0lを加えた後、さらに10
分間窒素を液中にバブリングして完全に脱気した。EXAMPLES The present invention will be specifically described below based on examples. Example 1 A method for synthesizing platinum nanoparticles will be described with reference to FIG. First, it consists of a balloon, a three-way cock and a reflux tower 1
In a 1-necked two-necked flask, under a nitrogen stream, 666 mg of polyvinylpyrrolidone (PVP: weight average molecular weight 40000), which is a water-soluble polymer, and chloroplatinic acid (H 2 PtC).
l 6 ) (molecular weight 310.7 mg: 0.60 mmol, P
t concentration 117.0 mg) and ethanol / water (7/3
(V / v)) After adding 1.0 l of the mixed solution, another 10
Nitrogen was bubbled through the solution for a minute to completely degas.
【0100】次に、本水溶液を窒素下において穏やかに
加熱還流すると、1時間ほどで溶液が暗い灰色に変化し
た。さらに3時間還流した後、放冷することにより、白
金粒子2が水溶性高分子保護層(PVP)19で被覆さ
れた白金のナノパーティクル21の分散溶液を得た。そ
して、図5に示す透過型電子顕微鏡(TEM)による観
察から、粒径が4nmの白金ナノパーティクルであるこ
とを確認した。Next, when this aqueous solution was gently heated to reflux under nitrogen, the solution turned dark gray in about 1 hour. After further refluxing for 3 hours, the mixture was allowed to cool to obtain a dispersion solution of platinum nanoparticles 21 in which the platinum particles 2 were coated with the water-soluble polymer protective layer (PVP) 19. Then, from observation with a transmission electron microscope (TEM) shown in FIG. 5, it was confirmed that the particles were platinum nanoparticles having a particle size of 4 nm.
【0101】次に、上記の分散溶液から減圧によって溶
媒を留去し、残留物をプロトン伝導性促進のために1規
定の塩酸水溶液(200ml)に再分散した。これに、
10mlの1規定の塩酸水溶液に溶解したアニリン(4
44mg)を加え、その後に氷−食塩浴(ice-salt bat
h)にて−15℃に冷却した後、過硫酸アンモニウム
((NH4)2S2O8)、1.09g)を加えた。その
後、0℃に昇温させて12時間撹拌することによって、
酸化重合反応を行い、暗い緑色の分散溶液を得た。Next, the solvent was distilled off from the above dispersion solution under reduced pressure, and the residue was redispersed in a 1N aqueous hydrochloric acid solution (200 ml) to promote proton conductivity. to this,
Aniline dissolved in 10 ml of 1N aqueous hydrochloric acid solution (4
44 mg) was added, followed by an ice-salt bath (ice-salt bat).
After cooling to -15 ° C. at h), it was added ammonium persulfate ((NH 4) 2 S 2 O 8), 1.09g). Then, by raising the temperature to 0 ° C. and stirring for 12 hours,
An oxidative polymerization reaction was performed to obtain a dark green dispersion solution.
【0102】次に、この分散溶液を超遠心分離器にかけ
て微粒子を沈降させ、上澄みの溶液を除いた後、再度5
0mlの1規定の塩酸水溶液に分散した。そして、この
操作を再度繰り返した後に12時間放置することによっ
て、導電性のポリアニリンのフルドープ化(即ち、水溶
性高分子保護層19を通してポリアニリンが白金粒子2
上に被着すること)を行った。Next, this dispersion solution was subjected to an ultracentrifuge to precipitate fine particles, and the supernatant solution was removed.
It was dispersed in 0 ml of a 1N aqueous hydrochloric acid solution. Then, after repeating this operation again and leaving it for 12 hours, the conductive polyaniline is fully doped (that is, polyaniline passes through the water-soluble polymer protective layer 19 and the platinum particles 2
On top).
【0103】さらにこの分散溶液を超遠心分離器にか
け、微粒子を沈降させ、上澄みの溶液を除いた後、凍結
乾燥(凍結脱気)を行うことにより、白金ナノパーティ
クル1(白金粒子2上に−OH基導入の導電性高分子層
(ポリアニリン)18が被着され、更にこれを水溶性高
分子保護層(PVP)19が覆った粒子)からなる黒色
粉末1を0.51g得た。Further, this dispersion solution was subjected to an ultracentrifuge to precipitate fine particles, and after removing the supernatant solution, freeze-drying (freezing deaeration) was performed to obtain platinum nanoparticles 1 (on platinum particles 2- 0.51 g of black powder 1 was obtained, which consisted of particles coated with an OH group-introduced conductive polymer layer (polyaniline) 18 and further covered with a water-soluble polymer protective layer (PVP) 19.
【0104】この黒色粉末のX線回折(XRD:X-Ray Di
ffraction)スペクトルは、図6に示すように、白金の
ナノパーティクルに特徴的なパターン(d値:格子面間
隔(rel.int.:相対的強度)1.9494(5
8)、2.2425(100)、1.3803(4
4)、1.1787(48)を示した。そして、この黒
色粉末によってペレットを作成し、4端子法にて測定し
た際の電気抵抗は0.9S/cmであった。X-ray diffraction (XRD: X-Ray Di
As shown in FIG. 6, the ffraction) spectrum shows a pattern (d value: lattice spacing (rel.int .: relative intensity)) of the platinum nanoparticles of 1.9494 (5).
8) 2.2425 (100), 1.3803 (4
4) and 1.1787 (48). Then, a pellet was prepared from this black powder, and the electrical resistance when measured by the 4-terminal method was 0.9 S / cm.
【0105】なお、本実施例において、白金粒子2の粒
径は約4nmであり、白金粒子の融着による粒径の増大
は生じていないことがわかった(但し、TEMでは有機
層は観察できない:以下、同様)。In this Example, the particle size of the platinum particles 2 was about 4 nm, and it was found that the particle size did not increase due to the fusion of the platinum particles (however, the organic layer cannot be observed by TEM. : Below, the same).
【0106】実施例2
1規定の塩酸のかわりに、導電性ポリアニリンに−SO
3H基を導入するために、0.5モルのドデシルベンゼ
ンスルホン酸を用いた系に変更した以外は実施例1と同
様にした。 Example 2 Instead of 1N hydrochloric acid, conductive polyaniline was replaced with -SO.
Example 1 was repeated except that the system was changed to use 0.5 mol of dodecylbenzenesulfonic acid in order to introduce the 3 H group.
【0107】この実施例によって得られた白金ナノパー
ティクルの透過型電子顕微鏡(TEM)写真を図7に示
すが、この白金粒子の粒径は約4nmであり、白金粒子
の融着による粒径の増大は生じていないことがわかっ
た。A transmission electron microscope (TEM) photograph of the platinum nanoparticles obtained in this example is shown in FIG. 7. The particle size of the platinum particles is about 4 nm, and the particle size of the platinum particles due to fusion bonding It was found that no increase had occurred.
【0108】また、この白金粒子より得られた上述と同
様の黒色粉末のX線回折(XRD)スペクトルは、白金
ナノパーティクルに特徴的な上記と同様のパターンを示
した。そして、これによってペレットを作成し、4端子
法にて測定した際の電気抵抗は1.1S/cmであっ
た。The X-ray diffraction (XRD) spectrum of the same black powder obtained from the platinum particles showed the same pattern as the above, which is characteristic of platinum nanoparticles. Then, a pellet was prepared by this, and the electrical resistance when measured by the 4-terminal method was 1.1 S / cm.
【0109】実施例3
本実施例においては、実施例1及び2でそれぞれ得られ
た白金ナノパーティクルを10mg/cm2混合させた
ガス拡散性電極(触媒層)をそれぞれ形成し、これを酸
素電極として用いる一方、この酸素電極と同様に構成し
た燃料電極を有する燃料電池を作製した。そして、この
燃料電池の連続運転時における出力特性を下記の要領で
測定した。 Example 3 In this example, gas diffusible electrodes (catalyst layers) were formed by mixing the platinum nanoparticles obtained in Examples 1 and 2 with 10 mg / cm 2 respectively, and this was formed into an oxygen electrode. On the other hand, a fuel cell having a fuel electrode configured in the same manner as this oxygen electrode was manufactured. Then, the output characteristics of the fuel cell during continuous operation were measured in the following manner.
【0110】ただし、酸素電極を形成するには、白金ナ
ノパーティクルの5重量%エタノール溶液にカーボンシ
ートを浸漬した後、ホットプレート上で乾燥することに
より、白金担持カーボン電極を得た。However, in order to form an oxygen electrode, a carbon sheet was immersed in a 5 wt% ethanol solution of platinum nanoparticles and then dried on a hot plate to obtain a platinum-supporting carbon electrode.
【0111】そして、上記の工程によって得られたガス
拡散性電極を、ナフィオンからなるイオン交換膜(プロ
トン伝導部)(以下、同様)と集電電極との間に設置
し、燃料電池セルに水素ガス、酸素ガスを導入すること
により、燃料電池の出力を測定した。即ち、この測定
は、燃料電極に水素ガスを、酸素電極に空気を、それぞ
れ流通させる条件下で行った。Then, the gas diffusible electrode obtained by the above steps is installed between the ion exchange membrane (proton conducting part) made of Nafion (hereinafter, the same) and the current collecting electrode, and hydrogen is put in the fuel cell. The output of the fuel cell was measured by introducing gas and oxygen gas. That is, this measurement was performed under the condition that hydrogen gas was passed through the fuel electrode and air was passed through the oxygen electrode.
【0112】この結果、実施例3のガス拡散性電極の出
力は、実施例1の白金ナノパーティクル使用の場合には
0.57V、実施例2の白金ナノパーティクル使用の場
合には0.95Vになり、いずれも良好な出力特性を示
した(前者の低起電圧は塩素イオンの影響である)。As a result, the output of the gas diffusion electrode of Example 3 was 0.57 V when the platinum nanoparticles of Example 1 were used, and 0.95 V when the platinum nanoparticles of Example 2 were used. All of them showed good output characteristics (the former low electromotive voltage is an effect of chlorine ion).
【0113】以上、本発明の実施の形態及び実施例を説
明したが、これらは本発明の技術的思想に基いて更に変
形が可能である。Although the embodiments and examples of the present invention have been described above, these can be further modified based on the technical idea of the present invention.
【0114】例えば、導電性高分子層(PANI)及び
水溶性高分子保護層(PVP)においては、触媒物質を
完全に覆う状態だけでなく、所定の効果があれば、一部
を覆う状態であってもよい。For example, the conductive polymer layer (PANI) and the water-soluble polymer protective layer (PVP) are not only completely covered with the catalytic substance, but also partially covered with a predetermined effect. It may be.
【0115】又、導電性高分子層にプロトン解離性の基
又は物質をドープしないで白金ナノパーティクルを作製
し、この白金ナノパーティクルを用いてガス拡散性電極
体を作製するに際して、白金ナノパーティクルに加えて
プロトン伝導性を付与する物質(例えばナフィオン)等
を混合させてガス拡散性電極内に、プロトン伝導性を付
与してもよい。When platinum nanoparticles are prepared without doping the conductive polymer layer with a proton-dissociative group or substance, and the platinum nanoparticles are used to prepare a gas-diffusing electrode body, In addition, a substance that imparts proton conductivity (for example, Nafion) or the like may be mixed to impart proton conductivity to the gas diffusible electrode.
【0116】又、水溶性高分子保護層(PVP)がバイ
ンダー機能を持つために、これがガス拡散性電極内にお
いて、同様なバインダー機能を有するテフロン(登録商
標)(PTFE)粒子等と混合させなくてもよいが、混
合してもよい場合がある。水溶性高分子保護層(PV
P)はあえて設けなくてもよい場合も考えられる。Further, since the water-soluble polymer protective layer (PVP) has a binder function, it should not be mixed with Teflon (registered trademark) (PTFE) particles or the like having a similar binder function in the gas diffusion electrode. However, it may be mixed in some cases. Water-soluble polymer protective layer (PV
In some cases, it is not necessary to provide P).
【0117】また、上記の電気化学デバイスは、H2等
の分解によるプロトン発生に適用したが、反応を逆にす
ることによって、例えば、H2やH2O2の製造に適応さ
せることもできる。Further, although the above electrochemical device is applied to the generation of protons by decomposition of H 2 etc., it can be adapted to the production of H 2 or H 2 O 2 by reversing the reaction. .
【0118】[0118]
【発明の作用効果】本発明によれば、粒状触媒物質が導
電性高分子物質で被覆された触媒粒子としているので、
触媒物質と反応ガスとの接触する有効表面積が増えて触
媒反応が良好になると共に、拡散性電極内においては触
媒粒子自体の電子伝導性が良好になって電極反応を向上
させることができる。According to the present invention, since the granular catalyst substance is the catalyst particles coated with the conductive polymer substance,
The effective surface area of contact between the catalyst substance and the reaction gas is increased to improve the catalytic reaction, and in the diffusible electrode, the electron conductivity of the catalyst particles themselves is improved to improve the electrode reaction.
【0119】又、粒状触媒物質の表面上に導電性高分子
物質が形成されていることにより、この高分子物質によ
り触媒粒子の形状保持性が向上し、かつ触媒粒子同士が
凝集してチェーン構造を構成し易くなり、電極内におい
て触媒層の保持性と触媒反応及び電子伝導性が十分なも
のとなる。Since the conductive polymer substance is formed on the surface of the granular catalyst substance, the polymer substance improves the shape retention of the catalyst particles, and the catalyst particles are aggregated to form a chain structure. Is easily formed, and the retention of the catalyst layer, the catalytic reaction, and the electron conductivity are sufficient in the electrode.
【図1】本発明の実施の形態における白金ナノパーティ
クルの拡大断面図である。FIG. 1 is an enlarged cross-sectional view of platinum nanoparticles according to an embodiment of the present invention.
【図2】同、ガス拡散性電極の部分拡大図である。FIG. 2 is a partially enlarged view of the gas diffusing electrode.
【図3】同、白金ナノパーティクルの作成工程を表した
図である。FIG. 3 is a diagram showing a process of producing platinum nanoparticles in the same.
【図4】同、ポリアニリン及びポリビニルピロリドンの
分子構造を示す図である。FIG. 4 is a diagram showing the molecular structures of polyaniline and polyvinylpyrrolidone.
【図5】本発明の実施例で得られた白金ナノパーティク
ルの透過型電子顕微鏡写真図である。FIG. 5 is a transmission electron micrograph of platinum nanoparticles obtained in an example of the present invention.
【図6】同、X線回折による白金の格子面間隔及び相対
的強度を示す図である。FIG. 6 is a diagram showing a lattice plane spacing and relative intensity of platinum by X-ray diffraction.
【図7】本発明の他の実施例で得られた白金ナノパーテ
ィクルの透過型電子顕微鏡写真図である。FIG. 7 is a transmission electron micrograph of platinum nanoparticles obtained in another example of the present invention.
【図8】同、燃料電池の概略構成図である。FIG. 8 is a schematic configuration diagram of the fuel cell.
【図9】同、使用可能なフラーレン誘導体の一例である
ポリ水酸化フラーレンの構造図である。FIG. 9 is a structural diagram of polyhydroxylated fullerene, which is an example of a usable fullerene derivative.
【図10】同、フラーレン誘導体の例を示す模式図であ
る。FIG. 10 is a schematic diagram showing an example of the same fullerene derivative.
【図11】従来例におけるガス拡散性電極の部分拡大図
である。FIG. 11 is a partially enlarged view of a gas diffusion electrode in a conventional example.
【図12】同、ガス拡散性電極の部分拡大図である。FIG. 12 is a partially enlarged view of the gas diffusion electrode.
【図13】同、ガス拡散性電極の部分拡大図である。FIG. 13 is a partially enlarged view of the gas diffusing electrode of the same.
【図14】同、ガス拡散性電極の部分拡大図である。FIG. 14 is a partially enlarged view of the gas diffusing electrode.
【図15】同、ガス拡散性電極の部分拡大図である。FIG. 15 is a partially enlarged view of the gas diffusing electrode.
1…白金ナノパーティクル、2…白金粒子(触媒)、4
…負荷、
5…イオン伝導部(プロトン伝導体膜)、7…燃料側、
8…空気側
9…グラファイト、10…ガス拡散性電極(触媒層)、
11…ガス透過性集電体(カーボンシート)、12…H
2流路、13…O2流路
14、15…端子、16…負極、17…正極、18…導
電性高分子層
19…水溶性高分子保護層、20…細孔、21…白金ナ
ノ微粒子1 ... Platinum nanoparticles, 2 ... Platinum particles (catalyst), 4
... load, 5 ... ionic conduction part (proton conductor membrane), 7 ... fuel side,
8 ... Air side 9 ... Graphite, 10 ... Gas diffusion electrode (catalyst layer), 11 ... Gas permeable current collector (carbon sheet), 12 ... H
2 channel, 13 ... O 2 channel 14, 15 ... Terminal, 16 ... Negative electrode, 17 ... Positive electrode, 18 ... Conductive polymer layer 19 ... Water-soluble polymer protective layer, 20 ... Pore, 21 ... Platinum nanoparticles
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA08 BA22B BC75B CC32 EB18Y EE01 FB03 5H018 AA06 AS01 BB08 BB16 CC06 DD01 DD08 EE03 EE17 EE18 HH01 5H026 AA06 BB04 BB08 BB10 CC01 CC03 CX01 CX05 CX07 EE02 EE18 EE19 HH01 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4G069 AA02 AA08 BA22B BC75B CC32 EB18Y EE01 FB03 5H018 AA06 AS01 BB08 BB16 CC06 DD01 DD08 EE03 EE17 EE18 HH01 5H026 AA06 BB04 BB08 BB10 CC01 CC03 CX01 CX05 CX07 EE02 EE18 EE19 HH01
Claims (43)
面上に形成された導電性高分子物質とからなる触媒粒
子。1. Catalyst particles comprising a granular catalyst substance and a conductive polymer substance formed on the surface of the granular catalyst substance.
が付与されている、請求項1に記載の触媒粒子。2. The catalyst particles according to claim 1, wherein the conductive polymer substance is provided with proton conductivity.
高分子物質が更に高分子保護層によって被覆されてい
る、請求項1に記載の触媒粒子。3. The catalyst particles according to claim 1, wherein the conductive polymer substance coating the granular catalyst substance is further coated with a polymer protective layer.
請求項1に記載の触媒粒子。4. The size is 0.1 to 1000 nm,
The catalyst particles according to claim 1.
らなる、請求項1に記載の触媒粒子。5. The catalyst particles according to claim 1, wherein the granular catalytic material comprises platinum powder or granules.
ある、請求項1に記載の触媒粒子。6. The catalyst particles according to claim 1, wherein the conductive polymer substance is polyaniline.
って、前記導電性高分子物質にプロトン伝導性が付与さ
れている、請求項2に記載の触媒粒子。7. The catalyst particles according to claim 2, wherein the conductive polymer substance is provided with proton conductivity by introducing a proton dissociative group or substance.
H、−OSO3H、−SO3H、−COOH、−OPO
(OH)2、HCl及びH2SO4等のブレンステズ酸か
らなる群より選ばれる、請求項7に記載の触媒粒子。8. The proton dissociative group or substance is —O.
H, -OSO 3 H, -SO 3 H, -COOH, -OPO
The catalyst particles according to claim 7, which are selected from the group consisting of (OH) 2 , HCl and Brensted acid such as H 2 SO 4 .
ンからなる、請求項3に記載の触媒粒子。9. The catalyst particles according to claim 3, wherein the polymer protective layer comprises ponivinylpyrrolidone.
求項1に記載の触媒粒子。10. The catalyst particles according to claim 1, which aggregate to form a chain structure.
散液を調製する工程と、 前記化合物を分解させる反応を行う工程と、 これによって生成した粒状触媒物質と、導電性高分子物
質の構成単量体とを含む第2の分散液を調製する工程
と、 この分散液中での重合反応によって、前記粒状触媒物質
を被覆する前記導電性高分子物質を生成する工程とを有
する、触媒粒子の製造方法。11. A method of preparing a first dispersion liquid of a compound which becomes a granular catalyst substance, a step of performing a reaction for decomposing the compound, a granular catalyst substance generated thereby, and a constitution of a conductive polymer substance. Catalyst particles comprising a step of preparing a second dispersion liquid containing a monomer, and a step of producing the conductive polymer substance coating the granular catalyst substance by a polymerization reaction in the dispersion liquid. Manufacturing method.
分散液を使用する、請求項11に記載の触媒粒子の製造
方法。12. The method for producing catalyst particles according to claim 11, wherein an aqueous dispersion is used as the first and second dispersions.
体を含む前記第2の分散液に、プロトン伝導性を付与す
る物質を添加する、請求項11に記載の触媒粒子の製造
方法。13. The method for producing catalyst particles according to claim 11, wherein a substance imparting proton conductivity is added to the second dispersion liquid containing the constituent monomer of the conductive polymer substance.
体に、プロトン解離性の基をプロトン伝導性付与のため
に導入しておく、請求項11に記載の触媒粒子の製造方
法。14. The method for producing catalyst particles according to claim 11, wherein a proton dissociative group is introduced into the constituent monomer of the conductive polymer substance in order to impart proton conductivity.
子物質の保護層となる高分子物質を添加する、請求項1
1に記載の触媒粒子の製造方法。15. A polymer substance which becomes a protective layer of the conductive polymer substance is added to the first dispersion liquid.
1. The method for producing catalyst particles according to 1.
記粒状触媒物質を生成した後、この粒状触媒物質を含む
前記第2の分散液中で前記重合反応を行い、前記粒状触
媒物質が前記導電性高分子物質で覆われかつこの導電性
高分子物質が前記高分子物質の保護層で覆われてなる前
記触媒粒子を生成する、請求項15に記載の触媒粒子の
製造方法。16. The method of producing the granular catalytic material covered with the protective layer of polymeric material and then performing the polymerization reaction in the second dispersion liquid containing the granular catalytic material, wherein the granular catalytic material is The method for producing catalyst particles according to claim 15, wherein the catalyst particles are formed by being covered with the conductive polymer substance and the conductive polymer substance being covered with a protective layer of the polymer substance.
粒状触媒粒子を得る、請求項11に記載の触媒粒子の製
造方法。17. The method for producing catalyst particles according to claim 11, wherein the granular catalyst particles having a size of 0.1 to 1000 nm are obtained.
粒体を使用する、請求項11に記載の触媒粒子の製造方
法。18. The method for producing catalyst particles according to claim 11, wherein platinum powder or particles are used as the granular catalyst material.
とする、請求項11に記載の触媒粒子の製造方法。19. The method for producing catalyst particles according to claim 11, wherein the conductive polymer substance is polyaniline.
O3H、−SO3H、−COOH、−OPO(OH)2、
HCl及びH2SO4等のブレンステズ酸からなる群より
選ばれたプロトン解離性の基又は物質によって付与す
る、請求項13又は14に記載の触媒粒子の製造方法。20. The proton conductivity is --OH, --OS.
O 3 H, -SO 3 H, -COOH, -OPO (OH) 2,
The method for producing catalyst particles according to claim 13 or 14, wherein the addition is carried out by a proton-dissociative group or substance selected from the group consisting of Bronsted's acid such as HCl and H 2 SO 4 .
リドンを使用する、請求項15に記載の触媒粒子の製造
方法。21. The method for producing catalyst particles according to claim 15, wherein ponivinylpyrrolidone is used as the polymer substance.
表面上に形成された導電性高分子物質とかなる触媒粒子
を具備するガス拡散性電極体。22. A gas diffusive electrode body comprising a catalyst particle comprising a granular catalyst material and a conductive polymer material formed on the surface of the granular catalyst material.
性が付与されている、請求項22に記載のガス拡散性電
極体。23. The gas-diffusing electrode body according to claim 22, wherein the conductive polymer substance is provided with proton conductivity.
高分子物質が更に高分子保護層によって被膜されてい
る、請求項22に記載のガス拡散性電極体。24. The gas-diffusing electrode body according to claim 22, wherein the conductive polymer substance coating the granular catalyst substance is further coated with a polymer protective layer.
00nmである、請求項22に記載のガス拡散性電極
体。25. The catalyst particles have a size of 0.1-10.
The gas-diffusing electrode body according to claim 22, which is 00 nm.
からなる、請求項22に記載のガス拡散性電極体。26. The gas-diffusing electrode body according to claim 22, wherein the granular catalyst substance is platinum powder or granules.
である、請求項22に記載のガス拡散性電極体。27. The gas-diffusing electrode body according to claim 22, wherein the conductive polymer substance is polyaniline.
よって、前記導電性高分子物質にプロトン伝導性が付与
されている、請求項23に記載のガス拡散性電極体。28. The gas-diffusing electrode body according to claim 23, wherein the conductive polymer substance is provided with proton conductivity by introducing a proton-dissociative group or substance.
OH、−OSO3H、−SO3H、−COOH、−OPO
(OH)2、HCl及びH2SO4等のブレンステズ酸か
らなる群より選ばれる、請求項28に記載のガス拡散性
電極体。29. The proton dissociative group or substance is
OH, -OSO 3 H, -SO 3 H, -COOH, -OPO
29. The gas-diffusing electrode body according to claim 28, which is selected from the group consisting of (OH) 2 , HCl and Brensted acid such as H 2 SO 4 .
ドンからなる、請求項24に記載のガス拡散性電極体。30. The gas-diffusing electrode body according to claim 24, wherein the polymer protective layer is made of polyvinylpyrrolidone.
を構成する、請求項22に記載のガス拡散性電極体。31. The gas-diffusing electrode body according to claim 22, wherein the catalyst particles aggregate to form a chain structure.
に挟持されたイオン伝導体とからなり、粒状触媒物質
と、この粒状触媒物質の表面上に形成された導電性高分
子物質とからなる触媒粒子が、前記第一極及び第二極の
うち少なくとも前記第一極を構成している電気化学デバ
イス。32. A granular catalyst material comprising a first electrode, a second electrode, and an ionic conductor sandwiched between these electrodes, and a conductive polymer formed on the surface of the granular catalyst material. An electrochemical device in which catalyst particles composed of a substance constitute at least the first pole of the first pole and the second pole.
性が付与されている、請求項32に記載の電気化学デバ
イス。33. The electrochemical device according to claim 32, wherein the conductive polymer substance is provided with proton conductivity.
性高分子物質が更に高分子保護層によって被膜されてい
る、請求項32に記載の電気化学デバイス。34. The electrochemical device according to claim 32, wherein the conductive polymeric material coating the particulate catalytic material is further coated with a polymeric protective layer.
00nmである、請求項32に記載の電気化学デバイ
ス。35. The catalyst particles have a size of 0.1 to 10.
33. The electrochemical device according to claim 32, which is 00 nm.
からなる、請求項32に記載の電気化学デバイス。36. The electrochemical device of claim 32, wherein the particulate catalytic material comprises platinum powder or granules.
である、請求項32に記載の電気化学デバイス。37. The electrochemical device according to claim 32, wherein the conductive polymer substance is polyaniline.
よって、前記導電性高分子物質にプロトン伝導性が付与
されている、請求項33に記載の電気化学デバイス。38. The electrochemical device according to claim 33, wherein proton conductivity is imparted to the conductive polymer substance by introducing a proton dissociative group or substance.
OH、−OSO3H、−SO3H、−COOH、−OPO
(OH)2、HCl及びH2SO4等のブレンステズ酸か
らなる群より選ばれる、請求項38に記載の電気化学デ
バイス。39. The proton dissociative group or substance is-
OH, -OSO 3 H, -SO 3 H, -COOH, -OPO
(OH) 2, is selected from the group consisting of Burensutezu acids such as HCl and H 2 SO 4, the electrochemical device according to claim 38.
ドンからなる、請求項34に記載の電気化学デバイス。40. The electrochemical device according to claim 34, wherein the polymer protective layer comprises polyvinylipyrrolidone.
を構成する、請求項32に記載の電気化学デバイス。41. The electrochemical device according to claim 32, wherein the catalyst particles aggregate to form a chain structure.
方がガス電極である、請求項32に記載の電気化学デバ
イス。42. The electrochemical device according to claim 32, wherein at least one of the first electrode and the second electrode is a gas electrode.
項32に記載の電気化学デバイス。43. The electrochemical device according to claim 32, configured as a fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002087783A JP2003282078A (en) | 2002-03-27 | 2002-03-27 | Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002087783A JP2003282078A (en) | 2002-03-27 | 2002-03-27 | Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003282078A true JP2003282078A (en) | 2003-10-03 |
Family
ID=29233849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002087783A Pending JP2003282078A (en) | 2002-03-27 | 2002-03-27 | Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003282078A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004075331A1 (en) * | 2003-02-18 | 2004-09-02 | Nec Corporation | Fuel cell and method for manufacturing same |
KR100520439B1 (en) * | 2003-11-18 | 2005-10-11 | 광주과학기술원 | Pt-based Alloy Catalyst for Use of Direct Formic Acid Fuel Cell |
JP2006114229A (en) * | 2004-10-12 | 2006-04-27 | Konica Minolta Holdings Inc | Electrode for fuel cell, the fuel cell using it, and manufacturing method of electrode catalyst for the fuel cell |
WO2006059485A1 (en) * | 2004-12-01 | 2006-06-08 | Konica Minolta Holdings, Inc. | Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell |
WO2006090603A1 (en) * | 2005-02-25 | 2006-08-31 | Konica Minolta Holdings, Inc. | Electrode for fuel cell, process for producing the same, and fuel cell |
JP2006310002A (en) * | 2005-04-27 | 2006-11-09 | Asahi Kasei Corp | Fuel cell electrode catalyst and method for producing the same |
JP2007066750A (en) * | 2005-08-31 | 2007-03-15 | Toyota Motor Corp | Gas diffuser for fuel cell, separator for fuel cell, and fuel cell |
WO2007046239A1 (en) * | 2005-10-17 | 2007-04-26 | Kaneka Corporation | Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell |
JP2008517865A (en) * | 2004-10-27 | 2008-05-29 | アクタ ソシエタ ペル アチオニ | Use of nanostructured metal catalysts for the preparation of syngas and hydrogen-rich gas mixtures |
KR100836659B1 (en) | 2006-07-06 | 2008-06-10 | 삼성전기주식회사 | Method for producing metal and metal oxide nanoparticles |
WO2008069330A1 (en) * | 2006-12-05 | 2008-06-12 | Toyota Jidosha Kabushiki Kaisha | Fuel cell electrode manufacturing method |
WO2008096887A1 (en) | 2007-02-06 | 2008-08-14 | Toyota Jidosha Kabushiki Kaisha | Membrane-electrode assembly and fuel cell comprising the same |
US7662505B2 (en) | 2002-10-31 | 2010-02-16 | Panasonic Corporation | Porous electrode, and electrochemical element made using the same |
US7795335B2 (en) | 2003-01-28 | 2010-09-14 | Toppan Forms Co., Ltd. | Conductive polymer gel and process for producing the same actuator, patch label for ion introduction, bioeletrode, toner, conductive functional member antistatic sheet, printed circuit member, conductive paste, electrode for fuel cell, and fuel cell |
JP2010244784A (en) * | 2009-04-03 | 2010-10-28 | Toyota Motor Corp | Fuel cell |
JP2013201015A (en) * | 2012-03-23 | 2013-10-03 | Dainippon Printing Co Ltd | Conductive porous layer for battery and method for manufacturing the same |
JP2017084475A (en) * | 2015-10-23 | 2017-05-18 | 積水化学工業株式会社 | Electrode material and electrode |
KR20230060989A (en) * | 2021-10-28 | 2023-05-08 | 한국화학연구원 | Nanoparticles for a solid oxide fuel cell and an electrode for a solid oxide fuel cell comprising the same |
-
2002
- 2002-03-27 JP JP2002087783A patent/JP2003282078A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7662505B2 (en) | 2002-10-31 | 2010-02-16 | Panasonic Corporation | Porous electrode, and electrochemical element made using the same |
US7795335B2 (en) | 2003-01-28 | 2010-09-14 | Toppan Forms Co., Ltd. | Conductive polymer gel and process for producing the same actuator, patch label for ion introduction, bioeletrode, toner, conductive functional member antistatic sheet, printed circuit member, conductive paste, electrode for fuel cell, and fuel cell |
US7410720B2 (en) | 2003-02-18 | 2008-08-12 | Nec Corporation | Fuel cell and method for manufacturing the same |
WO2004075331A1 (en) * | 2003-02-18 | 2004-09-02 | Nec Corporation | Fuel cell and method for manufacturing same |
KR100520439B1 (en) * | 2003-11-18 | 2005-10-11 | 광주과학기술원 | Pt-based Alloy Catalyst for Use of Direct Formic Acid Fuel Cell |
JP2006114229A (en) * | 2004-10-12 | 2006-04-27 | Konica Minolta Holdings Inc | Electrode for fuel cell, the fuel cell using it, and manufacturing method of electrode catalyst for the fuel cell |
JP2008517865A (en) * | 2004-10-27 | 2008-05-29 | アクタ ソシエタ ペル アチオニ | Use of nanostructured metal catalysts for the preparation of syngas and hydrogen-rich gas mixtures |
WO2006059485A1 (en) * | 2004-12-01 | 2006-06-08 | Konica Minolta Holdings, Inc. | Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell |
JP5066916B2 (en) * | 2004-12-01 | 2012-11-07 | コニカミノルタホールディングス株式会社 | Fuel cell electrode catalyst, fuel cell electrode and fuel cell |
JPWO2006059485A1 (en) * | 2004-12-01 | 2008-06-05 | コニカミノルタホールディングス株式会社 | Fuel cell electrode catalyst, fuel cell electrode and fuel cell |
US7666809B2 (en) | 2004-12-01 | 2010-02-23 | Konica Minolta Holdings, Inc. | Electrode catalyst for fuel cell, electrode for fuel cell, and fuel cell |
WO2006090603A1 (en) * | 2005-02-25 | 2006-08-31 | Konica Minolta Holdings, Inc. | Electrode for fuel cell, process for producing the same, and fuel cell |
JP2006310002A (en) * | 2005-04-27 | 2006-11-09 | Asahi Kasei Corp | Fuel cell electrode catalyst and method for producing the same |
JP2007066750A (en) * | 2005-08-31 | 2007-03-15 | Toyota Motor Corp | Gas diffuser for fuel cell, separator for fuel cell, and fuel cell |
WO2007046239A1 (en) * | 2005-10-17 | 2007-04-26 | Kaneka Corporation | Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell |
KR100836659B1 (en) | 2006-07-06 | 2008-06-10 | 삼성전기주식회사 | Method for producing metal and metal oxide nanoparticles |
WO2008069330A1 (en) * | 2006-12-05 | 2008-06-12 | Toyota Jidosha Kabushiki Kaisha | Fuel cell electrode manufacturing method |
WO2008096887A1 (en) | 2007-02-06 | 2008-08-14 | Toyota Jidosha Kabushiki Kaisha | Membrane-electrode assembly and fuel cell comprising the same |
US8263285B2 (en) | 2007-02-06 | 2012-09-11 | Toyota Jidosha Kabushiki Kaisha | Membrane-electrode assembly and fuel cell having the same |
JP2010244784A (en) * | 2009-04-03 | 2010-10-28 | Toyota Motor Corp | Fuel cell |
JP2013201015A (en) * | 2012-03-23 | 2013-10-03 | Dainippon Printing Co Ltd | Conductive porous layer for battery and method for manufacturing the same |
JP2017084475A (en) * | 2015-10-23 | 2017-05-18 | 積水化学工業株式会社 | Electrode material and electrode |
KR20230060989A (en) * | 2021-10-28 | 2023-05-08 | 한국화학연구원 | Nanoparticles for a solid oxide fuel cell and an electrode for a solid oxide fuel cell comprising the same |
KR102781808B1 (en) * | 2021-10-28 | 2025-03-18 | 한국화학연구원 | Nanoparticles for a solid oxide fuel cell and an electrode for a solid oxide fuel cell comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5580990B2 (en) | Platinum and platinum-based alloy nanotubes used as electrocatalysts for fuel cells | |
CN104716348B (en) | A kind of Nanofiber Network structure electrode and its preparation method and application | |
JP2003282078A (en) | Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device | |
CN104716333B (en) | Ordered gas diffusion electrode, and production method and application thereof | |
EP3734728A1 (en) | Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell | |
JP2007250274A (en) | Fuel cell electrode catalyst with improved precious metal utilization efficiency, method for producing the same, and polymer electrolyte fuel cell having the same | |
JP2006114502A (en) | POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME | |
WO2009001992A1 (en) | Process for preparing of a catalyst solution for fuel cell and a membrane electrode assembly using the same | |
CN1913206A (en) | Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same | |
CN1905254A (en) | Electrode for fuel cell, membrane-electrode assembly and fuel cell system | |
CN103515621A (en) | Supporter for fuel cell, electrode for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system | |
Tan et al. | High-performance polymer fiber membrane based direct methanol fuel cell system with non-platinum catalysts | |
Wang et al. | Carboxylated carbonized polyaniline nanofibers as Pt-catalyst conducting support for proton exchange membrane fuel cell | |
CN106890676A (en) | A kind of porous electro-catalysis membrane and its preparation and application | |
TWI805115B (en) | Membrane-electrode assembly, method for preparing catalyst layer for direct coating, method for preparing membrane-electrode assembly, and fuel cell | |
KR100875946B1 (en) | Gas-diffusing electrode bodies and manufacturing methods thereof, and electrochemical devices | |
KR100823505B1 (en) | Catalyst for fuel cell, method for manufacturing same, membrane-electrode assembly and fuel cell system for fuel cell comprising same | |
WO2020059503A1 (en) | Anode catalyst layer for fuel cell and fuel cell using same | |
CN101351911A (en) | Electrode catalyst for fuel cell, method for producing same, and solid polymer fuel cell including said electrode catalyst | |
Vaivars et al. | Zirconium phosphate based inorganic direct methanol fuel cell | |
Ko et al. | Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ ZrO2 sphere for self-humidifying proton exchange membrane fuel cell | |
KR101561101B1 (en) | Polymer catalyst Slurry composition, porous electrodes produced thereby, membrane-electrode assembly comprising the porous electrodes, and method for the MEA | |
Chatterjee et al. | Carbon-based electrodes for direct methanol fuel cells | |
CN1925198A (en) | Catalyst for cathode of fuel cell, and membrane-electrode assembly for fuel cell | |
JP2006019300A (en) | FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE |