[go: up one dir, main page]

JP2003279735A - Polarization element - Google Patents

Polarization element

Info

Publication number
JP2003279735A
JP2003279735A JP2002080963A JP2002080963A JP2003279735A JP 2003279735 A JP2003279735 A JP 2003279735A JP 2002080963 A JP2002080963 A JP 2002080963A JP 2002080963 A JP2002080963 A JP 2002080963A JP 2003279735 A JP2003279735 A JP 2003279735A
Authority
JP
Japan
Prior art keywords
fine particles
light
incident light
average
polarizing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002080963A
Other languages
Japanese (ja)
Inventor
Yoshihisa Usami
由久 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002080963A priority Critical patent/JP2003279735A/en
Publication of JP2003279735A publication Critical patent/JP2003279735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization element for directing anisotropic fine particles with polarization selectivity to scatter in a transparent medium and extracting a half or more of an incident light as a predetermined linear polarization. <P>SOLUTION: The polarization element 10 has the fine particles 2 with anisotropic shapes directed, dispersed and interfused in the transparent medium 1. The fine particles 2 has an average dimension longer than an average wavelength of the incident light in the direction of a long axis, and an average dimension of one third of the average wavelength of the incident light or less in the direction of a short axis. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、偏光素子に関し、
特に、配向した異方性微粒子を用いた偏光素子に関する
ものである。 【0002】 【従来の技術】液晶表示素子等に用いられる偏光子に
は、二色性を利用するもの、複屈折プリズムを用いるも
の、偏光角を用いるものが知られているが、何れも入射
光の50%以下の光量しか直線偏光として取り出せな
い。 【0003】 【発明が解決しようとする課題】本発明は従来技術のこ
のような問題点に鑑みてなされたものであり、その目的
は、透明媒質中に散乱に偏光選択性のある異方性微粒子
を配向して入射光の半分以上を所定の直線偏光として取
り出せる偏光素子を提供することである。 【0004】 【課題を解決するための手段】上記目的を達成する本発
明の偏光素子は、透明媒質中に、形状が異方性の微粒子
であって、長軸方向の平均的寸法が入射光の平均的波長
より長く、短軸方向の平均的寸法が入射光の平均的波長
の3分の1以下の微粒子が配向して分散混入されている
ことを特徴とするものである。 【0005】本発明においては、透明媒質中に、形状が
異方性の微粒子であって、長軸方向の平均的寸法が入射
光の平均的波長より長く、短軸方向の平均的寸法が入射
光の平均的波長の3分の1以下の微粒子が配向して分散
混入されているので、その偏光素子の一面から入射した
自然偏光中の一方の直線偏光成分の略全てと、それと直
角の他の直線偏光成分の一部が多重散乱過程で一方の直
線偏光成分に変換された部分とが合わさって、直進方向
を中心にして一定の立体角内に出射光として出ることに
なり、入射光の半分以上が一方の直線偏光として取り出
すことができることになる。 【0006】 【発明の実施の形態】本発明の偏光素子は、透明媒質中
に異方性微粒子を配向して分散させてなるもので、その
原理は、異方性微粒子、特に、透明媒質と屈折率が異な
る形状が異方性の微粒子状の透明体が存在するとき、そ
の微粒子の長軸方向の平均的寸法が入射光の平均的波長
程度以上で、それと直交する短軸方向の平均的寸法が入
射光の平均的波長の3分の1程度以下である場合に、電
場成分が微粒子の長軸方向を向く偏光成分はその異方性
微粒子で散乱されて減衰され、一方、電場成分が微粒子
の短軸方向を向く偏光成分はその異方性微粒子で余り影
響を受けずに透過する性質を利用するものである(ここ
で、微粒子の寸法に関して平均的とするのは、微粒子の
大きさにバラツキがあるためであり、それぞれの寸法の
平均値を平均的寸法とする。また、波長に関して平均的
とするのは、使用波長域がある程度の広がりがあること
を前提にしており、可視光波長域における平均的波長は
550nmである。)。例えば、長さが入射光の平均的
波長より長く、その太さが入射光の平均的波長の3分の
1以下である棒状の屈折体が存在するとき、その棒状の
屈折体の軸方向に電場成分が向く直線偏光成分(偏光面
はその棒状の屈折体の軸に垂直になる。)は一部散乱さ
れ、その棒状の屈折体の軸方向に垂直に電場成分が向く
直線偏光成分(偏光面はその棒状の屈折体の軸方向な
る。)は散乱されずに透過する。 【0007】したがって、本発明においては、図1に示
すように、例えば板状の透明体1中に、例えば棒状の異
方性微粒子2をその長軸が全て透明体1の両面に略平行
で略同じ方向(X軸方向)を向くように配向させて分散
混入させて偏光素子10とする。ここで、棒状の異方性
微粒子2としては、その直径が入射光5の平均的波長の
3分の1以下、好ましくは10分の1以下、具体的には
300nm以下であり、その長さは入射光5の平均的波
長以上、具体的には1μm以上のものを用いる。 【0008】このような構成において、偏光素子10の
一方の面に垂直に向かう(Z軸方向に向かう)入射光5
を入射させる。この入射光5としては、異方性微粒子2
の長軸方向(X軸方向)に電場成分Exを持つ直線偏光
と、異方性微粒子2の長軸に直交する方向(Y軸方向)
に電場成分Eyを持つ直線偏光とを含む自然偏光とする
と、その入射光5の異方性微粒子2の長軸方向(X軸方
向)に電場成分Exを持つ直線偏光の一部は、異方性微
粒子2で散乱されて直進方向から外れる。一方、入射光
5の異方性微粒子2の長軸に直交する方向(Y軸方向)
に電場成分Eyを持つ直線偏光は、異方性微粒子2で散
乱されずに直進する。したがって、入射光5中の電場成
分Eyを持つ偏光成分は偏光素子10を透過して出射光
6となる。一方、入射光10中の電場成分Exを持つ偏
光成分は他の異方性微粒子2でも散乱される多重散乱を
起こすが、その間偏光方向は保存されないので、散乱の
過程で一部入射光5の方向を向く光であって電場成分E
yを持つ偏光成分になり、その部分はZ軸方向に略沿っ
て偏光素子10を透過し、出射光6の一部となる。多重
散乱中にこのような透過成分とならない光は偏光素子1
0の周囲に散乱光7として出る。 【0009】したがって、偏光素子10の一面から入射
した自然偏光5中の電場成分Eyを持つ偏光成分の略全
てと、電場成分Exを持つ偏光成分の一部が多重散乱過
程で電場成分Eyを持つ偏光成分に変換された部分とが
合わさって、直進方向(Z軸方向)を中心にして一定の
立体角ΔΩ内に出射光6として出ることになり、入射光
5の半分以上が電場成分Eyを持つ直線偏光、すなわ
ち、X軸方向に直線偏光した光として取り出すことがで
きることになる。 【0010】なお、偏光素子10の周囲に出る散乱光7
はノイズ光となるので、偏光素子10の周囲の面3に黒
色塗料等の吸収層を塗布して取り除くようにすることが
望ましい。 【0011】異方性微粒子2としては、以上のような棒
状あるいは針状の屈折体に限らず、板状、ラクビーボー
ル状等の他の形状の異方性のものであってもよい。具体
例としては、板状のものとしては、板状比(板径/板
厚)が3.5〜5の強磁性Baフェライト粉末がある。
また、針状のものとしては、針状比(長径/短径)が3
〜12の強磁性金属粉末が利用可能である。 【0012】そして、このような異方性微粒子2の配向
のためには、上記強磁性Baフェライト粉末、強磁性金
属粉末の場合は、磁場を用いる。具体的には、異方性微
粒子2が強磁性金属粉末の場合、透明体1中の配向を得
るには、図2(a)に示すように、強磁性金属粉末の異
方性微粒子2が分散混入してあり、未だ硬化していない
透明体1の樹脂をソレノイド21の軸方向に沿って通
し、透明体1の面に沿う方向の磁場をかけながら樹脂を
硬化させればよい。また、異方性微粒子2が強磁性Ba
フェライト粉末の場合は、透明体1中の配向を得るに
は、図2(b)に示すように、強磁性Baフェライト粉
末の異方性微粒子2が分散混入してあり、未だ硬化して
いない透明体1の樹脂の上下に対向する磁極22、2
2’を配置して透明体1の面に垂直な方向の磁場をかけ
ながら樹脂を硬化させればよい。 【0013】なお、板状、針状、ラクビーボール状等の
異方性微粒子2として強誘電性のものを用いる場合は、
上記の磁場の代わりに電場を用いて同様に配向硬化させ
ればよい。 【0014】ところで、以上の説明では、形状が異方性
の異方性微粒子2としては、長軸方向の平均的寸法が入
射光の平均的波長より長く、短軸方向の平均的寸法が入
射光の平均的波長の3分の1以下、好ましくは10分の
1以下であるものと想定しているが、散乱特性として
は、一方の直線偏光の散乱光量とそれに直角の直線偏光
の散乱光量との散乱光量比が、2以上、好ましくは3以
上、より好ましくは5以上あればよい。 【0015】以上、本発明の偏光素子をその原理と実施
例に基づいて説明してきたが、本発明はこれら実施例に
限定されず種々の変形が可能である。なお、本発明の偏
光素子は、液晶表示素子の偏光板等のとして利用するこ
とができる。 【0016】以上の本発明の偏光素子は、例えば次のよ
うに構成することができる。 【0017】〔1〕 透明媒質中に、形状が異方性の微
粒子であって、長軸方向の平均的寸法が入射光の平均的
波長より長く、短軸方向の平均的寸法が入射光の平均的
波長の3分の1以下の微粒子が配向して分散混入されて
いることを特徴とする偏光素子。 【0018】〔2〕 透明媒質中に、形状が異方性の微
粒子であって、一方の直線偏光の散乱光量とそれに直角
の直線偏光の散乱光量との散乱光量比が2以上の微粒子
が配向して分散混入されていることを特徴とする偏光素
子。 【0019】〔3〕 前記微粒子が棒状、針状、板状、
ラクビーボール状であることを特徴とする請求項1又は
2記載の偏光素子。 【0020】〔4〕 前記微粒子が強磁性体からなり、
未硬化樹脂中に分散混入され磁場を印加して配向硬化さ
れたものからなることを特徴とする請求項1から3の何
れか1項記載の偏光素子。 【0021】〔5〕 前記微粒子が強誘電体からなり、
未硬化樹脂中に分散混入され電場を印加して配向硬化さ
れたものからなることを特徴とする請求項1から3の何
れか1項記載の偏光素子。 【0022】 【発明の効果】以上の本発明の偏光素子によると、透明
媒質中に、形状が異方性の微粒子であって、長軸方向の
平均的寸法が入射光の平均的波長より長く、短軸方向の
平均的寸法が入射光の平均的波長の3分の1以下の微粒
子が配向して分散混入されているので、その偏光素子の
一面から入射した自然偏光中の一方の直線偏光成分の略
全てと、それと直角の他の直線偏光成分の一部が多重散
乱過程で一方の直線偏光成分に変換された部分とが合わ
さって、直進方向を中心にして一定の立体角内に出射光
として出ることになり、入射光の半分以上が一方の直線
偏光として取り出すことができることになる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing element,
In particular, the present invention relates to a polarizing element using oriented anisotropic fine particles. [0002] Polarizers used in liquid crystal display elements and the like are known to use dichroism, to use a birefringent prism, and to use a polarization angle. Only 50% or less of light can be extracted as linearly polarized light. SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the prior art, and its object is to provide anisotropy having polarization-selectivity for scattering in a transparent medium. An object of the present invention is to provide a polarizing element that can align fine particles and extract more than half of incident light as predetermined linearly polarized light. The polarizing element of the present invention that achieves the above object is a fine particle having an anisotropic shape in a transparent medium, and the average dimension in the major axis direction is incident light. In this case, fine particles having an average dimension in the minor axis direction of 1/3 or less of the average wavelength of incident light are oriented and dispersed and mixed. In the present invention, fine particles having an anisotropic shape in a transparent medium, the average dimension in the major axis direction is longer than the average wavelength of incident light, and the average dimension in the minor axis direction is incident. Since fine particles of less than one-third of the average wavelength of light are oriented and dispersed and mixed, almost all of one linearly polarized light component in natural polarized light incident from one surface of the polarizing element, A part of the linearly polarized light component of this is combined with the part that has been converted to one of the linearly polarized light components in the multiple scattering process, and is emitted as an outgoing light within a certain solid angle centered on the straight traveling direction. More than half can be extracted as one linearly polarized light. The polarizing element of the present invention is formed by orienting and dispersing anisotropic fine particles in a transparent medium. The principle of the polarizing element is as follows. When there is an anisotropic fine particle-like transparent body having a different refractive index, the average size of the fine particles in the major axis direction is equal to or greater than the average wavelength of incident light, and the average in the minor axis direction orthogonal to the incident light When the dimension is about one-third or less of the average wavelength of incident light, the polarization component whose electric field component faces the long axis direction of the fine particle is scattered and attenuated by the anisotropic fine particle, while the electric field component is The polarization component facing the minor axis direction of the fine particle utilizes the property of transmitting the anisotropic fine particle without much influence (here, the average of the fine particle size is the size of the fine particle) This is because there is variation in the average of each dimension The value is an average dimension, and the average wavelength is based on the premise that the used wavelength range has a certain extent, and the average wavelength in the visible wavelength range is 550 nm.) For example, when there is a rod-shaped refractor whose length is longer than the average wavelength of the incident light and whose thickness is one third or less of the average wavelength of the incident light, in the axial direction of the rod-shaped refractor The linearly polarized light component (the polarization plane is perpendicular to the axis of the rod-shaped refractor) that the electric field component faces is partially scattered, and the linearly polarized component (polarized light) that the electric field component is oriented perpendicular to the axial direction of the rod-shaped refractor. The surface is in the axial direction of the rod-shaped refractor.) Is transmitted without being scattered. Therefore, in the present invention, as shown in FIG. 1, for example, rod-like anisotropic fine particles 2 are, for example, in a plate-like transparent body 1 and their major axes are substantially parallel to both surfaces of the transparent body 1. The polarizing element 10 is formed by being oriented and dispersed so as to face substantially the same direction (X-axis direction). Here, the rod-like anisotropic fine particles 2 have a diameter of one third or less, preferably one tenth or less, specifically 300 nm or less of the average wavelength of the incident light 5, and the length thereof. For the incident light 5 is longer than the average wavelength, specifically, 1 μm or more. In such a configuration, incident light 5 directed perpendicularly to one surface of the polarizing element 10 (directed in the Z-axis direction).
Is incident. The incident light 5 includes anisotropic fine particles 2.
Linearly polarized light having an electric field component Ex in the major axis direction (X-axis direction) and a direction perpendicular to the major axis of the anisotropic fine particles 2 (Y-axis direction)
If the linearly polarized light including the linearly polarized light having the electric field component Ey is part of the linearly polarized light having the electric field component Ex in the major axis direction (X-axis direction) of the anisotropic fine particle 2 of the incident light 5 is anisotropic. Is scattered by the conductive fine particles 2 and deviates from the straight direction. On the other hand, the direction orthogonal to the major axis of the anisotropic fine particles 2 of the incident light 5 (Y-axis direction)
The linearly polarized light having the electric field component Ey travels straight without being scattered by the anisotropic fine particles 2. Therefore, the polarized light component having the electric field component Ey in the incident light 5 is transmitted through the polarizing element 10 and becomes the outgoing light 6. On the other hand, the polarized light component having the electric field component Ex in the incident light 10 causes multiple scattering which is also scattered by other anisotropic fine particles 2, but the polarization direction is not preserved during that time, so that part of the incident light 5 is scattered during the scattering process. Direction of light and electric field component E
The polarized light component having y is transmitted through the polarizing element 10 substantially along the Z-axis direction and becomes a part of the outgoing light 6. Light that does not become such a transmission component during multiple scattering is the polarizing element 1.
It comes out as scattered light 7 around zero. Accordingly, substantially all of the polarized light components having the electric field component Ey in the natural polarized light 5 incident from one surface of the polarizing element 10 and some of the polarized light components having the electric field component Ex have the electric field component Ey in the multiple scattering process. Combined with the portion converted into the polarization component, the light exits as the outgoing light 6 within a certain solid angle ΔΩ centered on the straight traveling direction (Z-axis direction), and more than half of the incident light 5 generates the electric field component Ey. It can be extracted as linearly polarized light, that is, light linearly polarized in the X-axis direction. Incidentally, scattered light 7 that is emitted around the polarizing element 10.
Since it becomes noise light, it is desirable to apply and remove an absorbing layer such as a black paint on the surface 3 around the polarizing element 10. The anisotropic fine particles 2 are not limited to the rod-like or needle-like refractors as described above, but may be anisotropic in other shapes such as a plate shape or a rugby ball shape. As a specific example, the plate-like material includes ferromagnetic Ba ferrite powder having a plate-like ratio (plate diameter / plate thickness) of 3.5 to 5.
In addition, the needle-like ratio (major axis / minor axis) is 3 for the needle-like one.
~ 12 ferromagnetic metal powders are available. For the orientation of the anisotropic fine particles 2, a magnetic field is used in the case of the ferromagnetic Ba ferrite powder and the ferromagnetic metal powder. Specifically, when the anisotropic fine particles 2 are ferromagnetic metal powders, in order to obtain the orientation in the transparent body 1, as shown in FIG. The resin of the transparent body 1 that is dispersed and mixed and has not yet been cured may be passed along the axial direction of the solenoid 21, and the resin may be cured while applying a magnetic field in the direction along the surface of the transparent body 1. The anisotropic fine particles 2 are ferromagnetic Ba.
In the case of ferrite powder, in order to obtain the orientation in the transparent body 1, as shown in FIG. 2B, the anisotropic fine particles 2 of the ferromagnetic Ba ferrite powder are dispersed and mixed, and are not yet cured. Magnetic poles 22, 2 facing the top and bottom of the resin of the transparent body 1
The resin may be cured while arranging 2 ′ and applying a magnetic field in a direction perpendicular to the surface of the transparent body 1. In the case where a ferroelectric material is used as the anisotropic fine particle 2 such as a plate shape, a needle shape, or a rugby ball shape,
The orientation hardening may be similarly performed using an electric field instead of the magnetic field. In the above description, the anisotropic fine particles 2 having an anisotropic shape have an average dimension in the major axis direction longer than the average wavelength of incident light and an average dimension in the minor axis direction. Although it is assumed that the average wavelength of light is 1/3 or less, preferably 1/10 or less, the scattering characteristic is that the amount of scattered light of one linearly polarized light and the amount of scattered light of linearly polarized light perpendicular to it. The ratio of the amount of scattered light to be 2 or more, preferably 3 or more, more preferably 5 or more. Although the polarizing element of the present invention has been described based on the principle and examples, the present invention is not limited to these examples, and various modifications are possible. In addition, the polarizing element of this invention can be utilized as a polarizing plate etc. of a liquid crystal display element. The polarizing element of the present invention as described above can be constructed as follows, for example. [1] In a transparent medium, the shape is anisotropic fine particles, the average dimension in the major axis direction is longer than the average wavelength of the incident light, and the average dimension in the minor axis direction is that of the incident light. A polarizing element characterized in that fine particles having an average wavelength of 1/3 or less are oriented and dispersed. [2] In a transparent medium, fine particles whose shape is anisotropic and whose ratio of the amount of scattered light of one linearly polarized light and the amount of scattered light of linearly polarized light perpendicular thereto are two or more are oriented. A polarizing element that is dispersed and mixed. [3] The fine particles are rod-shaped, needle-shaped, plate-shaped,
The polarizing element according to claim 1, wherein the polarizing element has a rugby ball shape. [4] The fine particles are made of a ferromagnetic material.
The polarizing element according to any one of claims 1 to 3, wherein the polarizing element is formed by being dispersed and mixed in an uncured resin and oriented and cured by applying a magnetic field. [5] The fine particles are made of a ferroelectric substance.
The polarizing element according to any one of claims 1 to 3, wherein the polarizing element is formed by being dispersed and mixed in an uncured resin and subjected to orientation curing by applying an electric field. According to the polarizing element of the present invention described above, the transparent medium is formed of anisotropic fine particles, and the average dimension in the major axis direction is longer than the average wavelength of incident light. Since the fine particles having an average dimension in the minor axis direction of 1/3 or less of the average wavelength of incident light are oriented and dispersed and mixed, one linearly polarized light in natural polarized light incident from one surface of the polarizing element Nearly all of the components and a part of the other linearly polarized light component perpendicular to it are combined into one linearly polarized light component in the multi-scattering process, and they come out within a certain solid angle around the straight direction. It will come out as incident light, and more than half of the incident light can be extracted as one linearly polarized light.

【図面の簡単な説明】 【図1】本発明に基づく偏光素子の構成と原理を説明す
るための図である。 【図2】異方性微粒子の配向方法の例を説明するための
図である。 【符号の説明】 1…透明体 2…異方性微粒子 5…入射光 6…出射光 7…散乱光 10…偏光素子 21…ソレノイド 22、22’…磁極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining the configuration and principle of a polarizing element according to the present invention. FIG. 2 is a view for explaining an example of an orientation method of anisotropic fine particles. [Description of Symbols] 1 ... transparent body 2 ... anisotropic fine particle 5 ... incident light 6 ... emitted light 7 ... scattered light 10 ... polarizing element 21 ... solenoid 22, 22 '... magnetic pole

Claims (1)

【特許請求の範囲】 【請求項1】 透明媒質中に、形状が異方性の微粒子で
あって、長軸方向の平均的寸法が入射光の平均的波長よ
り長く、短軸方向の平均的寸法が入射光の平均的波長の
3分の1以下の微粒子が配向して分散混入されているこ
とを特徴とする偏光素子。
[Claims] [Claims] [Claim 1] In a transparent medium, the shape is anisotropic fine particles, the average dimension in the major axis direction is longer than the average wavelength of the incident light, the average in the minor axis direction A polarizing element characterized in that fine particles whose size is one third or less of the average wavelength of incident light are oriented and dispersed.
JP2002080963A 2002-03-22 2002-03-22 Polarization element Pending JP2003279735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080963A JP2003279735A (en) 2002-03-22 2002-03-22 Polarization element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080963A JP2003279735A (en) 2002-03-22 2002-03-22 Polarization element

Publications (1)

Publication Number Publication Date
JP2003279735A true JP2003279735A (en) 2003-10-02

Family

ID=29229786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080963A Pending JP2003279735A (en) 2002-03-22 2002-03-22 Polarization element

Country Status (1)

Country Link
JP (1) JP2003279735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250430A (en) * 2004-02-05 2005-09-15 Sony Corp Liquid crystal display device and its manufacturing method
JP2008176065A (en) * 2007-01-18 2008-07-31 Kyoritsu Kagaku Sangyo Kk Composite material having optical anisotropy and method for manufacturing electronic device
JP2016066023A (en) * 2014-09-26 2016-04-28 東芝ライテック株式会社 UV irradiation equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250430A (en) * 2004-02-05 2005-09-15 Sony Corp Liquid crystal display device and its manufacturing method
JP2008176065A (en) * 2007-01-18 2008-07-31 Kyoritsu Kagaku Sangyo Kk Composite material having optical anisotropy and method for manufacturing electronic device
JP2016066023A (en) * 2014-09-26 2016-04-28 東芝ライテック株式会社 UV irradiation equipment

Similar Documents

Publication Publication Date Title
Marco et al. The polarization of an em wave propagating in a plasma with magnetic shear. The measurement of poloidal magnetic field in a Tokamak
Wang et al. Spin-wave quantization in ferromagnetic nickel nanowires
Erbacher et al. Multiple light scattering in magneto-optically active media
Liang et al. Electric-field-induced molecular reorientation of a magnetically biased ferronematic liquid-crystal film
Bakuzis et al. Magneto-optical properties of a highly transparent cadmium ferrite-based magnetic fluid
EP0391703A2 (en) Quasi-achromatic optical isolators and circulators using prisms with total internal fresnel reflection
Ro et al. Electromagnetic activity and absorption in microwave chiral composites
Li et al. Magnetic field sensor exploiting light polarization modulation of microfiber with magnetic fluid
CN101246232A (en) Active reflective polarizer, liquid crystal display using same, and method thereof
JP2003279735A (en) Polarization element
Zighem et al. Magnetization reversal behavior in complex shaped Co nanowires: A nanomagnet morphology optimization
Royer et al. Experimental investigation on γ− Fe2O3 nanoparticles Faraday Rotation: particles size dependence
Chakraborty et al. Frequency-dependent Faraday and Kerr rotation in anisotropic nonsymmorphic Dirac semimetals
Matuo et al. Determination of the minimum concentrations of ferrofluid of CoFe2O4 required to orient liquid crystals
Bai et al. Tunable magneto—optic modulation based on magnetically responsive nanostructured magnetic fluid
JP7476686B2 (en) Magnetic circuit, Faraday rotator, and magneto-optical device
Cochran Magnetization reversal in a thin ferromagnetic film weakly exchange coupled to a bulk ferromagnet
Berteaud et al. Relaxation and nonlinear effects in ferromagnetic thin films
Rosa et al. Surface effects in magnetic nanoparticles measured by means of a magneto-optical method
Mehta et al. Application of bimagnetic rotation
JP3752059B2 (en) Manufacturing method of polarizing plate
JP2006057055A (en) Method for producing precisely oriented material using magnetic field
Farias et al. Mie scattering by a perfectly conducting sphere with a rough surface
CN203101674U (en) Polarization beam splitting prism based on single axis crystal positive and negative refraction
CN208752330U (en) A micro-nano structure capable of distinguishing left-handed and right-handed polarized light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080305